accel: Pass MachineState object to accel init functions
[qemu/cris-port.git] / kvm-all.c
blob0a9de929e0b4387fbb7ddbb6d00fc93dc11773fc
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/accel.h"
29 #include "hw/hw.h"
30 #include "hw/pci/msi.h"
31 #include "hw/s390x/adapter.h"
32 #include "exec/gdbstub.h"
33 #include "sysemu/kvm.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "trace.h"
41 #include "hw/boards.h"
43 /* This check must be after config-host.h is included */
44 #ifdef CONFIG_EVENTFD
45 #include <sys/eventfd.h>
46 #endif
48 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
49 #define PAGE_SIZE TARGET_PAGE_SIZE
51 //#define DEBUG_KVM
53 #ifdef DEBUG_KVM
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
56 #else
57 #define DPRINTF(fmt, ...) \
58 do { } while (0)
59 #endif
61 #define KVM_MSI_HASHTAB_SIZE 256
63 typedef struct KVMSlot
65 hwaddr start_addr;
66 ram_addr_t memory_size;
67 void *ram;
68 int slot;
69 int flags;
70 } KVMSlot;
72 typedef struct kvm_dirty_log KVMDirtyLog;
74 struct KVMState
76 KVMSlot *slots;
77 int nr_slots;
78 int fd;
79 int vmfd;
80 int coalesced_mmio;
81 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
82 bool coalesced_flush_in_progress;
83 int broken_set_mem_region;
84 int migration_log;
85 int vcpu_events;
86 int robust_singlestep;
87 int debugregs;
88 #ifdef KVM_CAP_SET_GUEST_DEBUG
89 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
90 #endif
91 int pit_state2;
92 int xsave, xcrs;
93 int many_ioeventfds;
94 int intx_set_mask;
95 /* The man page (and posix) say ioctl numbers are signed int, but
96 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
97 * unsigned, and treating them as signed here can break things */
98 unsigned irq_set_ioctl;
99 unsigned int sigmask_len;
100 #ifdef KVM_CAP_IRQ_ROUTING
101 struct kvm_irq_routing *irq_routes;
102 int nr_allocated_irq_routes;
103 uint32_t *used_gsi_bitmap;
104 unsigned int gsi_count;
105 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
106 bool direct_msi;
107 #endif
110 #define TYPE_KVM_ACCEL ACCEL_CLASS_NAME("kvm")
112 KVMState *kvm_state;
113 bool kvm_kernel_irqchip;
114 bool kvm_async_interrupts_allowed;
115 bool kvm_halt_in_kernel_allowed;
116 bool kvm_eventfds_allowed;
117 bool kvm_irqfds_allowed;
118 bool kvm_msi_via_irqfd_allowed;
119 bool kvm_gsi_routing_allowed;
120 bool kvm_gsi_direct_mapping;
121 bool kvm_allowed;
122 bool kvm_readonly_mem_allowed;
124 static const KVMCapabilityInfo kvm_required_capabilites[] = {
125 KVM_CAP_INFO(USER_MEMORY),
126 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
127 KVM_CAP_LAST_INFO
130 static KVMSlot *kvm_alloc_slot(KVMState *s)
132 int i;
134 for (i = 0; i < s->nr_slots; i++) {
135 if (s->slots[i].memory_size == 0) {
136 return &s->slots[i];
140 fprintf(stderr, "%s: no free slot available\n", __func__);
141 abort();
144 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
145 hwaddr start_addr,
146 hwaddr end_addr)
148 int i;
150 for (i = 0; i < s->nr_slots; i++) {
151 KVMSlot *mem = &s->slots[i];
153 if (start_addr == mem->start_addr &&
154 end_addr == mem->start_addr + mem->memory_size) {
155 return mem;
159 return NULL;
163 * Find overlapping slot with lowest start address
165 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
166 hwaddr start_addr,
167 hwaddr end_addr)
169 KVMSlot *found = NULL;
170 int i;
172 for (i = 0; i < s->nr_slots; i++) {
173 KVMSlot *mem = &s->slots[i];
175 if (mem->memory_size == 0 ||
176 (found && found->start_addr < mem->start_addr)) {
177 continue;
180 if (end_addr > mem->start_addr &&
181 start_addr < mem->start_addr + mem->memory_size) {
182 found = mem;
186 return found;
189 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
190 hwaddr *phys_addr)
192 int i;
194 for (i = 0; i < s->nr_slots; i++) {
195 KVMSlot *mem = &s->slots[i];
197 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
198 *phys_addr = mem->start_addr + (ram - mem->ram);
199 return 1;
203 return 0;
206 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
208 struct kvm_userspace_memory_region mem;
210 mem.slot = slot->slot;
211 mem.guest_phys_addr = slot->start_addr;
212 mem.userspace_addr = (unsigned long)slot->ram;
213 mem.flags = slot->flags;
214 if (s->migration_log) {
215 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
218 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
219 /* Set the slot size to 0 before setting the slot to the desired
220 * value. This is needed based on KVM commit 75d61fbc. */
221 mem.memory_size = 0;
222 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
224 mem.memory_size = slot->memory_size;
225 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
228 int kvm_init_vcpu(CPUState *cpu)
230 KVMState *s = kvm_state;
231 long mmap_size;
232 int ret;
234 DPRINTF("kvm_init_vcpu\n");
236 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
237 if (ret < 0) {
238 DPRINTF("kvm_create_vcpu failed\n");
239 goto err;
242 cpu->kvm_fd = ret;
243 cpu->kvm_state = s;
244 cpu->kvm_vcpu_dirty = true;
246 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
247 if (mmap_size < 0) {
248 ret = mmap_size;
249 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
250 goto err;
253 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
254 cpu->kvm_fd, 0);
255 if (cpu->kvm_run == MAP_FAILED) {
256 ret = -errno;
257 DPRINTF("mmap'ing vcpu state failed\n");
258 goto err;
261 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
262 s->coalesced_mmio_ring =
263 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
266 ret = kvm_arch_init_vcpu(cpu);
267 err:
268 return ret;
272 * dirty pages logging control
275 static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly)
277 int flags = 0;
278 flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
279 if (readonly && kvm_readonly_mem_allowed) {
280 flags |= KVM_MEM_READONLY;
282 return flags;
285 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
287 KVMState *s = kvm_state;
288 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
289 int old_flags;
291 old_flags = mem->flags;
293 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false);
294 mem->flags = flags;
296 /* If nothing changed effectively, no need to issue ioctl */
297 if (s->migration_log) {
298 flags |= KVM_MEM_LOG_DIRTY_PAGES;
301 if (flags == old_flags) {
302 return 0;
305 return kvm_set_user_memory_region(s, mem);
308 static int kvm_dirty_pages_log_change(hwaddr phys_addr,
309 ram_addr_t size, bool log_dirty)
311 KVMState *s = kvm_state;
312 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
314 if (mem == NULL) {
315 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
316 TARGET_FMT_plx "\n", __func__, phys_addr,
317 (hwaddr)(phys_addr + size - 1));
318 return -EINVAL;
320 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
323 static void kvm_log_start(MemoryListener *listener,
324 MemoryRegionSection *section)
326 int r;
328 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
329 int128_get64(section->size), true);
330 if (r < 0) {
331 abort();
335 static void kvm_log_stop(MemoryListener *listener,
336 MemoryRegionSection *section)
338 int r;
340 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
341 int128_get64(section->size), false);
342 if (r < 0) {
343 abort();
347 static int kvm_set_migration_log(int enable)
349 KVMState *s = kvm_state;
350 KVMSlot *mem;
351 int i, err;
353 s->migration_log = enable;
355 for (i = 0; i < s->nr_slots; i++) {
356 mem = &s->slots[i];
358 if (!mem->memory_size) {
359 continue;
361 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
362 continue;
364 err = kvm_set_user_memory_region(s, mem);
365 if (err) {
366 return err;
369 return 0;
372 /* get kvm's dirty pages bitmap and update qemu's */
373 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
374 unsigned long *bitmap)
376 ram_addr_t start = section->offset_within_region + section->mr->ram_addr;
377 ram_addr_t pages = int128_get64(section->size) / getpagesize();
379 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
380 return 0;
383 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
386 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
387 * This function updates qemu's dirty bitmap using
388 * memory_region_set_dirty(). This means all bits are set
389 * to dirty.
