Migration: Generate the completed event only when we complete
[qemu/cris-port.git] / target-arm / op_helper.c
blob1425a1d4bb959a819941380dd2a500b67d288b9e
1 /*
2 * ARM helper routines
4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "cpu.h"
20 #include "exec/helper-proto.h"
21 #include "internals.h"
22 #include "exec/cpu_ldst.h"
24 #define SIGNBIT (uint32_t)0x80000000
25 #define SIGNBIT64 ((uint64_t)1 << 63)
27 static void raise_exception(CPUARMState *env, uint32_t excp,
28 uint32_t syndrome, uint32_t target_el)
30 CPUState *cs = CPU(arm_env_get_cpu(env));
32 assert(!excp_is_internal(excp));
33 cs->exception_index = excp;
34 env->exception.syndrome = syndrome;
35 env->exception.target_el = target_el;
36 cpu_loop_exit(cs);
39 static int exception_target_el(CPUARMState *env)
41 int target_el = MAX(1, arm_current_el(env));
43 /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
44 * to EL3 in this case.
46 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
47 target_el = 3;
50 return target_el;
53 uint32_t HELPER(neon_tbl)(CPUARMState *env, uint32_t ireg, uint32_t def,
54 uint32_t rn, uint32_t maxindex)
56 uint32_t val;
57 uint32_t tmp;
58 int index;
59 int shift;
60 uint64_t *table;
61 table = (uint64_t *)&env->vfp.regs[rn];
62 val = 0;
63 for (shift = 0; shift < 32; shift += 8) {
64 index = (ireg >> shift) & 0xff;
65 if (index < maxindex) {
66 tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff;
67 val |= tmp << shift;
68 } else {
69 val |= def & (0xff << shift);
72 return val;
75 #if !defined(CONFIG_USER_ONLY)
77 /* try to fill the TLB and return an exception if error. If retaddr is
78 * NULL, it means that the function was called in C code (i.e. not
79 * from generated code or from helper.c)
81 void tlb_fill(CPUState *cs, target_ulong addr, int is_write, int mmu_idx,
82 uintptr_t retaddr)
84 bool ret;
85 uint32_t fsr = 0;
87 ret = arm_tlb_fill(cs, addr, is_write, mmu_idx, &fsr);
88 if (unlikely(ret)) {
89 ARMCPU *cpu = ARM_CPU(cs);
90 CPUARMState *env = &cpu->env;
91 uint32_t syn, exc;
92 bool same_el = (arm_current_el(env) != 0);
94 if (retaddr) {
95 /* now we have a real cpu fault */
96 cpu_restore_state(cs, retaddr);
99 /* AArch64 syndrome does not have an LPAE bit */
100 syn = fsr & ~(1 << 9);
102 /* For insn and data aborts we assume there is no instruction syndrome
103 * information; this is always true for exceptions reported to EL1.
105 if (is_write == 2) {
106 syn = syn_insn_abort(same_el, 0, 0, syn);
107 exc = EXCP_PREFETCH_ABORT;
108 } else {
109 syn = syn_data_abort(same_el, 0, 0, 0, is_write == 1, syn);
110 if (is_write == 1 && arm_feature(env, ARM_FEATURE_V6)) {
111 fsr |= (1 << 11);
113 exc = EXCP_DATA_ABORT;
116 env->exception.vaddress = addr;
117 env->exception.fsr = fsr;
118 raise_exception(env, exc, syn, exception_target_el(env));
121 #endif
123 uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
125 uint32_t res = a + b;
126 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
127 env->QF = 1;
128 return res;
131 uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
133 uint32_t res = a + b;
134 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
135 env->QF = 1;
136 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
138 return res;
141 uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
143 uint32_t res = a - b;
144 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
145 env->QF = 1;
146 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
148 return res;
151 uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val)
153 uint32_t res;
154 if (val >= 0x40000000) {
155 res = ~SIGNBIT;
156 env->QF = 1;
157 } else if (val <= (int32_t)0xc0000000) {
158 res = SIGNBIT;
159 env->QF = 1;
160 } else {
161 res = val << 1;
163 return res;
166 uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
168 uint32_t res = a + b;
169 if (res < a) {
170 env->QF = 1;
171 res = ~0;
173 return res;
176 uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
178 uint32_t res = a - b;
179 if (res > a) {
180 env->QF = 1;
181 res = 0;
183 return res;
186 /* Signed saturation. */
187 static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
