4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
23 #include "qemu-common.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/kvm.h"
28 #include "exec/gdbstub.h"
29 #include "qemu/host-utils.h"
30 #include "qemu/config-file.h"
31 #include "hw/i386/pc.h"
32 #include "hw/i386/apic.h"
33 #include "hw/i386/apic_internal.h"
34 #include "hw/i386/apic-msidef.h"
35 #include "exec/ioport.h"
36 #include <asm/hyperv.h>
37 #include "hw/pci/pci.h"
38 #include "migration/migration.h"
39 #include "qapi/qmp/qerror.h"
44 #define DPRINTF(fmt, ...) \
45 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
47 #define DPRINTF(fmt, ...) \
51 #define MSR_KVM_WALL_CLOCK 0x11
52 #define MSR_KVM_SYSTEM_TIME 0x12
55 #define BUS_MCEERR_AR 4
58 #define BUS_MCEERR_AO 5
61 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
62 KVM_CAP_INFO(SET_TSS_ADDR
),
63 KVM_CAP_INFO(EXT_CPUID
),
64 KVM_CAP_INFO(MP_STATE
),
68 static bool has_msr_star
;
69 static bool has_msr_hsave_pa
;
70 static bool has_msr_tsc_adjust
;
71 static bool has_msr_tsc_deadline
;
72 static bool has_msr_feature_control
;
73 static bool has_msr_async_pf_en
;
74 static bool has_msr_pv_eoi_en
;
75 static bool has_msr_misc_enable
;
76 static bool has_msr_bndcfgs
;
77 static bool has_msr_kvm_steal_time
;
78 static int lm_capable_kernel
;
79 static bool has_msr_hv_hypercall
;
80 static bool has_msr_hv_vapic
;
81 static bool has_msr_hv_tsc
;
82 static bool has_msr_mtrr
;
83 static bool has_msr_xss
;
85 static bool has_msr_architectural_pmu
;
86 static uint32_t num_architectural_pmu_counters
;
88 bool kvm_allows_irq0_override(void)
90 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
93 static struct kvm_cpuid2
*try_get_cpuid(KVMState
*s
, int max
)
95 struct kvm_cpuid2
*cpuid
;
98 size
= sizeof(*cpuid
) + max
* sizeof(*cpuid
->entries
);
99 cpuid
= g_malloc0(size
);
101 r
= kvm_ioctl(s
, KVM_GET_SUPPORTED_CPUID
, cpuid
);
102 if (r
== 0 && cpuid
->nent
>= max
) {
110 fprintf(stderr
, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
118 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
121 static struct kvm_cpuid2
*get_supported_cpuid(KVMState
*s
)
123 struct kvm_cpuid2
*cpuid
;
125 while ((cpuid
= try_get_cpuid(s
, max
)) == NULL
) {
131 static const struct kvm_para_features
{
134 } para_features
[] = {
135 { KVM_CAP_CLOCKSOURCE
, KVM_FEATURE_CLOCKSOURCE
},
136 { KVM_CAP_NOP_IO_DELAY
, KVM_FEATURE_NOP_IO_DELAY
},
137 { KVM_CAP_PV_MMU
, KVM_FEATURE_MMU_OP
},
138 { KVM_CAP_ASYNC_PF
, KVM_FEATURE_ASYNC_PF
},
141 static int get_para_features(KVMState
*s
)
145 for (i
= 0; i
< ARRAY_SIZE(para_features
); i
++) {
146 if (kvm_check_extension(s
, para_features
[i
].cap
)) {
147 features
|= (1 << para_features
[i
].feature
);
155 /* Returns the value for a specific register on the cpuid entry
157 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2
*entry
, int reg
)
177 /* Find matching entry for function/index on kvm_cpuid2 struct
179 static struct kvm_cpuid_entry2
*cpuid_find_entry(struct kvm_cpuid2
*cpuid
,
184 for (i
= 0; i
< cpuid
->nent
; ++i
) {
185 if (cpuid
->entries
[i
].function
== function
&&
186 cpuid
->entries
[i
].index
== index
) {
187 return &cpuid
->entries
[i
];
194 uint32_t kvm_arch_get_supported_cpuid(KVMState
*s
, uint32_t function
,
195 uint32_t index
, int reg
)
197 struct kvm_cpuid2
*cpuid
;
199 uint32_t cpuid_1_edx
;
202 cpuid
= get_supported_cpuid(s
);
204 struct kvm_cpuid_entry2
*entry
= cpuid_find_entry(cpuid
, function
, index
);
207 ret
= cpuid_entry_get_reg(entry
, reg
);
210 /* Fixups for the data returned by KVM, below */
212 if (function
== 1 && reg
== R_EDX
) {
213 /* KVM before 2.6.30 misreports the following features */
214 ret
|= CPUID_MTRR
| CPUID_PAT
| CPUID_MCE
| CPUID_MCA
;
215 } else if (function
== 1 && reg
== R_ECX
) {
216 /* We can set the hypervisor flag, even if KVM does not return it on
217 * GET_SUPPORTED_CPUID
219 ret
|= CPUID_EXT_HYPERVISOR
;
220 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
221 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
222 * and the irqchip is in the kernel.
224 if (kvm_irqchip_in_kernel() &&
225 kvm_check_extension(s
, KVM_CAP_TSC_DEADLINE_TIMER
)) {
226 ret
|= CPUID_EXT_TSC_DEADLINE_TIMER
;
229 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
230 * without the in-kernel irqchip
232 if (!kvm_irqchip_in_kernel()) {
233 ret
&= ~CPUID_EXT_X2APIC
;
235 } else if (function
== 0x80000001 && reg
== R_EDX
) {
236 /* On Intel, kvm returns cpuid according to the Intel spec,
237 * so add missing bits according to the AMD spec:
239 cpuid_1_edx
= kvm_arch_get_supported_cpuid(s
, 1, 0, R_EDX
);
240 ret
|= cpuid_1_edx
& CPUID_EXT2_AMD_ALIASES
;
245 /* fallback for older kernels */
246 if ((function
== KVM_CPUID_FEATURES
) && !found
) {
247 ret
= get_para_features(s
);
253 typedef struct HWPoisonPage
{
255 QLIST_ENTRY(HWPoisonPage
) list
;
258 static QLIST_HEAD(, HWPoisonPage
) hwpoison_page_list
=
259 QLIST_HEAD_INITIALIZER(hwpoison_page_list
);
261 static void kvm_unpoison_all(void *param
)
263 HWPoisonPage
*page
, *next_page
;
265 QLIST_FOREACH_SAFE(page
, &hwpoison_page_list
, list
, next_page
) {
266 QLIST_REMOVE(page
, list
);
267 qemu_ram_remap(page
->ram_addr
, TARGET_PAGE_SIZE
);
272 static void kvm_hwpoison_page_add(ram_addr_t ram_addr
)
276 QLIST_FOREACH(page
, &hwpoison_page_list
, list
) {
277 if (page
->ram_addr
== ram_addr
) {
281 page
= g_new(HWPoisonPage
, 1);
282 page
->ram_addr
= ram_addr
;
283 QLIST_INSERT_HEAD(&hwpoison_page_list
, page
, list
);
286 static int kvm_get_mce_cap_supported(KVMState
*s
, uint64_t *mce_cap
,
291 r
= kvm_check_extension(s
, KVM_CAP_MCE
);
294 return kvm_ioctl(s
, KVM_X86_GET_MCE_CAP_SUPPORTED
, mce_cap
);
299 static void kvm_mce_inject(X86CPU
*cpu
, hwaddr paddr
, int code
)
301 CPUX86State
*env
= &cpu
->env
;
302 uint64_t status
= MCI_STATUS_VAL
| MCI_STATUS_UC
| MCI_STATUS_EN
|
303 MCI_STATUS_MISCV
| MCI_STATUS_ADDRV
| MCI_STATUS_S
;
304 uint64_t mcg_status
= MCG_STATUS_MCIP
;
306 if (code
== BUS_MCEERR_AR
) {
307 status
|= MCI_STATUS_AR
| 0x134;
308 mcg_status
|= MCG_STATUS_EIPV
;
311 mcg_status
|= MCG_STATUS_RIPV
;
313 cpu_x86_inject_mce(NULL
, cpu
, 9, status
, mcg_status
, paddr
,
314 (MCM_ADDR_PHYS
<< 6) | 0xc,
315 cpu_x86_support_mca_broadcast(env
) ?
316 MCE_INJECT_BROADCAST
: 0);
319 static void hardware_memory_error(void)
321 fprintf(stderr
, "Hardware memory error!\n");
325 int kvm_arch_on_sigbus_vcpu(CPUState
*c
, int code
, void *addr
)
327 X86CPU
*cpu
= X86_CPU(c
);
328 CPUX86State
*env
= &cpu
->env
;
332 if ((env
->mcg_cap
& MCG_SER_P
) && addr
333 && (code
== BUS_MCEERR_AR
|| code
== BUS_MCEERR_AO
)) {
334 if (qemu_ram_addr_from_host(addr
, &ram_addr
) == NULL
||
335 !kvm_physical_memory_addr_from_host(c
->kvm_state
, addr
, &paddr
)) {
336 fprintf(stderr
, "Hardware memory error for memory used by "
337 "QEMU itself instead of guest system!\n");
338 /* Hope we are lucky for AO MCE */
339 if (code
== BUS_MCEERR_AO
) {
342 hardware_memory_error();
345 kvm_hwpoison_page_add(ram_addr
);
346 kvm_mce_inject(cpu
, paddr
, code
);
348 if (code
== BUS_MCEERR_AO
) {
350 } else if (code
== BUS_MCEERR_AR
) {
351 hardware_memory_error();
359 int kvm_arch_on_sigbus(int code
, void *addr
)
361 X86CPU
*cpu
= X86_CPU(first_cpu
);
363 if ((cpu
->env
.mcg_cap
& MCG_SER_P
) && addr
&& code
== BUS_MCEERR_AO
) {
367 /* Hope we are lucky for AO MCE */
368 if (qemu_ram_addr_from_host(addr
, &ram_addr
) == NULL
||
369 !kvm_physical_memory_addr_from_host(first_cpu
->kvm_state
,
371 fprintf(stderr
, "Hardware memory error for memory used by "
372 "QEMU itself instead of guest system!: %p\n", addr
);
375 kvm_hwpoison_page_add(ram_addr
);
376 kvm_mce_inject(X86_CPU(first_cpu
), paddr
, code
);
378 if (code
== BUS_MCEERR_AO
) {
380 } else if (code
== BUS_MCEERR_AR
) {
381 hardware_memory_error();
389 static int kvm_inject_mce_oldstyle(X86CPU
*cpu
)
391 CPUX86State
*env
= &cpu
->env
;
393 if (!kvm_has_vcpu_events() && env
->exception_injected
== EXCP12_MCHK
) {
394 unsigned int bank
, bank_num
= env
->mcg_cap
& 0xff;
395 struct kvm_x86_mce mce
;
397 env
->exception_injected
= -1;
400 * There must be at least one bank in use if an MCE is pending.
401 * Find it and use its values for the event injection.