391 * @start_add: start of logged region.
392 * @end_addr: end of logged region.
394 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
396 KVMState *s = kvm_state;
397 unsigned long size, allocated_size = 0;
398 KVMDirtyLog d;
399 KVMSlot *mem;
400 int ret = 0;
401 hwaddr start_addr = section->offset_within_address_space;
402 hwaddr end_addr = start_addr + int128_get64(section->size);
404 d.dirty_bitmap = NULL;
405 while (start_addr < end_addr) {
406 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
407 if (mem == NULL) {
408 break;
411 /* XXX bad kernel interface alert
412 * For dirty bitmap, kernel allocates array of size aligned to
413 * bits-per-long. But for case when the kernel is 64bits and
414 * the userspace is 32bits, userspace can't align to the same
415 * bits-per-long, since sizeof(long) is different between kernel
416 * and user space. This way, userspace will provide buffer which
417 * may be 4 bytes less than the kernel will use, resulting in
418 * userspace memory corruption (which is not detectable by valgrind
419 * too, in most cases).
420 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
421 * a hope that sizeof(long) wont become >8 any time soon.
423 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
424 /*HOST_LONG_BITS*/ 64) / 8;
425 if (!d.dirty_bitmap) {
426 d.dirty_bitmap = g_malloc(size);
427 } else if (size > allocated_size) {
428 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
430 allocated_size = size;
431 memset(d.dirty_bitmap, 0, allocated_size);
433 d.slot = mem->slot;
435 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
436 DPRINTF("ioctl failed %d\n", errno);
437 ret = -1;
438 break;
441 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
442 start_addr = mem->start_addr + mem->memory_size;
444 g_free(d.dirty_bitmap);
446 return ret;
449 static void kvm_coalesce_mmio_region(MemoryListener *listener,
450 MemoryRegionSection *secion,
451 hwaddr start, hwaddr size)
453 KVMState *s = kvm_state;
455 if (s->coalesced_mmio) {
456 struct kvm_coalesced_mmio_zone zone;
458 zone.addr = start;
459 zone.size = size;
460 zone.pad = 0;
462 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
466 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
467 MemoryRegionSection *secion,
468 hwaddr start, hwaddr size)
470 KVMState *s = kvm_state;
472 if (s->coalesced_mmio) {
473 struct kvm_coalesced_mmio_zone zone;
475 zone.addr = start;
476 zone.size = size;
477 zone.pad = 0;
479 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
483 int kvm_check_extension(KVMState *s, unsigned int extension)
485 int ret;
487 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
488 if (ret < 0) {
489 ret = 0;
492 return ret;
495 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
497 int ret;
499 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
500 if (ret < 0) {
501 /* VM wide version not implemented, use global one instead */
502 ret = kvm_check_extension(s, extension);
505 return ret;
508 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
509 bool assign, uint32_t size, bool datamatch)
511 int ret;
512 struct kvm_ioeventfd iofd;
514 iofd.datamatch = datamatch ? val : 0;
515 iofd.addr = addr;
516 iofd.len = size;
517 iofd.flags = 0;
518 iofd.fd = fd;
520 if (!kvm_enabled()) {
521 return -ENOSYS;
524 if (datamatch) {
525 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
527 if (!assign) {
528 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
531 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
533 if (ret < 0) {
534 return -errno;
537 return 0;
540 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
541 bool assign, uint32_t size, bool datamatch)
543 struct kvm_ioeventfd kick = {
544 .datamatch = datamatch ? val : 0,
545 .addr = addr,
546 .flags = KVM_IOEVENTFD_FLAG_PIO,
547 .len = size,
548 .fd = fd,
550 int r;
551 if (!kvm_enabled()) {
552 return -ENOSYS;
554 if (datamatch) {
555 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
557 if (!assign) {
558 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
560 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
561 if (r < 0) {
562 return r;
564 return 0;
568 static int kvm_check_many_ioeventfds(void)
570 /* Userspace can use ioeventfd for io notification. This requires a host
571 * that supports eventfd(2) and an I/O thread; since eventfd does not
572 * support SIGIO it cannot interrupt the vcpu.
574 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
575 * can avoid creating too many ioeventfds.
