4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
29 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30 #define PAGE_SIZE TARGET_PAGE_SIZE
35 #define dprintf(fmt, ...) \
36 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38 #define dprintf(fmt, ...) \
42 typedef struct KVMSlot
44 target_phys_addr_t start_addr
;
45 ram_addr_t memory_size
;
46 ram_addr_t phys_offset
;
51 typedef struct kvm_dirty_log KVMDirtyLog
;
62 int broken_set_mem_region
;
64 #ifdef KVM_CAP_SET_GUEST_DEBUG
65 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
67 int irqchip_in_kernel
;
71 static KVMState
*kvm_state
;
73 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
77 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
78 /* KVM private memory slots */
81 if (s
->slots
[i
].memory_size
== 0)
85 fprintf(stderr
, "%s: no free slot available\n", __func__
);
89 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
90 target_phys_addr_t start_addr
,
91 target_phys_addr_t end_addr
)
95 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
96 KVMSlot
*mem
= &s
->slots
[i
];
98 if (start_addr
== mem
->start_addr
&&
99 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
108 * Find overlapping slot with lowest start address
110 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
111 target_phys_addr_t start_addr
,
112 target_phys_addr_t end_addr
)
114 KVMSlot
*found
= NULL
;
117 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
118 KVMSlot
*mem
= &s
->slots
[i
];
120 if (mem
->memory_size
== 0 ||
121 (found
&& found
->start_addr
< mem
->start_addr
)) {
125 if (end_addr
> mem
->start_addr
&&
126 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
134 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
136 struct kvm_userspace_memory_region mem
;
138 mem
.slot
= slot
->slot
;
139 mem
.guest_phys_addr
= slot
->start_addr
;
140 mem
.memory_size
= slot
->memory_size
;
141 mem
.userspace_addr
= (unsigned long)qemu_get_ram_ptr(slot
->phys_offset
);
142 mem
.flags
= slot
->flags
;
143 if (s
->migration_log
) {
144 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
146 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
149 static void kvm_reset_vcpu(void *opaque
)
151 CPUState
*env
= opaque
;
153 kvm_arch_reset_vcpu(env
);
154 if (kvm_arch_put_registers(env
)) {
155 fprintf(stderr
, "Fatal: kvm vcpu reset failed\n");
160 int kvm_irqchip_in_kernel(void)
162 return kvm_state
->irqchip_in_kernel
;
165 int kvm_pit_in_kernel(void)
167 return kvm_state
->pit_in_kernel
;
171 int kvm_init_vcpu(CPUState
*env
)
173 KVMState
*s
= kvm_state
;
177 dprintf("kvm_init_vcpu\n");
179 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, env
->cpu_index
);
181 dprintf("kvm_create_vcpu failed\n");
188 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
190 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
194 env
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
196 if (env
->kvm_run
== MAP_FAILED
) {
198 dprintf("mmap'ing vcpu state failed\n");
202 ret
= kvm_arch_init_vcpu(env
);
204 qemu_register_reset(kvm_reset_vcpu
, env
);
205 kvm_arch_reset_vcpu(env
);
206 ret
= kvm_arch_put_registers(env
);
213 * dirty pages logging control
215 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr
,
216 ram_addr_t size
, int flags
, int mask
)
218 KVMState
*s
= kvm_state
;
219 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
223 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
224 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
225 (target_phys_addr_t
)(phys_addr
+ size
- 1));
229 old_flags
= mem
->flags
;
231 flags
= (mem
->flags
& ~mask
) | flags
;
234 /* If nothing changed effectively, no need to issue ioctl */
235 if (s
->migration_log
) {
236 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
238 if (flags
== old_flags
) {
242 return kvm_set_user_memory_region(s
, mem
);
245 int kvm_log_start(target_phys_addr_t phys_addr
, ram_addr_t size
)
247 return kvm_dirty_pages_log_change(phys_addr
, size
,
248 KVM_MEM_LOG_DIRTY_PAGES
,
249 KVM_MEM_LOG_DIRTY_PAGES
);
252 int kvm_log_stop(target_phys_addr_t phys_addr
, ram_addr_t size
)
254 return kvm_dirty_pages_log_change(phys_addr
, size
,
256 KVM_MEM_LOG_DIRTY_PAGES
);
259 int kvm_set_migration_log(int enable
)
261 KVMState
*s
= kvm_state
;
265 s
->migration_log
= enable
;
267 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
270 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
273 err
= kvm_set_user_memory_region(s
, mem
);
281 static int test_le_bit(unsigned long nr
, unsigned char *addr
)
283 return (addr
[nr
>> 3] >> (nr
& 7)) & 1;
287 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
288 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
289 * This means all bits are set to dirty.
