4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/accel.h"
30 #include "hw/pci/msi.h"
31 #include "hw/s390x/adapter.h"
32 #include "exec/gdbstub.h"
33 #include "sysemu/kvm.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
41 #include "hw/boards.h"
43 /* This check must be after config-host.h is included */
45 #include <sys/eventfd.h>
48 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
49 #define PAGE_SIZE TARGET_PAGE_SIZE
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
57 #define DPRINTF(fmt, ...) \
61 #define KVM_MSI_HASHTAB_SIZE 256
63 typedef struct KVMSlot
66 ram_addr_t memory_size
;
72 typedef struct kvm_dirty_log KVMDirtyLog
;
81 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
82 bool coalesced_flush_in_progress
;
83 int broken_set_mem_region
;
86 int robust_singlestep
;
88 #ifdef KVM_CAP_SET_GUEST_DEBUG
89 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
95 /* The man page (and posix) say ioctl numbers are signed int, but
96 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
97 * unsigned, and treating them as signed here can break things */
98 unsigned irq_set_ioctl
;
99 unsigned int sigmask_len
;
100 #ifdef KVM_CAP_IRQ_ROUTING
101 struct kvm_irq_routing
*irq_routes
;
102 int nr_allocated_irq_routes
;
103 uint32_t *used_gsi_bitmap
;
104 unsigned int gsi_count
;
105 QTAILQ_HEAD(msi_hashtab
, KVMMSIRoute
) msi_hashtab
[KVM_MSI_HASHTAB_SIZE
];
110 #define TYPE_KVM_ACCEL ACCEL_CLASS_NAME("kvm")
113 bool kvm_kernel_irqchip
;
114 bool kvm_async_interrupts_allowed
;
115 bool kvm_halt_in_kernel_allowed
;
116 bool kvm_eventfds_allowed
;
117 bool kvm_irqfds_allowed
;
118 bool kvm_msi_via_irqfd_allowed
;
119 bool kvm_gsi_routing_allowed
;
120 bool kvm_gsi_direct_mapping
;
122 bool kvm_readonly_mem_allowed
;
124 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
125 KVM_CAP_INFO(USER_MEMORY
),
126 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
130 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
134 for (i
= 0; i
< s
->nr_slots
; i
++) {
135 if (s
->slots
[i
].memory_size
== 0) {
140 fprintf(stderr
, "%s: no free slot available\n", __func__
);
144 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
150 for (i
= 0; i
< s
->nr_slots
; i
++) {
151 KVMSlot
*mem
= &s
->slots
[i
];
153 if (start_addr
== mem
->start_addr
&&
154 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
163 * Find overlapping slot with lowest start address
165 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
169 KVMSlot
*found
= NULL
;
172 for (i
= 0; i
< s
->nr_slots
; i
++) {
173 KVMSlot
*mem
= &s
->slots
[i
];
175 if (mem
->memory_size
== 0 ||
176 (found
&& found
->start_addr
< mem
->start_addr
)) {
180 if (end_addr
> mem
->start_addr
&&
181 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
189 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
194 for (i
= 0; i
< s
->nr_slots
; i
++) {
195 KVMSlot
*mem
= &s
->slots
[i
];
197 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
198 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
206 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
208 struct kvm_userspace_memory_region mem
;
210 mem
.slot
= slot
->slot
;
211 mem
.guest_phys_addr
= slot
->start_addr
;
212 mem
.userspace_addr
= (unsigned long)slot
->ram
;
213 mem
.flags
= slot
->flags
;
214 if (s
->migration_log
) {
215 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
218 if (slot
->memory_size
&& mem
.flags
& KVM_MEM_READONLY
) {
219 /* Set the slot size to 0 before setting the slot to the desired
220 * value. This is needed based on KVM commit 75d61fbc. */
222 kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
224 mem
.memory_size
= slot
->memory_size
;
225 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
228 int kvm_init_vcpu(CPUState
*cpu
)
230 KVMState
*s
= kvm_state
;
234 DPRINTF("kvm_init_vcpu\n");
236 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, (void *)kvm_arch_vcpu_id(cpu
));
238 DPRINTF("kvm_create_vcpu failed\n");
244 cpu
->kvm_vcpu_dirty
= true;
246 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
249 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
253 cpu
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
255 if (cpu
->kvm_run
== MAP_FAILED
) {
257 DPRINTF("mmap'ing vcpu state failed\n");
261 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
262 s
->coalesced_mmio_ring
=
263 (void *)cpu
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
266 ret
= kvm_arch_init_vcpu(cpu
);
272 * dirty pages logging control
275 static int kvm_mem_flags(KVMState
*s
, bool log_dirty
, bool readonly
)
278 flags
= log_dirty
? KVM_MEM_LOG_DIRTY_PAGES
: 0;
279 if (readonly
&& kvm_readonly_mem_allowed
) {
280 flags
|= KVM_MEM_READONLY
;
285 static int kvm_slot_dirty_pages_log_change(KVMSlot
*mem
, bool log_dirty
)
287 KVMState
*s
= kvm_state
;
288 int flags
, mask
= KVM_MEM_LOG_DIRTY_PAGES
;
291 old_flags
= mem
->flags
;
293 flags
= (mem
->flags
& ~mask
) | kvm_mem_flags(s
, log_dirty
, false);
296 /* If nothing changed effectively, no need to issue ioctl */
297 if (s
->migration_log
) {
298 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
301 if (flags
== old_flags
) {
305 return kvm_set_user_memory_region(s
, mem
);
308 static int kvm_dirty_pages_log_change(hwaddr phys_addr
,
309 ram_addr_t size
, bool log_dirty
)
311 KVMState
*s
= kvm_state
;
312 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
315 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
316 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
317 (hwaddr
)(phys_addr
+ size
- 1));
320 return kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
323 static void kvm_log_start(MemoryListener
*listener
,
324 MemoryRegionSection
*section
)
328 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
329 int128_get64(section
->size
), true);
335 static void kvm_log_stop(MemoryListener
*listener
,
336 MemoryRegionSection
*section
)
340 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
341 int128_get64(section
->size
), false);
347 static int kvm_set_migration_log(int enable
)
349 KVMState
*s
= kvm_state
;
353 s
->migration_log
= enable
;
355 for (i
= 0; i
< s
->nr_slots
; i
++) {
358 if (!mem
->memory_size
) {
361 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
364 err
= kvm_set_user_memory_region(s
, mem
);
372 /* get kvm's dirty pages bitmap and update qemu's */
373 static int kvm_get_dirty_pages_log_range(MemoryRegionSection
*section
,
374 unsigned long *bitmap
)
376 ram_addr_t start
= section
->offset_within_region
+ section
->mr
->ram_addr
;
377 ram_addr_t pages
= int128_get64(section
->size
) / getpagesize();
379 cpu_physical_memory_set_dirty_lebitmap(bitmap
, start
, pages
);
383 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
386 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
387 * This function updates qemu's dirty bitmap using
388 * memory_region_set_dirty(). This means all bits are set
391 * @start_add: start of logged region.