577 #if defined(CONFIG_EVENTFD)
578 int ioeventfds[7];
579 int i, ret = 0;
580 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
581 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
582 if (ioeventfds[i] < 0) {
583 break;
585 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
586 if (ret < 0) {
587 close(ioeventfds[i]);
588 break;
592 /* Decide whether many devices are supported or not */
593 ret = i == ARRAY_SIZE(ioeventfds);
595 while (i-- > 0) {
596 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
597 close(ioeventfds[i]);
599 return ret;
600 #else
601 return 0;
602 #endif
605 static const KVMCapabilityInfo *
606 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
608 while (list->name) {
609 if (!kvm_check_extension(s, list->value)) {
610 return list;
612 list++;
614 return NULL;
617 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
619 KVMState *s = kvm_state;
620 KVMSlot *mem, old;
621 int err;
622 MemoryRegion *mr = section->mr;
623 bool log_dirty = memory_region_is_logging(mr);
624 bool writeable = !mr->readonly && !mr->rom_device;
625 bool readonly_flag = mr->readonly || memory_region_is_romd(mr);
626 hwaddr start_addr = section->offset_within_address_space;
627 ram_addr_t size = int128_get64(section->size);
628 void *ram = NULL;
629 unsigned delta;
631 /* kvm works in page size chunks, but the function may be called
632 with sub-page size and unaligned start address. */
633 delta = TARGET_PAGE_ALIGN(size) - size;
634 if (delta > size) {
635 return;
637 start_addr += delta;
638 size -= delta;
639 size &= TARGET_PAGE_MASK;
640 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
641 return;
644 if (!memory_region_is_ram(mr)) {
645 if (writeable || !kvm_readonly_mem_allowed) {
646 return;
647 } else if (!mr->romd_mode) {
648 /* If the memory device is not in romd_mode, then we actually want
649 * to remove the kvm memory slot so all accesses will trap. */
650 add = false;
654 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
656 while (1) {
657 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
658 if (!mem) {
659 break;
662 if (add && start_addr >= mem->start_addr &&
663 (start_addr + size <= mem->start_addr + mem->memory_size) &&
664 (ram - start_addr == mem->ram - mem->start_addr)) {
665 /* The new slot fits into the existing one and comes with
666 * identical parameters - update flags and done. */
667 kvm_slot_dirty_pages_log_change(mem, log_dirty);
668 return;
671 old = *mem;
673 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
674 kvm_physical_sync_dirty_bitmap(section);
677 /* unregister the overlapping slot */
678 mem->memory_size = 0;
679 err = kvm_set_user_memory_region(s, mem);
680 if (err) {
681 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
682 __func__, strerror(-err));
683 abort();
686 /* Workaround for older KVM versions: we can't join slots, even not by
687 * unregistering the previous ones and then registering the larger
688 * slot. We have to maintain the existing fragmentation. Sigh.
690 * This workaround assumes that the new slot starts at the same
691 * address as the first existing one. If not or if some overlapping
692 * slot comes around later, we will fail (not seen in practice so far)
693 * - and actually require a recent KVM version. */
694 if (s->broken_set_mem_region &&
695 old.start_addr == start_addr && old.memory_size < size && add) {
696 mem = kvm_alloc_slot(s);
697 mem->memory_size = old.memory_size;
698 mem->start_addr = old.start_addr;
699 mem->ram = old.ram;
700 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
702 err = kvm_set_user_memory_region(s, mem);
703 if (err) {
704 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
705 strerror(-err));
706 abort();
709 start_addr += old.memory_size;
710 ram += old.memory_size;
711 size -= old.memory_size;
712 continue;
715 /* register prefix slot */
716 if (old.start_addr < start_addr) {
717 mem = kvm_alloc_slot(s);
718 mem->memory_size = start_addr - old.start_addr;
719 mem->start_addr = old.start_addr;
720 mem->ram = old.ram;
721 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
723 err = kvm_set_user_memory_region(s, mem);
724 if (err) {
725 fprintf(stderr, "%s: error registering prefix slot: %s\n",
726 __func__, strerror(-err));
727 #ifdef TARGET_PPC
728 fprintf(stderr, "%s: This is probably because your kernel's " \
729 "PAGE_SIZE is too big. Please try to use 4k " \
730 "PAGE_SIZE!\n", __func__);
731 #endif
732 abort();
736 /* register suffix slot */
737 if (old.start_addr + old.memory_size > start_addr + size) {
738 ram_addr_t size_delta;
740 mem = kvm_alloc_slot(s);
741 mem->start_addr = start_addr + size;
742 size_delta = mem->start_addr - old.start_addr;
743 mem->memory_size = old.memory_size - size_delta;
744 mem->ram = old.ram + size_delta;
745 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
747 err = kvm_set_user_memory_region(s, mem);
748 if (err) {
749 fprintf(stderr, "%s: error registering suffix slot: %s\n",
750 __func__, strerror(-err));
751 abort();
756 /* in case the KVM bug workaround already "consumed" the new slot */
757 if (!size) {
758 return;
760 if (!add) {
761 return;
763 mem = kvm_alloc_slot(s);
764 mem->memory_size = size;
765 mem->start_addr = start_addr;
766 mem->ram = ram;
767 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
769 err = kvm_set_user_memory_region(s, mem);
770 if (err) {
771 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
772 strerror(-err));
773 abort();
777 static void kvm_region_add(MemoryListener *listener,
778 MemoryRegionSection *section)
780 memory_region_ref(section->mr);
781 kvm_set_phys_mem(section, true);
784 static void kvm_region_del(MemoryListener *listener,
785 MemoryRegionSection *section)
787 kvm_set_phys_mem(section, false);
788 memory_region_unref(section->mr);
791 static void kvm_log_sync(MemoryListener *listener,
792 MemoryRegionSection *section)
794 int r;
796 r = kvm_physical_sync_dirty_bitmap(section);
797 if (r < 0) {
798 abort();
802 static void kvm_log_global_start(struct MemoryListener *listener)
804 int r;
806 r = kvm_set_migration_log(1);
807 assert(r >= 0);
810 static void kvm_log_global_stop(struct MemoryListener *listener)
812 int r;
814 r = kvm_set_migration_log(0);
815 assert(r >= 0);
818 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
819 MemoryRegionSection *section,