403 for (bank
= 0; bank
< bank_num
; bank
++) {
404 if (env
->mce_banks
[bank
* 4 + 1] & MCI_STATUS_VAL
) {
408 assert(bank
< bank_num
);
411 mce
.status
= env
->mce_banks
[bank
* 4 + 1];
412 mce
.mcg_status
= env
->mcg_status
;
413 mce
.addr
= env
->mce_banks
[bank
* 4 + 2];
414 mce
.misc
= env
->mce_banks
[bank
* 4 + 3];
416 return kvm_vcpu_ioctl(CPU(cpu
), KVM_X86_SET_MCE
, &mce
);
421 static void cpu_update_state(void *opaque
, int running
, RunState state
)
423 CPUX86State
*env
= opaque
;
426 env
->tsc_valid
= false;
430 unsigned long kvm_arch_vcpu_id(CPUState
*cs
)
432 X86CPU
*cpu
= X86_CPU(cs
);
436 #ifndef KVM_CPUID_SIGNATURE_NEXT
437 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
440 static bool hyperv_hypercall_available(X86CPU
*cpu
)
442 return cpu
->hyperv_vapic
||
443 (cpu
->hyperv_spinlock_attempts
!= HYPERV_SPINLOCK_NEVER_RETRY
);
446 static bool hyperv_enabled(X86CPU
*cpu
)
448 CPUState
*cs
= CPU(cpu
);
449 return kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV
) > 0 &&
450 (hyperv_hypercall_available(cpu
) ||
452 cpu
->hyperv_relaxed_timing
);
455 static Error
*invtsc_mig_blocker
;
457 #define KVM_MAX_CPUID_ENTRIES 100
459 int kvm_arch_init_vcpu(CPUState
*cs
)
462 struct kvm_cpuid2 cpuid
;
463 struct kvm_cpuid_entry2 entries
[KVM_MAX_CPUID_ENTRIES
];
464 } QEMU_PACKED cpuid_data
;
465 X86CPU
*cpu
= X86_CPU(cs
);
466 CPUX86State
*env
= &cpu
->env
;
467 uint32_t limit
, i
, j
, cpuid_i
;
469 struct kvm_cpuid_entry2
*c
;
470 uint32_t signature
[3];
471 int kvm_base
= KVM_CPUID_SIGNATURE
;
474 memset(&cpuid_data
, 0, sizeof(cpuid_data
));
478 /* Paravirtualization CPUIDs */
479 if (hyperv_enabled(cpu
)) {
480 c
= &cpuid_data
.entries
[cpuid_i
++];
481 c
->function
= HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS
;
482 memcpy(signature
, "Microsoft Hv", 12);
483 c
->eax
= HYPERV_CPUID_MIN
;
484 c
->ebx
= signature
[0];
485 c
->ecx
= signature
[1];
486 c
->edx
= signature
[2];
488 c
= &cpuid_data
.entries
[cpuid_i
++];
489 c
->function
= HYPERV_CPUID_INTERFACE
;
490 memcpy(signature
, "Hv#1\0\0\0\0\0\0\0\0", 12);
491 c
->eax
= signature
[0];
496 c
= &cpuid_data
.entries
[cpuid_i
++];
497 c
->function
= HYPERV_CPUID_VERSION
;
501 c
= &cpuid_data
.entries
[cpuid_i
++];
502 c
->function
= HYPERV_CPUID_FEATURES
;
503 if (cpu
->hyperv_relaxed_timing
) {
504 c
->eax
|= HV_X64_MSR_HYPERCALL_AVAILABLE
;
506 if (cpu
->hyperv_vapic
) {
507 c
->eax
|= HV_X64_MSR_HYPERCALL_AVAILABLE
;
508 c
->eax
|= HV_X64_MSR_APIC_ACCESS_AVAILABLE
;
509 has_msr_hv_vapic
= true;
511 if (cpu
->hyperv_time
&&
512 kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV_TIME
) > 0) {
513 c
->eax
|= HV_X64_MSR_HYPERCALL_AVAILABLE
;
514 c
->eax
|= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE
;
516 has_msr_hv_tsc
= true;
518 c
= &cpuid_data
.entries
[cpuid_i
++];
519 c
->function
= HYPERV_CPUID_ENLIGHTMENT_INFO
;
520 if (cpu
->hyperv_relaxed_timing
) {
521 c
->eax
|= HV_X64_RELAXED_TIMING_RECOMMENDED
;
523 if (has_msr_hv_vapic
) {
524 c
->eax
|= HV_X64_APIC_ACCESS_RECOMMENDED
;
526 c
->ebx
= cpu
->hyperv_spinlock_attempts
;
528 c
= &cpuid_data
.entries
[cpuid_i
++];
529 c
->function
= HYPERV_CPUID_IMPLEMENT_LIMITS
;
533 kvm_base
= KVM_CPUID_SIGNATURE_NEXT
;
534 has_msr_hv_hypercall
= true;
537 if (cpu
->expose_kvm
) {
538 memcpy(signature
, "KVMKVMKVM\0\0\0", 12);
539 c
= &cpuid_data
.entries
[cpuid_i
++];
540 c
->function
= KVM_CPUID_SIGNATURE
| kvm_base
;
541 c
->eax
= KVM_CPUID_FEATURES
| kvm_base
;
542 c
->ebx
= signature
[0];
543 c
->ecx
= signature
[1];
544 c
->edx
= signature
[2];
546 c
= &cpuid_data
.entries
[cpuid_i
++];
547 c
->function
= KVM_CPUID_FEATURES
| kvm_base
;
548 c
->eax
= env
->features
[FEAT_KVM
];
550 has_msr_async_pf_en
= c
->eax
& (1 << KVM_FEATURE_ASYNC_PF
);
552 has_msr_pv_eoi_en
= c
->eax
& (1 << KVM_FEATURE_PV_EOI
);
554 has_msr_kvm_steal_time
= c
->eax
& (1 << KVM_FEATURE_STEAL_TIME
);
557 cpu_x86_cpuid(env
, 0, 0, &limit
, &unused
, &unused
, &unused
);
559 for (i
= 0; i
<= limit
; i
++) {
560 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
561 fprintf(stderr
, "unsupported level value: 0x%x\n", limit
);
564 c
= &cpuid_data
.entries
[cpuid_i
++];
568 /* Keep reading function 2 till all the input is received */
572 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
|
573 KVM_CPUID_FLAG_STATE_READ_NEXT
;
574 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
575 times
= c
->eax
& 0xff;
577 for (j
= 1; j
< times
; ++j
) {
578 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
579 fprintf(stderr
, "cpuid_data is full, no space for "
580 "cpuid(eax:2):eax & 0xf = 0x%x\n", times
);
583 c
= &cpuid_data
.entries
[cpuid_i
++];
585 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
;
586 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
594 if (i
== 0xd && j
== 64) {
598 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
600 cpu_x86_cpuid(env
, i
, j
, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
602 if (i
== 4 && c
->eax
== 0) {
605 if (i
== 0xb && !(c
->ecx
& 0xff00)) {
608 if (i
== 0xd && c
->eax
== 0) {
611 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
612 fprintf(stderr
, "cpuid_data is full, no space for "
613 "cpuid(eax:0x%x,ecx:0x%x)\n", i
, j
);
616 c
= &cpuid_data
.entries
[cpuid_i
++];
622 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
630 cpu_x86_cpuid(env
, 0x0a, 0, &ver
, &unused
, &unused
, &unused
);
631 if ((ver
& 0xff) > 0) {
632 has_msr_architectural_pmu
= true;
633 num_architectural_pmu_counters
= (ver
& 0xff00) >> 8;
635 /* Shouldn't be more than 32, since that's the number of bits
636 * available in EBX to tell us _which_ counters are available.
639 if (num_architectural_pmu_counters
> MAX_GP_COUNTERS
) {
640 num_architectural_pmu_counters
= MAX_GP_COUNTERS
;
645 cpu_x86_cpuid(env
, 0x80000000, 0, &limit
, &unused
, &unused
, &unused
);
647 for (i
= 0x80000000; i
<= limit
; i
++) {
648 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
649 fprintf(stderr
, "unsupported xlevel value: 0x%x\n", limit
);
652 c
= &cpuid_data
.entries
[cpuid_i
++];
656 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
659 /* Call Centaur's CPUID instructions they are supported. */
660 if (env
->cpuid_xlevel2
> 0) {
661 cpu_x86_cpuid(env
, 0xC0000000, 0, &limit
, &unused
, &unused
, &unused
);
663 for (i
= 0xC0000000; i
<= limit
; i
++) {
664 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
665 fprintf(stderr
, "unsupported xlevel2 value: 0x%x\n", limit
);
668 c
= &cpuid_data
.entries
[cpuid_i
++];
672 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
676 cpuid_data
.cpuid
.nent
= cpuid_i
;
678 if (((env
->cpuid_version
>> 8)&0xF) >= 6
679 && (env
->features
[FEAT_1_EDX
] & (CPUID_MCE
| CPUID_MCA
)) ==
680 (CPUID_MCE
| CPUID_MCA
)
681 && kvm_check_extension(cs
->kvm_state
, KVM_CAP_MCE
) > 0) {
686 ret
= kvm_get_mce_cap_supported(cs
->kvm_state
, &mcg_cap
, &banks
);
688 fprintf(stderr
, "kvm_get_mce_cap_supported: %s", strerror(-ret
));
692 if (banks
> MCE_BANKS_DEF
) {
693 banks
= MCE_BANKS_DEF
;
695 mcg_cap
&= MCE_CAP_DEF
;
697 ret
= kvm_vcpu_ioctl(cs
, KVM_X86_SETUP_MCE
, &mcg_cap
);
699 fprintf(stderr
, "KVM_X86_SETUP_MCE: %s", strerror(-ret
));
703 env
->mcg_cap
= mcg_cap
;
706 qemu_add_vm_change_state_handler(cpu_update_state
, env
);
708 c
= cpuid_find_entry(&cpuid_data
.cpuid
, 1, 0);
710 has_msr_feature_control
= !!(c
->ecx
& CPUID_EXT_VMX
) ||
711 !!(c
->ecx
& CPUID_EXT_SMX
);
714 c
= cpuid_find_entry(&cpuid_data
.cpuid
, 0x80000007, 0);
715 if (c
&& (c
->edx
& 1<<8) && invtsc_mig_blocker
== NULL
) {
717 error_setg(&invtsc_mig_blocker
,
718 "State blocked by non-migratable CPU device"
720 migrate_add_blocker(invtsc_mig_blocker
);
722 vmstate_x86_cpu
.unmigratable
= 1;
725 cpuid_data
.cpuid
.padding
= 0;
726 r
= kvm_vcpu_ioctl(cs
, KVM_SET_CPUID2
, &cpuid_data
);
731 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_TSC_CONTROL
);
732 if (r
&& env
->tsc_khz
) {
733 r
= kvm_vcpu_ioctl(cs
, KVM_SET_TSC_KHZ
, env
->tsc_khz
);
735 fprintf(stderr
, "KVM_SET_TSC_KHZ failed\n");
740 if (kvm_has_xsave()) {
741 env
->kvm_xsave_buf
= qemu_memalign(4096, sizeof(struct kvm_xsave
));
744 if (env
->features
[FEAT_1_EDX
] & CPUID_MTRR
) {
751 void kvm_arch_reset_vcpu(X86CPU
*cpu
)
753 CPUX86State
*env
= &cpu
->env
;
755 env
->exception_injected
= -1;
756 env
->interrupt_injected
= -1;
758 if (kvm_irqchip_in_kernel()) {
759 env
->mp_state
= cpu_is_bsp(cpu
) ? KVM_MP_STATE_RUNNABLE
:
760 KVM_MP_STATE_UNINITIALIZED
;
762 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
766 void kvm_arch_do_init_vcpu(X86CPU
*cpu
)
768 CPUX86State
*env
= &cpu
->env
;
770 /* APs get directly into wait-for-SIPI state. */
771 if (env
->mp_state
== KVM_MP_STATE_UNINITIALIZED
) {
772 env
->mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