392 * @end_addr: end of logged region.
394 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection
*section
)
396 KVMState
*s
= kvm_state
;
397 unsigned long size
, allocated_size
= 0;
401 hwaddr start_addr
= section
->offset_within_address_space
;
402 hwaddr end_addr
= start_addr
+ int128_get64(section
->size
);
404 d
.dirty_bitmap
= NULL
;
405 while (start_addr
< end_addr
) {
406 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
411 /* XXX bad kernel interface alert
412 * For dirty bitmap, kernel allocates array of size aligned to
413 * bits-per-long. But for case when the kernel is 64bits and
414 * the userspace is 32bits, userspace can't align to the same
415 * bits-per-long, since sizeof(long) is different between kernel
416 * and user space. This way, userspace will provide buffer which
417 * may be 4 bytes less than the kernel will use, resulting in
418 * userspace memory corruption (which is not detectable by valgrind
419 * too, in most cases).
420 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
421 * a hope that sizeof(long) wont become >8 any time soon.
423 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
424 /*HOST_LONG_BITS*/ 64) / 8;
425 if (!d
.dirty_bitmap
) {
426 d
.dirty_bitmap
= g_malloc(size
);
427 } else if (size
> allocated_size
) {
428 d
.dirty_bitmap
= g_realloc(d
.dirty_bitmap
, size
);
430 allocated_size
= size
;
431 memset(d
.dirty_bitmap
, 0, allocated_size
);
435 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
436 DPRINTF("ioctl failed %d\n", errno
);
441 kvm_get_dirty_pages_log_range(section
, d
.dirty_bitmap
);
442 start_addr
= mem
->start_addr
+ mem
->memory_size
;
444 g_free(d
.dirty_bitmap
);
449 static void kvm_coalesce_mmio_region(MemoryListener
*listener
,
450 MemoryRegionSection
*secion
,
451 hwaddr start
, hwaddr size
)
453 KVMState
*s
= kvm_state
;
455 if (s
->coalesced_mmio
) {
456 struct kvm_coalesced_mmio_zone zone
;
462 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
466 static void kvm_uncoalesce_mmio_region(MemoryListener
*listener
,
467 MemoryRegionSection
*secion
,
468 hwaddr start
, hwaddr size
)
470 KVMState
*s
= kvm_state
;
472 if (s
->coalesced_mmio
) {
473 struct kvm_coalesced_mmio_zone zone
;
479 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
483 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
487 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
495 int kvm_vm_check_extension(KVMState
*s
, unsigned int extension
)
499 ret
= kvm_vm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
501 /* VM wide version not implemented, use global one instead */
502 ret
= kvm_check_extension(s
, extension
);
508 static int kvm_set_ioeventfd_mmio(int fd
, hwaddr addr
, uint32_t val
,
509 bool assign
, uint32_t size
, bool datamatch
)
512 struct kvm_ioeventfd iofd
;
514 iofd
.datamatch
= datamatch
? val
: 0;
520 if (!kvm_enabled()) {
525 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
528 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
531 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
540 static int kvm_set_ioeventfd_pio(int fd
, uint16_t addr
, uint16_t val
,
541 bool assign
, uint32_t size
, bool datamatch
)
543 struct kvm_ioeventfd kick
= {
544 .datamatch
= datamatch
? val
: 0,
546 .flags
= KVM_IOEVENTFD_FLAG_PIO
,
551 if (!kvm_enabled()) {
555 kick
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
558 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
560 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
568 static int kvm_check_many_ioeventfds(void)
570 /* Userspace can use ioeventfd for io notification. This requires a host
571 * that supports eventfd(2) and an I/O thread; since eventfd does not
572 * support SIGIO it cannot interrupt the vcpu.
574 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
575 * can avoid creating too many ioeventfds.
577 #if defined(CONFIG_EVENTFD)
580 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
581 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
582 if (ioeventfds
[i
] < 0) {
585 ret
= kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, true, 2, true);
587 close(ioeventfds
[i
]);
592 /* Decide whether many devices are supported or not */
593 ret
= i
== ARRAY_SIZE(ioeventfds
);
596 kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, false, 2, true);
597 close(ioeventfds
[i
]);
605 static const KVMCapabilityInfo
*
606 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
609 if (!kvm_check_extension(s
, list
->value
)) {
617 static void kvm_set_phys_mem(MemoryRegionSection
*section
, bool add
)
619 KVMState
*s
= kvm_state
;
622 MemoryRegion
*mr
= section
->mr
;
623 bool log_dirty
= memory_region_is_logging(mr
);
624 bool writeable
= !mr
->readonly
&& !mr
->rom_device
;
625 bool readonly_flag
= mr
->readonly
|| memory_region_is_romd(mr
);
626 hwaddr start_addr
= section
->offset_within_address_space
;
627 ram_addr_t size
= int128_get64(section
->size
);
631 /* kvm works in page size chunks, but the function may be called
632 with sub-page size and unaligned start address. */
633 delta
= TARGET_PAGE_ALIGN(size
) - size
;
639 size
&= TARGET_PAGE_MASK
;
640 if (!size
|| (start_addr
& ~TARGET_PAGE_MASK
)) {
644 if (!memory_region_is_ram(mr
)) {
645 if (writeable
|| !kvm_readonly_mem_allowed
) {
647 } else if (!mr
->romd_mode
) {
648 /* If the memory device is not in romd_mode, then we actually want
649 * to remove the kvm memory slot so all accesses will trap. */
654 ram
= memory_region_get_ram_ptr(mr
) + section
->offset_within_region
+ delta
;
657 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
662 if (add
&& start_addr
>= mem
->start_addr
&&
663 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
664 (ram
- start_addr
== mem
->ram
- mem
->start_addr
)) {
665 /* The new slot fits into the existing one and comes with
666 * identical parameters - update flags and done. */
667 kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
673 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
674 kvm_physical_sync_dirty_bitmap(section
);
677 /* unregister the overlapping slot */
678 mem
->memory_size
= 0;
679 err
= kvm_set_user_memory_region(s
, mem
);
681 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
682 __func__
, strerror(-err
));
686 /* Workaround for older KVM versions: we can't join slots, even not by
687 * unregistering the previous ones and then registering the larger
688 * slot. We have to maintain the existing fragmentation. Sigh.