820 bool match_data, uint64_t data,
821 EventNotifier *e)
823 int fd = event_notifier_get_fd(e);
824 int r;
826 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
827 data, true, int128_get64(section->size),
828 match_data);
829 if (r < 0) {
830 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
831 __func__, strerror(-r));
832 abort();
836 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
837 MemoryRegionSection *section,
838 bool match_data, uint64_t data,
839 EventNotifier *e)
841 int fd = event_notifier_get_fd(e);
842 int r;
844 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
845 data, false, int128_get64(section->size),
846 match_data);
847 if (r < 0) {
848 abort();
852 static void kvm_io_ioeventfd_add(MemoryListener *listener,
853 MemoryRegionSection *section,
854 bool match_data, uint64_t data,
855 EventNotifier *e)
857 int fd = event_notifier_get_fd(e);
858 int r;
860 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
861 data, true, int128_get64(section->size),
862 match_data);
863 if (r < 0) {
864 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
865 __func__, strerror(-r));
866 abort();
870 static void kvm_io_ioeventfd_del(MemoryListener *listener,
871 MemoryRegionSection *section,
872 bool match_data, uint64_t data,
873 EventNotifier *e)
876 int fd = event_notifier_get_fd(e);
877 int r;
879 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
880 data, false, int128_get64(section->size),
881 match_data);
882 if (r < 0) {
883 abort();
887 static MemoryListener kvm_memory_listener = {
888 .region_add = kvm_region_add,
889 .region_del = kvm_region_del,
890 .log_start = kvm_log_start,
891 .log_stop = kvm_log_stop,
892 .log_sync = kvm_log_sync,
893 .log_global_start = kvm_log_global_start,
894 .log_global_stop = kvm_log_global_stop,
895 .eventfd_add = kvm_mem_ioeventfd_add,
896 .eventfd_del = kvm_mem_ioeventfd_del,
897 .coalesced_mmio_add = kvm_coalesce_mmio_region,
898 .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
899 .priority = 10,
902 static MemoryListener kvm_io_listener = {
903 .eventfd_add = kvm_io_ioeventfd_add,
904 .eventfd_del = kvm_io_ioeventfd_del,
905 .priority = 10,
908 static void kvm_handle_interrupt(CPUState *cpu, int mask)
910 cpu->interrupt_request |= mask;
912 if (!qemu_cpu_is_self(cpu)) {
913 qemu_cpu_kick(cpu);
917 int kvm_set_irq(KVMState *s, int irq, int level)
919 struct kvm_irq_level event;
920 int ret;
922 assert(kvm_async_interrupts_enabled());
924 event.level = level;
925 event.irq = irq;
926 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
927 if (ret < 0) {
928 perror("kvm_set_irq");
929 abort();
932 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
935 #ifdef KVM_CAP_IRQ_ROUTING
936 typedef struct KVMMSIRoute {
937 struct kvm_irq_routing_entry kroute;
938 QTAILQ_ENTRY(KVMMSIRoute) entry;
939 } KVMMSIRoute;
941 static void set_gsi(KVMState *s, unsigned int gsi)
943 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
946 static void clear_gsi(KVMState *s, unsigned int gsi)
948 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
951 void kvm_init_irq_routing(KVMState *s)
953 int gsi_count, i;
955 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
956 if (gsi_count > 0) {
957 unsigned int gsi_bits, i;
959 /* Round up so we can search ints using ffs */
960 gsi_bits = ALIGN(gsi_count, 32);
961 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
962 s->gsi_count = gsi_count;
964 /* Mark any over-allocated bits as already in use */
965 for (i = gsi_count; i < gsi_bits; i++) {
966 set_gsi(s, i);
970 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
971 s->nr_allocated_irq_routes = 0;
973 if (!s->direct_msi) {
974 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
975 QTAILQ_INIT(&s->msi_hashtab[i]);
979 kvm_arch_init_irq_routing(s);
982 void kvm_irqchip_commit_routes(KVMState *s)
984 int ret;
986 s->irq_routes->flags = 0;
987 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
988 assert(ret == 0);
991 static void kvm_add_routing_entry(KVMState *s,
992 struct kvm_irq_routing_entry *entry)
994 struct kvm_irq_routing_entry *new;
995 int n, size;
997 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
998 n = s->nr_allocated_irq_routes * 2;
999 if (n < 64) {
1000 n = 64;
1002 size = sizeof(struct kvm_irq_routing);
1003 size += n * sizeof(*new);
1004 s->irq_routes = g_realloc(s->irq_routes, size);
1005 s->nr_allocated_irq_routes = n;
1007 n = s->irq_routes->nr++;
1008 new = &s->irq_routes->entries[n];
1010 *new = *entry;
1012 set_gsi(s, entry->gsi);
1015 static int kvm_update_routing_entry(KVMState *s,
1016 struct kvm_irq_routing_entry *new_entry)
1018 struct kvm_irq_routing_entry *entry;
1019 int n;
1021 for (n = 0; n < s->irq_routes->nr; n++) {
1022 entry = &s->irq_routes->entries[n];
1023 if (entry->gsi != new_entry->gsi) {
1024 continue;
1027 if(!memcmp(entry, new_entry, sizeof *entry)) {
1028 return 0;
1031 *entry = *new_entry;
1033 kvm_irqchip_commit_routes(s);
1035 return 0;
1038 return -ESRCH;
1041 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1043 struct kvm_irq_routing_entry e = {};
1045 assert(pin < s->gsi_count);
1047 e.gsi = irq;
1048 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1049 e.flags = 0;
1050 e.u.irqchip.irqchip = irqchip;
1051 e.u.irqchip.pin = pin;
1052 kvm_add_routing_entry(s, &e);
1055 void kvm_irqchip_release_virq(KVMState *s, int virq)
1057 struct kvm_irq_routing_entry *e;
1058 int i;
1060 if (kvm_gsi_direct_mapping()) {
1061 return;
1064 for (i = 0; i < s->irq_routes->nr; i++) {
1065 e = &s->irq_routes->entries[i];
1066 if (e->gsi == virq) {
1067 s->irq_routes->nr--;
1068 *e = s->irq_routes->entries[s->irq_routes->nr];
1071 clear_gsi(s, virq);
1074 static unsigned int kvm_hash_msi(uint32_t data)
1076 /* This is optimized for IA32 MSI layout. However, no other arch shall
1077 * repeat the mistake of not providing a direct MSI injection API. */
1078 return data & 0xff;
1081 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1083 KVMMSIRoute *route, *next;
1084 unsigned int hash;
1086 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1087 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1088 kvm_irqchip_release_virq(s, route->kroute.gsi);
1089 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1090 g_free(route);
1095 static int kvm_irqchip_get_virq(KVMState *s)
