ppc: memory: Replace memory_region_init_ram with memory_region_allocate_system_memory
[qemu/cris-port.git] / softmmu_template.h
blob5a07f991a1453da4751f2f24a7d012e12fe232d5
1 /*
2 * Software MMU support
4 * Generate helpers used by TCG for qemu_ld/st ops and code load
5 * functions.
7 * Included from target op helpers and exec.c.
9 * Copyright (c) 2003 Fabrice Bellard
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2 of the License, or (at your option) any later version.
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/timer.h"
25 #include "exec/address-spaces.h"
26 #include "exec/memory.h"
28 #define DATA_SIZE (1 << SHIFT)
30 #if DATA_SIZE == 8
31 #define SUFFIX q
32 #define LSUFFIX q
33 #define SDATA_TYPE int64_t
34 #define DATA_TYPE uint64_t
35 #elif DATA_SIZE == 4
36 #define SUFFIX l
37 #define LSUFFIX l
38 #define SDATA_TYPE int32_t
39 #define DATA_TYPE uint32_t
40 #elif DATA_SIZE == 2
41 #define SUFFIX w
42 #define LSUFFIX uw
43 #define SDATA_TYPE int16_t
44 #define DATA_TYPE uint16_t
45 #elif DATA_SIZE == 1
46 #define SUFFIX b
47 #define LSUFFIX ub
48 #define SDATA_TYPE int8_t
49 #define DATA_TYPE uint8_t
50 #else
51 #error unsupported data size
52 #endif
55 /* For the benefit of TCG generated code, we want to avoid the complication
56 of ABI-specific return type promotion and always return a value extended
57 to the register size of the host. This is tcg_target_long, except in the
58 case of a 32-bit host and 64-bit data, and for that we always have
59 uint64_t. Don't bother with this widened value for SOFTMMU_CODE_ACCESS. */
60 #if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8
61 # define WORD_TYPE DATA_TYPE
62 # define USUFFIX SUFFIX
63 #else
64 # define WORD_TYPE tcg_target_ulong
65 # define USUFFIX glue(u, SUFFIX)
66 # define SSUFFIX glue(s, SUFFIX)
67 #endif
69 #ifdef SOFTMMU_CODE_ACCESS
70 #define READ_ACCESS_TYPE 2
71 #define ADDR_READ addr_code
72 #else
73 #define READ_ACCESS_TYPE 0
74 #define ADDR_READ addr_read
75 #endif
77 #if DATA_SIZE == 8
78 # define BSWAP(X) bswap64(X)
79 #elif DATA_SIZE == 4
80 # define BSWAP(X) bswap32(X)
81 #elif DATA_SIZE == 2
82 # define BSWAP(X) bswap16(X)
83 #else
84 # define BSWAP(X) (X)
85 #endif
87 #ifdef TARGET_WORDS_BIGENDIAN
88 # define TGT_BE(X) (X)
89 # define TGT_LE(X) BSWAP(X)
90 #else
91 # define TGT_BE(X) BSWAP(X)
92 # define TGT_LE(X) (X)
93 #endif
95 #if DATA_SIZE == 1
96 # define helper_le_ld_name glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX)
97 # define helper_be_ld_name helper_le_ld_name
98 # define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX)
99 # define helper_be_lds_name helper_le_lds_name
100 # define helper_le_st_name glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX)
101 # define helper_be_st_name helper_le_st_name
102 #else
103 # define helper_le_ld_name glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX)
104 # define helper_be_ld_name glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX)
105 # define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX)
106 # define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX)
107 # define helper_le_st_name glue(glue(helper_le_st, SUFFIX), MMUSUFFIX)
108 # define helper_be_st_name glue(glue(helper_be_st, SUFFIX), MMUSUFFIX)
109 #endif
111 #ifdef TARGET_WORDS_BIGENDIAN
112 # define helper_te_ld_name helper_be_ld_name
113 # define helper_te_st_name helper_be_st_name
114 #else
115 # define helper_te_ld_name helper_le_ld_name
116 # define helper_te_st_name helper_le_st_name
117 #endif
119 #ifndef SOFTMMU_CODE_ACCESS
120 static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env,
121 hwaddr physaddr,
122 target_ulong addr,
123 uintptr_t retaddr)
125 uint64_t val;
126 CPUState *cpu = ENV_GET_CPU(env);
127 MemoryRegion *mr = iotlb_to_region(cpu->as, physaddr);
129 physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
130 cpu->mem_io_pc = retaddr;
131 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu_can_do_io(cpu)) {
132 cpu_io_recompile(cpu, retaddr);
135 cpu->mem_io_vaddr = addr;
136 io_mem_read(mr, physaddr, &val, 1 << SHIFT);
137 return val;
139 #endif
141 #ifdef SOFTMMU_CODE_ACCESS
142 static __attribute__((unused))
143 #endif
144 WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr, int mmu_idx,
145 uintptr_t retaddr)