189 int32_t top;
190 uint32_t mask;
192 top = val >> shift;
193 mask = (1u << shift) - 1;
194 if (top > 0) {
195 env->QF = 1;
196 return mask;
197 } else if (top < -1) {
198 env->QF = 1;
199 return ~mask;
201 return val;
204 /* Unsigned saturation. */
205 static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
207 uint32_t max;
209 max = (1u << shift) - 1;
210 if (val < 0) {
211 env->QF = 1;
212 return 0;
213 } else if (val > max) {
214 env->QF = 1;
215 return max;
217 return val;
220 /* Signed saturate. */
221 uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
223 return do_ssat(env, x, shift);
226 /* Dual halfword signed saturate. */
227 uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
229 uint32_t res;
231 res = (uint16_t)do_ssat(env, (int16_t)x, shift);
232 res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
233 return res;
236 /* Unsigned saturate. */
237 uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
239 return do_usat(env, x, shift);
242 /* Dual halfword unsigned saturate. */
243 uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
245 uint32_t res;
247 res = (uint16_t)do_usat(env, (int16_t)x, shift);
248 res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
249 return res;
252 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
253 * The function returns the target EL (1-3) if the instruction is to be trapped;
254 * otherwise it returns 0 indicating it is not trapped.
256 static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
258 int cur_el = arm_current_el(env);
259 uint64_t mask;
261 /* If we are currently in EL0 then we need to check if SCTLR is set up for
262 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
264 if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
265 int target_el;
267 mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
268 if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
269 /* Secure EL0 and Secure PL1 is at EL3 */
270 target_el = 3;
271 } else {
272 target_el = 1;
275 if (!(env->cp15.sctlr_el[target_el] & mask)) {
276 return target_el;
280 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
281 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
282 * bits will be zero indicating no trap.
284 if (cur_el < 2 && !arm_is_secure(env)) {
285 mask = (is_wfe) ? HCR_TWE : HCR_TWI;
286 if (env->cp15.hcr_el2 & mask) {
287 return 2;
291 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
292 if (cur_el < 3) {
293 mask = (is_wfe) ? SCR_TWE : SCR_TWI;
294 if (env->cp15.scr_el3 & mask) {
295 return 3;
299 return 0;
302 void HELPER(wfi)(CPUARMState *env)
304 CPUState *cs = CPU(arm_env_get_cpu(env));
305 int target_el = check_wfx_trap(env, false);
307 if (cpu_has_work(cs)) {
308 /* Don't bother to go into our "low power state" if
309 * we would just wake up immediately.
311 return;
314 if (target_el) {
315 env->pc -= 4;
316 raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0), target_el);
319 cs->exception_index = EXCP_HLT;
320 cs->halted = 1;
321 cpu_loop_exit(cs);
324 void HELPER(wfe)(CPUARMState *env)
326 /* This is a hint instruction that is semantically different
327 * from YIELD even though we currently implement it identically.
328 * Don't actually halt the CPU, just yield back to top
329 * level loop. This is not going into a "low power state"
330 * (ie halting until some event occurs), so we never take
331 * a configurable trap to a different exception level.
333 HELPER(yield)(env);
336 void HELPER(yield)(CPUARMState *env)
338 ARMCPU *cpu = arm_env_get_cpu(env);
339 CPUState *cs = CPU(cpu);
341 /* This is a non-trappable hint instruction that generally indicates
342 * that the guest is currently busy-looping. Yield control back to the
343 * top level loop so that a more deserving VCPU has a chance to run.
345 cs->exception_index = EXCP_YIELD;
346 cpu_loop_exit(cs);
349 /* Raise an internal-to-QEMU exception. This is limited to only
350 * those EXCP values which are special cases for QEMU to interrupt
351 * execution and not to be used for exceptions which are passed to
352 * the guest (those must all have syndrome information and thus should
353 * use exception_with_syndrome).