1097 uint32_t *word = s->used_gsi_bitmap;
1098 int max_words = ALIGN(s->gsi_count, 32) / 32;
1099 int i, bit;
1100 bool retry = true;
1102 again:
1103 /* Return the lowest unused GSI in the bitmap */
1104 for (i = 0; i < max_words; i++) {
1105 bit = ffs(~word[i]);
1106 if (!bit) {
1107 continue;
1110 return bit - 1 + i * 32;
1112 if (!s->direct_msi && retry) {
1113 retry = false;
1114 kvm_flush_dynamic_msi_routes(s);
1115 goto again;
1117 return -ENOSPC;
1121 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1123 unsigned int hash = kvm_hash_msi(msg.data);
1124 KVMMSIRoute *route;
1126 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1127 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1128 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1129 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1130 return route;
1133 return NULL;
1136 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1138 struct kvm_msi msi;
1139 KVMMSIRoute *route;
1141 if (s->direct_msi) {
1142 msi.address_lo = (uint32_t)msg.address;
1143 msi.address_hi = msg.address >> 32;
1144 msi.data = le32_to_cpu(msg.data);
1145 msi.flags = 0;
1146 memset(msi.pad, 0, sizeof(msi.pad));
1148 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1151 route = kvm_lookup_msi_route(s, msg);
1152 if (!route) {
1153 int virq;
1155 virq = kvm_irqchip_get_virq(s);
1156 if (virq < 0) {
1157 return virq;
1160 route = g_malloc0(sizeof(KVMMSIRoute));
1161 route->kroute.gsi = virq;
1162 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1163 route->kroute.flags = 0;
1164 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1165 route->kroute.u.msi.address_hi = msg.address >> 32;
1166 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1168 kvm_add_routing_entry(s, &route->kroute);
1169 kvm_irqchip_commit_routes(s);
1171 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1172 entry);
1175 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1177 return kvm_set_irq(s, route->kroute.gsi, 1);
1180 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1182 struct kvm_irq_routing_entry kroute = {};
1183 int virq;
1185 if (kvm_gsi_direct_mapping()) {
1186 return msg.data & 0xffff;
1189 if (!kvm_gsi_routing_enabled()) {
1190 return -ENOSYS;
1193 virq = kvm_irqchip_get_virq(s);
1194 if (virq < 0) {
1195 return virq;
1198 kroute.gsi = virq;
1199 kroute.type = KVM_IRQ_ROUTING_MSI;
1200 kroute.flags = 0;
1201 kroute.u.msi.address_lo = (uint32_t)msg.address;
1202 kroute.u.msi.address_hi = msg.address >> 32;
1203 kroute.u.msi.data = le32_to_cpu(msg.data);
1205 kvm_add_routing_entry(s, &kroute);
1206 kvm_irqchip_commit_routes(s);
1208 return virq;
1211 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1213 struct kvm_irq_routing_entry kroute = {};
1215 if (kvm_gsi_direct_mapping()) {
1216 return 0;
1219 if (!kvm_irqchip_in_kernel()) {
1220 return -ENOSYS;
1223 kroute.gsi = virq;
1224 kroute.type = KVM_IRQ_ROUTING_MSI;
1225 kroute.flags = 0;
1226 kroute.u.msi.address_lo = (uint32_t)msg.address;
1227 kroute.u.msi.address_hi = msg.address >> 32;
1228 kroute.u.msi.data = le32_to_cpu(msg.data);
1230 return kvm_update_routing_entry(s, &kroute);
1233 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1234 bool assign)
1236 struct kvm_irqfd irqfd = {
1237 .fd = fd,
1238 .gsi = virq,
1239 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1242 if (rfd != -1) {
1243 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1244 irqfd.resamplefd = rfd;
1247 if (!kvm_irqfds_enabled()) {
1248 return -ENOSYS;
1251 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1254 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1256 struct kvm_irq_routing_entry kroute;
1257 int virq;
1259 if (!kvm_gsi_routing_enabled()) {
1260 return -ENOSYS;
1263 virq = kvm_irqchip_get_virq(s);
1264 if (virq < 0) {
1265 return virq;
1268 kroute.gsi = virq;
1269 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1270 kroute.flags = 0;
1271 kroute.u.adapter.summary_addr = adapter->summary_addr;
1272 kroute.u.adapter.ind_addr = adapter->ind_addr;
1273 kroute.u.adapter.summary_offset = adapter->summary_offset;
1274 kroute.u.adapter.ind_offset = adapter->ind_offset;
1275 kroute.u.adapter.adapter_id = adapter->adapter_id;
1277 kvm_add_routing_entry(s, &kroute);
1278 kvm_irqchip_commit_routes(s);
1280 return virq;
1283 #else /* !KVM_CAP_IRQ_ROUTING */
1285 void kvm_init_irq_routing(KVMState *s)
1289 void kvm_irqchip_release_virq(KVMState *s, int virq)
1293 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1295 abort();
1298 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1300 return -ENOSYS;
1303 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1305 return -ENOSYS;
1308 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1310 abort();
1313 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1315 return -ENOSYS;
1317 #endif /* !KVM_CAP_IRQ_ROUTING */
1319 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1320 EventNotifier *rn, int virq)
1322 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1323 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1326 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1328 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1329 false);
1332 static int kvm_irqchip_create(KVMState *s)
1334 int ret;
1336 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "kernel_irqchip", true) ||
1337 (!kvm_check_extension(s, KVM_CAP_IRQCHIP) &&
1338 (kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0) < 0))) {
1339 return 0;
1342 /* First probe and see if there's a arch-specific hook to create the
1343 * in-kernel irqchip for us */
1344 ret = kvm_arch_irqchip_create(s);
1345 if (ret < 0) {
1346 return ret;
1347 } else if (ret == 0) {
1348 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1349 if (ret < 0) {
1350 fprintf(stderr, "Create kernel irqchip failed\n");
1351 return ret;
1355 kvm_kernel_irqchip = true;
1356 /* If we have an in-kernel IRQ chip then we must have asynchronous
1357 * interrupt delivery (though the reverse is not necessarily true)
1359 kvm_async_interrupts_allowed = true;
1360 kvm_halt_in_kernel_allowed = true;
1362 kvm_init_irq_routing(s);
1364 return 0;
1367 /* Find number of supported CPUs using the recommended
1368 * procedure from the kernel API documentation to cope with
1369 * older kernels that may be missing capabilities.