776 static int kvm_get_supported_msrs(KVMState
*s
)
778 static int kvm_supported_msrs
;
782 if (kvm_supported_msrs
== 0) {
783 struct kvm_msr_list msr_list
, *kvm_msr_list
;
785 kvm_supported_msrs
= -1;
787 /* Obtain MSR list from KVM. These are the MSRs that we must
790 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, &msr_list
);
791 if (ret
< 0 && ret
!= -E2BIG
) {
794 /* Old kernel modules had a bug and could write beyond the provided
795 memory. Allocate at least a safe amount of 1K. */
796 kvm_msr_list
= g_malloc0(MAX(1024, sizeof(msr_list
) +
798 sizeof(msr_list
.indices
[0])));
800 kvm_msr_list
->nmsrs
= msr_list
.nmsrs
;
801 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, kvm_msr_list
);
805 for (i
= 0; i
< kvm_msr_list
->nmsrs
; i
++) {
806 if (kvm_msr_list
->indices
[i
] == MSR_STAR
) {
810 if (kvm_msr_list
->indices
[i
] == MSR_VM_HSAVE_PA
) {
811 has_msr_hsave_pa
= true;
814 if (kvm_msr_list
->indices
[i
] == MSR_TSC_ADJUST
) {
815 has_msr_tsc_adjust
= true;
818 if (kvm_msr_list
->indices
[i
] == MSR_IA32_TSCDEADLINE
) {
819 has_msr_tsc_deadline
= true;
822 if (kvm_msr_list
->indices
[i
] == MSR_IA32_MISC_ENABLE
) {
823 has_msr_misc_enable
= true;
826 if (kvm_msr_list
->indices
[i
] == MSR_IA32_BNDCFGS
) {
827 has_msr_bndcfgs
= true;
830 if (kvm_msr_list
->indices
[i
] == MSR_IA32_XSS
) {
837 g_free(kvm_msr_list
);
843 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
845 uint64_t identity_base
= 0xfffbc000;
848 struct utsname utsname
;
850 ret
= kvm_get_supported_msrs(s
);
856 lm_capable_kernel
= strcmp(utsname
.machine
, "x86_64") == 0;
859 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
860 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
861 * Since these must be part of guest physical memory, we need to allocate
862 * them, both by setting their start addresses in the kernel and by
863 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
865 * Older KVM versions may not support setting the identity map base. In
866 * that case we need to stick with the default, i.e. a 256K maximum BIOS
869 if (kvm_check_extension(s
, KVM_CAP_SET_IDENTITY_MAP_ADDR
)) {
870 /* Allows up to 16M BIOSes. */
871 identity_base
= 0xfeffc000;
873 ret
= kvm_vm_ioctl(s
, KVM_SET_IDENTITY_MAP_ADDR
, &identity_base
);
879 /* Set TSS base one page after EPT identity map. */
880 ret
= kvm_vm_ioctl(s
, KVM_SET_TSS_ADDR
, identity_base
+ 0x1000);
885 /* Tell fw_cfg to notify the BIOS to reserve the range. */
886 ret
= e820_add_entry(identity_base
, 0x4000, E820_RESERVED
);
888 fprintf(stderr
, "e820_add_entry() table is full\n");
891 qemu_register_reset(kvm_unpoison_all
, NULL
);
893 shadow_mem
= machine_kvm_shadow_mem(ms
);
894 if (shadow_mem
!= -1) {
896 ret
= kvm_vm_ioctl(s
, KVM_SET_NR_MMU_PAGES
, shadow_mem
);
904 static void set_v8086_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
906 lhs
->selector
= rhs
->selector
;
907 lhs
->base
= rhs
->base
;
908 lhs
->limit
= rhs
->limit
;
920 static void set_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
922 unsigned flags
= rhs
->flags
;
923 lhs
->selector
= rhs
->selector
;
924 lhs
->base
= rhs
->base
;
925 lhs
->limit
= rhs
->limit
;
926 lhs
->type
= (flags
>> DESC_TYPE_SHIFT
) & 15;
927 lhs
->present
= (flags
& DESC_P_MASK
) != 0;
928 lhs
->dpl
= (flags
>> DESC_DPL_SHIFT
) & 3;
929 lhs
->db
= (flags
>> DESC_B_SHIFT
) & 1;
930 lhs
->s
= (flags
& DESC_S_MASK
) != 0;
931 lhs
->l
= (flags
>> DESC_L_SHIFT
) & 1;
932 lhs
->g
= (flags
& DESC_G_MASK
) != 0;
933 lhs
->avl
= (flags
& DESC_AVL_MASK
) != 0;
938 static void get_seg(SegmentCache
*lhs
, const struct kvm_segment
*rhs
)
940 lhs
->selector
= rhs
->selector
;
941 lhs
->base
= rhs
->base
;
942 lhs
->limit
= rhs
->limit
;
943 lhs
->flags
= (rhs
->type
<< DESC_TYPE_SHIFT
) |
944 (rhs
->present
* DESC_P_MASK
) |
945 (rhs
->dpl
<< DESC_DPL_SHIFT
) |
946 (rhs
->db
<< DESC_B_SHIFT
) |
947 (rhs
->s
* DESC_S_MASK
) |
948 (rhs
->l
<< DESC_L_SHIFT
) |
949 (rhs
->g
* DESC_G_MASK
) |
950 (rhs
->avl
* DESC_AVL_MASK
);
953 static void kvm_getput_reg(__u64
*kvm_reg
, target_ulong
*qemu_reg
, int set
)
956 *kvm_reg
= *qemu_reg
;
958 *qemu_reg
= *kvm_reg
;
962 static int kvm_getput_regs(X86CPU
*cpu
, int set
)
964 CPUX86State
*env
= &cpu
->env
;
965 struct kvm_regs regs
;
969 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_REGS
, ®s
);
975 kvm_getput_reg(®s
.rax
, &env
->regs
[R_EAX
], set
);
976 kvm_getput_reg(®s
.rbx
, &env
->regs
[R_EBX
], set
);
977 kvm_getput_reg(®s
.rcx
, &env
->regs
[R_ECX
], set
);
978 kvm_getput_reg(®s
.rdx
, &env
->regs
[R_EDX
], set
);
979 kvm_getput_reg(®s
.rsi
, &env
->regs
[R_ESI
], set
);
980 kvm_getput_reg(®s
.rdi
, &env
->regs
[R_EDI
], set
);
981 kvm_getput_reg(®s
.rsp
, &env
->regs
[R_ESP
], set
);
982 kvm_getput_reg(®s
.rbp
, &env
->regs
[R_EBP
], set
);
984 kvm_getput_reg(®s
.r8
, &env
->regs
[8], set
);
985 kvm_getput_reg(®s
.r9
, &env
->regs
[9], set
);
986 kvm_getput_reg(®s
.r10
, &env
->regs
[10], set
);
987 kvm_getput_reg(®s
.r11
, &env
->regs
[11], set
);
988 kvm_getput_reg(®s
.r12
, &env
->regs
[12], set
);
989 kvm_getput_reg(®s
.r13
, &env
->regs
[13], set
);
990 kvm_getput_reg(®s
.r14
, &env
->regs
[14], set
);
991 kvm_getput_reg(®s
.r15
, &env
->regs
[15], set
);
994 kvm_getput_reg(®s
.rflags
, &env
->eflags
, set
);
995 kvm_getput_reg(®s
.rip
, &env
->eip
, set
);
998 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_REGS
, ®s
);
1004 static int kvm_put_fpu(X86CPU
*cpu
)
1006 CPUX86State
*env
= &cpu
->env
;
1010 memset(&fpu
, 0, sizeof fpu
);
1011 fpu
.fsw
= env
->fpus
& ~(7 << 11);
1012 fpu
.fsw
|= (env
->fpstt
& 7) << 11;
1013 fpu
.fcw
= env
->fpuc
;
1014 fpu
.last_opcode
= env
->fpop
;
1015 fpu
.last_ip
= env
->fpip
;
1016 fpu
.last_dp
= env
->fpdp
;
1017 for (i
= 0; i
< 8; ++i
) {
1018 fpu
.ftwx
|= (!env
->fptags
[i
]) << i
;
1020 memcpy(fpu
.fpr
, env
->fpregs
, sizeof env
->fpregs
);
1021 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1022 stq_p(&fpu
.xmm
[i
][0], env
->xmm_regs
[i
].XMM_Q(0));
1023 stq_p(&fpu
.xmm
[i
][8], env
->xmm_regs
[i
].XMM_Q(1));
1025 fpu
.mxcsr
= env
->mxcsr
;
1027 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_FPU
, &fpu
);
1030 #define XSAVE_FCW_FSW 0
1031 #define XSAVE_FTW_FOP 1
1032 #define XSAVE_CWD_RIP 2
1033 #define XSAVE_CWD_RDP 4
1034 #define XSAVE_MXCSR 6
1035 #define XSAVE_ST_SPACE 8
1036 #define XSAVE_XMM_SPACE 40
1037 #define XSAVE_XSTATE_BV 128
1038 #define XSAVE_YMMH_SPACE 144
1039 #define XSAVE_BNDREGS 240
1040 #define XSAVE_BNDCSR 256
1041 #define XSAVE_OPMASK 272
1042 #define XSAVE_ZMM_Hi256 288
1043 #define XSAVE_Hi16_ZMM 416
1045 static int kvm_put_xsave(X86CPU
*cpu
)
1047 CPUX86State
*env
= &cpu
->env
;
1048 struct kvm_xsave
* xsave
= env
->kvm_xsave_buf
;
1049 uint16_t cwd
, swd
, twd
;
1050 uint8_t *xmm
, *ymmh
, *zmmh
;
1053 if (!kvm_has_xsave()) {
1054 return kvm_put_fpu(cpu
);
1057 memset(xsave
, 0, sizeof(struct kvm_xsave
));
1059 swd
= env
->fpus
& ~(7 << 11);
1060 swd
|= (env
->fpstt
& 7) << 11;
1062 for (i
= 0; i
< 8; ++i
) {
1063 twd
|= (!env
->fptags
[i
]) << i
;
1065 xsave
->region
[XSAVE_FCW_FSW
] = (uint32_t)(swd
<< 16) + cwd
;
1066 xsave
->region
[XSAVE_FTW_FOP
] = (uint32_t)(env
->fpop
<< 16) + twd
;
1067 memcpy(&xsave
->region
[XSAVE_CWD_RIP
], &env
->fpip
, sizeof(env
->fpip
));
1068 memcpy(&xsave
->region
[XSAVE_CWD_RDP
], &env
->fpdp
, sizeof(env
->fpdp
));
1069 memcpy(&xsave
->region
[XSAVE_ST_SPACE
], env
->fpregs
,
1070 sizeof env
->fpregs
);
1071 xsave
->region
[XSAVE_MXCSR
] = env
->mxcsr
;
1072 *(uint64_t *)&xsave
->region
[XSAVE_XSTATE_BV
] = env
->xstate_bv
;
1073 memcpy(&xsave
->region
[XSAVE_BNDREGS
], env
->bnd_regs
,
1074 sizeof env
->bnd_regs
);
1075 memcpy(&xsave
->region
[XSAVE_BNDCSR
], &env
->bndcs_regs
,
1076 sizeof(env
->bndcs_regs
));
1077 memcpy(&xsave
->region
[XSAVE_OPMASK
], env
->opmask_regs
,
1078 sizeof env
->opmask_regs
);
1080 xmm
= (uint8_t *)&xsave
->region
[XSAVE_XMM_SPACE
];
1081 ymmh
= (uint8_t *)&xsave
->region
[XSAVE_YMMH_SPACE
];
1082 zmmh
= (uint8_t *)&xsave
->region
[XSAVE_ZMM_Hi256
];
1083 for (i
= 0; i
< CPU_NB_REGS
; i
++, xmm
+= 16, ymmh
+= 16, zmmh
+= 32) {
1084 stq_p(xmm
, env
->xmm_regs
[i
].XMM_Q(0));
1085 stq_p(xmm
+8, env
->xmm_regs
[i
].XMM_Q(1));
1086 stq_p(ymmh
, env
->xmm_regs
[i
].XMM_Q(2));
1087 stq_p(ymmh
+8, env
->xmm_regs
[i
].XMM_Q(3));
1088 stq_p(zmmh
, env
->xmm_regs
[i
].XMM_Q(4));
1089 stq_p(zmmh
+8, env
->xmm_regs
[i
].XMM_Q(5));
1090 stq_p(zmmh
+16, env
->xmm_regs
[i
].XMM_Q(6));
1091 stq_p(zmmh
+24, env
->xmm_regs
[i
].XMM_Q(7));
1094 #ifdef TARGET_X86_64
1095 memcpy(&xsave
->region
[XSAVE_Hi16_ZMM
], &env
->xmm_regs
[16],
1096 16 * sizeof env
->xmm_regs
[16]);
1098 r
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XSAVE
, xsave
);
1102 static int kvm_put_xcrs(X86CPU
