refactor $cpu selection in various places
[qemu/cris-port.git] / qemu-tech.texi
blobed2d35bf5e4382e515a0f00f5b720b408011edbe
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-tech.info
4 @settitle QEMU Internals
5 @exampleindent 0
6 @paragraphindent 0
7 @c %**end of header
9 @iftex
10 @titlepage
11 @sp 7
12 @center @titlefont{QEMU Internals}
13 @sp 3
14 @end titlepage
15 @end iftex
17 @ifnottex
18 @node Top
19 @top
21 @menu
22 * Introduction::
23 * QEMU Internals::
24 * Regression Tests::
25 * Index::
26 @end menu
27 @end ifnottex
29 @contents
31 @node Introduction
32 @chapter Introduction
34 @menu
35 * intro_features::        Features
36 * intro_x86_emulation::   x86 and x86-64 emulation
37 * intro_arm_emulation::   ARM emulation
38 * intro_mips_emulation::  MIPS emulation
39 * intro_ppc_emulation::   PowerPC emulation
40 * intro_sparc_emulation:: Sparc32 and Sparc64 emulation
41 * intro_other_emulation:: Other CPU emulation
42 @end menu
44 @node intro_features
45 @section Features
47 QEMU is a FAST! processor emulator using a portable dynamic
48 translator.
50 QEMU has two operating modes:
52 @itemize @minus
54 @item
55 Full system emulation. In this mode (full platform virtualization),
56 QEMU emulates a full system (usually a PC), including a processor and
57 various peripherals. It can be used to launch several different
58 Operating Systems at once without rebooting the host machine or to
59 debug system code.
61 @item
62 User mode emulation. In this mode (application level virtualization),
63 QEMU can launch processes compiled for one CPU on another CPU, however
64 the Operating Systems must match. This can be used for example to ease
65 cross-compilation and cross-debugging.
66 @end itemize
68 As QEMU requires no host kernel driver to run, it is very safe and
69 easy to use.
71 QEMU generic features:
73 @itemize
75 @item User space only or full system emulation.
77 @item Using dynamic translation to native code for reasonable speed.
79 @item
80 Working on x86, x86_64 and PowerPC32/64 hosts. Being tested on ARM,
81 HPPA, Sparc32 and Sparc64. Previous versions had some support for
82 Alpha and S390 hosts, but TCG (see below) doesn't support those yet.
84 @item Self-modifying code support.
86 @item Precise exceptions support.
88 @item The virtual CPU is a library (@code{libqemu}) which can be used
89 in other projects (look at @file{qemu/tests/qruncom.c} to have an
90 example of user mode @code{libqemu} usage).
92 @item
93 Floating point library supporting both full software emulation and
94 native host FPU instructions.
96 @end itemize
98 QEMU user mode emulation features:
99 @itemize
100 @item Generic Linux system call converter, including most ioctls.
102 @item clone() emulation using native CPU clone() to use Linux scheduler for threads.
104 @item Accurate signal handling by remapping host signals to target signals.
105 @end itemize
107 Linux user emulator (Linux host only) can be used to launch the Wine
108 Windows API emulator (@url{http://www.winehq.org}). A Darwin user
109 emulator (Darwin hosts only) exists and a BSD user emulator for BSD
110 hosts is under development. It would also be possible to develop a
111 similar user emulator for Solaris.
113 QEMU full system emulation features:
114 @itemize
115 @item
116 QEMU uses a full software MMU for maximum portability.
118 @item
119 QEMU can optionally use an in-kernel accelerator, like kqemu and
120 kvm. The accelerators execute some of the guest code natively, while
121 continuing to emulate the rest of the machine.
123 @item
124 Various hardware devices can be emulated and in some cases, host
125 devices (e.g. serial and parallel ports, USB, drives) can be used
126 transparently by the guest Operating System. Host device passthrough
127 can be used for talking to external physical peripherals (e.g. a
128 webcam, modem or tape drive).