1371 static int kvm_recommended_vcpus(KVMState *s)
1373 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1374 return (ret) ? ret : 4;
1377 static int kvm_max_vcpus(KVMState *s)
1379 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1380 return (ret) ? ret : kvm_recommended_vcpus(s);
1383 static int kvm_init(MachineState *ms)
1385 MachineClass *mc = MACHINE_GET_CLASS(ms);
1386 static const char upgrade_note[] =
1387 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1388 "(see http://sourceforge.net/projects/kvm).\n";
1389 struct {
1390 const char *name;
1391 int num;
1392 } num_cpus[] = {
1393 { "SMP", smp_cpus },
1394 { "hotpluggable", max_cpus },
1395 { NULL, }
1396 }, *nc = num_cpus;
1397 int soft_vcpus_limit, hard_vcpus_limit;
1398 KVMState *s;
1399 const KVMCapabilityInfo *missing_cap;
1400 int ret;
1401 int i, type = 0;
1402 const char *kvm_type;
1404 s = g_malloc0(sizeof(KVMState));
1407 * On systems where the kernel can support different base page
1408 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1409 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1410 * page size for the system though.
1412 assert(TARGET_PAGE_SIZE <= getpagesize());
1413 page_size_init();
1415 s->sigmask_len = 8;
1417 #ifdef KVM_CAP_SET_GUEST_DEBUG
1418 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1419 #endif
1420 s->vmfd = -1;
1421 s->fd = qemu_open("/dev/kvm", O_RDWR);
1422 if (s->fd == -1) {
1423 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1424 ret = -errno;
1425 goto err;
1428 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1429 if (ret < KVM_API_VERSION) {
1430 if (ret >= 0) {
1431 ret = -EINVAL;
1433 fprintf(stderr, "kvm version too old\n");
1434 goto err;
1437 if (ret > KVM_API_VERSION) {
1438 ret = -EINVAL;
1439 fprintf(stderr, "kvm version not supported\n");
1440 goto err;
1443 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1445 /* If unspecified, use the default value */
1446 if (!s->nr_slots) {
1447 s->nr_slots = 32;
1450 s->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1452 for (i = 0; i < s->nr_slots; i++) {
1453 s->slots[i].slot = i;
1456 /* check the vcpu limits */
1457 soft_vcpus_limit = kvm_recommended_vcpus(s);
1458 hard_vcpus_limit = kvm_max_vcpus(s);
1460 while (nc->name) {
1461 if (nc->num > soft_vcpus_limit) {
1462 fprintf(stderr,
1463 "Warning: Number of %s cpus requested (%d) exceeds "
1464 "the recommended cpus supported by KVM (%d)\n",
1465 nc->name, nc->num, soft_vcpus_limit);
1467 if (nc->num > hard_vcpus_limit) {
1468 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1469 "the maximum cpus supported by KVM (%d)\n",
1470 nc->name, nc->num, hard_vcpus_limit);
1471 exit(1);
1474 nc++;
1477 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1478 if (mc->kvm_type) {
1479 type = mc->kvm_type(kvm_type);
1480 } else if (kvm_type) {
1481 ret = -EINVAL;
1482 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1483 goto err;
1486 do {
1487 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1488 } while (ret == -EINTR);
1490 if (ret < 0) {
1491 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1492 strerror(-ret));
1494 #ifdef TARGET_S390X
1495 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1496 "your host kernel command line\n");
1497 #endif
1498 goto err;
1501 s->vmfd = ret;
1502 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1503 if (!missing_cap) {
1504 missing_cap =
1505 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1507 if (missing_cap) {
1508 ret = -EINVAL;
1509 fprintf(stderr, "kvm does not support %s\n%s",
1510 missing_cap->name, upgrade_note);
1511 goto err;
1514 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1516 s->broken_set_mem_region = 1;
1517 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1518 if (ret > 0) {
1519 s->broken_set_mem_region = 0;
1522 #ifdef KVM_CAP_VCPU_EVENTS
1523 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1524 #endif
1526 s->robust_singlestep =
1527 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1529 #ifdef KVM_CAP_DEBUGREGS
1530 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1531 #endif
1533 #ifdef KVM_CAP_XSAVE
1534 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1535 #endif
1537 #ifdef KVM_CAP_XCRS
1538 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1539 #endif
1541 #ifdef KVM_CAP_PIT_STATE2
1542 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1543 #endif
1545 #ifdef KVM_CAP_IRQ_ROUTING
1546 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1547 #endif
1549 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1551 s->irq_set_ioctl = KVM_IRQ_LINE;
1552 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1553 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1556 #ifdef KVM_CAP_READONLY_MEM
1557 kvm_readonly_mem_allowed =
1558 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1559 #endif
1561 kvm_eventfds_allowed =
1562 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1564 ret = kvm_arch_init(s);
1565 if (ret < 0) {
1566 goto err;
1569 ret = kvm_irqchip_create(s);
1570 if (ret < 0) {
1571 goto err;
1574 kvm_state = s;
1575 memory_listener_register(&kvm_memory_listener, &address_space_memory);
1576 memory_listener_register(&kvm_io_listener, &address_space_io);
1578 s->many_ioeventfds = kvm_check_many_ioeventfds();
1580 cpu_interrupt_handler = kvm_handle_interrupt;
1582 return 0;
1584 err:
1585 assert(ret < 0);
1586 if (s->vmfd >= 0) {
1587 close(s->vmfd);
1589 if (s->fd != -1) {
1590 close(s->fd);
1592 g_free(s->slots);
1593 g_free(s);
1595 return ret;
1598 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1600 s->sigmask_len = sigmask_len;
1603 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1604 uint32_t count)
1606 int i;
1607 uint8_t *ptr = data;
1609 for (i = 0; i < count; i++) {
1610 address_space_rw(&address_space_io, port, ptr, size,
1611 direction == KVM_EXIT_IO_OUT);
1612 ptr += size;
1616 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1618 fprintf(stderr, "KVM internal error. Suberror: %d\n",
1619 run->internal.suberror);
1621 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1622 int i;
1624 for (i = 0; i < run->internal.ndata; ++i) {
1625 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1626 i, (uint64_t)run->internal.data[i]);
1629 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1630 fprintf(stderr, "emulation failure\n");
1631 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1632 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1633 return EXCP_INTERRUPT;
1636 /* FIXME: Should trigger a qmp message to let management know
1637 * something went wrong.