355 void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
357 CPUState *cs = CPU(arm_env_get_cpu(env));
359 assert(excp_is_internal(excp));
360 cs->exception_index = excp;
361 cpu_loop_exit(cs);
364 /* Raise an exception with the specified syndrome register value */
365 void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
366 uint32_t syndrome, uint32_t target_el)
368 raise_exception(env, excp, syndrome, target_el);
371 uint32_t HELPER(cpsr_read)(CPUARMState *env)
373 return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED);
376 void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
378 cpsr_write(env, val, mask);
381 /* Access to user mode registers from privileged modes. */
382 uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
384 uint32_t val;
386 if (regno == 13) {
387 val = env->banked_r13[0];
388 } else if (regno == 14) {
389 val = env->banked_r14[0];
390 } else if (regno >= 8
391 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
392 val = env->usr_regs[regno - 8];
393 } else {
394 val = env->regs[regno];
396 return val;
399 void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
401 if (regno == 13) {
402 env->banked_r13[0] = val;
403 } else if (regno == 14) {
404 env->banked_r14[0] = val;
405 } else if (regno >= 8
406 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
407 env->usr_regs[regno - 8] = val;
408 } else {
409 env->regs[regno] = val;
413 void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome)
415 const ARMCPRegInfo *ri = rip;
416 int target_el;
418 if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
419 && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
420 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
423 if (!ri->accessfn) {
424 return;
427 switch (ri->accessfn(env, ri)) {
428 case CP_ACCESS_OK:
429 return;
430 case CP_ACCESS_TRAP:
431 target_el = exception_target_el(env);
432 break;
433 case CP_ACCESS_TRAP_EL2:
434 /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
435 * a bug in the access function.
437 assert(!arm_is_secure(env) && arm_current_el(env) != 3);
438 target_el = 2;
439 break;
440 case CP_ACCESS_TRAP_EL3:
441 target_el = 3;
442 break;
443 case CP_ACCESS_TRAP_UNCATEGORIZED:
444 target_el = exception_target_el(env);
445 syndrome = syn_uncategorized();
446 break;
447 case CP_ACCESS_TRAP_UNCATEGORIZED_EL2:
448 target_el = 2;
449 syndrome = syn_uncategorized();
450 break;
451 case CP_ACCESS_TRAP_UNCATEGORIZED_EL3:
452 target_el = 3;
453 syndrome = syn_uncategorized();
454 break;
455 default:
456 g_assert_not_reached();
459 raise_exception(env, EXCP_UDEF, syndrome, target_el);
462 void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
464 const ARMCPRegInfo *ri = rip;
466 ri->writefn(env, ri, value);
469 uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
471 const ARMCPRegInfo *ri = rip;
473 return ri->readfn(env, ri);
476 void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
478 const ARMCPRegInfo *ri = rip;
480 ri->writefn(env, ri, value);
483 uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
485 const ARMCPRegInfo *ri = rip;
487 return ri->readfn(env, ri);
490 void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm)
492 /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
493 * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
494 * to catch that case at translate time.
496 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
497 uint32_t syndrome = syn_aa64_sysregtrap(0, extract32(op, 0, 3),
498 extract32(op, 3, 3), 4,
499 imm, 0x1f, 0);
500 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
503 switch (op) {
504 case 0x05: /* SPSel */
505 update_spsel(env, imm);
506 break;
507 case 0x1e: /* DAIFSet */
508 env->daif |= (imm << 6) & PSTATE_DAIF;
509 break;
510 case 0x1f: /* DAIFClear */
511 env->daif &= ~((imm << 6) & PSTATE_DAIF);
512 break;
513 default:
514 g_assert_not_reached();
518 void HELPER(clear_pstate_ss)(CPUARMState *env)
520 env->pstate &= ~PSTATE_SS;
523 void HELPER(pre_hvc)(CPUARMState *env)
525 ARMCPU *cpu = arm_env_get_cpu(env);
526 int cur_el = arm_current_el(env);
527 /* FIXME: Use actual secure state. */
528 bool secure = false;
529 bool undef;
531 if (arm_is_psci_call(cpu, EXCP_HVC)) {
532 /* If PSCI is enabled and this looks like a valid PSCI call then
533 * that overrides the architecturally mandated HVC behaviour.