130 @item
131 Symmetric multiprocessing (SMP) even on a host with a single CPU. On a
132 SMP host system, QEMU can use only one CPU fully due to difficulty in
133 implementing atomic memory accesses efficiently.
135 @end itemize
137 @node intro_x86_emulation
138 @section x86 and x86-64 emulation
140 QEMU x86 target features:
142 @itemize
144 @item The virtual x86 CPU supports 16 bit and 32 bit addressing with segmentation.
145 LDT/GDT and IDT are emulated. VM86 mode is also supported to run
146 DOSEMU. There is some support for MMX/3DNow!, SSE, SSE2, SSE3, SSSE3,
147 and SSE4 as well as x86-64 SVM.
149 @item Support of host page sizes bigger than 4KB in user mode emulation.
151 @item QEMU can emulate itself on x86.
153 @item An extensive Linux x86 CPU test program is included @file{tests/test-i386}.
154 It can be used to test other x86 virtual CPUs.
156 @end itemize
158 Current QEMU limitations:
160 @itemize
162 @item Limited x86-64 support.
164 @item IPC syscalls are missing.
166 @item The x86 segment limits and access rights are not tested at every
167 memory access (yet). Hopefully, very few OSes seem to rely on that for
168 normal use.
170 @end itemize
172 @node intro_arm_emulation
173 @section ARM emulation
175 @itemize
177 @item Full ARM 7 user emulation.
179 @item NWFPE FPU support included in user Linux emulation.
181 @item Can run most ARM Linux binaries.
183 @end itemize
185 @node intro_mips_emulation
186 @section MIPS emulation
188 @itemize
190 @item The system emulation allows full MIPS32/MIPS64 Release 2 emulation,
191 including privileged instructions, FPU and MMU, in both little and big
192 endian modes.
194 @item The Linux userland emulation can run many 32 bit MIPS Linux binaries.
196 @end itemize
198 Current QEMU limitations:
200 @itemize
202 @item Self-modifying code is not always handled correctly.
204 @item 64 bit userland emulation is not implemented.
206 @item The system emulation is not complete enough to run real firmware.
208 @item The watchpoint debug facility is not implemented.
210 @end itemize
212 @node intro_ppc_emulation
213 @section PowerPC emulation
215 @itemize
217 @item Full PowerPC 32 bit emulation, including privileged instructions,
218 FPU and MMU.
220 @item Can run most PowerPC Linux binaries.
222 @end itemize
224 @node intro_sparc_emulation
225 @section Sparc32 and Sparc64 emulation
227 @itemize
229 @item Full SPARC V8 emulation, including privileged
230 instructions, FPU and MMU. SPARC V9 emulation includes most privileged
231 and VIS instructions, FPU and I/D MMU. Alignment is fully enforced.
233 @item Can run most 32-bit SPARC Linux binaries, SPARC32PLUS Linux binaries and
234 some 64-bit SPARC Linux binaries.
236 @end itemize
238 Current QEMU limitations:
240 @itemize
242 @item IPC syscalls are missing.
244 @item Floating point exception support is buggy.
246 @item Atomic instructions are not correctly implemented.
248 @item There are still some problems with Sparc64 emulators.
250 @end itemize
252 @node intro_other_emulation
253 @section Other CPU emulation
255 In addition to the above, QEMU supports emulation of other CPUs with
256 varying levels of success. These are:
258 @itemize
260 @item
261 Alpha
262 @item
263 CRIS
264 @item
265 M68k
266 @item
268 @end itemize
270 @node QEMU Internals
271 @chapter QEMU Internals
273 @menu
274 * QEMU compared to other emulators::
275 * Portable dynamic translation::
276 * Condition code optimisations::
277 * CPU state optimisations::
278 * Translation cache::
279 * Direct block chaining::
280 * Self-modifying code and translated code invalidation::
281 * Exception support::
282 * MMU emulation::
283 * Device emulation::
284 * Hardware interrupts::
285 * User emulation specific details::
286 * Bibliography::
287 @end menu
289 @node QEMU compared to other emulators
290 @section QEMU compared to other emulators
292 Like bochs [3], QEMU emulates an x86 CPU. But QEMU is much faster than
293 bochs as it uses dynamic compilation. Bochs is closely tied to x86 PC
294 emulation while QEMU can emulate several processors.