291 * @start_add: start of logged region.
292 * @end_addr: end of logged region.
294 int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
,
295 target_phys_addr_t end_addr
)
297 KVMState
*s
= kvm_state
;
298 unsigned long size
, allocated_size
= 0;
299 target_phys_addr_t phys_addr
;
305 d
.dirty_bitmap
= NULL
;
306 while (start_addr
< end_addr
) {
307 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
312 size
= ((mem
->memory_size
>> TARGET_PAGE_BITS
) + 7) / 8;
313 if (!d
.dirty_bitmap
) {
314 d
.dirty_bitmap
= qemu_malloc(size
);
315 } else if (size
> allocated_size
) {
316 d
.dirty_bitmap
= qemu_realloc(d
.dirty_bitmap
, size
);
318 allocated_size
= size
;
319 memset(d
.dirty_bitmap
, 0, allocated_size
);
323 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
324 dprintf("ioctl failed %d\n", errno
);
329 for (phys_addr
= mem
->start_addr
, addr
= mem
->phys_offset
;
330 phys_addr
< mem
->start_addr
+ mem
->memory_size
;
331 phys_addr
+= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
332 unsigned char *bitmap
= (unsigned char *)d
.dirty_bitmap
;
333 unsigned nr
= (phys_addr
- mem
->start_addr
) >> TARGET_PAGE_BITS
;
335 if (test_le_bit(nr
, bitmap
)) {
336 cpu_physical_memory_set_dirty(addr
);
339 start_addr
= phys_addr
;
341 qemu_free(d
.dirty_bitmap
);
346 int kvm_coalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
349 #ifdef KVM_CAP_COALESCED_MMIO
350 KVMState
*s
= kvm_state
;
352 if (s
->coalesced_mmio
) {
353 struct kvm_coalesced_mmio_zone zone
;
358 ret
= kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
365 int kvm_uncoalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
368 #ifdef KVM_CAP_COALESCED_MMIO
369 KVMState
*s
= kvm_state
;
371 if (s
->coalesced_mmio
) {
372 struct kvm_coalesced_mmio_zone zone
;
377 ret
= kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
384 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
388 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
396 int kvm_init(int smp_cpus
)
398 static const char upgrade_note
[] =
399 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
400 "(see http://sourceforge.net/projects/kvm).\n";
406 fprintf(stderr
, "No SMP KVM support, use '-smp 1'\n");
410 s
= qemu_mallocz(sizeof(KVMState
));
412 #ifdef KVM_CAP_SET_GUEST_DEBUG
413 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
415 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++)
416 s
->slots
[i
].slot
= i
;
419 s
->fd
= open("/dev/kvm", O_RDWR
);
421 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
426 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
427 if (ret
< KVM_API_VERSION
) {
430 fprintf(stderr
, "kvm version too old\n");
434 if (ret
> KVM_API_VERSION
) {
436 fprintf(stderr
, "kvm version not supported\n");
440 s
->vmfd
= kvm_ioctl(s
, KVM_CREATE_VM
, 0);
444 /* initially, KVM allocated its own memory and we had to jump through
445 * hooks to make phys_ram_base point to this. Modern versions of KVM
446 * just use a user allocated buffer so we can use regular pages
447 * unmodified. Make sure we have a sufficiently modern version of KVM.