535 return;
538 if (!arm_feature(env, ARM_FEATURE_EL2)) {
539 /* If EL2 doesn't exist, HVC always UNDEFs */
540 undef = true;
541 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
542 /* EL3.HCE has priority over EL2.HCD. */
543 undef = !(env->cp15.scr_el3 & SCR_HCE);
544 } else {
545 undef = env->cp15.hcr_el2 & HCR_HCD;
548 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
549 * For ARMv8/AArch64, HVC is allowed in EL3.
550 * Note that we've already trapped HVC from EL0 at translation
551 * time.
553 if (secure && (!is_a64(env) || cur_el == 1)) {
554 undef = true;
557 if (undef) {
558 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
559 exception_target_el(env));
563 void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
565 ARMCPU *cpu = arm_env_get_cpu(env);
566 int cur_el = arm_current_el(env);
567 bool secure = arm_is_secure(env);
568 bool smd = env->cp15.scr_el3 & SCR_SMD;
569 /* On ARMv8 AArch32, SMD only applies to NS state.
570 * On ARMv7 SMD only applies to NS state and only if EL2 is available.
571 * For ARMv7 non EL2, we force SMD to zero so we don't need to re-check
572 * the EL2 condition here.
574 bool undef = is_a64(env) ? smd : (!secure && smd);
576 if (arm_is_psci_call(cpu, EXCP_SMC)) {
577 /* If PSCI is enabled and this looks like a valid PSCI call then
578 * that overrides the architecturally mandated SMC behaviour.
580 return;
583 if (!arm_feature(env, ARM_FEATURE_EL3)) {
584 /* If we have no EL3 then SMC always UNDEFs */
585 undef = true;
586 } else if (!secure && cur_el == 1 && (env->cp15.hcr_el2 & HCR_TSC)) {
587 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. */
588 raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
591 if (undef) {
592 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
593 exception_target_el(env));
597 void HELPER(exception_return)(CPUARMState *env)
599 int cur_el = arm_current_el(env);
600 unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
601 uint32_t spsr = env->banked_spsr[spsr_idx];
602 int new_el;
604 aarch64_save_sp(env, cur_el);
606 env->exclusive_addr = -1;
608 /* We must squash the PSTATE.SS bit to zero unless both of the
609 * following hold:
610 * 1. debug exceptions are currently disabled
611 * 2. singlestep will be active in the EL we return to
612 * We check 1 here and 2 after we've done the pstate/cpsr write() to
613 * transition to the EL we're going to.
615 if (arm_generate_debug_exceptions(env)) {
616 spsr &= ~PSTATE_SS;
619 if (spsr & PSTATE_nRW) {
620 /* TODO: We currently assume EL1/2/3 are running in AArch64. */
621 env->aarch64 = 0;
622 new_el = 0;
623 env->uncached_cpsr = 0x10;
624 cpsr_write(env, spsr, ~0);
625 if (!arm_singlestep_active(env)) {
626 env->uncached_cpsr &= ~PSTATE_SS;
628 aarch64_sync_64_to_32(env);
630 env->regs[15] = env->elr_el[1] & ~0x1;
631 } else {
632 new_el = extract32(spsr, 2, 2);
633 if (new_el > cur_el
634 || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) {
635 /* Disallow return to an EL which is unimplemented or higher
636 * than the current one.
638 goto illegal_return;
640 if (extract32(spsr, 1, 1)) {
641 /* Return with reserved M[1] bit set */
642 goto illegal_return;
644 if (new_el == 0 && (spsr & PSTATE_SP)) {
645 /* Return to EL0 with M[0] bit set */
646 goto illegal_return;
648 env->aarch64 = 1;
649 pstate_write(env, spsr);
650 if (!arm_singlestep_active(env)) {
651 env->pstate &= ~PSTATE_SS;
653 aarch64_restore_sp(env, new_el);
654 env->pc = env->elr_el[cur_el];
657 return;
659 illegal_return:
660 /* Illegal return events of various kinds have architecturally
661 * mandated behaviour:
662 * restore NZCV and DAIF from SPSR_ELx
663 * set PSTATE.IL
664 * restore PC from ELR_ELx
665 * no change to exception level, execution state or stack pointer
667 env->pstate |= PSTATE_IL;
668 env->pc = env->elr_el[cur_el];
669 spsr &= PSTATE_NZCV | PSTATE_DAIF;
670 spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
671 pstate_write(env, spsr);
672 if (!arm_singlestep_active(env)) {
673 env->pstate &= ~PSTATE_SS;
677 /* Return true if the linked breakpoint entry lbn passes its checks */
678 static bool linked_bp_matches(ARMCPU *cpu, int lbn)
680 CPUARMState *env = &cpu->env;
681 uint64_t bcr = env->cp15.dbgbcr[lbn];
682 int brps = extract32(cpu->dbgdidr, 24, 4);
683 int ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
684 int bt;
685 uint32_t contextidr;
687 /* Links to unimplemented or non-context aware breakpoints are
688 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
689 * as if linked to an UNKNOWN context-aware breakpoint (in which
690 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
691 * We choose the former.