296 Like Valgrind [2], QEMU does user space emulation and dynamic
297 translation. Valgrind is mainly a memory debugger while QEMU has no
298 support for it (QEMU could be used to detect out of bound memory
299 accesses as Valgrind, but it has no support to track uninitialised data
300 as Valgrind does). The Valgrind dynamic translator generates better code
301 than QEMU (in particular it does register allocation) but it is closely
302 tied to an x86 host and target and has no support for precise exceptions
303 and system emulation.
305 EM86 [4] is the closest project to user space QEMU (and QEMU still uses
306 some of its code, in particular the ELF file loader). EM86 was limited
307 to an alpha host and used a proprietary and slow interpreter (the
308 interpreter part of the FX!32 Digital Win32 code translator [5]).
310 TWIN [6] is a Windows API emulator like Wine. It is less accurate than
311 Wine but includes a protected mode x86 interpreter to launch x86 Windows
312 executables. Such an approach has greater potential because most of the
313 Windows API is executed natively but it is far more difficult to develop
314 because all the data structures and function parameters exchanged
315 between the API and the x86 code must be converted.
317 User mode Linux [7] was the only solution before QEMU to launch a
318 Linux kernel as a process while not needing any host kernel
319 patches. However, user mode Linux requires heavy kernel patches while
320 QEMU accepts unpatched Linux kernels. The price to pay is that QEMU is
321 slower.
323 The Plex86 [8] PC virtualizer is done in the same spirit as the now
324 obsolete qemu-fast system emulator. It requires a patched Linux kernel
325 to work (you cannot launch the same kernel on your PC), but the
326 patches are really small. As it is a PC virtualizer (no emulation is
327 done except for some privileged instructions), it has the potential of
328 being faster than QEMU. The downside is that a complicated (and
329 potentially unsafe) host kernel patch is needed.
331 The commercial PC Virtualizers (VMWare [9], VirtualPC [10], TwoOStwo
332 [11]) are faster than QEMU, but they all need specific, proprietary
333 and potentially unsafe host drivers. Moreover, they are unable to
334 provide cycle exact simulation as an emulator can.
336 VirtualBox [12], Xen [13] and KVM [14] are based on QEMU. QEMU-SystemC
337 [15] uses QEMU to simulate a system where some hardware devices are
338 developed in SystemC.
340 @node Portable dynamic translation
341 @section Portable dynamic translation
343 QEMU is a dynamic translator. When it first encounters a piece of code,
344 it converts it to the host instruction set. Usually dynamic translators
345 are very complicated and highly CPU dependent. QEMU uses some tricks
346 which make it relatively easily portable and simple while achieving good
347 performances.
349 After the release of version 0.9.1, QEMU switched to a new method of
350 generating code, Tiny Code Generator or TCG. TCG relaxes the
351 dependency on the exact version of the compiler used. The basic idea
352 is to split every target instruction into a couple of RISC-like TCG
353 ops (see @code{target-i386/translate.c}). Some optimizations can be
354 performed at this stage, including liveness analysis and trivial
355 constant expression evaluation. TCG ops are then implemented in the
356 host CPU back end, also known as TCG target (see
357 @code{tcg/i386/tcg-target.c}). For more information, please take a
358 look at @code{tcg/README}.
360 @node Condition code optimisations
361 @section Condition code optimisations
363 Lazy evaluation of CPU condition codes (@code{EFLAGS} register on x86)
364 is important for CPUs where every instruction sets the condition
365 codes. It tends to be less important on conventional RISC systems
366 where condition codes are only updated when explicitly requested. On
367 Sparc64, costly update of both 32 and 64 bit condition codes can be
368 avoided with lazy evaluation.