449 if (!kvm_check_extension(s
, KVM_CAP_USER_MEMORY
)) {
451 fprintf(stderr
, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
456 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
457 * destroyed properly. Since we rely on this capability, refuse to work
458 * with any kernel without this capability. */
459 if (!kvm_check_extension(s
, KVM_CAP_DESTROY_MEMORY_REGION_WORKS
)) {
463 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
468 #ifdef KVM_CAP_COALESCED_MMIO
469 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
471 s
->coalesced_mmio
= 0;
474 s
->broken_set_mem_region
= 1;
475 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
476 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
478 s
->broken_set_mem_region
= 0;
482 ret
= kvm_arch_init(s
, smp_cpus
);
502 static int kvm_handle_io(uint16_t port
, void *data
, int direction
, int size
,
508 for (i
= 0; i
< count
; i
++) {
509 if (direction
== KVM_EXIT_IO_IN
) {
512 stb_p(ptr
, cpu_inb(port
));
515 stw_p(ptr
, cpu_inw(port
));
518 stl_p(ptr
, cpu_inl(port
));
524 cpu_outb(port
, ldub_p(ptr
));
527 cpu_outw(port
, lduw_p(ptr
));
530 cpu_outl(port
, ldl_p(ptr
));
541 static void kvm_run_coalesced_mmio(CPUState
*env
, struct kvm_run
*run
)
543 #ifdef KVM_CAP_COALESCED_MMIO
544 KVMState
*s
= kvm_state
;
545 if (s
->coalesced_mmio
) {
546 struct kvm_coalesced_mmio_ring
*ring
;
548 ring
= (void *)run
+ (s
->coalesced_mmio
* TARGET_PAGE_SIZE
);
549 while (ring
->first
!= ring
->last
) {
550 struct kvm_coalesced_mmio
*ent
;
552 ent
= &ring
->coalesced_mmio
[ring
->first
];
554 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
555 /* FIXME smp_wmb() */
556 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
562 void kvm_cpu_synchronize_state(CPUState
*env
)
564 if (!env
->kvm_state
->regs_modified
) {
565 kvm_arch_get_registers(env
);
566 env
->kvm_state
->regs_modified
= 1;
570 int kvm_cpu_exec(CPUState
*env
)
572 struct kvm_run
*run
= env
->kvm_run
;
575 dprintf("kvm_cpu_exec()\n");
578 if (env
->exit_request
) {
579 dprintf("interrupt exit requested\n");
584 if (env
->kvm_state
->regs_modified
) {
585 kvm_arch_put_registers(env
);
586 env
->kvm_state
->regs_modified
= 0;
589 kvm_arch_pre_run(env
, run
);
590 qemu_mutex_unlock_iothread();
591 ret
= kvm_vcpu_ioctl(env
, KVM_RUN
, 0);
592 qemu_mutex_lock_iothread();
593 kvm_arch_post_run(env
, run
);
595 if (ret
== -EINTR
|| ret
== -EAGAIN
) {
596 dprintf("io window exit\n");
602 dprintf("kvm run failed %s\n", strerror(-ret
));
606 kvm_run_coalesced_mmio(env
, run
);
608 ret
= 0; /* exit loop */
609 switch (run
->exit_reason
) {
611 dprintf("handle_io\n");
612 ret
= kvm_handle_io(run
->io
.port
,
613 (uint8_t *)run
+ run
->io
.data_offset
,
619 dprintf("handle_mmio\n");
620 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
626 case KVM_EXIT_IRQ_WINDOW_OPEN
:
627 dprintf("irq_window_open\n");
629 case KVM_EXIT_SHUTDOWN
:
630 dprintf("shutdown\n");
631 qemu_system_reset_request();
634 case KVM_EXIT_UNKNOWN
:
635 dprintf("kvm_exit_unknown\n");
637 case KVM_EXIT_FAIL_ENTRY
:
638 dprintf("kvm_exit_fail_entry\n");
640 case KVM_EXIT_EXCEPTION
:
641 dprintf("kvm_exit_exception\n");
644 dprintf("kvm_exit_debug\n");
645 #ifdef KVM_CAP_SET_GUEST_DEBUG
646 if (kvm_arch_debug(&run
->debug
.arch
)) {
647 gdb_set_stop_cpu(env
);
649 env
->exception_index
= EXCP_DEBUG
;
652 /* re-enter, this exception was guest-internal */
654 #endif /* KVM_CAP_SET_GUEST_DEBUG */
657 dprintf("kvm_arch_handle_exit\n");
658 ret
= kvm_arch_handle_exit(env
, run
);
663 if (env
->exit_request
) {
664 env
->exit_request
= 0;
665 env
->exception_index
= EXCP_INTERRUPT
;
671 void kvm_set_phys_mem(target_phys_addr_t start_addr
