bcm2835_mbox/property: replace ldl_phys/stl_phys with endian-specific accesses
[qemu/cris-port.git] / target-arm / psci.c
blobc55487f87221fa6929a32c8544a8607c9ff4e173
1 /*
2 * Copyright (C) 2014 - Linaro
3 * Author: Rob Herring <rob.herring@linaro.org>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 #include "qemu/osdep.h"
19 #include <cpu.h>
20 #include <cpu-qom.h>
21 #include <exec/helper-proto.h>
22 #include <kvm-consts.h>
23 #include <sysemu/sysemu.h>
24 #include "internals.h"
26 bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
28 /* Return true if the r0/x0 value indicates a PSCI call and
29 * the exception type matches the configured PSCI conduit. This is
30 * called before the SMC/HVC instruction is executed, to decide whether
31 * we should treat it as a PSCI call or with the architecturally
32 * defined behaviour for an SMC or HVC (which might be UNDEF or trap
33 * to EL2 or to EL3).
35 CPUARMState *env = &cpu->env;
36 uint64_t param = is_a64(env) ? env->xregs[0] : env->regs[0];
38 switch (excp_type) {
39 case EXCP_HVC:
40 if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_HVC) {
41 return false;
43 break;
44 case EXCP_SMC:
45 if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
46 return false;
48 break;
49 default:
50 return false;
53 switch (param) {
54 case QEMU_PSCI_0_2_FN_PSCI_VERSION:
55 case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
56 case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
57 case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
58 case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
59 case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
60 case QEMU_PSCI_0_1_FN_CPU_ON:
61 case QEMU_PSCI_0_2_FN_CPU_ON:
62 case QEMU_PSCI_0_2_FN64_CPU_ON:
63 case QEMU_PSCI_0_1_FN_CPU_OFF:
64 case QEMU_PSCI_0_2_FN_CPU_OFF:
65 case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
66 case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
67 case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
68 case QEMU_PSCI_0_1_FN_MIGRATE:
69 case QEMU_PSCI_0_2_FN_MIGRATE:
70 return true;
71 default:
72 return false;
76 static CPUState *get_cpu_by_id(uint64_t id)
78 CPUState *cpu;
80 CPU_FOREACH(cpu) {
81 ARMCPU *armcpu = ARM_CPU(cpu);
83 if (armcpu->mp_affinity == id) {
84 return cpu;
88 return NULL;
91 void arm_handle_psci_call(ARMCPU *cpu)
94 * This function partially implements the logic for dispatching Power State
95 * Coordination Interface (PSCI) calls (as described in ARM DEN 0022B.b),
96 * to the extent required for bringing up and taking down secondary cores,
97 * and for handling reset and poweroff requests.
98 * Additional information about the calling convention used is available in
99 * the document 'SMC Calling Convention' (ARM DEN 0028)
101 CPUState *cs = CPU(cpu);
102 CPUARMState *env = &cpu->env;
103 uint64_t param[4];
104 uint64_t context_id, mpidr;
105 target_ulong entry;
106 int32_t ret = 0;
107 int i;
109 for (i = 0; i < 4; i++) {
111 * All PSCI functions take explicit 32-bit or native int sized
112 * arguments so we can simply zero-extend all arguments regardless
113 * of which exact function we are about to call.
115 param[i] = is_a64(env) ? env->xregs[i] : env->regs[i];
118 if ((param[0] & QEMU_PSCI_0_2_64BIT) && !is_a64(env)) {
119 ret = QEMU_PSCI_RET_INVALID_PARAMS;
120 goto err;
123 switch (param[0]) {
124 CPUState *target_cpu_state;
125 ARMCPU *target_cpu;
126 CPUClass *target_cpu_class;
128 case QEMU_PSCI_0_2_FN_PSCI_VERSION:
129 ret = QEMU_PSCI_0_2_RET_VERSION_0_2;
130 break;
131 case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
132 ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
133 break;
134 case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
135 case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
136 mpidr = param[1];
138 switch (param[2]) {
139 case 0:
140 target_cpu_state = get_cpu_by_id(mpidr);
141 if (!target_cpu_state) {
142 ret = QEMU_PSCI_RET_INVALID_PARAMS;
143 break;
145 target_cpu = ARM_CPU(target_cpu_state);
146 ret = target_cpu->powered_off ? 1 : 0;
147 break;
148 default:
149 /* Everything above affinity level 0 is always on. */
150 ret = 0;
152 break;
153 case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
154 qemu_system_reset_request();
155 /* QEMU reset and shutdown are async requests, but PSCI
156 * mandates that we never return from the reset/shutdown
157 * call, so power the CPU off now so it doesn't execute
158 * anything further.