690 * This workaround assumes that the new slot starts at the same
691 * address as the first existing one. If not or if some overlapping
692 * slot comes around later, we will fail (not seen in practice so far)
693 * - and actually require a recent KVM version. */
694 if (s
->broken_set_mem_region
&&
695 old
.start_addr
== start_addr
&& old
.memory_size
< size
&& add
) {
696 mem
= kvm_alloc_slot(s
);
697 mem
->memory_size
= old
.memory_size
;
698 mem
->start_addr
= old
.start_addr
;
700 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
702 err
= kvm_set_user_memory_region(s
, mem
);
704 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
709 start_addr
+= old
.memory_size
;
710 ram
+= old
.memory_size
;
711 size
-= old
.memory_size
;
715 /* register prefix slot */
716 if (old
.start_addr
< start_addr
) {
717 mem
= kvm_alloc_slot(s
);
718 mem
->memory_size
= start_addr
- old
.start_addr
;
719 mem
->start_addr
= old
.start_addr
;
721 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
723 err
= kvm_set_user_memory_region(s
, mem
);
725 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
726 __func__
, strerror(-err
));
728 fprintf(stderr
, "%s: This is probably because your kernel's " \
729 "PAGE_SIZE is too big. Please try to use 4k " \
730 "PAGE_SIZE!\n", __func__
);
736 /* register suffix slot */
737 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
738 ram_addr_t size_delta
;
740 mem
= kvm_alloc_slot(s
);
741 mem
->start_addr
= start_addr
+ size
;
742 size_delta
= mem
->start_addr
- old
.start_addr
;
743 mem
->memory_size
= old
.memory_size
- size_delta
;
744 mem
->ram
= old
.ram
+ size_delta
;
745 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
747 err
= kvm_set_user_memory_region(s
, mem
);
749 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
750 __func__
, strerror(-err
));
756 /* in case the KVM bug workaround already "consumed" the new slot */
763 mem
= kvm_alloc_slot(s
);
764 mem
->memory_size
= size
;
765 mem
->start_addr
= start_addr
;
767 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
769 err
= kvm_set_user_memory_region(s
, mem
);
771 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
777 static void kvm_region_add(MemoryListener
*listener
,
778 MemoryRegionSection
*section
)
780 memory_region_ref(section
->mr
);
781 kvm_set_phys_mem(section
, true);
784 static void kvm_region_del(MemoryListener
*listener
,
785 MemoryRegionSection
*section
)
787 kvm_set_phys_mem(section
, false);
788 memory_region_unref(section
->mr
);
791 static void kvm_log_sync(MemoryListener
*listener
,
792 MemoryRegionSection
*section
)
796 r
= kvm_physical_sync_dirty_bitmap(section
);
802 static void kvm_log_global_start(struct MemoryListener
*listener
)
806 r
= kvm_set_migration_log(1);
810 static void kvm_log_global_stop(struct MemoryListener
*listener
)
814 r
= kvm_set_migration_log(0);
818 static void kvm_mem_ioeventfd_add(MemoryListener
*listener
,
819 MemoryRegionSection
*section
,
820 bool match_data
, uint64_t data
,
823 int fd
= event_notifier_get_fd(e
);
826 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
827 data
, true, int128_get64(section
->size
),
830 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
831 __func__
, strerror(-r
));
836 static void kvm_mem_ioeventfd_del(MemoryListener
*listener
,
837 MemoryRegionSection
*section
,
838 bool match_data
, uint64_t data
,
841 int fd
= event_notifier_get_fd(e
);
844 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
845 data
, false, int128_get64(section
->size
),
852 static void kvm_io_ioeventfd_add(MemoryListener
*listener
,
853 MemoryRegionSection
*section
,
854 bool match_data
, uint64_t data
,
857 int fd
= event_notifier_get_fd(e
);
860 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
861 data
, true, int128_get64(section
->size
),
864 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
865 __func__
, strerror(-r
));
870 static void kvm_io_ioeventfd_del(MemoryListener
*listener
,
871 MemoryRegionSection
*section
,
872 bool match_data
, uint64_t data
,
876 int fd
= event_notifier_get_fd(e
);
879 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
880 data
, false, int128_get64(section
->size
),
887 static MemoryListener kvm_memory_listener
= {
888 .region_add
= kvm_region_add
,
889 .region_del
= kvm_region_del
,
890 .log_start
= kvm_log_start
,
891 .log_stop
= kvm_log_stop
,
892 .log_sync
= kvm_log_sync
,
893 .log_global_start
= kvm_log_global_start
,
894 .log_global_stop
= kvm_log_global_stop
,
895 .eventfd_add
= kvm_mem_ioeventfd_add
,
896 .eventfd_del
= kvm_mem_ioeventfd_del
,
897 .coalesced_mmio_add
= kvm_coalesce_mmio_region
,
898 .coalesced_mmio_del
= kvm_uncoalesce_mmio_region
,
902 static MemoryListener kvm_io_listener
= {
903 .eventfd_add
= kvm_io_ioeventfd_add
,
904 .eventfd_del
= kvm_io_ioeventfd_del
,
908 static void kvm_handle_interrupt(CPUState
*cpu
, int mask
)
910 cpu
->interrupt_request
|= mask
;
912 if (!qemu_cpu_is_self(cpu
)) {
917 int kvm_set_irq(KVMState
*s
, int irq
, int level
)
919 struct kvm_irq_level event
;
922 assert(kvm_async_interrupts_enabled());
926 ret
= kvm_vm_ioctl(s
