2 * PowerPC integer and vector emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/host-utils.h"
23 #include "helper_regs.h"
24 /*****************************************************************************/
25 /* Fixed point operations helpers */
26 #if defined(TARGET_PPC64)
28 /* multiply high word */
29 uint64_t helper_mulhd(uint64_t arg1
, uint64_t arg2
)
33 muls64(&tl
, &th
, arg1
, arg2
);
37 /* multiply high word unsigned */
38 uint64_t helper_mulhdu(uint64_t arg1
, uint64_t arg2
)
42 mulu64(&tl
, &th
, arg1
, arg2
);
46 uint64_t helper_mulldo(CPUPPCState
*env
, uint64_t arg1
, uint64_t arg2
)
51 muls64(&tl
, (uint64_t *)&th
, arg1
, arg2
);
52 /* If th != 0 && th != -1, then we had an overflow */
53 if (likely((uint64_t)(th
+ 1) <= 1)) {
54 env
->xer
&= ~(1 << XER_OV
);
56 env
->xer
|= (1 << XER_OV
) | (1 << XER_SO
);
62 target_ulong
helper_cntlzw(target_ulong t
)
67 #if defined(TARGET_PPC64)
68 target_ulong
helper_cntlzd(target_ulong t
)
74 /* shift right arithmetic helper */
75 target_ulong
helper_sraw(CPUPPCState
*env
, target_ulong value
,
80 if (likely(!(shift
& 0x20))) {
81 if (likely((uint32_t)shift
!= 0)) {
83 ret
= (int32_t)value
>> shift
;
84 if (likely(ret
>= 0 || (value
& ((1 << shift
) - 1)) == 0)) {
85 env
->xer
&= ~(1 << XER_CA
);
87 env
->xer
|= (1 << XER_CA
);
91 env
->xer
&= ~(1 << XER_CA
);
94 ret
= (int32_t)value
>> 31;
96 env
->xer
|= (1 << XER_CA
);
98 env
->xer
&= ~(1 << XER_CA
);
101 return (target_long
)ret
;
104 #if defined(TARGET_PPC64)
105 target_ulong
helper_srad(CPUPPCState
*env
, target_ulong value
,
110 if (likely(!(shift
& 0x40))) {
111 if (likely((uint64_t)shift
!= 0)) {
113 ret
= (int64_t)value
>> shift
;
114 if (likely(ret
>= 0 || (value
& ((1 << shift
) - 1)) == 0)) {
115 env
->xer
&= ~(1 << XER_CA
);
117 env
->xer
|= (1 << XER_CA
);
120 ret
= (int64_t)value
;
121 env
->xer
&= ~(1 << XER_CA
);
124 ret
= (int64_t)value
>> 63;
126 env
->xer
|= (1 << XER_CA
);
128 env
->xer
&= ~(1 << XER_CA
);
135 #if defined(TARGET_PPC64)
136 target_ulong
helper_popcntb(target_ulong val
)
138 val
= (val
& 0x5555555555555555ULL
) + ((val
>> 1) &
139 0x5555555555555555ULL
);
140 val
= (val
& 0x3333333333333333ULL
) + ((val
>> 2) &
141 0x3333333333333333ULL
);
142 val
= (val
& 0x0f0f0f0f0f0f0f0fULL
) + ((val
>> 4) &
143 0x0f0f0f0f0f0f0f0fULL
);
147 target_ulong
helper_popcntw(target_ulong val
)
149 val
= (val
& 0x5555555555555555ULL
) + ((val
>> 1) &
150 0x5555555555555555ULL
);
151 val
= (val
& 0x3333333333333333ULL
) + ((val
>> 2) &
152 0x3333333333333333ULL
);
153 val
= (val
& 0x0f0f0f0f0f0f0f0fULL
) + ((val
>> 4) &
154 0x0f0f0f0f0f0f0f0fULL
);
155 val
= (val
& 0x00ff00ff00ff00ffULL
) + ((val
>> 8) &
156 0x00ff00ff00ff00ffULL
);
157 val
= (val
& 0x0000ffff0000ffffULL
) + ((val
>> 16) &
158 0x0000ffff0000ffffULL
);
162 target_ulong
helper_popcntd(target_ulong val
)
167 target_ulong
helper_popcntb(target_ulong val
)
169 val
= (val
& 0x55555555) + ((val
>> 1) & 0x55555555);
170 val
= (val
& 0x33333333) + ((val
>> 2) & 0x33333333);
171 val
= (val
& 0x0f0f0f0f) + ((val
>> 4) & 0x0f0f0f0f);
175 target_ulong
helper_popcntw(target_ulong val
)
177 val
= (val
& 0x55555555) + ((val
>> 1) & 0x55555555);
178 val
= (val
& 0x33333333) + ((val
>> 2) & 0x33333333);
179 val
= (val
& 0x0f0f0f0f) + ((val
>> 4) & 0x0f0f0f0f);
180 val
= (val
& 0x00ff00ff) + ((val
>> 8) & 0x00ff00ff);
181 val
= (val
& 0x0000ffff) + ((val
>> 16) & 0x0000ffff);
186 /*****************************************************************************/
187 /* PowerPC 601 specific instructions (POWER bridge) */
188 target_ulong
helper_div(CPUPPCState
*env
, target_ulong arg1
, target_ulong arg2
)
190 uint64_t tmp
= (uint64_t)arg1
<< 32 | env
->spr
[SPR_MQ
];
192 if (((int32_t)tmp
== INT32_MIN