*cpu
)
1104 CPUX86State
*env
= &cpu
->env
;
1105 struct kvm_xcrs xcrs
= {};
1107 if (!kvm_has_xcrs()) {
1113 xcrs
.xcrs
[0].xcr
= 0;
1114 xcrs
.xcrs
[0].value
= env
->xcr0
;
1115 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XCRS
, &xcrs
);
1118 static int kvm_put_sregs(X86CPU
*cpu
)
1120 CPUX86State
*env
= &cpu
->env
;
1121 struct kvm_sregs sregs
;
1123 memset(sregs
.interrupt_bitmap
, 0, sizeof(sregs
.interrupt_bitmap
));
1124 if (env
->interrupt_injected
>= 0) {
1125 sregs
.interrupt_bitmap
[env
->interrupt_injected
/ 64] |=
1126 (uint64_t)1 << (env
->interrupt_injected
% 64);
1129 if ((env
->eflags
& VM_MASK
)) {
1130 set_v8086_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1131 set_v8086_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1132 set_v8086_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1133 set_v8086_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1134 set_v8086_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1135 set_v8086_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1137 set_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1138 set_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1139 set_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1140 set_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1141 set_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1142 set_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1145 set_seg(&sregs
.tr
, &env
->tr
);
1146 set_seg(&sregs
.ldt
, &env
->ldt
);
1148 sregs
.idt
.limit
= env
->idt
.limit
;
1149 sregs
.idt
.base
= env
->idt
.base
;
1150 memset(sregs
.idt
.padding
, 0, sizeof sregs
.idt
.padding
);
1151 sregs
.gdt
.limit
= env
->gdt
.limit
;
1152 sregs
.gdt
.base
= env
->gdt
.base
;
1153 memset(sregs
.gdt
.padding
, 0, sizeof sregs
.gdt
.padding
);
1155 sregs
.cr0
= env
->cr
[0];
1156 sregs
.cr2
= env
->cr
[2];
1157 sregs
.cr3
= env
->cr
[3];
1158 sregs
.cr4
= env
->cr
[4];
1160 sregs
.cr8
= cpu_get_apic_tpr(cpu
->apic_state
);
1161 sregs
.apic_base
= cpu_get_apic_base(cpu
->apic_state
);
1163 sregs
.efer
= env
->efer
;
1165 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_SREGS
, &sregs
);
1168 static void kvm_msr_entry_set(struct kvm_msr_entry
*entry
,
1169 uint32_t index
, uint64_t value
)
1171 entry
->index
= index
;
1172 entry
->reserved
= 0;
1173 entry
->data
= value
;
1176 static int kvm_put_tscdeadline_msr(X86CPU
*cpu
)
1178 CPUX86State
*env
= &cpu
->env
;
1180 struct kvm_msrs info
;
1181 struct kvm_msr_entry entries
[1];
1183 struct kvm_msr_entry
*msrs
= msr_data
.entries
;
1185 if (!has_msr_tsc_deadline
) {
1189 kvm_msr_entry_set(&msrs
[0], MSR_IA32_TSCDEADLINE
, env
->tsc_deadline
);
1191 msr_data
.info
= (struct kvm_msrs
) {
1195 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, &msr_data
);
1199 * Provide a separate write service for the feature control MSR in order to
1200 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1201 * before writing any other state because forcibly leaving nested mode
1202 * invalidates the VCPU state.
1204 static int kvm_put_msr_feature_control(X86CPU
*cpu
)
1207 struct kvm_msrs info
;
1208 struct kvm_msr_entry entry
;
1211 kvm_msr_entry_set(&msr_data
.entry
, MSR_IA32_FEATURE_CONTROL
,
1212 cpu
->env
.msr_ia32_feature_control
);
1214 msr_data
.info
= (struct kvm_msrs
) {
1218 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, &msr_data
);
1221 static int kvm_put_msrs(X86CPU
*cpu
, int level
)
1223 CPUX86State
*env
= &cpu
->env
;
1225 struct kvm_msrs info
;
1226 struct kvm_msr_entry entries
[150];
1228 struct kvm_msr_entry
*msrs
= msr_data
.entries
;
1231 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_CS
, env
->sysenter_cs
);
1232 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_ESP
, env
->sysenter_esp
);
1233 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_EIP
, env
->sysenter_eip
);
1234 kvm_msr_entry_set(&msrs
[n
++], MSR_PAT
, env
->pat
);
1236 kvm_msr_entry_set(&msrs
[n
++], MSR_STAR
, env
->star
);
1238 if (has_msr_hsave_pa
) {
1239 kvm_msr_entry_set(&msrs
[n
++], MSR_VM_HSAVE_PA
, env
->vm_hsave
);
1241 if (has_msr_tsc_adjust
) {
1242 kvm_msr_entry_set(&msrs
[n
++], MSR_TSC_ADJUST
, env
->tsc_adjust
);
1244 if (has_msr_misc_enable
) {
1245 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_MISC_ENABLE
,
1246 env
->msr_ia32_misc_enable
);
1248 if (has_msr_bndcfgs
) {
1249 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_BNDCFGS
, env
->msr_bndcfgs
);
1252 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_XSS
, env
->xss
);
1254 #ifdef TARGET_X86_64
1255 if (lm_capable_kernel
) {
1256 kvm_msr_entry_set(&msrs
[n
++], MSR_CSTAR
, env
->cstar
);
1257 kvm_msr_entry_set(&msrs
[n
++], MSR_KERNELGSBASE
, env
->kernelgsbase
);
1258 kvm_msr_entry_set(&msrs
[n
++], MSR_FMASK
, env
->fmask
);
1259 kvm_msr_entry_set(&msrs
[n
++], MSR_LSTAR
, env
->lstar
);
1263 * The following MSRs have side effects on the guest or are too heavy
1264 * for normal writeback. Limit them to reset or full state updates.
1266 if (level
>= KVM_PUT_RESET_STATE
) {
1267 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_TSC
, env
->tsc
);
1268 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_SYSTEM_TIME
,
1269 env
->system_time_msr
);
1270 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_WALL_CLOCK
, env
->wall_clock_msr
);
1271 if (has_msr_async_pf_en
) {
1272 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_ASYNC_PF_EN
,
1273 env
->async_pf_en_msr
);
1275 if (has_msr_pv_eoi_en
) {
1276 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_PV_EOI_EN
,
1277 env
->pv_eoi_en_msr
);
1279 if (has_msr_kvm_steal_time
) {
1280 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_STEAL_TIME
,
1281 env
->steal_time_msr
);
1283 if (has_msr_architectural_pmu
) {
1284 /* Stop the counter. */
1285 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_FIXED_CTR_CTRL
, 0);
1286 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_GLOBAL_CTRL
, 0);
1288 /* Set the counter values. */
1289 for (i
= 0; i
< MAX_FIXED_COUNTERS
; i
++) {
1290 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_FIXED_CTR0
+ i
,
1291 env
->msr_fixed_counters
[i
]);
1293 for (i
= 0; i
< num_architectural_pmu_counters
; i
++) {
1294 kvm_msr_entry_set(&msrs
[n
++], MSR_P6_PERFCTR0
+ i
,
1295 env
->msr_gp_counters
[i
]);
1296 kvm_msr_entry_set(&msrs
[n
++], MSR_P6_EVNTSEL0
+ i
,
1297 env
->msr_gp_evtsel
[i
]);
1299 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_GLOBAL_STATUS
,
1300 env
->msr_global_status
);
1301 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_GLOBAL_OVF_CTRL
,
1302 env
->msr_global_ovf_ctrl
);
1304 /* Now start the PMU. */
1305 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_FIXED_CTR_CTRL
,
1306 env
->msr_fixed_ctr_ctrl
);
1307 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_GLOBAL_CTRL
,
1308 env
->msr_global_ctrl
);
1310 if (has_msr_hv_hypercall
) {
1311 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_GUEST_OS_ID
,
1312 env
->msr_hv_guest_os_id
);
1313 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_HYPERCALL
,
1314 env
->msr_hv_hypercall
);
1316 if (has_msr_hv_vapic
) {
1317 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_APIC_ASSIST_PAGE
,
1320 if (has_msr_hv_tsc
) {
1321 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_REFERENCE_TSC
,
1325 kvm_msr_entry_set(&msrs
[n
++], MSR_MTRRdefType
, env
->mtrr_deftype
);
1326 kvm_msr_entry_set(&msrs
[n
++],
1327 MSR_MTRRfix64K_00000
, env
->mtrr_fixed
[0]);
1328 kvm_msr_entry_set(&msrs
[n
++],
1329 MSR_MTRRfix16K_80000
, env
->mtrr_fixed
[1]);
1330 kvm_msr_entry_set(&msrs
[n
++],
1331 MSR_MTRRfix16K_A0000
, env
->mtrr_fixed
[2]);
1332 kvm_msr_entry_set(&msrs
[n
++],
1333 MSR_MTRRfix4K_C0000
, env
->mtrr_fixed
[3]);
1334 kvm_msr_entry_set(&msrs
[n
++],
1335 MSR_MTRRfix4K_C8000
, env
->mtrr_fixed
[4]);
1336 kvm_msr_entry_set(&msrs
[n
++],
1337 MSR_MTRRfix4K_D0000
, env
->mtrr_fixed
[5]);
1338 kvm_msr_entry_set(&msrs
[n
++],
1339 MSR_MTRRfix4K_D8000
, env
->mtrr_fixed
[6]);
1340 kvm_msr_entry_set(&msrs
[n
++],
1341 MSR_MTRRfix4K_E0000
, env
->mtrr_fixed
[7]);
1342 kvm_msr_entry_set(&msrs
[n
++],
1343 MSR_MTRRfix4K_E8000
, env
->mtrr_fixed
[8]);
1344 kvm_msr_entry_set(&msrs
[n
++],
1345 MSR_MTRRfix4K_F0000
, env
->mtrr_fixed
[9]);
1346 kvm_msr_entry_set(&msrs
[n
++],
1347 MSR_MTRRfix4K_F8000
, env
->mtrr_fixed
[10]);
1348 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
1349 kvm_msr_entry_set(&msrs
[n
++],
1350 MSR_MTRRphysBase(i
), env
->mtrr_var
[i
].base
);
1351 kvm_msr_entry_set(&msrs
[n
++],
1352 MSR_MTRRphysMask(i
), env
->mtrr_var
[i
].mask
);
1356 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
1357 * kvm_put_msr_feature_control. */
1362 kvm_msr_entry_set(&msrs
[n
++], MSR_MCG_STATUS
, env
->mcg_status
);
1363 kvm_msr_entry_set(&msrs