, s
->irq_set_ioctl
, &event
);
928 perror("kvm_set_irq");
932 return (s
->irq_set_ioctl
== KVM_IRQ_LINE
) ? 1 : event
.status
;
935 #ifdef KVM_CAP_IRQ_ROUTING
936 typedef struct KVMMSIRoute
{
937 struct kvm_irq_routing_entry kroute
;
938 QTAILQ_ENTRY(KVMMSIRoute
) entry
;
941 static void set_gsi(KVMState
*s
, unsigned int gsi
)
943 s
->used_gsi_bitmap
[gsi
/ 32] |= 1U << (gsi
% 32);
946 static void clear_gsi(KVMState
*s
, unsigned int gsi
)
948 s
->used_gsi_bitmap
[gsi
/ 32] &= ~(1U << (gsi
% 32));
951 void kvm_init_irq_routing(KVMState
*s
)
955 gsi_count
= kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
) - 1;
957 unsigned int gsi_bits
, i
;
959 /* Round up so we can search ints using ffs */
960 gsi_bits
= ALIGN(gsi_count
, 32);
961 s
->used_gsi_bitmap
= g_malloc0(gsi_bits
/ 8);
962 s
->gsi_count
= gsi_count
;
964 /* Mark any over-allocated bits as already in use */
965 for (i
= gsi_count
; i
< gsi_bits
; i
++) {
970 s
->irq_routes
= g_malloc0(sizeof(*s
->irq_routes
));
971 s
->nr_allocated_irq_routes
= 0;
973 if (!s
->direct_msi
) {
974 for (i
= 0; i
< KVM_MSI_HASHTAB_SIZE
; i
++) {
975 QTAILQ_INIT(&s
->msi_hashtab
[i
]);
979 kvm_arch_init_irq_routing(s
);
982 void kvm_irqchip_commit_routes(KVMState
*s
)
986 s
->irq_routes
->flags
= 0;
987 ret
= kvm_vm_ioctl(s
, KVM_SET_GSI_ROUTING
, s
->irq_routes
);
991 static void kvm_add_routing_entry(KVMState
*s
,
992 struct kvm_irq_routing_entry
*entry
)
994 struct kvm_irq_routing_entry
*new;
997 if (s
->irq_routes
->nr
== s
->nr_allocated_irq_routes
) {
998 n
= s
->nr_allocated_irq_routes
* 2;
1002 size
= sizeof(struct kvm_irq_routing
);
1003 size
+= n
* sizeof(*new);
1004 s
->irq_routes
= g_realloc(s
->irq_routes
, size
);
1005 s
->nr_allocated_irq_routes
= n
;
1007 n
= s
->irq_routes
->nr
++;
1008 new = &s
->irq_routes
->entries
[n
];
1012 set_gsi(s
, entry
->gsi
);
1015 static int kvm_update_routing_entry(KVMState
*s
,
1016 struct kvm_irq_routing_entry
*new_entry
)
1018 struct kvm_irq_routing_entry
*entry
;
1021 for (n
= 0; n
< s
->irq_routes
->nr
; n
++) {
1022 entry
= &s
->irq_routes
->entries
[n
];
1023 if (entry
->gsi
!= new_entry
->gsi
) {
1027 if(!memcmp(entry
, new_entry
, sizeof *entry
)) {
1031 *entry
= *new_entry
;
1033 kvm_irqchip_commit_routes(s
);
1041 void kvm_irqchip_add_irq_route(KVMState
*s
, int irq
, int irqchip
, int pin
)
1043 struct kvm_irq_routing_entry e
= {};
1045 assert(pin
< s
->gsi_count
);
1048 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
1050 e
.u
.irqchip
.irqchip
= irqchip
;
1051 e
.u
.irqchip
.pin
= pin
;
1052 kvm_add_routing_entry(s
, &e
);
1055 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1057 struct kvm_irq_routing_entry
*e
;
1060 if (kvm_gsi_direct_mapping()) {
1064 for (i
= 0; i
< s
->irq_routes
->nr
; i
++) {
1065 e
= &s
->irq_routes
->entries
[i
];
1066 if (e
->gsi
== virq
) {
1067 s
->irq_routes
->nr
--;
1068 *e
= s
->irq_routes
->entries
[s
->irq_routes
->nr
];
1074 static unsigned int kvm_hash_msi(uint32_t data
)
1076 /* This is optimized for IA32 MSI layout. However, no other arch shall
1077 * repeat the mistake of not providing a direct MSI injection API. */
1081 static void kvm_flush_dynamic_msi_routes(KVMState
*s
)
1083 KVMMSIRoute
*route
, *next
;
1086 for (hash
= 0; hash
< KVM_MSI_HASHTAB_SIZE
; hash
++) {
1087 QTAILQ_FOREACH_SAFE(route
, &s
->msi_hashtab
[hash
], entry
, next
) {
1088 kvm_irqchip_release_virq(s
, route
->kroute
.gsi
);
1089 QTAILQ_REMOVE(&s
->msi_hashtab
[hash
], route
, entry
);
1095 static int kvm_irqchip_get_virq(KVMState
*s
)
1097 uint32_t *word
= s
->used_gsi_bitmap
;
1098 int max_words
= ALIGN(s
->gsi_count
, 32) / 32;
1103 /* Return the lowest unused GSI in the bitmap */
1104 for (i
= 0; i
< max_words
; i
++) {
1105 bit
= ffs(~word
[i
]);
1110 return bit
- 1 + i
* 32;
1112 if (!s
->direct_msi
&& retry
) {
1114 kvm_flush_dynamic_msi_routes(s
);
1121 static KVMMSIRoute
*kvm_lookup_msi_route(KVMState
*s
, MSIMessage msg
)
1123 unsigned int hash
= kvm_hash_msi(msg
.data
);
1126 QTAILQ_FOREACH(route
, &s
->msi_hashtab
[hash
], entry
) {
1127 if (route
->kroute
.u
.msi
.address_lo
== (uint32_t)msg
.address
&&
1128 route
->kroute
.u
.msi
.address_hi
== (msg
.address
>> 32) &&
1129 route
->kroute
.u
.msi
.data
== le32_to_cpu(msg
.data
)) {
1136 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1141 if (s
->direct_msi
) {
1142 msi
.address_lo
= (uint32_t)msg
.address
;
1143 msi
.address_hi
= msg
.address
>> 32;
1144 msi
.data
= le32_to_cpu(msg
.data
);
1146 memset(msi
.pad
, 0, sizeof(msi
.pad
));
1148 return kvm_vm_ioctl(s
, KVM_SIGNAL_MSI
, &msi
);
1151 route
= kvm_lookup_msi_route(s
, msg
);
1155 virq
= kvm_irqchip_get_virq(s
);
1160 route
= g_malloc0(sizeof(KVMMSIRoute
));
1161 route
->kroute
.gsi
= virq
;
1162 route
->kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1163 route
->kroute
.flags
= 0;
1164 route
->kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1165 route
->kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1166 route
->kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1168 kvm_add_routing_entry(s
, &route
->kroute
);