&& (int32_t)arg2
== (int32_t)-1) ||
193 (int32_t)arg2
== 0) {
194 env
->spr
[SPR_MQ
] = 0;
197 env
->spr
[SPR_MQ
] = tmp
% arg2
;
198 return tmp
/ (int32_t)arg2
;
202 target_ulong
helper_divo(CPUPPCState
*env
, target_ulong arg1
,
205 uint64_t tmp
= (uint64_t)arg1
<< 32 | env
->spr
[SPR_MQ
];
207 if (((int32_t)tmp
== INT32_MIN
&& (int32_t)arg2
== (int32_t)-1) ||
208 (int32_t)arg2
== 0) {
209 env
->xer
|= (1 << XER_OV
) | (1 << XER_SO
);
210 env
->spr
[SPR_MQ
] = 0;
213 env
->spr
[SPR_MQ
] = tmp
% arg2
;
214 tmp
/= (int32_t)arg2
;
215 if ((int32_t)tmp
!= tmp
) {
216 env
->xer
|= (1 << XER_OV
) | (1 << XER_SO
);
218 env
->xer
&= ~(1 << XER_OV
);
224 target_ulong
helper_divs(CPUPPCState
*env
, target_ulong arg1
,
227 if (((int32_t)arg1
== INT32_MIN
&& (int32_t)arg2
== (int32_t)-1) ||
228 (int32_t)arg2
== 0) {
229 env
->spr
[SPR_MQ
] = 0;
232 env
->spr
[SPR_MQ
] = (int32_t)arg1
% (int32_t)arg2
;
233 return (int32_t)arg1
/ (int32_t)arg2
;
237 target_ulong
helper_divso(CPUPPCState
*env
, target_ulong arg1
,
240 if (((int32_t)arg1
== INT32_MIN
&& (int32_t)arg2
== (int32_t)-1) ||
241 (int32_t)arg2
== 0) {
242 env
->xer
|= (1 << XER_OV
) | (1 << XER_SO
);
243 env
->spr
[SPR_MQ
] = 0;
246 env
->xer
&= ~(1 << XER_OV
);
247 env
->spr
[SPR_MQ
] = (int32_t)arg1
% (int32_t)arg2
;
248 return (int32_t)arg1
/ (int32_t)arg2
;
252 /*****************************************************************************/
253 /* 602 specific instructions */
254 /* mfrom is the most crazy instruction ever seen, imho ! */
255 /* Real implementation uses a ROM table. Do the same */
256 /* Extremely decomposed:
258 * return 256 * log10(10 + 1.0) + 0.5
260 #if !defined(CONFIG_USER_ONLY)
261 target_ulong
helper_602_mfrom(target_ulong arg
)
263 if (likely(arg
< 602)) {
264 #include "mfrom_table.c"
265 return mfrom_ROM_table
[arg
];
272 /*****************************************************************************/
273 /* Altivec extension helpers */
274 #if defined(HOST_WORDS_BIGENDIAN)
282 #if defined(HOST_WORDS_BIGENDIAN)
283 #define VECTOR_FOR_INORDER_I(index, element) \
284 for (index = 0; index < ARRAY_SIZE(r->element); index++)
286 #define VECTOR_FOR_INORDER_I(index, element) \
287 for (index = ARRAY_SIZE(r->element)-1; index >= 0; index--)
290 /* Saturating arithmetic helpers. */
291 #define SATCVT(from, to, from_type, to_type, min, max) \
292 static inline to_type cvt##from##to(from_type x, int *sat) \
296 if (x < (from_type)min) { \
299 } else if (x > (from_type)max) { \
307 #define SATCVTU(from, to, from_type, to_type, min, max) \
308 static inline to_type cvt##from##to(from_type x, int *sat) \
312 if (x > (from_type)max) { \
320 SATCVT(sh
, sb
, int16_t, int8_t, INT8_MIN
, INT8_MAX
)
321 SATCVT(sw
, sh
, int32_t, int16_t, INT16_MIN
, INT16_MAX
)
322 SATCVT(sd
, sw
, int64_t, int32_t, INT32_MIN
, INT32_MAX
)
324 SATCVTU(uh
, ub
, uint16_t, uint8_t, 0, UINT8_MAX
)
325 SATCVTU(uw
, uh
, uint32_t, uint16_t, 0, UINT16_MAX
)
326 SATCVTU(ud
, uw
, uint64_t, uint32_t, 0, UINT32_MAX
)
327 SATCVT(sh
, ub
, int16_t, uint8_t, 0, UINT8_MAX
)
328 SATCVT(sw
, uh
, int32_t, uint16_t, 0, UINT16_MAX
)
329 SATCVT(sd
, uw
, int64_t, uint32_t, 0, UINT32_MAX
)
333 void helper_lvsl(ppc_avr_t
*r
, target_ulong sh
)
335 int i
, j
= (sh
& 0xf);
337 VECTOR_FOR_INORDER_I(i
, u8
) {
342 void helper_lvsr(ppc_avr_t
*r
, target_ulong sh
)
344 int i
, j
= 0x10 - (sh
& 0xf);
346 VECTOR_FOR_INORDER_I(i
, u8
) {
351 void helper_mtvscr(CPUPPCState
*env
, ppc_avr_t
*r
)
353 #if defined(HOST_WORDS_BIGENDIAN)
354 env
->vscr
= r
->u32
[3];
356 env
->vscr
= r
->u32
[0];
358 set_flush_to_zero(vscr_nj
, &env
->vec_status
);
361 void helper_vaddcuw(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
365 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