1639 return -1;
1642 void kvm_flush_coalesced_mmio_buffer(void)
1644 KVMState *s = kvm_state;
1646 if (s->coalesced_flush_in_progress) {
1647 return;
1650 s->coalesced_flush_in_progress = true;
1652 if (s->coalesced_mmio_ring) {
1653 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1654 while (ring->first != ring->last) {
1655 struct kvm_coalesced_mmio *ent;
1657 ent = &ring->coalesced_mmio[ring->first];
1659 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1660 smp_wmb();
1661 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1665 s->coalesced_flush_in_progress = false;
1668 static void do_kvm_cpu_synchronize_state(void *arg)
1670 CPUState *cpu = arg;
1672 if (!cpu->kvm_vcpu_dirty) {
1673 kvm_arch_get_registers(cpu);
1674 cpu->kvm_vcpu_dirty = true;
1678 void kvm_cpu_synchronize_state(CPUState *cpu)
1680 if (!cpu->kvm_vcpu_dirty) {
1681 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1685 static void do_kvm_cpu_synchronize_post_reset(void *arg)
1687 CPUState *cpu = arg;
1689 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1690 cpu->kvm_vcpu_dirty = false;
1693 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1695 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, cpu);
1698 static void do_kvm_cpu_synchronize_post_init(void *arg)
1700 CPUState *cpu = arg;
1702 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1703 cpu->kvm_vcpu_dirty = false;
1706 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1708 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, cpu);
1711 void kvm_cpu_clean_state(CPUState *cpu)
1713 cpu->kvm_vcpu_dirty = false;
1716 int kvm_cpu_exec(CPUState *cpu)
1718 struct kvm_run *run = cpu->kvm_run;
1719 int ret, run_ret;
1721 DPRINTF("kvm_cpu_exec()\n");
1723 if (kvm_arch_process_async_events(cpu)) {
1724 cpu->exit_request = 0;
1725 return EXCP_HLT;
1728 do {
1729 if (cpu->kvm_vcpu_dirty) {
1730 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1731 cpu->kvm_vcpu_dirty = false;
1734 kvm_arch_pre_run(cpu, run);
1735 if (cpu->exit_request) {
1736 DPRINTF("interrupt exit requested\n");
1738 * KVM requires us to reenter the kernel after IO exits to complete
1739 * instruction emulation. This self-signal will ensure that we
1740 * leave ASAP again.
1742 qemu_cpu_kick_self();
1744 qemu_mutex_unlock_iothread();
1746 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1748 qemu_mutex_lock_iothread();
1749 kvm_arch_post_run(cpu, run);
1751 if (run_ret < 0) {
1752 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1753 DPRINTF("io window exit\n");
1754 ret = EXCP_INTERRUPT;
1755 break;
1757 fprintf(stderr, "error: kvm run failed %s\n",
1758 strerror(-run_ret));
1759 ret = -1;
1760 break;
1763 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1764 switch (run->exit_reason) {
1765 case KVM_EXIT_IO:
1766 DPRINTF("handle_io\n");
1767 kvm_handle_io(run->io.port,
1768 (uint8_t *)run + run->io.data_offset,
1769 run->io.direction,
1770 run->io.size,
1771 run->io.count);
1772 ret = 0;
1773 break;
1774 case KVM_EXIT_MMIO:
1775 DPRINTF("handle_mmio\n");
1776 cpu_physical_memory_rw(run->mmio.phys_addr,
1777 run->mmio.data,
1778 run->mmio.len,
1779 run->mmio.is_write);
1780 ret = 0;
1781 break;
1782 case KVM_EXIT_IRQ_WINDOW_OPEN:
1783 DPRINTF("irq_window_open\n");
1784 ret = EXCP_INTERRUPT;
1785 break;
1786 case KVM_EXIT_SHUTDOWN:
1787 DPRINTF("shutdown\n");
1788 qemu_system_reset_request();
1789 ret = EXCP_INTERRUPT;
1790 break;
1791 case KVM_EXIT_UNKNOWN:
1792 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1793 (uint64_t)run->hw.hardware_exit_reason);
1794 ret = -1;
1795 break;
1796 case KVM_EXIT_INTERNAL_ERROR:
1797 ret = kvm_handle_internal_error(cpu, run);
1798 break;
1799 case KVM_EXIT_SYSTEM_EVENT:
1800 switch (run->system_event.type) {
1801 case KVM_SYSTEM_EVENT_SHUTDOWN:
1802 qemu_system_shutdown_request();
1803 ret = EXCP_INTERRUPT;
1804 break;
1805 case KVM_SYSTEM_EVENT_RESET:
1806 qemu_system_reset_request();
1807 ret = EXCP_INTERRUPT;
1808 break;
1809 default:
1810 DPRINTF("kvm_arch_handle_exit\n");
1811 ret = kvm_arch_handle_exit(cpu, run);
1812 break;
1814 break;
1815 default:
1816 DPRINTF("kvm_arch_handle_exit\n");
1817 ret = kvm_arch_handle_exit(cpu, run);
1818 break;
1820 } while (ret == 0);
1822 if (ret < 0) {
1823 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1824 vm_stop(RUN_STATE_INTERNAL_ERROR);
1827 cpu->exit_request = 0;
1828 return ret;
1831 int kvm_ioctl(KVMState *s, int type, ...)
1833 int ret;
1834 void *arg;
1835 va_list ap;
1837 va_start(ap, type);
1838 arg = va_arg(ap, void *);
1839 va_end(ap);
1841 trace_kvm_ioctl(type, arg);
1842 ret = ioctl(s->fd, type, arg);
1843 if (ret == -1) {
1844 ret = -errno;
1846 return ret;
1849 int kvm_vm_ioctl(KVMState *s, int type, ...)
1851 int ret;
1852 void *arg;
1853 va_list ap;
1855 va_start(ap, type);
1856 arg = va_arg(ap, void *);
1857 va_end(ap);
1859 trace_kvm_vm_ioctl(type, arg);
1860 ret = ioctl(s->vmfd, type, arg);
1861 if (ret == -1) {
1862 ret = -errno;
1864 return ret;
1867 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1869 int ret;
1870 void *arg;
1871 va_list ap;
1873 va_start(ap, type);
1874 arg = va_arg(ap, void *);
1875 va_end(ap);
1877 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1878 ret = ioctl(cpu->kvm_fd, type, arg);
1879 if (ret == -1) {
1880 ret = -errno;
1882 return ret;
1885 int kvm_device_ioctl(int fd, int type, ...)