1169 kvm_irqchip_commit_routes(s
);
1171 QTAILQ_INSERT_TAIL(&s
->msi_hashtab
[kvm_hash_msi(msg
.data
)], route
,
1175 assert(route
->kroute
.type
== KVM_IRQ_ROUTING_MSI
);
1177 return kvm_set_irq(s
, route
->kroute
.gsi
, 1);
1180 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1182 struct kvm_irq_routing_entry kroute
= {};
1185 if (kvm_gsi_direct_mapping()) {
1186 return msg
.data
& 0xffff;
1189 if (!kvm_gsi_routing_enabled()) {
1193 virq
= kvm_irqchip_get_virq(s
);
1199 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1201 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1202 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1203 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1205 kvm_add_routing_entry(s
, &kroute
);
1206 kvm_irqchip_commit_routes(s
);
1211 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1213 struct kvm_irq_routing_entry kroute
= {};
1215 if (kvm_gsi_direct_mapping()) {
1219 if (!kvm_irqchip_in_kernel()) {
1224 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1226 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1227 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1228 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1230 return kvm_update_routing_entry(s
, &kroute
);
1233 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int rfd
, int virq
,
1236 struct kvm_irqfd irqfd
= {
1239 .flags
= assign
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
1243 irqfd
.flags
|= KVM_IRQFD_FLAG_RESAMPLE
;
1244 irqfd
.resamplefd
= rfd
;
1247 if (!kvm_irqfds_enabled()) {
1251 return kvm_vm_ioctl(s
, KVM_IRQFD
, &irqfd
);
1254 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1256 struct kvm_irq_routing_entry kroute
;
1259 if (!kvm_gsi_routing_enabled()) {
1263 virq
= kvm_irqchip_get_virq(s
);
1269 kroute
.type
= KVM_IRQ_ROUTING_S390_ADAPTER
;
1271 kroute
.u
.adapter
.summary_addr
= adapter
->summary_addr
;
1272 kroute
.u
.adapter
.ind_addr
= adapter
->ind_addr
;
1273 kroute
.u
.adapter
.summary_offset
= adapter
->summary_offset
;
1274 kroute
.u
.adapter
.ind_offset
= adapter
->ind_offset
;
1275 kroute
.u
.adapter
.adapter_id
= adapter
->adapter_id
;
1277 kvm_add_routing_entry(s
, &kroute
);
1278 kvm_irqchip_commit_routes(s
);
1283 #else /* !KVM_CAP_IRQ_ROUTING */
1285 void kvm_init_irq_routing(KVMState
*s
)
1289 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1293 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1298 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1303 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1308 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int virq
, bool assign
)
1313 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1317 #endif /* !KVM_CAP_IRQ_ROUTING */
1319 int kvm_irqchip_add_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1320 EventNotifier
*rn
, int virq
)
1322 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
),
1323 rn
? event_notifier_get_fd(rn
) : -1, virq
, true);
1326 int kvm_irqchip_remove_irqfd_notifier(KVMState
*s
, EventNotifier
*n
, int virq
)
1328 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
), -1, virq
,
1332 static int kvm_irqchip_create(KVMState
*s
)
1336 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "kernel_irqchip", true) ||
1337 (!kvm_check_extension(s
, KVM_CAP_IRQCHIP
) &&
1338 (kvm_vm_enable_cap(s
, KVM_CAP_S390_IRQCHIP
, 0) < 0))) {
1342 /* First probe and see if there's a arch-specific hook to create the
1343 * in-kernel irqchip for us */
1344 ret
= kvm_arch_irqchip_create(s
);
1347 } else if (ret
== 0) {
1348 ret
= kvm_vm_ioctl(s
, KVM_CREATE_IRQCHIP
);
1350 fprintf(stderr
, "Create kernel irqchip failed\n");
1355 kvm_kernel_irqchip
= true;
1356 /* If we have an in-kernel IRQ chip then we must have asynchronous
1357 * interrupt delivery (though the reverse is not necessarily true)
1359 kvm_async_interrupts_allowed
= true;
1360 kvm_halt_in_kernel_allowed
= true;
1362 kvm_init_irq_routing(s
);
1367 /* Find number of supported CPUs using the recommended
1368 * procedure from the kernel API documentation to cope with
1369 * older kernels that may be missing capabilities.
1371 static int kvm_recommended_vcpus(KVMState
*s
)
1373 int ret
= kvm_check_extension(s
, KVM_CAP_NR_VCPUS
);
1374 return (ret
) ? ret
: 4;
1377 static int kvm_max_vcpus(KVMState
*s
)
1379 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPUS
);
1380 return (ret
) ? ret
: kvm_recommended_vcpus(s
);
1383 static int kvm_init(MachineState
*ms
)
1385 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
1386 static const char upgrade_note
[] =
1387 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1388 "(see http://sourceforge.net/projects/kvm).\n";
1393 { "SMP", smp_cpus
},
1394 { "hotpluggable", max_cpus
},
1397 int soft_vcpus_limit
, hard_vcpus_limit
;
1399 const KVMCapabilityInfo
*missing_cap
;
1402 const char *kvm_type
;
1404 s
= g_malloc0(sizeof(KVMState
));
1407 * On systems where the kernel can support different base page
1408 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1409 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1410 * page size for the system though.