366 r
->u32
[i
] = ~a
->u32
[i
] < b
->u32
[i
];
370 #define VARITH_DO(name, op, element) \
371 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
375 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
376 r->element[i] = a->element[i] op b->element[i]; \
379 #define VARITH(suffix, element) \
380 VARITH_DO(add##suffix, +, element) \
381 VARITH_DO(sub##suffix, -, element)
388 #define VARITHFP(suffix, func) \
389 void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
394 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
395 r->f[i] = func(a->f[i], b->f[i], &env->vec_status); \
398 VARITHFP(addfp
, float32_add
)
399 VARITHFP(subfp
, float32_sub
)
400 VARITHFP(minfp
, float32_min
)
401 VARITHFP(maxfp
, float32_max
)
404 #define VARITHFPFMA(suffix, type) \
405 void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
406 ppc_avr_t *b, ppc_avr_t *c) \
409 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
410 r->f[i] = float32_muladd(a->f[i], c->f[i], b->f[i], \
411 type, &env->vec_status); \
414 VARITHFPFMA(maddfp
, 0);
415 VARITHFPFMA(nmsubfp
, float_muladd_negate_result
| float_muladd_negate_c
);
418 #define VARITHSAT_CASE(type, op, cvt, element) \
420 type result = (type)a->element[i] op (type)b->element[i]; \
421 r->element[i] = cvt(result, &sat); \
424 #define VARITHSAT_DO(name, op, optype, cvt, element) \
425 void helper_v##name(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
431 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
432 switch (sizeof(r->element[0])) { \
434 VARITHSAT_CASE(optype, op, cvt, element); \
437 VARITHSAT_CASE(optype, op, cvt, element); \
440 VARITHSAT_CASE(optype, op, cvt, element); \
445 env->vscr |= (1 << VSCR_SAT); \
448 #define VARITHSAT_SIGNED(suffix, element, optype, cvt) \
449 VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element) \
450 VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element)
451 #define VARITHSAT_UNSIGNED(suffix, element, optype, cvt) \
452 VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element) \
453 VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element)
454 VARITHSAT_SIGNED(b
, s8
, int16_t, cvtshsb
)
455 VARITHSAT_SIGNED(h
, s16
, int32_t, cvtswsh
)
456 VARITHSAT_SIGNED(w
, s32
, int64_t, cvtsdsw
)
457 VARITHSAT_UNSIGNED(b
, u8
, uint16_t, cvtshub
)
458 VARITHSAT_UNSIGNED(h
, u16
, uint32_t, cvtswuh
)
459 VARITHSAT_UNSIGNED(w
, u32
, uint64_t, cvtsduw
)
460 #undef VARITHSAT_CASE
462 #undef VARITHSAT_SIGNED
463 #undef VARITHSAT_UNSIGNED
465 #define VAVG_DO(name, element, etype) \
466 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
470 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
471 etype x = (etype)a->element[i] + (etype)b->element[i] + 1; \
472 r->element[i] = x >> 1; \
476 #define VAVG(type, signed_element, signed_type, unsigned_element, \
478 VAVG_DO(avgs##type, signed_element, signed_type) \
479 VAVG_DO(avgu##type, unsigned_element, unsigned_type)
480 VAVG(b
, s8
, int16_t, u8
, uint16_t)
481 VAVG(h
, s16
, int32_t, u16
, uint32_t)
482 VAVG(w
, s32
, int64_t, u32
, uint64_t)
486 #define VCF(suffix, cvt, element) \
487 void helper_vcf##suffix(CPUPPCState *env, ppc_avr_t *r, \
488 ppc_avr_t *b, uint32_t uim) \
492 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
493 float32 t = cvt(b->element[i], &env->vec_status); \
494 r->f[i] = float32_scalbn(t, -uim, &env->vec_status); \
497 VCF(ux
, uint32_to_float32
, u32
)
498 VCF(sx
, int32_to_float32
, s32
)
501 #define VCMP_DO(suffix, compare, element, record) \
502 void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r, \
503 ppc_avr_t *a, ppc_avr_t *b) \
505 uint32_t ones = (uint32_t)-1; \
506 uint32_t all = ones; \
510 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