370 Instead of computing the condition codes after each x86 instruction,
371 QEMU just stores one operand (called @code{CC_SRC}), the result
372 (called @code{CC_DST}) and the type of operation (called
373 @code{CC_OP}). When the condition codes are needed, the condition
374 codes can be calculated using this information. In addition, an
375 optimized calculation can be performed for some instruction types like
376 conditional branches.
378 @code{CC_OP} is almost never explicitly set in the generated code
379 because it is known at translation time.
381 The lazy condition code evaluation is used on x86, m68k, cris and
382 Sparc. ARM uses a simplified variant for the N and Z flags.
384 @node CPU state optimisations
385 @section CPU state optimisations
387 The target CPUs have many internal states which change the way it
388 evaluates instructions. In order to achieve a good speed, the
389 translation phase considers that some state information of the virtual
390 CPU cannot change in it. The state is recorded in the Translation
391 Block (TB). If the state changes (e.g. privilege level), a new TB will
392 be generated and the previous TB won't be used anymore until the state
393 matches the state recorded in the previous TB. For example, if the SS,
394 DS and ES segments have a zero base, then the translator does not even
395 generate an addition for the segment base.
397 [The FPU stack pointer register is not handled that way yet].
399 @node Translation cache
400 @section Translation cache
402 A 16 MByte cache holds the most recently used translations. For
403 simplicity, it is completely flushed when it is full. A translation unit
404 contains just a single basic block (a block of x86 instructions
405 terminated by a jump or by a virtual CPU state change which the
406 translator cannot deduce statically).
408 @node Direct block chaining
409 @section Direct block chaining
411 After each translated basic block is executed, QEMU uses the simulated
412 Program Counter (PC) and other cpu state informations (such as the CS
413 segment base value) to find the next basic block.
415 In order to accelerate the most common cases where the new simulated PC
416 is known, QEMU can patch a basic block so that it jumps directly to the
417 next one.
419 The most portable code uses an indirect jump. An indirect jump makes
420 it easier to make the jump target modification atomic. On some host
421 architectures (such as x86 or PowerPC), the @code{JUMP} opcode is
422 directly patched so that the block chaining has no overhead.
424 @node Self-modifying code and translated code invalidation
425 @section Self-modifying code and translated code invalidation
427 Self-modifying code is a special challenge in x86 emulation because no
428 instruction cache invalidation is signaled by the application when code
429 is modified.
431 When translated code is generated for a basic block, the corresponding
432 host page is write protected if it is not already read-only. Then, if
433 a write access is done to the page, Linux raises a SEGV signal. QEMU
434 then invalidates all the translated code in the page and enables write
435 accesses to the page.
437 Correct translated code invalidation is done efficiently by maintaining
438 a linked list of every translated block contained in a given page. Other
439 linked lists are also maintained to undo direct block chaining.
441 On RISC targets, correctly written software uses memory barriers and
442 cache flushes, so some of the protection above would not be
443 necessary. However, QEMU still requires that the generated code always
444 matches the target instructions in memory in order to handle
445 exceptions correctly.
447 @node Exception support
448 @section Exception support
450 longjmp() is used when an exception such as division by zero is
451 encountered.
453 The host SIGSEGV and SIGBUS signal handlers are used to get invalid
454 memory accesses. The simulated program counter is found by
455 retranslating the corresponding basic block and by looking where the
456 host program counter was at the exception point.
458 The virtual CPU cannot retrieve the exact @code{EFLAGS} register because
459 in some cases it is not computed because of condition code
460 optimisations. It is not a big concern because the emulated code can
461 still be restarted in any cases.
463 @node MMU emulation
464 @section MMU emulation
466 For system emulation QEMU supports a soft MMU. In that mode, the MMU
467 virtual to physical address translation is done at every memory
468 access. QEMU uses an address translation cache to speed up the
469 translation.