1412 assert(TARGET_PAGE_SIZE
<= getpagesize());
1417 #ifdef KVM_CAP_SET_GUEST_DEBUG
1418 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
1421 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
1423 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
1428 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
1429 if (ret
< KVM_API_VERSION
) {
1433 fprintf(stderr
, "kvm version too old\n");
1437 if (ret
> KVM_API_VERSION
) {
1439 fprintf(stderr
, "kvm version not supported\n");
1443 s
->nr_slots
= kvm_check_extension(s
, KVM_CAP_NR_MEMSLOTS
);
1445 /* If unspecified, use the default value */
1450 s
->slots
= g_malloc0(s
->nr_slots
* sizeof(KVMSlot
));
1452 for (i
= 0; i
< s
->nr_slots
; i
++) {
1453 s
->slots
[i
].slot
= i
;
1456 /* check the vcpu limits */
1457 soft_vcpus_limit
= kvm_recommended_vcpus(s
);
1458 hard_vcpus_limit
= kvm_max_vcpus(s
);
1461 if (nc
->num
> soft_vcpus_limit
) {
1463 "Warning: Number of %s cpus requested (%d) exceeds "
1464 "the recommended cpus supported by KVM (%d)\n",
1465 nc
->name
, nc
->num
, soft_vcpus_limit
);
1467 if (nc
->num
> hard_vcpus_limit
) {
1468 fprintf(stderr
, "Number of %s cpus requested (%d) exceeds "
1469 "the maximum cpus supported by KVM (%d)\n",
1470 nc
->name
, nc
->num
, hard_vcpus_limit
);
1477 kvm_type
= qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1479 type
= mc
->kvm_type(kvm_type
);
1480 } else if (kvm_type
) {
1482 fprintf(stderr
, "Invalid argument kvm-type=%s\n", kvm_type
);
1487 ret
= kvm_ioctl(s
, KVM_CREATE_VM
, type
);
1488 } while (ret
== -EINTR
);
1491 fprintf(stderr
, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret
,
1495 fprintf(stderr
, "Please add the 'switch_amode' kernel parameter to "
1496 "your host kernel command line\n");
1502 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
1505 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
1509 fprintf(stderr
, "kvm does not support %s\n%s",
1510 missing_cap
->name
, upgrade_note
);
1514 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
1516 s
->broken_set_mem_region
= 1;
1517 ret
= kvm_check_extension(s
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
1519 s
->broken_set_mem_region
= 0;
1522 #ifdef KVM_CAP_VCPU_EVENTS
1523 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
1526 s
->robust_singlestep
=
1527 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
1529 #ifdef KVM_CAP_DEBUGREGS
1530 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
1533 #ifdef KVM_CAP_XSAVE
1534 s
->xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1538 s
->xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1541 #ifdef KVM_CAP_PIT_STATE2
1542 s
->pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1545 #ifdef KVM_CAP_IRQ_ROUTING
1546 s
->direct_msi
= (kvm_check_extension(s
, KVM_CAP_SIGNAL_MSI
) > 0);
1549 s
->intx_set_mask
= kvm_check_extension(s
, KVM_CAP_PCI_2_3
);
1551 s
->irq_set_ioctl
= KVM_IRQ_LINE
;
1552 if (kvm_check_extension(s
, KVM_CAP_IRQ_INJECT_STATUS
)) {
1553 s
->irq_set_ioctl
= KVM_IRQ_LINE_STATUS
;
1556 #ifdef KVM_CAP_READONLY_MEM
1557 kvm_readonly_mem_allowed
=
1558 (kvm_check_extension(s
, KVM_CAP_READONLY_MEM
) > 0);
1561 kvm_eventfds_allowed
=
1562 (kvm_check_extension(s
, KVM_CAP_IOEVENTFD
) > 0);
1564 ret
= kvm_arch_init(s
);
1569 ret
= kvm_irqchip_create(s
);
1575 memory_listener_register(&kvm_memory_listener
, &address_space_memory
);
1576 memory_listener_register(&kvm_io_listener
, &address_space_io
);
1578 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
1580 cpu_interrupt_handler
= kvm_handle_interrupt
;
1598 void kvm_set_sigmask_len(KVMState
*s
, unsigned int sigmask_len
)
1600 s
->sigmask_len
= sigmask_len
;
1603 static void kvm_handle_io(uint16_t port
, void *data
, int direction
, int size
,
1607 uint8_t *ptr
= data
;
1609 for (i
= 0; i
< count
; i
++) {
1610 address_space_rw(&address_space_io
, port
, ptr
, size
,
1611 direction
== KVM_EXIT_IO_OUT
);
1616 static int kvm_handle_internal_error(CPUState
*cpu
, struct kvm_run
*run
)
1618 fprintf(stderr
, "KVM internal error. Suberror: %d\n",
1619 run
->internal
.suberror
);
1621 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
1624 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
1625 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
1626 i
, (uint64_t)run
->internal
.data
[i
]);
1629 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
1630 fprintf(stderr
, "emulation failure\n");
1631 if (!kvm_arch_stop_on_emulation_error(cpu
)) {
1632 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1633 return EXCP_INTERRUPT
;
1636 /* FIXME: Should trigger a qmp message to let management know
1637 * something went wrong.