511 uint32_t result = (a->element[i] compare b->element[i] ? \
513 switch (sizeof(a->element[0])) { \
515 r->u32[i] = result; \
518 r->u16[i] = result; \
528 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
531 #define VCMP(suffix, compare, element) \
532 VCMP_DO(suffix, compare, element, 0) \
533 VCMP_DO(suffix##_dot, compare, element, 1)
546 #define VCMPFP_DO(suffix, compare, order, record) \
547 void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r, \
548 ppc_avr_t *a, ppc_avr_t *b) \
550 uint32_t ones = (uint32_t)-1; \
551 uint32_t all = ones; \
555 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
557 int rel = float32_compare_quiet(a->f[i], b->f[i], \
559 if (rel == float_relation_unordered) { \
561 } else if (rel compare order) { \
566 r->u32[i] = result; \
571 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
574 #define VCMPFP(suffix, compare, order) \
575 VCMPFP_DO(suffix, compare, order, 0) \
576 VCMPFP_DO(suffix##_dot, compare, order, 1)
577 VCMPFP(eqfp
, ==, float_relation_equal
)
578 VCMPFP(gefp
, !=, float_relation_less
)
579 VCMPFP(gtfp
, ==, float_relation_greater
)
583 static inline void vcmpbfp_internal(CPUPPCState
*env
, ppc_avr_t
*r
,
584 ppc_avr_t
*a
, ppc_avr_t
*b
, int record
)
589 for (i
= 0; i
< ARRAY_SIZE(r
->f
); i
++) {
590 int le_rel
= float32_compare_quiet(a
->f
[i
], b
->f
[i
], &env
->vec_status
);
591 if (le_rel
== float_relation_unordered
) {
592 r
->u32
[i
] = 0xc0000000;
593 /* ALL_IN does not need to be updated here. */
595 float32 bneg
= float32_chs(b
->f
[i
]);
596 int ge_rel
= float32_compare_quiet(a
->f
[i
], bneg
, &env
->vec_status
);
597 int le
= le_rel
!= float_relation_greater
;
598 int ge
= ge_rel
!= float_relation_less
;
600 r
->u32
[i
] = ((!le
) << 31) | ((!ge
) << 30);
601 all_in
|= (!le
| !ge
);
605 env
->crf
[6] = (all_in
== 0) << 1;
609 void helper_vcmpbfp(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
611 vcmpbfp_internal(env
, r
, a
, b
, 0);
614 void helper_vcmpbfp_dot(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
617 vcmpbfp_internal(env
, r
, a
, b
, 1);
620 #define VCT(suffix, satcvt, element) \
621 void helper_vct##suffix(CPUPPCState *env, ppc_avr_t *r, \
622 ppc_avr_t *b, uint32_t uim) \
626 float_status s = env->vec_status; \
628 set_float_rounding_mode(float_round_to_zero, &s); \
629 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
630 if (float32_is_any_nan(b->f[i])) { \
633 float64 t = float32_to_float64(b->f[i], &s); \
636 t = float64_scalbn(t, uim, &s); \
637 j = float64_to_int64(t, &s); \
638 r->element[i] = satcvt(j, &sat); \
642 env->vscr |= (1 << VSCR_SAT); \
645 VCT(uxs
, cvtsduw
, u32
)
646 VCT(sxs
, cvtsdsw
, s32
)
649 void helper_vmhaddshs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
650 ppc_avr_t
*b
, ppc_avr_t
*c
)
655 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
656 int32_t prod
= a
->s16
[i
] * b
->s16
[i
];
657 int32_t t
= (int32_t)c
->s16
[i
] + (prod
>> 15);
659 r
->s16
[i
] = cvtswsh(t
, &sat
);
663 env
->vscr
|= (1 << VSCR_SAT
);
667 void helper_vmhraddshs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
668 ppc_avr_t
*b
, ppc_avr_t
*c
)
673 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
674 int32_t prod
= a
->s16
[i
] * b
->s16
[i
] + 0x00004000;
675 int32_t t
= (int32_t)c
->s16
[i
] + (prod
>> 15);
676 r
->s16
[i
] = cvtswsh(t
, &sat
);
680 env
->vscr
|= (1 << VSCR_SAT
);
684 #define VMINMAX_DO(name, compare, element) \
685 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
689 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
690 if (a->element[i] compare b->element[i]) { \
691 r->element[i] = b->element[i]; \
693 r->element[i] = a->element[i]; \
697 #define VMINMAX(suffix, element) \
698 VMINMAX_DO(min##suffix, >, element) \