[n
++], MSR_MCG_CTL
, env
->mcg_ctl
);
1364 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
1365 kvm_msr_entry_set(&msrs
[n
++], MSR_MC0_CTL
+ i
, env
->mce_banks
[i
]);
1369 msr_data
.info
= (struct kvm_msrs
) {
1373 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, &msr_data
);
1378 static int kvm_get_fpu(X86CPU
*cpu
)
1380 CPUX86State
*env
= &cpu
->env
;
1384 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_FPU
, &fpu
);
1389 env
->fpstt
= (fpu
.fsw
>> 11) & 7;
1390 env
->fpus
= fpu
.fsw
;
1391 env
->fpuc
= fpu
.fcw
;
1392 env
->fpop
= fpu
.last_opcode
;
1393 env
->fpip
= fpu
.last_ip
;
1394 env
->fpdp
= fpu
.last_dp
;
1395 for (i
= 0; i
< 8; ++i
) {
1396 env
->fptags
[i
] = !((fpu
.ftwx
>> i
) & 1);
1398 memcpy(env
->fpregs
, fpu
.fpr
, sizeof env
->fpregs
);
1399 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1400 env
->xmm_regs
[i
].XMM_Q(0) = ldq_p(&fpu
.xmm
[i
][0]);
1401 env
->xmm_regs
[i
].XMM_Q(1) = ldq_p(&fpu
.xmm
[i
][8]);
1403 env
->mxcsr
= fpu
.mxcsr
;
1408 static int kvm_get_xsave(X86CPU
*cpu
)
1410 CPUX86State
*env
= &cpu
->env
;
1411 struct kvm_xsave
* xsave
= env
->kvm_xsave_buf
;
1413 const uint8_t *xmm
, *ymmh
, *zmmh
;
1414 uint16_t cwd
, swd
, twd
;
1416 if (!kvm_has_xsave()) {
1417 return kvm_get_fpu(cpu
);
1420 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XSAVE
, xsave
);
1425 cwd
= (uint16_t)xsave
->region
[XSAVE_FCW_FSW
];
1426 swd
= (uint16_t)(xsave
->region
[XSAVE_FCW_FSW
] >> 16);
1427 twd
= (uint16_t)xsave
->region
[XSAVE_FTW_FOP
];
1428 env
->fpop
= (uint16_t)(xsave
->region
[XSAVE_FTW_FOP
] >> 16);
1429 env
->fpstt
= (swd
>> 11) & 7;
1432 for (i
= 0; i
< 8; ++i
) {
1433 env
->fptags
[i
] = !((twd
>> i
) & 1);
1435 memcpy(&env
->fpip
, &xsave
->region
[XSAVE_CWD_RIP
], sizeof(env
->fpip
));
1436 memcpy(&env
->fpdp
, &xsave
->region
[XSAVE_CWD_RDP
], sizeof(env
->fpdp
));
1437 env
->mxcsr
= xsave
->region
[XSAVE_MXCSR
];
1438 memcpy(env
->fpregs
, &xsave
->region
[XSAVE_ST_SPACE
],
1439 sizeof env
->fpregs
);
1440 env
->xstate_bv
= *(uint64_t *)&xsave
->region
[XSAVE_XSTATE_BV
];
1441 memcpy(env
->bnd_regs
, &xsave
->region
[XSAVE_BNDREGS
],
1442 sizeof env
->bnd_regs
);
1443 memcpy(&env
->bndcs_regs
, &xsave
->region
[XSAVE_BNDCSR
],
1444 sizeof(env
->bndcs_regs
));
1445 memcpy(env
->opmask_regs
, &xsave
->region
[XSAVE_OPMASK
],
1446 sizeof env
->opmask_regs
);
1448 xmm
= (const uint8_t *)&xsave
->region
[XSAVE_XMM_SPACE
];
1449 ymmh
= (const uint8_t *)&xsave
->region
[XSAVE_YMMH_SPACE
];
1450 zmmh
= (const uint8_t *)&xsave
->region
[XSAVE_ZMM_Hi256
];
1451 for (i
= 0; i
< CPU_NB_REGS
; i
++, xmm
+= 16, ymmh
+= 16, zmmh
+= 32) {
1452 env
->xmm_regs
[i
].XMM_Q(0) = ldq_p(xmm
);
1453 env
->xmm_regs
[i
].XMM_Q(1) = ldq_p(xmm
+8);
1454 env
->xmm_regs
[i
].XMM_Q(2) = ldq_p(ymmh
);
1455 env
->xmm_regs
[i
].XMM_Q(3) = ldq_p(ymmh
+8);
1456 env
->xmm_regs
[i
].XMM_Q(4) = ldq_p(zmmh
);
1457 env
->xmm_regs
[i
].XMM_Q(5) = ldq_p(zmmh
+8);
1458 env
->xmm_regs
[i
].XMM_Q(6) = ldq_p(zmmh
+16);
1459 env
->xmm_regs
[i
].XMM_Q(7) = ldq_p(zmmh
+24);
1462 #ifdef TARGET_X86_64
1463 memcpy(&env
->xmm_regs
[16], &xsave
->region
[XSAVE_Hi16_ZMM
],
1464 16 * sizeof env
->xmm_regs
[16]);
1469 static int kvm_get_xcrs(X86CPU
*cpu
)
1471 CPUX86State
*env
= &cpu
->env
;
1473 struct kvm_xcrs xcrs
;
1475 if (!kvm_has_xcrs()) {
1479 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XCRS
, &xcrs
);
1484 for (i
= 0; i
< xcrs
.nr_xcrs
; i
++) {
1485 /* Only support xcr0 now */
1486 if (xcrs
.xcrs
[i
].xcr
== 0) {
1487 env
->xcr0
= xcrs
.xcrs
[i
].value
;
1494 static int kvm_get_sregs(X86CPU
*cpu
)
1496 CPUX86State
*env
= &cpu
->env
;
1497 struct kvm_sregs sregs
;
1501 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_SREGS
, &sregs
);
1506 /* There can only be one pending IRQ set in the bitmap at a time, so try
1507 to find it and save its number instead (-1 for none). */
1508 env
->interrupt_injected
= -1;
1509 for (i
= 0; i
< ARRAY_SIZE(sregs
.interrupt_bitmap
); i
++) {
1510 if (sregs
.interrupt_bitmap
[i
]) {
1511 bit
= ctz64(sregs
.interrupt_bitmap
[i
]);
1512 env
->interrupt_injected
= i
* 64 + bit
;
1517 get_seg(&env
->segs
[R_CS
], &sregs
.cs
);
1518 get_seg(&env
->segs
[R_DS
], &sregs
.ds
);
1519 get_seg(&env
->segs
[R_ES
], &sregs
.es
);
1520 get_seg(&env
->segs
[R_FS
], &sregs
.fs
);
1521 get_seg(&env
->segs
[R_GS
], &sregs
.gs
);
1522 get_seg(&env
->segs
[R_SS
], &sregs
.ss
);
1524 get_seg(&env
->tr
, &sregs
.tr
);
1525 get_seg(&env
->ldt
, &sregs
.ldt
);
1527 env
->idt
.limit
= sregs
.idt
.limit
;
1528 env
->idt
.base
= sregs
.idt
.base
;
1529 env
->gdt
.limit
= sregs
.gdt
.limit
;
1530 env
->gdt
.base
= sregs
.gdt
.base
;
1532 env
->cr
[0] = sregs
.cr0
;
1533 env
->cr
[2] = sregs
.cr2
;
1534 env
->cr
[3] = sregs
.cr3
;
1535 env
->cr
[4] = sregs
.cr4
;
1537 env
->efer
= sregs
.efer
;
1539 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1541 #define HFLAG_COPY_MASK \
1542 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1543 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1544 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1545 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1547 hflags
= (env
->segs
[R_SS
].flags
>> DESC_DPL_SHIFT
) & HF_CPL_MASK
;
1548 hflags
|= (env
->cr
[0] & CR0_PE_MASK
) << (HF_PE_SHIFT
- CR0_PE_SHIFT
);
1549 hflags
|= (env
->cr
[0] << (HF_MP_SHIFT
- CR0_MP_SHIFT
)) &
1550 (HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
);
1551 hflags
|= (env
->eflags
& (HF_TF_MASK
| HF_VM_MASK
| HF_IOPL_MASK
));
1552 hflags
|= (env
->cr
[4] & CR4_OSFXSR_MASK
) <<
1553 (HF_OSFXSR_SHIFT
- CR4_OSFXSR_SHIFT
);
1555 if (env
->efer
& MSR_EFER_LMA
) {
1556 hflags
|= HF_LMA_MASK
;
1559 if ((hflags
& HF_LMA_MASK
) && (env
->segs
[R_CS
].flags
& DESC_L_MASK
)) {
1560 hflags
|= HF_CS32_MASK
| HF_SS32_MASK
| HF_CS64_MASK
;
1562 hflags
|= (env
->segs
[R_CS
].flags
& DESC_B_MASK
) >>
1563 (DESC_B_SHIFT
- HF_CS32_SHIFT
);
1564 hflags
|= (env
->segs
[R_SS
].flags
& DESC_B_MASK
) >>
1565 (DESC_B_SHIFT
- HF_SS32_SHIFT
);
1566 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
) ||
1567 !(hflags
& HF_CS32_MASK
)) {
1568 hflags
|= HF_ADDSEG_MASK
;
1570 hflags
|= ((env
->segs
[R_DS
].base
| env
->segs
[R_ES
].base
|
1571 env
->segs
[R_SS
].base
) != 0) << HF_ADDSEG_SHIFT
;
1574 env
->hflags
= (env
->hflags
& HFLAG_COPY_MASK
) | hflags
;
1579 static int kvm_get_msrs(X86CPU
*cpu
)
1581 CPUX86State
*env
= &cpu
->env
;
1583 struct kvm_msrs info
;
1584 struct kvm_msr_entry entries
[150];
1586 struct kvm_msr_entry
*msrs
= msr_data
.entries
;
1590 msrs
[n
++].index
= MSR_IA32_SYSENTER_CS
;
1591 msrs
[n
++].index
= MSR_IA32_SYSENTER_ESP
;
1592 msrs
[n
++].index
= MSR_IA32_SYSENTER_EIP
;
1593 msrs
[n
++].index
= MSR_PAT
;
1595 msrs
[n
++].index
= MSR_STAR
;
1597 if (has_msr_hsave_pa
) {
1598 msrs
[n
++].index
= MSR_VM_HSAVE_PA
;
1600 if (has_msr_tsc_adjust
) {
1601 msrs
[n
++].index
= MSR_TSC_ADJUST
;
1603 if (has_msr_tsc_deadline
) {
1604 msrs
[n
++].index
= MSR_IA32_TSCDEADLINE
;
1606 if (has_msr_misc_enable
) {
1607 msrs
[n
++].index
= MSR_IA32_MISC_ENABLE
;
1609 if (has_msr_feature_control
) {
1610 msrs
[n
++].index
= MSR_IA32_FEATURE_CONTROL
;
1612 if (has_msr_bndcfgs
) {
1613 msrs
[n
++].index
= MSR_IA32_BNDCFGS
;
1616 msrs
[n
++].index
= MSR_IA32_XSS
;
1620 if (!env
->tsc_valid
) {
1621 msrs
[n
++].index
= MSR_IA32_TSC
;
1622 env
->tsc_valid
= !runstate_is_running();
1625 #ifdef TARGET_X86_64
1626 if (lm_capable_kernel
) {
1627 msrs
[n
++].index
= MSR_CSTAR
;
1628 msrs
[n
++].index
= MSR_KERNELGSBASE
;
1629 msrs
[n
++].index
= MSR_FMASK
;
1630 msrs
[n
++].index
= MSR_LSTAR
;
1633 msrs
[n
++].index
= MSR_KVM_SYSTEM_TIME
;
1634 msrs
[n
++].index
= MSR_KVM_WALL_CLOCK
;
1635 if (has_msr_async_pf_en
) {
1636 msrs
[n
++].index
= MSR_KVM_ASYNC_PF_EN
;
1638 if (has_msr_pv_eoi_en
) {
1639 msrs
[n
++].index
= MSR_KVM_PV_EOI_EN
;
1641 if (has_msr_kvm_steal_time
) {
1642 msrs
[n
++].index
= MSR_KVM_STEAL_TIME
;
1644 if (has_msr_architectural_pmu
) {
1645 msrs
[n
++].index
= MSR_CORE_PERF_FIXED_CTR_CTRL
;
1646 msrs
[n
++].index
= MSR_CORE_PERF_GLOBAL_CTRL
;
1647 msrs
[n
++].index
= MSR_CORE_PERF_GLOBAL_STATUS
;
1648 msrs
[n
++].index
= MSR_CORE_PERF_GLOBAL_OVF_CTRL
;
1649 for (i
= 0; i
< MAX_FIXED_COUNTERS
; i
++) {
1650 msrs
[n
++].index
= MSR_CORE_PERF_FIXED_CTR0
+ i
;
1652 for (i
= 0; i
< num_architectural_pmu_counters
; i
++) {
1653 msrs
[n
++].index
= MSR_P6_PERFCTR0
+ i
;
1654 msrs
[n
++].index
= MSR_P6_EVNTSEL0
+ i
;
1659 msrs
[n
++].index
= MSR_MCG_STATUS
;
1660 msrs
[n
++].index
= MSR_MCG_CTL
;
1661 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
1662 msrs
[n
++].index
= MSR_MC0_CTL
+ i
;
1666 if (has_msr_hv_hypercall
) {
1667 msrs
[n
++].index
= HV_X64_MSR_HYPERCALL
;
1668 msrs
[n
++].index
= HV_X64_MSR_GUEST_OS_ID
;