1642 void kvm_flush_coalesced_mmio_buffer(void)
1644 KVMState
*s
= kvm_state
;
1646 if (s
->coalesced_flush_in_progress
) {
1650 s
->coalesced_flush_in_progress
= true;
1652 if (s
->coalesced_mmio_ring
) {
1653 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
1654 while (ring
->first
!= ring
->last
) {
1655 struct kvm_coalesced_mmio
*ent
;
1657 ent
= &ring
->coalesced_mmio
[ring
->first
];
1659 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
1661 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
1665 s
->coalesced_flush_in_progress
= false;
1668 static void do_kvm_cpu_synchronize_state(void *arg
)
1670 CPUState
*cpu
= arg
;
1672 if (!cpu
->kvm_vcpu_dirty
) {
1673 kvm_arch_get_registers(cpu
);
1674 cpu
->kvm_vcpu_dirty
= true;
1678 void kvm_cpu_synchronize_state(CPUState
*cpu
)
1680 if (!cpu
->kvm_vcpu_dirty
) {
1681 run_on_cpu(cpu
, do_kvm_cpu_synchronize_state
, cpu
);
1685 static void do_kvm_cpu_synchronize_post_reset(void *arg
)
1687 CPUState
*cpu
= arg
;
1689 kvm_arch_put_registers(cpu
, KVM_PUT_RESET_STATE
);
1690 cpu
->kvm_vcpu_dirty
= false;
1693 void kvm_cpu_synchronize_post_reset(CPUState
*cpu
)
1695 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_reset
, cpu
);
1698 static void do_kvm_cpu_synchronize_post_init(void *arg
)
1700 CPUState
*cpu
= arg
;
1702 kvm_arch_put_registers(cpu
, KVM_PUT_FULL_STATE
);
1703 cpu
->kvm_vcpu_dirty
= false;
1706 void kvm_cpu_synchronize_post_init(CPUState
*cpu
)
1708 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_init
, cpu
);
1711 void kvm_cpu_clean_state(CPUState
*cpu
)
1713 cpu
->kvm_vcpu_dirty
= false;
1716 int kvm_cpu_exec(CPUState
*cpu
)
1718 struct kvm_run
*run
= cpu
->kvm_run
;
1721 DPRINTF("kvm_cpu_exec()\n");
1723 if (kvm_arch_process_async_events(cpu
)) {
1724 cpu
->exit_request
= 0;
1729 if (cpu
->kvm_vcpu_dirty
) {
1730 kvm_arch_put_registers(cpu
, KVM_PUT_RUNTIME_STATE
);
1731 cpu
->kvm_vcpu_dirty
= false;
1734 kvm_arch_pre_run(cpu
, run
);
1735 if (cpu
->exit_request
) {
1736 DPRINTF("interrupt exit requested\n");
1738 * KVM requires us to reenter the kernel after IO exits to complete
1739 * instruction emulation. This self-signal will ensure that we
1742 qemu_cpu_kick_self();
1744 qemu_mutex_unlock_iothread();
1746 run_ret
= kvm_vcpu_ioctl(cpu
, KVM_RUN
, 0);
1748 qemu_mutex_lock_iothread();
1749 kvm_arch_post_run(cpu
, run
);
1752 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
1753 DPRINTF("io window exit\n");
1754 ret
= EXCP_INTERRUPT
;
1757 fprintf(stderr
, "error: kvm run failed %s\n",
1758 strerror(-run_ret
));
1763 trace_kvm_run_exit(cpu
->cpu_index
, run
->exit_reason
);
1764 switch (run
->exit_reason
) {
1766 DPRINTF("handle_io\n");
1767 kvm_handle_io(run
->io
.port
,
1768 (uint8_t *)run
+ run
->io
.data_offset
,
1775 DPRINTF("handle_mmio\n");
1776 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
1779 run
->mmio
.is_write
);
1782 case KVM_EXIT_IRQ_WINDOW_OPEN
:
1783 DPRINTF("irq_window_open\n");
1784 ret
= EXCP_INTERRUPT
;
1786 case KVM_EXIT_SHUTDOWN
:
1787 DPRINTF("shutdown\n");
1788 qemu_system_reset_request();
1789 ret
= EXCP_INTERRUPT
;
1791 case KVM_EXIT_UNKNOWN
:
1792 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
1793 (uint64_t)run
->hw
.hardware_exit_reason
);
1796 case KVM_EXIT_INTERNAL_ERROR
:
1797 ret
= kvm_handle_internal_error(cpu
, run
);
1799 case KVM_EXIT_SYSTEM_EVENT
:
1800 switch (run
->system_event
.type
) {
1801 case KVM_SYSTEM_EVENT_SHUTDOWN
:
1802 qemu_system_shutdown_request();
1803 ret
= EXCP_INTERRUPT
;
1805 case KVM_SYSTEM_EVENT_RESET
:
1806 qemu_system_reset_request();
1807 ret
= EXCP_INTERRUPT
;
1810 DPRINTF("kvm_arch_handle_exit\n");
1811 ret
= kvm_arch_handle_exit(cpu
, run
);
1816 DPRINTF("kvm_arch_handle_exit\n");
1817 ret
= kvm_arch_handle_exit(cpu
, run
);
1823 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1824 vm_stop(RUN_STATE_INTERNAL_ERROR
);
1827 cpu
->exit_request
= 0;
1831 int kvm_ioctl(KVMState
*s
, int type
, ...)
1838 arg
= va_arg(ap
, void *);
1841 trace_kvm_ioctl(type
, arg
);
1842 ret
= ioctl(s
->fd
, type
, arg
);
1849 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
1856 arg
= va_arg(ap
, void *);
1859 trace_kvm_vm_ioctl(type
, arg
);
1860 ret
= ioctl(s
->vmfd
, type
, arg
);
1867 int kvm_vcpu_ioctl(CPUState
*cpu
, int type
, ...)
1874 arg
= va_arg(ap
, void *);
1877 trace_kvm_vcpu_ioctl(cpu
->cpu_index
, type
, arg
);
1878 ret
= ioctl(cpu
->kvm_fd
, type
, arg
);
1885 int kvm_device_ioctl(int fd
, int type
, ...)