147 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
148 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
149 uintptr_t haddr;
150 DATA_TYPE res;
152 /* Adjust the given return address. */
153 retaddr -= GETPC_ADJ;
155 /* If the TLB entry is for a different page, reload and try again. */
156 if ((addr & TARGET_PAGE_MASK)
157 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
158 #ifdef ALIGNED_ONLY
159 if ((addr & (DATA_SIZE - 1)) != 0) {
160 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
161 mmu_idx, retaddr);
163 #endif
164 tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, mmu_idx, retaddr);
165 tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
168 /* Handle an IO access. */
169 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
170 hwaddr ioaddr;
171 if ((addr & (DATA_SIZE - 1)) != 0) {
172 goto do_unaligned_access;
174 ioaddr = env->iotlb[mmu_idx][index];
176 /* ??? Note that the io helpers always read data in the target
177 byte ordering. We should push the LE/BE request down into io. */
178 res = glue(io_read, SUFFIX)(env, ioaddr, addr, retaddr);
179 res = TGT_LE(res);
180 return res;
183 /* Handle slow unaligned access (it spans two pages or IO). */
184 if (DATA_SIZE > 1
185 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
186 >= TARGET_PAGE_SIZE)) {
187 target_ulong addr1, addr2;
188 DATA_TYPE res1, res2;
189 unsigned shift;
190 do_unaligned_access:
191 #ifdef ALIGNED_ONLY
192 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
193 mmu_idx, retaddr);
194 #endif
195 addr1 = addr & ~(DATA_SIZE - 1);
196 addr2 = addr1 + DATA_SIZE;
197 /* Note the adjustment at the beginning of the function.
198 Undo that for the recursion. */
199 res1 = helper_le_ld_name(env, addr1, mmu_idx, retaddr + GETPC_ADJ);
200 res2 = helper_le_ld_name(env, addr2, mmu_idx, retaddr + GETPC_ADJ);
201 shift = (addr & (DATA_SIZE - 1)) * 8;
203 /* Little-endian combine. */
204 res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift));
205 return res;
208 /* Handle aligned access or unaligned access in the same page. */
209 #ifdef ALIGNED_ONLY
210 if ((addr & (DATA_SIZE - 1)) != 0) {
211 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
212 mmu_idx, retaddr);
214 #endif
216 haddr = addr + env->tlb_table[mmu_idx][index].addend;
217 #if DATA_SIZE == 1
218 res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr);
219 #else
220 res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr);
221 #endif
222 return res;
225 #if DATA_SIZE > 1
226 #ifdef SOFTMMU_CODE_ACCESS
227 static __attribute__((unused))
228 #endif
229 WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr, int mmu_idx,
230 uintptr_t retaddr)
232 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
233 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
234 uintptr_t haddr;
235 DATA_TYPE res;
237 /* Adjust the given return address. */
238 retaddr -= GETPC_ADJ;
240 /* If the TLB entry is for a different page, reload and try again. */
241 if ((addr & TARGET_PAGE_MASK)
242 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
243 #ifdef ALIGNED_ONLY
244 if ((addr & (DATA_SIZE - 1)) != 0) {
245 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
246 mmu_idx, retaddr);
248 #endif
249 tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, mmu_idx, retaddr);
250 tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
253 /* Handle an IO access. */
254 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
255 hwaddr ioaddr;
256 if ((addr & (DATA_SIZE - 1)) != 0) {
257 goto do_unaligned_access;
259 ioaddr = env->iotlb[mmu_idx][index];
261 /* ??? Note that the io helpers always read data in the target
262 byte ordering. We should push the LE/BE request down into io. */
263 res = glue(io_read, SUFFIX)(env, ioaddr, addr, retaddr);
264 res = TGT_BE(res);
265 return res;
268 /* Handle slow unaligned access (it spans two pages or IO). */
269 if (DATA_SIZE > 1
270 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
271 >= TARGET_PAGE_SIZE)) {
272 target_ulong addr1, addr2;
273 DATA_TYPE res1, res2;
274 unsigned shift;
275 do_unaligned_access:
276 #ifdef ALIGNED_ONLY
277 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
278 mmu_idx, retaddr);
279 #endif
280 addr1 = addr & ~(DATA_SIZE - 1);
281 addr2 = addr1 + DATA_SIZE;
282 /* Note the adjustment at the beginning of the function.