1670 if (has_msr_hv_vapic
) {
1671 msrs
[n
++].index
= HV_X64_MSR_APIC_ASSIST_PAGE
;
1673 if (has_msr_hv_tsc
) {
1674 msrs
[n
++].index
= HV_X64_MSR_REFERENCE_TSC
;
1677 msrs
[n
++].index
= MSR_MTRRdefType
;
1678 msrs
[n
++].index
= MSR_MTRRfix64K_00000
;
1679 msrs
[n
++].index
= MSR_MTRRfix16K_80000
;
1680 msrs
[n
++].index
= MSR_MTRRfix16K_A0000
;
1681 msrs
[n
++].index
= MSR_MTRRfix4K_C0000
;
1682 msrs
[n
++].index
= MSR_MTRRfix4K_C8000
;
1683 msrs
[n
++].index
= MSR_MTRRfix4K_D0000
;
1684 msrs
[n
++].index
= MSR_MTRRfix4K_D8000
;
1685 msrs
[n
++].index
= MSR_MTRRfix4K_E0000
;
1686 msrs
[n
++].index
= MSR_MTRRfix4K_E8000
;
1687 msrs
[n
++].index
= MSR_MTRRfix4K_F0000
;
1688 msrs
[n
++].index
= MSR_MTRRfix4K_F8000
;
1689 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
1690 msrs
[n
++].index
= MSR_MTRRphysBase(i
);
1691 msrs
[n
++].index
= MSR_MTRRphysMask(i
);
1695 msr_data
.info
= (struct kvm_msrs
) {
1699 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, &msr_data
);
1704 for (i
= 0; i
< ret
; i
++) {
1705 uint32_t index
= msrs
[i
].index
;
1707 case MSR_IA32_SYSENTER_CS
:
1708 env
->sysenter_cs
= msrs
[i
].data
;
1710 case MSR_IA32_SYSENTER_ESP
:
1711 env
->sysenter_esp
= msrs
[i
].data
;
1713 case MSR_IA32_SYSENTER_EIP
:
1714 env
->sysenter_eip
= msrs
[i
].data
;
1717 env
->pat
= msrs
[i
].data
;
1720 env
->star
= msrs
[i
].data
;
1722 #ifdef TARGET_X86_64
1724 env
->cstar
= msrs
[i
].data
;
1726 case MSR_KERNELGSBASE
:
1727 env
->kernelgsbase
= msrs
[i
].data
;
1730 env
->fmask
= msrs
[i
].data
;
1733 env
->lstar
= msrs
[i
].data
;
1737 env
->tsc
= msrs
[i
].data
;
1739 case MSR_TSC_ADJUST
:
1740 env
->tsc_adjust
= msrs
[i
].data
;
1742 case MSR_IA32_TSCDEADLINE
:
1743 env
->tsc_deadline
= msrs
[i
].data
;
1745 case MSR_VM_HSAVE_PA
:
1746 env
->vm_hsave
= msrs
[i
].data
;
1748 case MSR_KVM_SYSTEM_TIME
:
1749 env
->system_time_msr
= msrs
[i
].data
;
1751 case MSR_KVM_WALL_CLOCK
:
1752 env
->wall_clock_msr
= msrs
[i
].data
;
1754 case MSR_MCG_STATUS
:
1755 env
->mcg_status
= msrs
[i
].data
;
1758 env
->mcg_ctl
= msrs
[i
].data
;
1760 case MSR_IA32_MISC_ENABLE
:
1761 env
->msr_ia32_misc_enable
= msrs
[i
].data
;
1763 case MSR_IA32_FEATURE_CONTROL
:
1764 env
->msr_ia32_feature_control
= msrs
[i
].data
;
1766 case MSR_IA32_BNDCFGS
:
1767 env
->msr_bndcfgs
= msrs
[i
].data
;
1770 env
->xss
= msrs
[i
].data
;
1773 if (msrs
[i
].index
>= MSR_MC0_CTL
&&
1774 msrs
[i
].index
< MSR_MC0_CTL
+ (env
->mcg_cap
& 0xff) * 4) {
1775 env
->mce_banks
[msrs
[i
].index
- MSR_MC0_CTL
] = msrs
[i
].data
;
1778 case MSR_KVM_ASYNC_PF_EN
:
1779 env
->async_pf_en_msr
= msrs
[i
].data
;
1781 case MSR_KVM_PV_EOI_EN
:
1782 env
->pv_eoi_en_msr
= msrs
[i
].data
;
1784 case MSR_KVM_STEAL_TIME
:
1785 env
->steal_time_msr
= msrs
[i
].data
;
1787 case MSR_CORE_PERF_FIXED_CTR_CTRL
:
1788 env
->msr_fixed_ctr_ctrl
= msrs
[i
].data
;
1790 case MSR_CORE_PERF_GLOBAL_CTRL
:
1791 env
->msr_global_ctrl
= msrs
[i
].data
;
1793 case MSR_CORE_PERF_GLOBAL_STATUS
:
1794 env
->msr_global_status
= msrs
[i
].data
;
1796 case MSR_CORE_PERF_GLOBAL_OVF_CTRL
:
1797 env
->msr_global_ovf_ctrl
= msrs
[i
].data
;
1799 case MSR_CORE_PERF_FIXED_CTR0
... MSR_CORE_PERF_FIXED_CTR0
+ MAX_FIXED_COUNTERS
- 1:
1800 env
->msr_fixed_counters
[index
- MSR_CORE_PERF_FIXED_CTR0
] = msrs
[i
].data
;
1802 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR0
+ MAX_GP_COUNTERS
- 1:
1803 env
->msr_gp_counters
[index
- MSR_P6_PERFCTR0
] = msrs
[i
].data
;
1805 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL0
+ MAX_GP_COUNTERS
- 1:
1806 env
->msr_gp_evtsel
[index
- MSR_P6_EVNTSEL0
] = msrs
[i
].data
;
1808 case HV_X64_MSR_HYPERCALL
:
1809 env
->msr_hv_hypercall
= msrs
[i
].data
;
1811 case HV_X64_MSR_GUEST_OS_ID
:
1812 env
->msr_hv_guest_os_id
= msrs
[i
].data
;
1814 case HV_X64_MSR_APIC_ASSIST_PAGE
:
1815 env
->msr_hv_vapic
= msrs
[i
].data
;
1817 case HV_X64_MSR_REFERENCE_TSC
:
1818 env
->msr_hv_tsc
= msrs
[i
].data
;
1820 case MSR_MTRRdefType
:
1821 env
->mtrr_deftype
= msrs
[i
].data
;
1823 case MSR_MTRRfix64K_00000
:
1824 env
->mtrr_fixed
[0] = msrs
[i
].data
;
1826 case MSR_MTRRfix16K_80000
:
1827 env
->mtrr_fixed
[1] = msrs
[i
].data
;
1829 case MSR_MTRRfix16K_A0000
:
1830 env
->mtrr_fixed
[2] = msrs
[i
].data
;
1832 case MSR_MTRRfix4K_C0000
:
1833 env
->mtrr_fixed
[3] = msrs
[i
].data
;
1835 case MSR_MTRRfix4K_C8000
:
1836 env
->mtrr_fixed
[4] = msrs
[i
].data
;
1838 case MSR_MTRRfix4K_D0000
:
1839 env
->mtrr_fixed
[5] = msrs
[i
].data
;
1841 case MSR_MTRRfix4K_D8000
:
1842 env
->mtrr_fixed
[6] = msrs
[i
].data
;
1844 case MSR_MTRRfix4K_E0000
:
1845 env
->mtrr_fixed
[7] = msrs
[i
].data
;
1847 case MSR_MTRRfix4K_E8000
:
1848 env
->mtrr_fixed
[8] = msrs
[i
].data
;
1850 case MSR_MTRRfix4K_F0000
:
1851 env
->mtrr_fixed
[9] = msrs
[i
].data
;
1853 case MSR_MTRRfix4K_F8000
:
1854 env
->mtrr_fixed
[10] = msrs
[i
].data
;
1856 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT
- 1):
1858 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].mask
= msrs
[i
].data
;
1860 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].base
= msrs
[i
].data
;
1869 static int kvm_put_mp_state(X86CPU
*cpu
)
1871 struct kvm_mp_state mp_state
= { .mp_state
= cpu
->env
.mp_state
};
1873 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MP_STATE
, &mp_state
);
1876 static int kvm_get_mp_state(X86CPU
*cpu
)
1878 CPUState
*cs
= CPU(cpu
);
1879 CPUX86State
*env
= &cpu
->env
;
1880 struct kvm_mp_state mp_state
;
1883 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_MP_STATE
, &mp_state
);
1887 env
->mp_state
= mp_state
.mp_state
;
1888 if (kvm_irqchip_in_kernel()) {
1889 cs
->halted
= (mp_state
.mp_state
== KVM_MP_STATE_HALTED
);
1894 static int kvm_get_apic(X86CPU
*cpu
)
1896 DeviceState
*apic
= cpu
->apic_state
;
1897 struct kvm_lapic_state kapic
;
1900 if (apic
&& kvm_irqchip_in_kernel()) {
1901 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_LAPIC
, &kapic
);
1906 kvm_get_apic_state(apic
, &kapic
);
1911 static int kvm_put_apic(X86CPU
*cpu
)
1913 DeviceState
*apic
= cpu
->apic_state
;
1914 struct kvm_lapic_state kapic
;
1916 if (apic
&& kvm_irqchip_in_kernel()) {
1917 kvm_put_apic_state(apic
, &kapic
);
1919 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_LAPIC
, &kapic
);
1924 static int kvm_put_vcpu_events(X86CPU
*cpu
, int level
)
1926 CPUX86State
*env
= &cpu
->env
;
1927 struct kvm_vcpu_events events
= {};
1929 if (!kvm_has_vcpu_events()) {
1933 events
.exception
.injected
= (env
->exception_injected
>= 0);
1934 events
.exception
.nr
= env
->exception_injected
;
1935 events
.exception
.has_error_code
= env
->has_error_code
;
1936 events
.exception
.error_code
= env
->error_code
;
1937 events
.exception
.pad
= 0;
1939 events
.interrupt
.injected
= (env
->interrupt_injected
>= 0);
1940 events
.interrupt
.nr
= env
->interrupt_injected
;
1941 events
.interrupt
.soft
= env
->soft_interrupt
;
1943 events
.nmi
.injected
= env
->nmi_injected
;
1944 events
.nmi
.pending
= env
->nmi_pending
;
1945 events
.nmi
.masked
= !!(env
->hflags2
& HF2_NMI_MASK
);
1948 events
.sipi_vector
= env
->sipi_vector
;
1951 if (level
>= KVM_PUT_RESET_STATE
) {
1953 KVM_VCPUEVENT_VALID_NMI_PENDING
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
;
1956 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_VCPU_EVENTS
, &events
);
1959 static int kvm_get_vcpu_events(X86CPU
*cpu
)
1961 CPUX86State
*env
= &cpu
->env
;
1962 struct kvm_vcpu_events events
;
1965 if (!kvm_has_vcpu_events()) {
1969 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_VCPU_EVENTS
, &events
);
1973 env
->exception_injected
=
1974 events
.exception
.injected
? events
.exception
.nr
: -1;
1975 env
->has_error_code
= events
.exception
.has_error_code
;
1976 env
->error_code
= events
.exception
.error_code
;
1978 env
->interrupt_injected
=
1979 events
.interrupt
.injected
? events
.interrupt
.nr
: -1;
1980 env
->soft_interrupt
= events
.interrupt
.soft
;
1982 env
->nmi_injected
= events
.nmi
.injected
;
1983 env
->nmi_pending
= events
.nmi
.pending
;
1984 if (events
.nmi
.masked
) {
1985 env
->hflags2
|= HF2_NMI_MASK
;
1987 env
->hflags2
&= ~HF2_NMI_MASK
;
1990 env
->sipi_vector
= events
.sipi_vector
;
1995 static int kvm_guest_debug_workarounds(X86CPU
*cpu
)
1997 CPUState
*cs
= CPU(cpu
);
1998 CPUX86State
*env
= &cpu
->env
;
2000 unsigned long reinject_trap
= 0;
2002 if (!kvm_has_vcpu_events()) {
2003 if (env
->exception_injected
== 1) {
2004 reinject_trap
= KVM_GUESTDBG_INJECT_DB
;
2005 } else if (env
->exception_injected
== 3) {
2006 reinject_trap
= KVM_GUESTDBG_INJECT_BP
;
2008 env
->exception_injected
= -1;
2012 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
2013 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
2014 * by updating the debug state once again if single-stepping is on.