160 goto cpu_off;
161 case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
162 qemu_system_shutdown_request();
163 goto cpu_off;
164 case QEMU_PSCI_0_1_FN_CPU_ON:
165 case QEMU_PSCI_0_2_FN_CPU_ON:
166 case QEMU_PSCI_0_2_FN64_CPU_ON:
167 mpidr = param[1];
168 entry = param[2];
169 context_id = param[3];
171 /* change to the cpu we are powering up */
172 target_cpu_state = get_cpu_by_id(mpidr);
173 if (!target_cpu_state) {
174 ret = QEMU_PSCI_RET_INVALID_PARAMS;
175 break;
177 target_cpu = ARM_CPU(target_cpu_state);
178 if (!target_cpu->powered_off) {
179 ret = QEMU_PSCI_RET_ALREADY_ON;
180 break;
182 target_cpu_class = CPU_GET_CLASS(target_cpu);
184 /* Initialize the cpu we are turning on */
185 cpu_reset(target_cpu_state);
186 target_cpu->powered_off = false;
187 target_cpu_state->halted = 0;
190 * The PSCI spec mandates that newly brought up CPUs enter the
191 * exception level of the caller in the same execution mode as
192 * the caller, with context_id in x0/r0, respectively.
194 * For now, it is sufficient to assert() that CPUs come out of
195 * reset in the same mode as the calling CPU, since we only
196 * implement EL1, which means that
197 * (a) there is no EL2 for the calling CPU to trap into to change
198 * its state
199 * (b) the newly brought up CPU enters EL1 immediately after coming
200 * out of reset in the default state
202 assert(is_a64(env) == is_a64(&target_cpu->env));
203 if (is_a64(env)) {
204 if (entry & 1) {
205 ret = QEMU_PSCI_RET_INVALID_PARAMS;
206 break;
208 target_cpu->env.xregs[0] = context_id;
209 } else {
210 target_cpu->env.regs[0] = context_id;
211 target_cpu->env.thumb = entry & 1;
213 target_cpu_class->set_pc(target_cpu_state, entry);
215 ret = 0;
216 break;
217 case QEMU_PSCI_0_1_FN_CPU_OFF:
218 case QEMU_PSCI_0_2_FN_CPU_OFF:
219 goto cpu_off;
220 case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
221 case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
222 case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
223 /* Affinity levels are not supported in QEMU */
224 if (param[1] & 0xfffe0000) {
225 ret = QEMU_PSCI_RET_INVALID_PARAMS;
226 break;
228 /* Powerdown is not supported, we always go into WFI */
229 if (is_a64(env)) {
230 env->xregs[0] = 0;
231 } else {
232 env->regs[0] = 0;
234 helper_wfi(env);
235 break;
236 case QEMU_PSCI_0_1_FN_MIGRATE:
237 case QEMU_PSCI_0_2_FN_MIGRATE:
238 ret = QEMU_PSCI_RET_NOT_SUPPORTED;
239 break;
240 default:
241 g_assert_not_reached();
244 err:
245 if (is_a64(env)) {
246 env->xregs[0] = ret;
247 } else {
248 env->regs[0] = ret;
250 return;
252 cpu_off:
253 cpu->powered_off = true;
254 cs->halted = 1;
255 cs->exception_index = EXCP_HLT;
256 cpu_loop_exit(cs);
257 /* notreached */