471 In order to avoid flushing the translated code each time the MMU
472 mappings change, QEMU uses a physically indexed translation cache. It
473 means that each basic block is indexed with its physical address.
475 When MMU mappings change, only the chaining of the basic blocks is
476 reset (i.e. a basic block can no longer jump directly to another one).
478 @node Device emulation
479 @section Device emulation
481 Systems emulated by QEMU are organized by boards. At initialization
482 phase, each board instantiates a number of CPUs, devices, RAM and
483 ROM. Each device in turn can assign I/O ports or memory areas (for
484 MMIO) to its handlers. When the emulation starts, an access to the
485 ports or MMIO memory areas assigned to the device causes the
486 corresponding handler to be called.
488 RAM and ROM are handled more optimally, only the offset to the host
489 memory needs to be added to the guest address.
491 The video RAM of VGA and other display cards is special: it can be
492 read or written directly like RAM, but write accesses cause the memory
493 to be marked with VGA_DIRTY flag as well.
495 QEMU supports some device classes like serial and parallel ports, USB,
496 drives and network devices, by providing APIs for easier connection to
497 the generic, higher level implementations. The API hides the
498 implementation details from the devices, like native device use or
499 advanced block device formats like QCOW.
501 Usually the devices implement a reset method and register support for
502 saving and loading of the device state. The devices can also use
503 timers, especially together with the use of bottom halves (BHs).
505 @node Hardware interrupts
506 @section Hardware interrupts
508 In order to be faster, QEMU does not check at every basic block if an
509 hardware interrupt is pending. Instead, the user must asynchrously
510 call a specific function to tell that an interrupt is pending. This
511 function resets the chaining of the currently executing basic
512 block. It ensures that the execution will return soon in the main loop
513 of the CPU emulator. Then the main loop can test if the interrupt is
514 pending and handle it.
516 @node User emulation specific details
517 @section User emulation specific details
519 @subsection Linux system call translation
521 QEMU includes a generic system call translator for Linux. It means that
522 the parameters of the system calls can be converted to fix the
523 endianness and 32/64 bit issues. The IOCTLs are converted with a generic
524 type description system (see @file{ioctls.h} and @file{thunk.c}).
526 QEMU supports host CPUs which have pages bigger than 4KB. It records all
527 the mappings the process does and try to emulated the @code{mmap()}
528 system calls in cases where the host @code{mmap()} call would fail
529 because of bad page alignment.
531 @subsection Linux signals
533 Normal and real-time signals are queued along with their information
534 (@code{siginfo_t}) as it is done in the Linux kernel. Then an interrupt
535 request is done to the virtual CPU. When it is interrupted, one queued
536 signal is handled by generating a stack frame in the virtual CPU as the
537 Linux kernel does. The @code{sigreturn()} system call is emulated to return
538 from the virtual signal handler.
540 Some signals (such as SIGALRM) directly come from the host. Other
541 signals are synthetized from the virtual CPU exceptions such as SIGFPE
542 when a division by zero is done (see @code{main.c:cpu_loop()}).
544 The blocked signal mask is still handled by the host Linux kernel so
545 that most signal system calls can be redirected directly to the host
546 Linux kernel. Only the @code{sigaction()} and @code{sigreturn()} system
547 calls need to be fully emulated (see @file{signal.c}).
549 @subsection clone() system call and threads
551 The Linux clone() system call is usually used to create a thread. QEMU
552 uses the host clone() system call so that real host threads are created
553 for each emulated thread. One virtual CPU instance is created for each
554 thread.
556 The virtual x86 CPU atomic operations are emulated with a global lock so
557 that their semantic is preserved.
559 Note that currently there are still some locking issues in QEMU. In
560 particular, the translated cache flush is not protected yet against
561 reentrancy.