2015 * Another reason to call kvm_update_guest_debug here is a pending debug
2016 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
2017 * reinject them via SET_GUEST_DEBUG.
2019 if (reinject_trap
||
2020 (!kvm_has_robust_singlestep() && cs
->singlestep_enabled
)) {
2021 ret
= kvm_update_guest_debug(cs
, reinject_trap
);
2026 static int kvm_put_debugregs(X86CPU
*cpu
)
2028 CPUX86State
*env
= &cpu
->env
;
2029 struct kvm_debugregs dbgregs
;
2032 if (!kvm_has_debugregs()) {
2036 for (i
= 0; i
< 4; i
++) {
2037 dbgregs
.db
[i
] = env
->dr
[i
];
2039 dbgregs
.dr6
= env
->dr
[6];
2040 dbgregs
.dr7
= env
->dr
[7];
2043 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_DEBUGREGS
, &dbgregs
);
2046 static int kvm_get_debugregs(X86CPU
*cpu
)
2048 CPUX86State
*env
= &cpu
->env
;
2049 struct kvm_debugregs dbgregs
;
2052 if (!kvm_has_debugregs()) {
2056 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_DEBUGREGS
, &dbgregs
);
2060 for (i
= 0; i
< 4; i
++) {
2061 env
->dr
[i
] = dbgregs
.db
[i
];
2063 env
->dr
[4] = env
->dr
[6] = dbgregs
.dr6
;
2064 env
->dr
[5] = env
->dr
[7] = dbgregs
.dr7
;
2069 int kvm_arch_put_registers(CPUState
*cpu
, int level
)
2071 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2074 assert(cpu_is_stopped(cpu
) || qemu_cpu_is_self(cpu
));
2076 if (level
>= KVM_PUT_RESET_STATE
&& has_msr_feature_control
) {
2077 ret
= kvm_put_msr_feature_control(x86_cpu
);
2083 ret
= kvm_getput_regs(x86_cpu
, 1);
2087 ret
= kvm_put_xsave(x86_cpu
);
2091 ret
= kvm_put_xcrs(x86_cpu
);
2095 ret
= kvm_put_sregs(x86_cpu
);
2099 /* must be before kvm_put_msrs */
2100 ret
= kvm_inject_mce_oldstyle(x86_cpu
);
2104 ret
= kvm_put_msrs(x86_cpu
, level
);
2108 if (level
>= KVM_PUT_RESET_STATE
) {
2109 ret
= kvm_put_mp_state(x86_cpu
);
2113 ret
= kvm_put_apic(x86_cpu
);
2119 ret
= kvm_put_tscdeadline_msr(x86_cpu
);
2124 ret
= kvm_put_vcpu_events(x86_cpu
, level
);
2128 ret
= kvm_put_debugregs(x86_cpu
);
2133 ret
= kvm_guest_debug_workarounds(x86_cpu
);
2140 int kvm_arch_get_registers(CPUState
*cs
)
2142 X86CPU
*cpu
= X86_CPU(cs
);
2145 assert(cpu_is_stopped(cs
) || qemu_cpu_is_self(cs
));
2147 ret
= kvm_getput_regs(cpu
, 0);
2151 ret
= kvm_get_xsave(cpu
);
2155 ret
= kvm_get_xcrs(cpu
);
2159 ret
= kvm_get_sregs(cpu
);
2163 ret
= kvm_get_msrs(cpu
);
2167 ret
= kvm_get_mp_state(cpu
);
2171 ret
= kvm_get_apic(cpu
);
2175 ret
= kvm_get_vcpu_events(cpu
);
2179 ret
= kvm_get_debugregs(cpu
);
2186 void kvm_arch_pre_run(CPUState
*cpu
, struct kvm_run
*run
)
2188 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2189 CPUX86State
*env
= &x86_cpu
->env
;
2193 if (cpu
->interrupt_request
& CPU_INTERRUPT_NMI
) {
2194 cpu
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
2195 DPRINTF("injected NMI\n");
2196 ret
= kvm_vcpu_ioctl(cpu
, KVM_NMI
);
2198 fprintf(stderr
, "KVM: injection failed, NMI lost (%s)\n",
2203 /* Force the VCPU out of its inner loop to process any INIT requests
2204 * or (for userspace APIC, but it is cheap to combine the checks here)
2205 * pending TPR access reports.
2207 if (cpu
->interrupt_request
& (CPU_INTERRUPT_INIT
| CPU_INTERRUPT_TPR
)) {
2208 cpu
->exit_request
= 1;
2211 if (!kvm_irqchip_in_kernel()) {
2212 /* Try to inject an interrupt if the guest can accept it */
2213 if (run
->ready_for_interrupt_injection
&&
2214 (cpu
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2215 (env
->eflags
& IF_MASK
)) {
2218 cpu
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
2219 irq
= cpu_get_pic_interrupt(env
);
2221 struct kvm_interrupt intr
;
2224 DPRINTF("injected interrupt %d\n", irq
);
2225 ret
= kvm_vcpu_ioctl(cpu
, KVM_INTERRUPT
, &intr
);
2228 "KVM: injection failed, interrupt lost (%s)\n",
2234 /* If we have an interrupt but the guest is not ready to receive an
2235 * interrupt, request an interrupt window exit. This will
2236 * cause a return to userspace as soon as the guest is ready to
2237 * receive interrupts. */
2238 if ((cpu
->interrupt_request
& CPU_INTERRUPT_HARD
)) {
2239 run
->request_interrupt_window
= 1;
2241 run
->request_interrupt_window
= 0;
2244 DPRINTF("setting tpr\n");
2245 run
->cr8
= cpu_get_apic_tpr(x86_cpu
->apic_state
);
2249 void kvm_arch_post_run(CPUState
*cpu
, struct kvm_run
*run
)
2251 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2252 CPUX86State
*env
= &x86_cpu
->env
;
2255 env
->eflags
|= IF_MASK
;
2257 env
->eflags
&= ~IF_MASK
;
2259 cpu_set_apic_tpr(x86_cpu
->apic_state
, run
->cr8
);
2260 cpu_set_apic_base(x86_cpu
->apic_state
, run
->apic_base
);
2263 int kvm_arch_process_async_events(CPUState
*cs
)
2265 X86CPU
*cpu
= X86_CPU(cs
);
2266 CPUX86State
*env
= &cpu
->env
;
2268 if (cs
->interrupt_request
& CPU_INTERRUPT_MCE
) {
2269 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
2270 assert(env
->mcg_cap
);
2272 cs
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
2274 kvm_cpu_synchronize_state(cs
);
2276 if (env
->exception_injected
== EXCP08_DBLE
) {
2277 /* this means triple fault */
2278 qemu_system_reset_request();
2279 cs
->exit_request
= 1;
2282 env
->exception_injected
= EXCP12_MCHK
;
2283 env
->has_error_code
= 0;
2286 if (kvm_irqchip_in_kernel() && env
->mp_state
== KVM_MP_STATE_HALTED
) {
2287 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
2291 if (cs
->interrupt_request
& CPU_INTERRUPT_INIT
) {
2292 kvm_cpu_synchronize_state(cs
);
2296 if (kvm_irqchip_in_kernel()) {
2300 if (cs
->interrupt_request
& CPU_INTERRUPT_POLL
) {
2301 cs
->interrupt_request
&= ~CPU_INTERRUPT_POLL
;
2302 apic_poll_irq(cpu
->apic_state
);
2304 if (((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2305 (env
->eflags
& IF_MASK
)) ||
2306 (cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
2309 if (cs
->interrupt_request
& CPU_INTERRUPT_SIPI
) {
2310 kvm_cpu_synchronize_state(cs
);
2313 if (cs
->interrupt_request
& CPU_INTERRUPT_TPR
) {
2314 cs
->interrupt_request
&= ~CPU_INTERRUPT_TPR
;
2315 kvm_cpu_synchronize_state(cs
);
2316 apic_handle_tpr_access_report(cpu
->apic_state
, env
->eip
,
2317 env
->tpr_access_type
);
2323 static int kvm_handle_halt(X86CPU
*cpu
)
2325 CPUState
*cs
= CPU(cpu
);
2326 CPUX86State
*env
= &cpu
->env
;
2328 if (!((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2329 (env
->eflags
& IF_MASK
)) &&
2330 !(cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
2338 static int kvm_handle_tpr_access(X86CPU
*cpu
)
2340 CPUState
*cs
= CPU(cpu
);
2341 struct kvm_run
*run
= cs
->kvm_run
;
2343 apic_handle_tpr_access_report(cpu
->apic_state
, run
->tpr_access
.rip
,
2344 run
->tpr_access
.is_write
? TPR_ACCESS_WRITE
2349 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
2351 static const uint8_t int3
= 0xcc;
2353 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 0) ||
2354 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&int3
, 1, 1)) {
2360 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
2364 if (cpu_memory_rw_debug(cs
, bp
->pc
, &int3
, 1, 0) || int3
!= 0xcc ||
2365 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 1)) {
2377 static int nb_hw_breakpoint
;
2379 static int find_hw_breakpoint(target_ulong addr
, int len
, int type
)
2383 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
2384 if (hw_breakpoint
[n
].addr
== addr
&& hw_breakpoint
[n
].type
== type
&&
2385 (hw_breakpoint
[n
].len
== len
|| len
== -1)) {
2392 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
2393 target_ulong len
, int type
)
2396 case GDB_BREAKPOINT_HW
:
2399 case GDB_WATCHPOINT_WRITE
:
2400 case GDB_WATCHPOINT_ACCESS
:
2407 if (addr
& (len
- 1)) {
2419 if (nb_hw_breakpoint
== 4) {
2422 if (find_hw_breakpoint(addr
, len
, type
) >= 0) {
2425 hw_breakpoint
[nb_hw_breakpoint
].addr
= addr
;
2426 hw_breakpoint
[nb_hw_breakpoint
].len
= len
;
2427 hw_breakpoint
[nb_hw_breakpoint
].type
= type
;
2433 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
2434 target_ulong len
, int type
)
2438 n
= find_hw_breakpoint(addr
, (type
== GDB_BREAKPOINT_HW
) ? 1 : len