283 Undo that for the recursion. */
284 res1 = helper_be_ld_name(env, addr1, mmu_idx, retaddr + GETPC_ADJ);
285 res2 = helper_be_ld_name(env, addr2, mmu_idx, retaddr + GETPC_ADJ);
286 shift = (addr & (DATA_SIZE - 1)) * 8;
288 /* Big-endian combine. */
289 res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift));
290 return res;
293 /* Handle aligned access or unaligned access in the same page. */
294 #ifdef ALIGNED_ONLY
295 if ((addr & (DATA_SIZE - 1)) != 0) {
296 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
297 mmu_idx, retaddr);
299 #endif
301 haddr = addr + env->tlb_table[mmu_idx][index].addend;
302 res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr);
303 return res;
305 #endif /* DATA_SIZE > 1 */
307 DATA_TYPE
308 glue(glue(helper_ld, SUFFIX), MMUSUFFIX)(CPUArchState *env, target_ulong addr,
309 int mmu_idx)
311 return helper_te_ld_name (env, addr, mmu_idx, GETRA());
314 #ifndef SOFTMMU_CODE_ACCESS
316 /* Provide signed versions of the load routines as well. We can of course
317 avoid this for 64-bit data, or for 32-bit data on 32-bit host. */
318 #if DATA_SIZE * 8 < TCG_TARGET_REG_BITS
319 WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr,
320 int mmu_idx, uintptr_t retaddr)
322 return (SDATA_TYPE)helper_le_ld_name(env, addr, mmu_idx, retaddr);
325 # if DATA_SIZE > 1
326 WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr,
327 int mmu_idx, uintptr_t retaddr)
329 return (SDATA_TYPE)helper_be_ld_name(env, addr, mmu_idx, retaddr);
331 # endif
332 #endif
334 static inline void glue(io_write, SUFFIX)(CPUArchState *env,
335 hwaddr physaddr,
336 DATA_TYPE val,
337 target_ulong addr,
338 uintptr_t retaddr)
340 CPUState *cpu = ENV_GET_CPU(env);
341 MemoryRegion *mr = iotlb_to_region(cpu->as, physaddr);
343 physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
344 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu_can_do_io(cpu)) {
345 cpu_io_recompile(cpu, retaddr);
348 cpu->mem_io_vaddr = addr;
349 cpu->mem_io_pc = retaddr;
350 io_mem_write(mr, physaddr, val, 1 << SHIFT);
353 void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
354 int mmu_idx, uintptr_t retaddr)
356 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
357 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
358 uintptr_t haddr;
360 /* Adjust the given return address. */
361 retaddr -= GETPC_ADJ;
363 /* If the TLB entry is for a different page, reload and try again. */
364 if ((addr & TARGET_PAGE_MASK)
365 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
366 #ifdef ALIGNED_ONLY
367 if ((addr & (DATA_SIZE - 1)) != 0) {
368 cpu_unaligned_access(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr);
370 #endif
371 tlb_fill(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr);
372 tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
375 /* Handle an IO access. */
376 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
377 hwaddr ioaddr;
378 if ((addr & (DATA_SIZE - 1)) != 0) {
379 goto do_unaligned_access;
381 ioaddr = env->iotlb[mmu_idx][index];
383 /* ??? Note that the io helpers always read data in the target
384 byte ordering. We should push the LE/BE request down into io. */
385 val = TGT_LE(val);
386 glue(io_write, SUFFIX)(env, ioaddr, val, addr, retaddr);
387 return;
390 /* Handle slow unaligned access (it spans two pages or IO). */
391 if (DATA_SIZE > 1
392 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
393 >= TARGET_PAGE_SIZE)) {
394 int i;
395 do_unaligned_access:
396 #ifdef ALIGNED_ONLY
397 cpu_unaligned_access(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr);
398 #endif
399 /* XXX: not efficient, but simple */
400 /* Note: relies on the fact that tlb_fill() does not remove the
401 * previous page from the TLB cache. */
402 for (i = DATA_SIZE - 1; i >= 0; i--) {
403 /* Little-endian extract. */
404 uint8_t val8 = val >> (i * 8);
405 /* Note the adjustment at the beginning of the function.