1887 int ret;
1888 void *arg;
1889 va_list ap;
1891 va_start(ap, type);
1892 arg = va_arg(ap, void *);
1893 va_end(ap);
1895 trace_kvm_device_ioctl(fd, type, arg);
1896 ret = ioctl(fd, type, arg);
1897 if (ret == -1) {
1898 ret = -errno;
1900 return ret;
1903 int kvm_has_sync_mmu(void)
1905 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1908 int kvm_has_vcpu_events(void)
1910 return kvm_state->vcpu_events;
1913 int kvm_has_robust_singlestep(void)
1915 return kvm_state->robust_singlestep;
1918 int kvm_has_debugregs(void)
1920 return kvm_state->debugregs;
1923 int kvm_has_xsave(void)
1925 return kvm_state->xsave;
1928 int kvm_has_xcrs(void)
1930 return kvm_state->xcrs;
1933 int kvm_has_pit_state2(void)
1935 return kvm_state->pit_state2;
1938 int kvm_has_many_ioeventfds(void)
1940 if (!kvm_enabled()) {
1941 return 0;
1943 return kvm_state->many_ioeventfds;
1946 int kvm_has_gsi_routing(void)
1948 #ifdef KVM_CAP_IRQ_ROUTING
1949 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1950 #else
1951 return false;
1952 #endif
1955 int kvm_has_intx_set_mask(void)
1957 return kvm_state->intx_set_mask;
1960 void kvm_setup_guest_memory(void *start, size_t size)
1962 if (!kvm_has_sync_mmu()) {
1963 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1965 if (ret) {
1966 perror("qemu_madvise");
1967 fprintf(stderr,
1968 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1969 exit(1);
1974 #ifdef KVM_CAP_SET_GUEST_DEBUG
1975 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
1976 target_ulong pc)
1978 struct kvm_sw_breakpoint *bp;
1980 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
1981 if (bp->pc == pc) {
1982 return bp;
1985 return NULL;
1988 int kvm_sw_breakpoints_active(CPUState *cpu)
1990 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
1993 struct kvm_set_guest_debug_data {
1994 struct kvm_guest_debug dbg;
1995 CPUState *cpu;
1996 int err;
1999 static void kvm_invoke_set_guest_debug(void *data)
2001 struct kvm_set_guest_debug_data *dbg_data = data;
2003 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
2004 &dbg_data->dbg);
2007 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2009 struct kvm_set_guest_debug_data data;
2011 data.dbg.control = reinject_trap;
2013 if (cpu->singlestep_enabled) {
2014 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2016 kvm_arch_update_guest_debug(cpu, &data.dbg);
2017 data.cpu = cpu;
2019 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
2020 return data.err;
2023 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2024 target_ulong len, int type)
2026 struct kvm_sw_breakpoint *bp;
2027 int err;
2029 if (type == GDB_BREAKPOINT_SW) {
2030 bp = kvm_find_sw_breakpoint(cpu, addr);
2031 if (bp) {
2032 bp->use_count++;
2033 return 0;
2036 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2037 if (!bp) {
2038 return -ENOMEM;
2041 bp->pc = addr;
2042 bp->use_count = 1;
2043 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2044 if (err) {
2045 g_free(bp);
2046 return err;
2049 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2050 } else {
2051 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2052 if (err) {
2053 return err;
2057 CPU_FOREACH(cpu) {
2058 err = kvm_update_guest_debug(cpu, 0);
2059 if (err) {
2060 return err;
2063 return 0;
2066 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2067 target_ulong len, int type)
2069 struct kvm_sw_breakpoint *bp;
2070 int err;
2072 if (type == GDB_BREAKPOINT_SW) {
2073 bp = kvm_find_sw_breakpoint(cpu, addr);
2074 if (!bp) {
2075 return -ENOENT;
2078 if (bp->use_count > 1) {
2079 bp->use_count--;
2080 return 0;
2083 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2084 if (err) {
2085 return err;
2088 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2089 g_free(bp);
2090 } else {
2091 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2092 if (err) {
2093 return err;
2097 CPU_FOREACH(cpu) {
2098 err = kvm_update_guest_debug(cpu, 0);
2099 if (err) {
2100 return err;
2103 return 0;
2106 void kvm_remove_all_breakpoints(CPUState *cpu)
2108 struct kvm_sw_breakpoint *bp, *next;
2109 KVMState *s = cpu->kvm_state;
2110 CPUState *tmpcpu;
2112 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2113 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2114 /* Try harder to find a CPU that currently sees the breakpoint. */
2115 CPU_FOREACH(tmpcpu) {
2116 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2117 break;
2121 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2122 g_free(bp);
2124 kvm_arch_remove_all_hw_breakpoints();
2126 CPU_FOREACH(cpu) {
2127 kvm_update_guest_debug(cpu, 0);
2131 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2133 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2135 return -EINVAL;
2138 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2139 target_ulong len, int type)
2141 return -EINVAL;
2144 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2145 target_ulong len, int type)
2147 return -EINVAL;
2150 void kvm_remove_all_breakpoints(CPUState *cpu)
2153 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2155 int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2157 KVMState *s = kvm_state;
2158 struct kvm_signal_mask *sigmask;
2159 int r;
2161 if (!sigset) {
2162 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2165 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2167 sigmask->len = s->sigmask_len;
2168 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2169 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2170 g_free(sigmask);
2172 return r;
2174 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2176 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2179 int kvm_on_sigbus(int code, void *addr)
2181 return kvm_arch_on_sigbus(code, addr);
2184 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2186 int ret;
2187 struct kvm_create_device create_dev;
2189 create_dev.type = type;
2190 create_dev.fd = -1;
2191 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2193 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2194 return -ENOTSUP;
2197 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2198 if (ret) {
2199 return ret;
2202 return test ? 0 : create_dev.fd;
2205 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2207 struct kvm_one_reg reg;
2208 int r;
2210 reg.id = id;
2211 reg.addr = (uintptr_t) source;
2212 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2213 if (r) {
2214 trace_kvm_failed_reg_set(id, strerror(r));
2216 return r;
2219 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2221 struct kvm_one_reg reg;
2222 int r;
2224 reg.id = id;
2225 reg.addr = (uintptr_t) target;
2226 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2227 if (r) {
2228 trace_kvm_failed_reg_get(id, strerror(r));
2230 return r;
2233 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2235 AccelClass *ac = ACCEL_CLASS(oc);
2236 ac->name = "KVM";
2237 ac->init_machine = kvm_init;
2238 ac->allowed = &kvm_allowed;
2241 static const TypeInfo kvm_accel_type = {
2242 .name = TYPE_KVM_ACCEL,
2243 .parent = TYPE_ACCEL,
2244 .class_init = kvm_accel_class_init,
2247 static void kvm_type_init(void)
2249 type_register_static(&kvm_accel_type);
2252 type_init(kvm_type_init);