699 VMINMAX_DO(max##suffix, <, element)
709 void helper_vmladduhm(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
713 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
714 int32_t prod
= a
->s16
[i
] * b
->s16
[i
];
715 r
->s16
[i
] = (int16_t) (prod
+ c
->s16
[i
]);
719 #define VMRG_DO(name, element, highp) \
720 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
724 size_t n_elems = ARRAY_SIZE(r->element); \
726 for (i = 0; i < n_elems / 2; i++) { \
728 result.element[i*2+HI_IDX] = a->element[i]; \
729 result.element[i*2+LO_IDX] = b->element[i]; \
731 result.element[n_elems - i * 2 - (1 + HI_IDX)] = \
732 b->element[n_elems - i - 1]; \
733 result.element[n_elems - i * 2 - (1 + LO_IDX)] = \
734 a->element[n_elems - i - 1]; \
739 #if defined(HOST_WORDS_BIGENDIAN)
746 #define VMRG(suffix, element) \
747 VMRG_DO(mrgl##suffix, element, MRGHI) \
748 VMRG_DO(mrgh##suffix, element, MRGLO)
757 void helper_vmsummbm(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
758 ppc_avr_t
*b
, ppc_avr_t
*c
)
763 for (i
= 0; i
< ARRAY_SIZE(r
->s8
); i
++) {
764 prod
[i
] = (int32_t)a
->s8
[i
] * b
->u8
[i
];
767 VECTOR_FOR_INORDER_I(i
, s32
) {
768 r
->s32
[i
] = c
->s32
[i
] + prod
[4 * i
] + prod
[4 * i
+ 1] +
769 prod
[4 * i
+ 2] + prod
[4 * i
+ 3];
773 void helper_vmsumshm(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
774 ppc_avr_t
*b
, ppc_avr_t
*c
)
779 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
780 prod
[i
] = a
->s16
[i
] * b
->s16
[i
];
783 VECTOR_FOR_INORDER_I(i
, s32
) {
784 r
->s32
[i
] = c
->s32
[i
] + prod
[2 * i
] + prod
[2 * i
+ 1];
788 void helper_vmsumshs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
789 ppc_avr_t
*b
, ppc_avr_t
*c
)
795 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
796 prod
[i
] = (int32_t)a
->s16
[i
] * b
->s16
[i
];
799 VECTOR_FOR_INORDER_I(i
, s32
) {
800 int64_t t
= (int64_t)c
->s32
[i
] + prod
[2 * i
] + prod
[2 * i
+ 1];
802 r
->u32
[i
] = cvtsdsw(t
, &sat
);
806 env
->vscr
|= (1 << VSCR_SAT
);
810 void helper_vmsumubm(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
811 ppc_avr_t
*b
, ppc_avr_t
*c
)
816 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
817 prod
[i
] = a
->u8
[i
] * b
->u8
[i
];
820 VECTOR_FOR_INORDER_I(i
, u32
) {
821 r
->u32
[i
] = c
->u32
[i
] + prod
[4 * i
] + prod
[4 * i
+ 1] +
822 prod
[4 * i
+ 2] + prod
[4 * i
+ 3];
826 void helper_vmsumuhm(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
827 ppc_avr_t
*b
, ppc_avr_t
*c
)
832 for (i
= 0; i
< ARRAY_SIZE(r
->u16
); i
++) {
833 prod
[i
] = a
->u16
[i
] * b
->u16
[i
];
836 VECTOR_FOR_INORDER_I(i
, u32
) {
837 r
->u32
[i
] = c
->u32
[i
] + prod
[2 * i
] + prod
[2 * i
+ 1];
841 void helper_vmsumuhs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
842 ppc_avr_t
*b
, ppc_avr_t
*c
)
848 for (i
= 0; i
< ARRAY_SIZE(r
->u16
); i
++) {
849 prod
[i
] = a
->u16
[i
] * b
->u16
[i
];
852 VECTOR_FOR_INORDER_I(i
, s32
) {
853 uint64_t t
= (uint64_t)c
->u32
[i
] + prod
[2 * i
] + prod
[2 * i
+ 1];
855 r
->u32
[i
] = cvtuduw(t
, &sat
);
859 env
->vscr
|= (1 << VSCR_SAT
);
863 #define VMUL_DO(name, mul_element, prod_element, evenp) \
864 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
868 VECTOR_FOR_INORDER_I(i, prod_element) { \
870 r->prod_element[i] = a->mul_element[i * 2 + HI_IDX] * \
871 b->mul_element[i * 2 + HI_IDX]; \
873 r->prod_element[i] = a->mul_element[i * 2 + LO_IDX] * \
874 b->mul_element[i * 2 + LO_IDX]; \
878 #define VMUL(suffix, mul_element, prod_element) \
879 VMUL_DO(mule##suffix, mul_element, prod_element, 1) \
880 VMUL_DO(mulo##suffix, mul_element, prod_element, 0)
888 void helper_vperm(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
,
894 VECTOR_FOR_INORDER_I(i
, u8
) {
895 int s
= c
->u8