693 if (lbn > brps || lbn < (brps - ctx_cmps)) {
694 return false;
697 bcr = env->cp15.dbgbcr[lbn];
699 if (extract64(bcr, 0, 1) == 0) {
700 /* Linked breakpoint disabled : generate no events */
701 return false;
704 bt = extract64(bcr, 20, 4);
706 /* We match the whole register even if this is AArch32 using the
707 * short descriptor format (in which case it holds both PROCID and ASID),
708 * since we don't implement the optional v7 context ID masking.
710 contextidr = extract64(env->cp15.contextidr_el[1], 0, 32);
712 switch (bt) {
713 case 3: /* linked context ID match */
714 if (arm_current_el(env) > 1) {
715 /* Context matches never fire in EL2 or (AArch64) EL3 */
716 return false;
718 return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32));
719 case 5: /* linked address mismatch (reserved in AArch64) */
720 case 9: /* linked VMID match (reserved if no EL2) */
721 case 11: /* linked context ID and VMID match (reserved if no EL2) */
722 default:
723 /* Links to Unlinked context breakpoints must generate no
724 * events; we choose to do the same for reserved values too.
726 return false;
729 return false;
732 static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
734 CPUARMState *env = &cpu->env;
735 uint64_t cr;
736 int pac, hmc, ssc, wt, lbn;
737 /* Note that for watchpoints the check is against the CPU security
738 * state, not the S/NS attribute on the offending data access.
740 bool is_secure = arm_is_secure(env);
741 int access_el = arm_current_el(env);
743 if (is_wp) {
744 CPUWatchpoint *wp = env->cpu_watchpoint[n];
746 if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
747 return false;
749 cr = env->cp15.dbgwcr[n];
750 if (wp->hitattrs.user) {
751 /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
752 * match watchpoints as if they were accesses done at EL0, even if
753 * the CPU is at EL1 or higher.
755 access_el = 0;
757 } else {
758 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
760 if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
761 return false;
763 cr = env->cp15.dbgbcr[n];
765 /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
766 * enabled and that the address and access type match; for breakpoints
767 * we know the address matched; check the remaining fields, including
768 * linked breakpoints. We rely on WCR and BCR having the same layout
769 * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
770 * Note that some combinations of {PAC, HMC, SSC} are reserved and
771 * must act either like some valid combination or as if the watchpoint
772 * were disabled. We choose the former, and use this together with
773 * the fact that EL3 must always be Secure and EL2 must always be
774 * Non-Secure to simplify the code slightly compared to the full
775 * table in the ARM ARM.
777 pac = extract64(cr, 1, 2);
778 hmc = extract64(cr, 13, 1);
779 ssc = extract64(cr, 14, 2);
781 switch (ssc) {
782 case 0:
783 break;
784 case 1:
785 case 3:
786 if (is_secure) {
787 return false;
789 break;
790 case 2:
791 if (!is_secure) {
792 return false;
794 break;
797 switch (access_el) {
798 case 3:
799 case 2:
800 if (!hmc) {
801 return false;
803 break;
804 case 1:
805 if (extract32(pac, 0, 1) == 0) {
806 return false;
808 break;
809 case 0:
810 if (extract32(pac, 1, 1) == 0) {
811 return false;
813 break;
814 default:
815 g_assert_not_reached();
818 wt = extract64(cr, 20, 1);
819 lbn = extract64(cr, 16, 4);
821 if (wt && !linked_bp_matches(cpu, lbn)) {
822 return false;
825 return true;
828 static bool check_watchpoints(ARMCPU *cpu)
830 CPUARMState *env = &cpu->env;
831 int n;
833 /* If watchpoints are disabled globally or we can't take debug
834 * exceptions here then watchpoint firings are ignored.