,
673 ram_addr_t phys_offset
)
675 KVMState
*s
= kvm_state
;
676 ram_addr_t flags
= phys_offset
& ~TARGET_PAGE_MASK
;
680 if (start_addr
& ~TARGET_PAGE_MASK
) {
681 if (flags
>= IO_MEM_UNASSIGNED
) {
682 if (!kvm_lookup_overlapping_slot(s
, start_addr
,
683 start_addr
+ size
)) {
686 fprintf(stderr
, "Unaligned split of a KVM memory slot\n");
688 fprintf(stderr
, "Only page-aligned memory slots supported\n");
693 /* KVM does not support read-only slots */
694 phys_offset
&= ~IO_MEM_ROM
;
697 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
702 if (flags
< IO_MEM_UNASSIGNED
&& start_addr
>= mem
->start_addr
&&
703 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
704 (phys_offset
- start_addr
== mem
->phys_offset
- mem
->start_addr
)) {
705 /* The new slot fits into the existing one and comes with
706 * identical parameters - nothing to be done. */
712 /* unregister the overlapping slot */
713 mem
->memory_size
= 0;
714 err
= kvm_set_user_memory_region(s
, mem
);
716 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
717 __func__
, strerror(-err
));
721 /* Workaround for older KVM versions: we can't join slots, even not by
722 * unregistering the previous ones and then registering the larger
723 * slot. We have to maintain the existing fragmentation. Sigh.
725 * This workaround assumes that the new slot starts at the same
726 * address as the first existing one. If not or if some overlapping
727 * slot comes around later, we will fail (not seen in practice so far)
728 * - and actually require a recent KVM version. */
729 if (s
->broken_set_mem_region
&&
730 old
.start_addr
== start_addr
&& old
.memory_size
< size
&&
731 flags
< IO_MEM_UNASSIGNED
) {
732 mem
= kvm_alloc_slot(s
);
733 mem
->memory_size
= old
.memory_size
;
734 mem
->start_addr
= old
.start_addr
;
735 mem
->phys_offset
= old
.phys_offset
;
738 err
= kvm_set_user_memory_region(s
, mem
);
740 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
745 start_addr
+= old
.memory_size
;
746 phys_offset
+= old
.memory_size
;
747 size
-= old
.memory_size
;
751 /* register prefix slot */
752 if (old
.start_addr
< start_addr
) {
753 mem
= kvm_alloc_slot(s
);
754 mem
->memory_size
= start_addr
- old
.start_addr
;
755 mem
->start_addr
= old
.start_addr
;
756 mem
->phys_offset
= old
.phys_offset
;
759 err
= kvm_set_user_memory_region(s
, mem
);
761 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
762 __func__
, strerror(-err
));
767 /* register suffix slot */
768 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
769 ram_addr_t size_delta
;
771 mem
= kvm_alloc_slot(s
);
772 mem
->start_addr
= start_addr
+ size
;
773 size_delta
= mem
->start_addr
- old
.start_addr
;
774 mem
->memory_size
= old
.memory_size
- size_delta
;
775 mem
->phys_offset
= old
.phys_offset
+ size_delta
;
778 err
= kvm_set_user_memory_region(s
, mem
);
780 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
781 __func__
, strerror(-err
));
787 /* in case the KVM bug workaround already "consumed" the new slot */
791 /* KVM does not need to know about this memory */
792 if (flags
>= IO_MEM_UNASSIGNED
)
795 mem
= kvm_alloc_slot(s
);
796 mem
->memory_size
= size
;
797 mem
->start_addr
= start_addr
;
798 mem
->phys_offset
= phys_offset
;
801 err
= kvm_set_user_memory_region(s
, mem
);
803 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
809 int kvm_ioctl(KVMState
*s
, int type
, ...)
816 arg
= va_arg(ap
, void *);
819 ret
= ioctl(s
->fd
, type
, arg
);
826 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
833 arg
= va_arg(ap
, void *);
836 ret
= ioctl(s
->vmfd
, type
, arg
);
843 int kvm_vcpu_ioctl(CPUState
*env
, int type
, ...)