, type
);
2443 hw_breakpoint
[n
] = hw_breakpoint
[nb_hw_breakpoint
];
2448 void kvm_arch_remove_all_hw_breakpoints(void)
2450 nb_hw_breakpoint
= 0;
2453 static CPUWatchpoint hw_watchpoint
;
2455 static int kvm_handle_debug(X86CPU
*cpu
,
2456 struct kvm_debug_exit_arch
*arch_info
)
2458 CPUState
*cs
= CPU(cpu
);
2459 CPUX86State
*env
= &cpu
->env
;
2463 if (arch_info
->exception
== 1) {
2464 if (arch_info
->dr6
& (1 << 14)) {
2465 if (cs
->singlestep_enabled
) {
2469 for (n
= 0; n
< 4; n
++) {
2470 if (arch_info
->dr6
& (1 << n
)) {
2471 switch ((arch_info
->dr7
>> (16 + n
*4)) & 0x3) {
2477 cs
->watchpoint_hit
= &hw_watchpoint
;
2478 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
2479 hw_watchpoint
.flags
= BP_MEM_WRITE
;
2483 cs
->watchpoint_hit
= &hw_watchpoint
;
2484 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
2485 hw_watchpoint
.flags
= BP_MEM_ACCESS
;
2491 } else if (kvm_find_sw_breakpoint(cs
, arch_info
->pc
)) {
2495 cpu_synchronize_state(cs
);
2496 assert(env
->exception_injected
== -1);
2499 env
->exception_injected
= arch_info
->exception
;
2500 env
->has_error_code
= 0;
2506 void kvm_arch_update_guest_debug(CPUState
*cpu
, struct kvm_guest_debug
*dbg
)
2508 const uint8_t type_code
[] = {
2509 [GDB_BREAKPOINT_HW
] = 0x0,
2510 [GDB_WATCHPOINT_WRITE
] = 0x1,
2511 [GDB_WATCHPOINT_ACCESS
] = 0x3
2513 const uint8_t len_code
[] = {
2514 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2518 if (kvm_sw_breakpoints_active(cpu
)) {
2519 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
2521 if (nb_hw_breakpoint
> 0) {
2522 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
2523 dbg
->arch
.debugreg
[7] = 0x0600;
2524 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
2525 dbg
->arch
.debugreg
[n
] = hw_breakpoint
[n
].addr
;
2526 dbg
->arch
.debugreg
[7] |= (2 << (n
* 2)) |
2527 (type_code
[hw_breakpoint
[n
].type
] << (16 + n
*4)) |
2528 ((uint32_t)len_code
[hw_breakpoint
[n
].len
] << (18 + n
*4));
2533 static bool host_supports_vmx(void)
2535 uint32_t ecx
, unused
;
2537 host_cpuid(1, 0, &unused
, &unused
, &ecx
, &unused
);
2538 return ecx
& CPUID_EXT_VMX
;
2541 #define VMX_INVALID_GUEST_STATE 0x80000021
2543 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
2545 X86CPU
*cpu
= X86_CPU(cs
);
2549 switch (run
->exit_reason
) {
2551 DPRINTF("handle_hlt\n");
2552 ret
= kvm_handle_halt(cpu
);
2554 case KVM_EXIT_SET_TPR
:
2557 case KVM_EXIT_TPR_ACCESS
:
2558 ret
= kvm_handle_tpr_access(cpu
);
2560 case KVM_EXIT_FAIL_ENTRY
:
2561 code
= run
->fail_entry
.hardware_entry_failure_reason
;
2562 fprintf(stderr
, "KVM: entry failed, hardware error 0x%" PRIx64
"\n",
2564 if (host_supports_vmx() && code
== VMX_INVALID_GUEST_STATE
) {
2566 "\nIf you're running a guest on an Intel machine without "
2567 "unrestricted mode\n"
2568 "support, the failure can be most likely due to the guest "
2569 "entering an invalid\n"
2570 "state for Intel VT. For example, the guest maybe running "
2571 "in big real mode\n"
2572 "which is not supported on less recent Intel processors."
2577 case KVM_EXIT_EXCEPTION
:
2578 fprintf(stderr
, "KVM: exception %d exit (error code 0x%x)\n",
2579 run
->ex
.exception
, run
->ex
.error_code
);
2582 case KVM_EXIT_DEBUG
:
2583 DPRINTF("kvm_exit_debug\n");
2584 ret
= kvm_handle_debug(cpu
, &run
->debug
.arch
);
2587 fprintf(stderr
, "KVM: unknown exit reason %d\n", run
->exit_reason
);
2595 bool kvm_arch_stop_on_emulation_error(CPUState
*cs
)
2597 X86CPU
*cpu
= X86_CPU(cs
);
2598 CPUX86State
*env
= &cpu
->env
;
2600 kvm_cpu_synchronize_state(cs
);
2601 return !(env
->cr
[0] & CR0_PE_MASK
) ||
2602 ((env
->segs
[R_CS
].selector
& 3) != 3);
2605 void kvm_arch_init_irq_routing(KVMState
*s
)
2607 if (!kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
)) {
2608 /* If kernel can't do irq routing, interrupt source
2609 * override 0->2 cannot be set up as required by HPET.
2610 * So we have to disable it.
2614 /* We know at this point that we're using the in-kernel
2615 * irqchip, so we can use irqfds, and on x86 we know
2616 * we can use msi via irqfd and GSI routing.
2618 kvm_msi_via_irqfd_allowed
= true;
2619 kvm_gsi_routing_allowed
= true;
2622 /* Classic KVM device assignment interface. Will remain x86 only. */
2623 int kvm_device_pci_assign(KVMState
*s
, PCIHostDeviceAddress
*dev_addr
,
2624 uint32_t flags
, uint32_t *dev_id
)
2626 struct kvm_assigned_pci_dev dev_data
= {
2627 .segnr
= dev_addr
->domain
,
2628 .busnr
= dev_addr
->bus
,
2629 .devfn
= PCI_DEVFN(dev_addr
->slot
, dev_addr
->function
),
2634 dev_data
.assigned_dev_id
=
2635 (dev_addr
->domain
<< 16) | (dev_addr
->bus
<< 8) | dev_data
.devfn
;
2637 ret
= kvm_vm_ioctl(s
, KVM_ASSIGN_PCI_DEVICE
, &dev_data
);
2642 *dev_id
= dev_data
.assigned_dev_id
;
2647 int kvm_device_pci_deassign(KVMState
*s
, uint32_t dev_id
)
2649 struct kvm_assigned_pci_dev dev_data
= {
2650 .assigned_dev_id
= dev_id
,
2653 return kvm_vm_ioctl(s
, KVM_DEASSIGN_PCI_DEVICE
, &dev_data
);
2656 static int kvm_assign_irq_internal(KVMState
*s
, uint32_t dev_id
,
2657 uint32_t irq_type
, uint32_t guest_irq
)
2659 struct kvm_assigned_irq assigned_irq
= {
2660 .assigned_dev_id
= dev_id
,
2661 .guest_irq
= guest_irq
,
2665 if (kvm_check_extension(s
, KVM_CAP_ASSIGN_DEV_IRQ
)) {
2666 return kvm_vm_ioctl(s
, KVM_ASSIGN_DEV_IRQ
, &assigned_irq
);
2668 return kvm_vm_ioctl(s
, KVM_ASSIGN_IRQ
, &assigned_irq
);
2672 int kvm_device_intx_assign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
,
2675 uint32_t irq_type
= KVM_DEV_IRQ_GUEST_INTX
|
2676 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
);
2678 return kvm_assign_irq_internal(s
, dev_id
, irq_type
, guest_irq
);
2681 int kvm_device_intx_set_mask(KVMState
*s
, uint32_t dev_id
, bool masked
)
2683 struct kvm_assigned_pci_dev dev_data
= {
2684 .assigned_dev_id
= dev_id
,
2685 .flags
= masked
? KVM_DEV_ASSIGN_MASK_INTX
: 0,
2688 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_INTX_MASK
, &dev_data
);
2691 static int kvm_deassign_irq_internal(KVMState
*s
, uint32_t dev_id
,
2694 struct kvm_assigned_irq assigned_irq
= {
2695 .assigned_dev_id
= dev_id
,
2699 return kvm_vm_ioctl(s
, KVM_DEASSIGN_DEV_IRQ
, &assigned_irq
);
2702 int kvm_device_intx_deassign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
)
2704 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_INTX
|
2705 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
));
2708 int kvm_device_msi_assign(KVMState
*s
, uint32_t dev_id
, int virq
)
2710 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSI
|
2711 KVM_DEV_IRQ_GUEST_MSI
, virq
);
2714 int kvm_device_msi_deassign(KVMState
*s
, uint32_t dev_id
)
2716 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSI
|
2717 KVM_DEV_IRQ_HOST_MSI
);
2720 bool kvm_device_msix_supported(KVMState
*s
)
2722 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2723 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2724 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, NULL
) == -EFAULT
;
2727 int kvm_device_msix_init_vectors(KVMState
*s
, uint32_t dev_id
,
2728 uint32_t nr_vectors
)
2730 struct kvm_assigned_msix_nr msix_nr
= {
2731 .assigned_dev_id
= dev_id
,
2732 .entry_nr
= nr_vectors
,
2735 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, &msix_nr
);
2738 int kvm_device_msix_set_vector(KVMState
*s
, uint32_t dev_id
, uint32_t vector
,
2741 struct kvm_assigned_msix_entry msix_entry
= {
2742 .assigned_dev_id
= dev_id
,
2747 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_ENTRY
, &msix_entry
);
2750 int kvm_device_msix_assign(KVMState
*s
, uint32_t dev_id
)
2752 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSIX
|
2753 KVM_DEV_IRQ_GUEST_MSIX
, 0);
2756 int kvm_device_msix_deassign(KVMState
*s
, uint32_t dev_id
)
2758 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSIX
|
2759 KVM_DEV_IRQ_HOST_MSIX
);
2762 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
2763 uint64_t address
, uint32_t data
)