563 @subsection Self-virtualization
565 QEMU was conceived so that ultimately it can emulate itself. Although
566 it is not very useful, it is an important test to show the power of the
567 emulator.
569 Achieving self-virtualization is not easy because there may be address
570 space conflicts. QEMU user emulators solve this problem by being an
571 executable ELF shared object as the ld-linux.so ELF interpreter. That
572 way, it can be relocated at load time.
574 @node Bibliography
575 @section Bibliography
577 @table @asis
579 @item [1]
580 @url{http://citeseer.nj.nec.com/piumarta98optimizing.html}, Optimizing
581 direct threaded code by selective inlining (1998) by Ian Piumarta, Fabio
582 Riccardi.
584 @item [2]
585 @url{http://developer.kde.org/~sewardj/}, Valgrind, an open-source
586 memory debugger for x86-GNU/Linux, by Julian Seward.
588 @item [3]
589 @url{http://bochs.sourceforge.net/}, the Bochs IA-32 Emulator Project,
590 by Kevin Lawton et al.
592 @item [4]
593 @url{http://www.cs.rose-hulman.edu/~donaldlf/em86/index.html}, the EM86
594 x86 emulator on Alpha-Linux.
596 @item [5]
597 @url{http://www.usenix.org/publications/library/proceedings/usenix-nt97/@/full_papers/chernoff/chernoff.pdf},
598 DIGITAL FX!32: Running 32-Bit x86 Applications on Alpha NT, by Anton
599 Chernoff and Ray Hookway.
601 @item [6]
602 @url{http://www.willows.com/}, Windows API library emulation from
603 Willows Software.
605 @item [7]
606 @url{http://user-mode-linux.sourceforge.net/},
607 The User-mode Linux Kernel.
609 @item [8]
610 @url{http://www.plex86.org/},
611 The new Plex86 project.
613 @item [9]
614 @url{http://www.vmware.com/},
615 The VMWare PC virtualizer.
617 @item [10]
618 @url{http://www.microsoft.com/windowsxp/virtualpc/},
619 The VirtualPC PC virtualizer.
621 @item [11]
622 @url{http://www.twoostwo.org/},
623 The TwoOStwo PC virtualizer.
625 @item [12]
626 @url{http://virtualbox.org/},
627 The VirtualBox PC virtualizer.
629 @item [13]
630 @url{http://www.xen.org/},
631 The Xen hypervisor.
633 @item [14]
634 @url{http://kvm.qumranet.com/kvmwiki/Front_Page},
635 Kernel Based Virtual Machine (KVM).
637 @item [15]
638 @url{http://www.greensocs.com/projects/QEMUSystemC},
639 QEMU-SystemC, a hardware co-simulator.
641 @end table
643 @node Regression Tests
644 @chapter Regression Tests
646 In the directory @file{tests/}, various interesting testing programs
647 are available. They are used for regression testing.
649 @menu
650 * test-i386::
651 * linux-test::
652 * qruncom.c::
653 @end menu
655 @node test-i386
656 @section @file{test-i386}
658 This program executes most of the 16 bit and 32 bit x86 instructions and
659 generates a text output. It can be compared with the output obtained with
660 a real CPU or another emulator. The target @code{make test} runs this
661 program and a @code{diff} on the generated output.
663 The Linux system call @code{modify_ldt()} is used to create x86 selectors
664 to test some 16 bit addressing and 32 bit with segmentation cases.
666 The Linux system call @code{vm86()} is used to test vm86 emulation.
668 Various exceptions are raised to test most of the x86 user space
669 exception reporting.
671 @node linux-test
672 @section @file{linux-test}
674 This program tests various Linux system calls. It is used to verify
675 that the system call parameters are correctly converted between target
676 and host CPUs.
678 @node qruncom.c
679 @section @file{qruncom.c}
681 Example of usage of @code{libqemu} to emulate a user mode i386 CPU.
683 @node Index
684 @chapter Index
685 @printindex cp
687 @bye