850 arg
= va_arg(ap
, void *);
853 ret
= ioctl(env
->kvm_fd
, type
, arg
);
860 int kvm_has_sync_mmu(void)
862 #ifdef KVM_CAP_SYNC_MMU
863 KVMState
*s
= kvm_state
;
865 return kvm_check_extension(s
, KVM_CAP_SYNC_MMU
);
871 void kvm_setup_guest_memory(void *start
, size_t size
)
873 if (!kvm_has_sync_mmu()) {
875 int ret
= madvise(start
, size
, MADV_DONTFORK
);
883 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
889 #ifdef KVM_CAP_SET_GUEST_DEBUG
890 static void on_vcpu(CPUState
*env
, void (*func
)(void *data
), void *data
)
892 #ifdef CONFIG_IOTHREAD
893 if (env
== cpu_single_env
) {
903 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*env
,
906 struct kvm_sw_breakpoint
*bp
;
908 QTAILQ_FOREACH(bp
, &env
->kvm_state
->kvm_sw_breakpoints
, entry
) {
915 int kvm_sw_breakpoints_active(CPUState
*env
)
917 return !QTAILQ_EMPTY(&env
->kvm_state
->kvm_sw_breakpoints
);
920 struct kvm_set_guest_debug_data
{
921 struct kvm_guest_debug dbg
;
926 static void kvm_invoke_set_guest_debug(void *data
)
928 struct kvm_set_guest_debug_data
*dbg_data
= data
;
929 CPUState
*env
= dbg_data
->env
;
931 if (env
->kvm_state
->regs_modified
) {
932 kvm_arch_put_registers(env
);
933 env
->kvm_state
->regs_modified
= 0;
935 dbg_data
->err
= kvm_vcpu_ioctl(env
, KVM_SET_GUEST_DEBUG
, &dbg_data
->dbg
);
938 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
940 struct kvm_set_guest_debug_data data
;
942 data
.dbg
.control
= 0;
943 if (env
->singlestep_enabled
)
944 data
.dbg
.control
= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
946 kvm_arch_update_guest_debug(env
, &data
.dbg
);
947 data
.dbg
.control
|= reinject_trap
;
950 on_vcpu(env
, kvm_invoke_set_guest_debug
, &data
);
954 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
955 target_ulong len
, int type
)
957 struct kvm_sw_breakpoint
*bp
;
961 if (type
== GDB_BREAKPOINT_SW
) {
962 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
968 bp
= qemu_malloc(sizeof(struct kvm_sw_breakpoint
));
974 err
= kvm_arch_insert_sw_breakpoint(current_env
, bp
);
980 QTAILQ_INSERT_HEAD(¤t_env
->kvm_state
->kvm_sw_breakpoints
,
983 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
988 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
989 err
= kvm_update_guest_debug(env
, 0);
996 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
997 target_ulong len
, int type
)
999 struct kvm_sw_breakpoint
*bp
;
1003 if (type
== GDB_BREAKPOINT_SW
) {
1004 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1008 if (bp
->use_count
> 1) {
1013 err
= kvm_arch_remove_sw_breakpoint(current_env
, bp
);
1017 QTAILQ_REMOVE(¤t_env
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1020 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
1025 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1026 err
= kvm_update_guest_debug(env
, 0);
1033 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1035 struct kvm_sw_breakpoint
*bp
, *next
;
1036 KVMState
*s
= current_env
->kvm_state
;
1039 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
1040 if (kvm_arch_remove_sw_breakpoint(current_env
, bp
) != 0) {
1041 /* Try harder to find a CPU that currently sees the breakpoint. */
1042 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1043 if (kvm_arch_remove_sw_breakpoint(env
, bp
) == 0)
1048 kvm_arch_remove_all_hw_breakpoints();
1050 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
1051 kvm_update_guest_debug(env
, 0);
1054 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1056 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1061 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1062 target_ulong len
, int type
)
1067 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1068 target_ulong len
, int type
)
1073 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1076 #endif /* !KVM_CAP_SET_GUEST_DEBUG */