[i
] & 0x1f;
896 #if defined(HOST_WORDS_BIGENDIAN)
899 int index
= 15 - (s
& 0xf);
903 result
.u8
[i
] = b
->u8
[index
];
905 result
.u8
[i
] = a
->u8
[index
];
911 #if defined(HOST_WORDS_BIGENDIAN)
916 void helper_vpkpx(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
920 #if defined(HOST_WORDS_BIGENDIAN)
921 const ppc_avr_t
*x
[2] = { a
, b
};
923 const ppc_avr_t
*x
[2] = { b
, a
};
926 VECTOR_FOR_INORDER_I(i
, u64
) {
927 VECTOR_FOR_INORDER_I(j
, u32
) {
928 uint32_t e
= x
[i
]->u32
[j
];
930 result
.u16
[4*i
+j
] = (((e
>> 9) & 0xfc00) |
938 #define VPK(suffix, from, to, cvt, dosat) \
939 void helper_vpk##suffix(CPUPPCState *env, ppc_avr_t *r, \
940 ppc_avr_t *a, ppc_avr_t *b) \
945 ppc_avr_t *a0 = PKBIG ? a : b; \
946 ppc_avr_t *a1 = PKBIG ? b : a; \
948 VECTOR_FOR_INORDER_I(i, from) { \
949 result.to[i] = cvt(a0->from[i], &sat); \
950 result.to[i+ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat); \
953 if (dosat && sat) { \
954 env->vscr |= (1 << VSCR_SAT); \
958 VPK(shss
, s16
, s8
, cvtshsb
, 1)
959 VPK(shus
, s16
, u8
, cvtshub
, 1)
960 VPK(swss
, s32
, s16
, cvtswsh
, 1)
961 VPK(swus
, s32
, u16
, cvtswuh
, 1)
962 VPK(uhus
, u16
, u8
, cvtuhub
, 1)
963 VPK(uwus
, u32
, u16
, cvtuwuh
, 1)
964 VPK(uhum
, u16
, u8
, I
, 0)
965 VPK(uwum
, u32
, u16
, I
, 0)
970 void helper_vrefp(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*b
)
974 for (i
= 0; i
< ARRAY_SIZE(r
->f
); i
++) {
975 r
->f
[i
] = float32_div(float32_one
, b
->f
[i
], &env
->vec_status
);
979 #define VRFI(suffix, rounding) \
980 void helper_vrfi##suffix(CPUPPCState *env, ppc_avr_t *r, \
984 float_status s = env->vec_status; \
986 set_float_rounding_mode(rounding, &s); \
987 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
988 r->f[i] = float32_round_to_int (b->f[i], &s); \
991 VRFI(n
, float_round_nearest_even
)
992 VRFI(m
, float_round_down
)
993 VRFI(p
, float_round_up
)
994 VRFI(z
, float_round_to_zero
)
997 #define VROTATE(suffix, element) \
998 void helper_vrl##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1002 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1003 unsigned int mask = ((1 << \
1004 (3 + (sizeof(a->element[0]) >> 1))) \
1006 unsigned int shift = b->element[i] & mask; \
1007 r->element[i] = (a->element[i] << shift) | \
1008 (a->element[i] >> (sizeof(a->element[0]) * 8 - shift)); \
1016 void helper_vrsqrtefp(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*b
)
1020 for (i
= 0; i
< ARRAY_SIZE(r
->f
); i
++) {
1021 float32 t
= float32_sqrt(b
->f
[i
], &env
->vec_status
);
1023 r
->f
[i
] = float32_div(float32_one
, t
, &env
->vec_status
);
1027 void helper_vsel(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
,
1030 r
->u64
[0] = (a
->u64
[0] & ~c
->u64
[0]) | (b
->u64
[0] & c
->u64
[0]);
1031 r
->u64
[1] = (a
->u64
[1] & ~c
->u64
[1]) | (b
->u64
[1] & c
->u64
[1]);
1034 void helper_vexptefp(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*b
)
1038 for (i
= 0; i
< ARRAY_SIZE(r
->f
); i
++) {
1039 r
->f
[i
] = float32_exp2(b
->f
[i
], &env
->vec_status
);
1043 void helper_vlogefp(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*b
)
1047 for (i
= 0; i
< ARRAY_SIZE(r
->f
); i
++) {
1048 r
->f
[i
] = float32_log2(b
->f
[i
], &env
->vec_status
);
1052 #if defined(HOST_WORDS_BIGENDIAN)
1059 /* The specification says that the results are undefined if all of the
1060 * shift counts are not identical. We check to make sure that they are
1061 * to conform to what real hardware appears to do. */
1062 #define VSHIFT(suffix, leftp) \
1063 void helper_vs##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1065 int shift = b->u8[LO_IDX*15] & 0x7; \
1069 for (i = 0; i < ARRAY_SIZE(r->u8); i++) { \
1070 doit = doit && ((b->u8[i] & 0x7) == shift); \