406 Undo that for the recursion. */
407 glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
408 mmu_idx, retaddr + GETPC_ADJ);
410 return;
413 /* Handle aligned access or unaligned access in the same page. */
414 #ifdef ALIGNED_ONLY
415 if ((addr & (DATA_SIZE - 1)) != 0) {
416 cpu_unaligned_access(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr);
418 #endif
420 haddr = addr + env->tlb_table[mmu_idx][index].addend;
421 #if DATA_SIZE == 1
422 glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val);
423 #else
424 glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val);
425 #endif
428 #if DATA_SIZE > 1
429 void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
430 int mmu_idx, uintptr_t retaddr)
432 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
433 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
434 uintptr_t haddr;
436 /* Adjust the given return address. */
437 retaddr -= GETPC_ADJ;
439 /* If the TLB entry is for a different page, reload and try again. */
440 if ((addr & TARGET_PAGE_MASK)
441 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
442 #ifdef ALIGNED_ONLY
443 if ((addr & (DATA_SIZE - 1)) != 0) {
444 cpu_unaligned_access(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr);
446 #endif
447 tlb_fill(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr);
448 tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
451 /* Handle an IO access. */
452 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
453 hwaddr ioaddr;
454 if ((addr & (DATA_SIZE - 1)) != 0) {
455 goto do_unaligned_access;
457 ioaddr = env->iotlb[mmu_idx][index];
459 /* ??? Note that the io helpers always read data in the target
460 byte ordering. We should push the LE/BE request down into io. */
461 val = TGT_BE(val);
462 glue(io_write, SUFFIX)(env, ioaddr, val, addr, retaddr);
463 return;
466 /* Handle slow unaligned access (it spans two pages or IO). */
467 if (DATA_SIZE > 1
468 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
469 >= TARGET_PAGE_SIZE)) {
470 int i;
471 do_unaligned_access:
472 #ifdef ALIGNED_ONLY
473 cpu_unaligned_access(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr);
474 #endif
475 /* XXX: not efficient, but simple */
476 /* Note: relies on the fact that tlb_fill() does not remove the
477 * previous page from the TLB cache. */
478 for (i = DATA_SIZE - 1; i >= 0; i--) {
479 /* Big-endian extract. */
480 uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8));
481 /* Note the adjustment at the beginning of the function.
482 Undo that for the recursion. */
483 glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
484 mmu_idx, retaddr + GETPC_ADJ);
486 return;
489 /* Handle aligned access or unaligned access in the same page. */
490 #ifdef ALIGNED_ONLY
491 if ((addr & (DATA_SIZE - 1)) != 0) {
492 cpu_unaligned_access(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr);
494 #endif
496 haddr = addr + env->tlb_table[mmu_idx][index].addend;
497 glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val);
499 #endif /* DATA_SIZE > 1 */
501 void
502 glue(glue(helper_st, SUFFIX), MMUSUFFIX)(CPUArchState *env, target_ulong addr,
503 DATA_TYPE val, int mmu_idx)
505 helper_te_st_name(env, addr, val, mmu_idx, GETRA());
508 #endif /* !defined(SOFTMMU_CODE_ACCESS) */
510 #undef READ_ACCESS_TYPE
511 #undef SHIFT
512 #undef DATA_TYPE
513 #undef SUFFIX
514 #undef LSUFFIX
515 #undef DATA_SIZE
516 #undef ADDR_READ
517 #undef WORD_TYPE
518 #undef SDATA_TYPE
519 #undef USUFFIX
520 #undef SSUFFIX
521 #undef BSWAP
522 #undef TGT_BE
523 #undef TGT_LE
524 #undef CPU_BE
525 #undef CPU_LE
526 #undef helper_le_ld_name
527 #undef helper_be_ld_name
528 #undef helper_le_lds_name
529 #undef helper_be_lds_name
530 #undef helper_le_st_name
531 #undef helper_be_st_name
532 #undef helper_te_ld_name
533 #undef helper_te_st_name