836 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
837 || !arm_generate_debug_exceptions(env)) {
838 return false;
841 for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
842 if (bp_wp_matches(cpu, n, true)) {
843 return true;
846 return false;
849 static bool check_breakpoints(ARMCPU *cpu)
851 CPUARMState *env = &cpu->env;
852 int n;
854 /* If breakpoints are disabled globally or we can't take debug
855 * exceptions here then breakpoint firings are ignored.
857 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
858 || !arm_generate_debug_exceptions(env)) {
859 return false;
862 for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
863 if (bp_wp_matches(cpu, n, false)) {
864 return true;
867 return false;
870 void arm_debug_excp_handler(CPUState *cs)
872 /* Called by core code when a watchpoint or breakpoint fires;
873 * need to check which one and raise the appropriate exception.
875 ARMCPU *cpu = ARM_CPU(cs);
876 CPUARMState *env = &cpu->env;
877 CPUWatchpoint *wp_hit = cs->watchpoint_hit;
879 if (wp_hit) {
880 if (wp_hit->flags & BP_CPU) {
881 cs->watchpoint_hit = NULL;
882 if (check_watchpoints(cpu)) {
883 bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
884 bool same_el = arm_debug_target_el(env) == arm_current_el(env);
886 if (extended_addresses_enabled(env)) {
887 env->exception.fsr = (1 << 9) | 0x22;
888 } else {
889 env->exception.fsr = 0x2;
891 env->exception.vaddress = wp_hit->hitaddr;
892 raise_exception(env, EXCP_DATA_ABORT,
893 syn_watchpoint(same_el, 0, wnr),
894 arm_debug_target_el(env));
895 } else {
896 cpu_resume_from_signal(cs, NULL);
899 } else {
900 if (check_breakpoints(cpu)) {
901 bool same_el = (arm_debug_target_el(env) == arm_current_el(env));
902 if (extended_addresses_enabled(env)) {
903 env->exception.fsr = (1 << 9) | 0x22;
904 } else {
905 env->exception.fsr = 0x2;
907 /* FAR is UNKNOWN, so doesn't need setting */
908 raise_exception(env, EXCP_PREFETCH_ABORT,
909 syn_breakpoint(same_el),
910 arm_debug_target_el(env));
915 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
916 The only way to do that in TCG is a conditional branch, which clobbers
917 all our temporaries. For now implement these as helper functions. */
919 /* Similarly for variable shift instructions. */
921 uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
923 int shift = i & 0xff;
924 if (shift >= 32) {
925 if (shift == 32)
926 env->CF = x & 1;
927 else
928 env->CF = 0;
929 return 0;
930 } else if (shift != 0) {
931 env->CF = (x >> (32 - shift)) & 1;
932 return x << shift;
934 return x;
937 uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
939 int shift = i & 0xff;
940 if (shift >= 32) {
941 if (shift == 32)
942 env->CF = (x >> 31) & 1;
943 else
944 env->CF = 0;
945 return 0;
946 } else if (shift != 0) {
947 env->CF = (x >> (shift - 1)) & 1;
948 return x >> shift;
950 return x;
953 uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
955 int shift = i & 0xff;
956 if (shift >= 32) {
957 env->CF = (x >> 31) & 1;
958 return (int32_t)x >> 31;
959 } else if (shift != 0) {
960 env->CF = (x >> (shift - 1)) & 1;
961 return (int32_t)x >> shift;
963 return x;
966 uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
968 int shift1, shift;
969 shift1 = i & 0xff;
970 shift = shift1 & 0x1f;
971 if (shift == 0) {
972 if (shift1 != 0)
973 env->CF = (x >> 31) & 1;
974 return x;
975 } else {
976 env->CF = (x >> (shift - 1)) & 1;
977 return ((uint32_t)x >> shift) | (x << (32 - shift));