1075 } else if (leftp) { \
1076 uint64_t carry = a->u64[LO_IDX] >> (64 - shift); \
1078 r->u64[HI_IDX] = (a->u64[HI_IDX] << shift) | carry; \
1079 r->u64[LO_IDX] = a->u64[LO_IDX] << shift; \
1081 uint64_t carry = a->u64[HI_IDX] << (64 - shift); \
1083 r->u64[LO_IDX] = (a->u64[LO_IDX] >> shift) | carry; \
1084 r->u64[HI_IDX] = a->u64[HI_IDX] >> shift; \
1094 #define VSL(suffix, element) \
1095 void helper_vsl##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1099 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1100 unsigned int mask = ((1 << \
1101 (3 + (sizeof(a->element[0]) >> 1))) \
1103 unsigned int shift = b->element[i] & mask; \
1105 r->element[i] = a->element[i] << shift; \
1113 void helper_vsldoi(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t shift
)
1115 int sh
= shift
& 0xf;
1119 #if defined(HOST_WORDS_BIGENDIAN)
1120 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
1123 result
.u8
[i
] = b
->u8
[index
- 0x10];
1125 result
.u8
[i
] = a
->u8
[index
];
1129 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
1130 int index
= (16 - sh
) + i
;
1132 result
.u8
[i
] = a
->u8
[index
- 0x10];
1134 result
.u8
[i
] = b
->u8
[index
];
1141 void helper_vslo(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1143 int sh
= (b
->u8
[LO_IDX
*0xf] >> 3) & 0xf;
1145 #if defined(HOST_WORDS_BIGENDIAN)
1146 memmove(&r
->u8
[0], &a
->u8
[sh
], 16 - sh
);
1147 memset(&r
->u8
[16-sh
], 0, sh
);
1149 memmove(&r
->u8
[sh
], &a
->u8
[0], 16 - sh
);
1150 memset(&r
->u8
[0], 0, sh
);
1154 /* Experimental testing shows that hardware masks the immediate. */
1155 #define _SPLAT_MASKED(element) (splat & (ARRAY_SIZE(r->element) - 1))
1156 #if defined(HOST_WORDS_BIGENDIAN)
1157 #define SPLAT_ELEMENT(element) _SPLAT_MASKED(element)
1159 #define SPLAT_ELEMENT(element) \
1160 (ARRAY_SIZE(r->element) - 1 - _SPLAT_MASKED(element))
1162 #define VSPLT(suffix, element) \
1163 void helper_vsplt##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t splat) \
1165 uint32_t s = b->element[SPLAT_ELEMENT(element)]; \
1168 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1169 r->element[i] = s; \
1176 #undef SPLAT_ELEMENT
1177 #undef _SPLAT_MASKED
1179 #define VSPLTI(suffix, element, splat_type) \
1180 void helper_vspltis##suffix(ppc_avr_t *r, uint32_t splat) \
1182 splat_type x = (int8_t)(splat << 3) >> 3; \
1185 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1186 r->element[i] = x; \
1189 VSPLTI(b
, s8
, int8_t)
1190 VSPLTI(h
, s16
, int16_t)
1191 VSPLTI(w
, s32
, int32_t)
1194 #define VSR(suffix, element) \
1195 void helper_vsr##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1199 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1200 unsigned int mask = ((1 << \
1201 (3 + (sizeof(a->element[0]) >> 1))) \
1203 unsigned int shift = b->element[i] & mask; \
1205 r->element[i] = a->element[i] >> shift; \
1216 void helper_vsro(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1218 int sh
= (b
->u8
[LO_IDX
* 0xf] >> 3) & 0xf;
1220 #if defined(HOST_WORDS_BIGENDIAN)
1221 memmove(&r
->u8
[sh
], &a
->u8
[0], 16 - sh
);
1222 memset(&r
->u8
[0], 0, sh
);
1224 memmove(&r
->u8
[0], &a
->u8
[sh
], 16 - sh
);
1225 memset(&r
->u8
[16 - sh
], 0, sh
);
1229 void helper_vsubcuw(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1233 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
1234 r
->u32
[i
] = a
->u32
[i
] >= b
->u32
[i
];
1238 void helper_vsumsws(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1245 #if defined(HOST_WORDS_BIGENDIAN)
1246 upper
= ARRAY_SIZE(r
->s32
)-1;
1250 t
= (int64_t)b
->s32
[upper
];
1251 for (i
= 0; i
< ARRAY_SIZE(r
->s32
); i
++) {
1255 result
.s32
[upper
] = cvtsdsw(t
, &sat
);
1259 env
->vscr
|= (1 << VSCR_SAT
);