1892 arg
= va_arg(ap
, void *);
1895 trace_kvm_device_ioctl(fd
, type
, arg
);
1896 ret
= ioctl(fd
, type
, arg
);
1903 int kvm_has_sync_mmu(void)
1905 return kvm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
1908 int kvm_has_vcpu_events(void)
1910 return kvm_state
->vcpu_events
;
1913 int kvm_has_robust_singlestep(void)
1915 return kvm_state
->robust_singlestep
;
1918 int kvm_has_debugregs(void)
1920 return kvm_state
->debugregs
;
1923 int kvm_has_xsave(void)
1925 return kvm_state
->xsave
;
1928 int kvm_has_xcrs(void)
1930 return kvm_state
->xcrs
;
1933 int kvm_has_pit_state2(void)
1935 return kvm_state
->pit_state2
;
1938 int kvm_has_many_ioeventfds(void)
1940 if (!kvm_enabled()) {
1943 return kvm_state
->many_ioeventfds
;
1946 int kvm_has_gsi_routing(void)
1948 #ifdef KVM_CAP_IRQ_ROUTING
1949 return kvm_check_extension(kvm_state
, KVM_CAP_IRQ_ROUTING
);
1955 int kvm_has_intx_set_mask(void)
1957 return kvm_state
->intx_set_mask
;
1960 void kvm_setup_guest_memory(void *start
, size_t size
)
1962 if (!kvm_has_sync_mmu()) {
1963 int ret
= qemu_madvise(start
, size
, QEMU_MADV_DONTFORK
);
1966 perror("qemu_madvise");
1968 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1974 #ifdef KVM_CAP_SET_GUEST_DEBUG
1975 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*cpu
,
1978 struct kvm_sw_breakpoint
*bp
;
1980 QTAILQ_FOREACH(bp
, &cpu
->kvm_state
->kvm_sw_breakpoints
, entry
) {
1988 int kvm_sw_breakpoints_active(CPUState
*cpu
)
1990 return !QTAILQ_EMPTY(&cpu
->kvm_state
->kvm_sw_breakpoints
);
1993 struct kvm_set_guest_debug_data
{
1994 struct kvm_guest_debug dbg
;
1999 static void kvm_invoke_set_guest_debug(void *data
)
2001 struct kvm_set_guest_debug_data
*dbg_data
= data
;
2003 dbg_data
->err
= kvm_vcpu_ioctl(dbg_data
->cpu
, KVM_SET_GUEST_DEBUG
,
2007 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2009 struct kvm_set_guest_debug_data data
;
2011 data
.dbg
.control
= reinject_trap
;
2013 if (cpu
->singlestep_enabled
) {
2014 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
2016 kvm_arch_update_guest_debug(cpu
, &data
.dbg
);
2019 run_on_cpu(cpu
, kvm_invoke_set_guest_debug
, &data
);
2023 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2024 target_ulong len
, int type
)
2026 struct kvm_sw_breakpoint
*bp
;
2029 if (type
== GDB_BREAKPOINT_SW
) {
2030 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2036 bp
= g_malloc(sizeof(struct kvm_sw_breakpoint
));
2043 err
= kvm_arch_insert_sw_breakpoint(cpu
, bp
);
2049 QTAILQ_INSERT_HEAD(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2051 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
2058 err
= kvm_update_guest_debug(cpu
, 0);
2066 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2067 target_ulong len
, int type
)
2069 struct kvm_sw_breakpoint
*bp
;
2072 if (type
== GDB_BREAKPOINT_SW
) {
2073 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2078 if (bp
->use_count
> 1) {
2083 err
= kvm_arch_remove_sw_breakpoint(cpu
, bp
);
2088 QTAILQ_REMOVE(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2091 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
2098 err
= kvm_update_guest_debug(cpu
, 0);
2106 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2108 struct kvm_sw_breakpoint
*bp
, *next
;
2109 KVMState
*s
= cpu
->kvm_state
;
2112 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
2113 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) != 0) {
2114 /* Try harder to find a CPU that currently sees the breakpoint. */
2115 CPU_FOREACH(tmpcpu
) {
2116 if (kvm_arch_remove_sw_breakpoint(tmpcpu
, bp
) == 0) {
2121 QTAILQ_REMOVE(&s
->kvm_sw_breakpoints
, bp
, entry
);
2124 kvm_arch_remove_all_hw_breakpoints();
2127 kvm_update_guest_debug(cpu
, 0);
2131 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2133 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2138 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2139 target_ulong len
, int type
)
2144 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2145 target_ulong len
, int type
)
2150 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2153 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2155 int kvm_set_signal_mask(CPUState
*cpu
, const sigset_t
*sigset
)
2157 KVMState
*s
= kvm_state
;
2158 struct kvm_signal_mask
*sigmask
;
2162 return kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, NULL
);
2165 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
2167 sigmask
->len
= s
->sigmask_len
;
2168 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
2169 r
= kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, sigmask
);
2174 int kvm_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
2176 return kvm_arch_on_sigbus_vcpu(cpu
, code
, addr
);
2179 int kvm_on_sigbus(int code
, void *addr
)
2181 return kvm_arch_on_sigbus(code
, addr
);
2184 int kvm_create_device(KVMState
*s
, uint64_t type
, bool test
)
2187 struct kvm_create_device create_dev
;
2189 create_dev
.type
= type
;
2191 create_dev
.flags
= test
? KVM_CREATE_DEVICE_TEST
: 0;
2193 if (!kvm_check_extension(s
, KVM_CAP_DEVICE_CTRL
)) {
2197 ret
= kvm_vm_ioctl(s
, KVM_CREATE_DEVICE
, &create_dev
);
2202 return test
? 0 : create_dev
.fd
;
2205 int kvm_set_one_reg(CPUState
*cs
, uint64_t id
, void *source
)
2207 struct kvm_one_reg reg
;
2211 reg
.addr
= (uintptr_t) source
;
2212 r
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
2214 trace_kvm_failed_reg_set(id
, strerror(r
));
2219 int kvm_get_one_reg(CPUState
*cs
, uint64_t id
, void *target
)
2221 struct kvm_one_reg reg
;
2225 reg
.addr
= (uintptr_t) target
;
2226 r
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
2228 trace_kvm_failed_reg_get(id
, strerror(r
));
2233 static void kvm_accel_class_init(ObjectClass
*oc
, void *data
)
2235 AccelClass
*ac
= ACCEL_CLASS(oc
);
2237 ac
->init_machine
= kvm_init
;
2238 ac
->allowed
= &kvm_allowed
;
2241 static const TypeInfo kvm_accel_type
= {
2242 .name
= TYPE_KVM_ACCEL
,
2243 .parent
= TYPE_ACCEL
,
2244 .class_init
= kvm_accel_class_init
,
2247 static void kvm_type_init(void)
2249 type_register_static(&kvm_accel_type
);
2252 type_init(kvm_type_init
);