1263 void helper_vsum2sws(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1269 #if defined(HOST_WORDS_BIGENDIAN)
1274 for (i
= 0; i
< ARRAY_SIZE(r
->u64
); i
++) {
1275 int64_t t
= (int64_t)b
->s32
[upper
+ i
* 2];
1278 for (j
= 0; j
< ARRAY_SIZE(r
->u64
); j
++) {
1279 t
+= a
->s32
[2 * i
+ j
];
1281 result
.s32
[upper
+ i
* 2] = cvtsdsw(t
, &sat
);
1286 env
->vscr
|= (1 << VSCR_SAT
);
1290 void helper_vsum4sbs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1295 for (i
= 0; i
< ARRAY_SIZE(r
->s32
); i
++) {
1296 int64_t t
= (int64_t)b
->s32
[i
];
1298 for (j
= 0; j
< ARRAY_SIZE(r
->s32
); j
++) {
1299 t
+= a
->s8
[4 * i
+ j
];
1301 r
->s32
[i
] = cvtsdsw(t
, &sat
);
1305 env
->vscr
|= (1 << VSCR_SAT
);
1309 void helper_vsum4shs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1314 for (i
= 0; i
< ARRAY_SIZE(r
->s32
); i
++) {
1315 int64_t t
= (int64_t)b
->s32
[i
];
1317 t
+= a
->s16
[2 * i
] + a
->s16
[2 * i
+ 1];
1318 r
->s32
[i
] = cvtsdsw(t
, &sat
);
1322 env
->vscr
|= (1 << VSCR_SAT
);
1326 void helper_vsum4ubs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1331 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
1332 uint64_t t
= (uint64_t)b
->u32
[i
];
1334 for (j
= 0; j
< ARRAY_SIZE(r
->u32
); j
++) {
1335 t
+= a
->u8
[4 * i
+ j
];
1337 r
->u32
[i
] = cvtuduw(t
, &sat
);
1341 env
->vscr
|= (1 << VSCR_SAT
);
1345 #if defined(HOST_WORDS_BIGENDIAN)
1352 #define VUPKPX(suffix, hi) \
1353 void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
1358 for (i = 0; i < ARRAY_SIZE(r->u32); i++) { \
1359 uint16_t e = b->u16[hi ? i : i+4]; \
1360 uint8_t a = (e >> 15) ? 0xff : 0; \
1361 uint8_t r = (e >> 10) & 0x1f; \
1362 uint8_t g = (e >> 5) & 0x1f; \
1363 uint8_t b = e & 0x1f; \
1365 result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b; \
1373 #define VUPK(suffix, unpacked, packee, hi) \
1374 void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
1380 for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) { \
1381 result.unpacked[i] = b->packee[i]; \
1384 for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); \
1386 result.unpacked[i - ARRAY_SIZE(r->unpacked)] = b->packee[i]; \
1391 VUPK(hsb
, s16
, s8
, UPKHI
)
1392 VUPK(hsh
, s32
, s16
, UPKHI
)
1393 VUPK(lsb
, s16
, s8
, UPKLO
)
1394 VUPK(lsh
, s32
, s16
, UPKLO
)
1399 #undef VECTOR_FOR_INORDER_I
1403 /*****************************************************************************/
1404 /* SPE extension helpers */
1405 /* Use a table to make this quicker */
1406 static const uint8_t hbrev
[16] = {
1407 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
1408 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
1411 static inline uint8_t byte_reverse(uint8_t val
)
1413 return hbrev
[val
>> 4] | (hbrev
[val
& 0xF] << 4);
1416 static inline uint32_t word_reverse(uint32_t val
)
1418 return byte_reverse(val
>> 24) | (byte_reverse(val
>> 16) << 8) |
1419 (byte_reverse(val
>> 8) << 16) | (byte_reverse(val
) << 24);
1422 #define MASKBITS 16 /* Random value - to be fixed (implementation dependent) */
1423 target_ulong
helper_brinc(target_ulong arg1
, target_ulong arg2
)
1425 uint32_t a
, b
, d
, mask
;
1427 mask
= UINT32_MAX
>> (32 - MASKBITS
);
1430 d
= word_reverse(1 + word_reverse(a
| ~b
));
1431 return (arg1
& ~mask
) | (d
& b
);
1434 uint32_t helper_cntlsw32(uint32_t val
)
1436 if (val
& 0x80000000) {
1443 uint32_t helper_cntlzw32(uint32_t val
)
1449 target_ulong
helper_dlmzb(CPUPPCState
*env
, target_ulong high
,
1450 target_ulong low
, uint32_t update_Rc
)
1456 for (mask
= 0xFF000000; mask
!= 0; mask
= mask
>> 8) {
1457 if ((high
& mask
) == 0) {
1465 for (mask
= 0xFF000000; mask
!= 0; mask
= mask
>> 8) {
1466 if ((low
& mask
) == 0) {
1478 env
->xer
= (env
->xer
& ~0x7F) | i
;
1480 env
->crf
[0] |= xer_so
;