VMDK: separate vmdk_read_extent/vmdk_write_extent
[qemu/cris-port.git] / hw / i8254.c
bloba9ca9f6f185a32d0bad9541c6906c462f253a79c
1 /*
2 * QEMU 8253/8254 interval timer emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "pc.h"
26 #include "isa.h"
27 #include "qemu-timer.h"
29 //#define DEBUG_PIT
31 #define RW_STATE_LSB 1
32 #define RW_STATE_MSB 2
33 #define RW_STATE_WORD0 3
34 #define RW_STATE_WORD1 4
36 typedef struct PITChannelState {
37 int count; /* can be 65536 */
38 uint16_t latched_count;
39 uint8_t count_latched;
40 uint8_t status_latched;
41 uint8_t status;
42 uint8_t read_state;
43 uint8_t write_state;
44 uint8_t write_latch;
45 uint8_t rw_mode;
46 uint8_t mode;
47 uint8_t bcd; /* not supported */
48 uint8_t gate; /* timer start */
49 int64_t count_load_time;
50 /* irq handling */
51 int64_t next_transition_time;
52 QEMUTimer *irq_timer;
53 qemu_irq irq;
54 } PITChannelState;
56 typedef struct PITState {
57 ISADevice dev;
58 uint32_t irq;
59 uint32_t iobase;
60 PITChannelState channels[3];
61 } PITState;
63 static PITState pit_state;
65 static void pit_irq_timer_update(PITChannelState *s, int64_t current_time);
67 static int pit_get_count(PITChannelState *s)
69 uint64_t d;
70 int counter;
72 d = muldiv64(qemu_get_clock_ns(vm_clock) - s->count_load_time, PIT_FREQ,
73 get_ticks_per_sec());
74 switch(s->mode) {
75 case 0:
76 case 1:
77 case 4:
78 case 5:
79 counter = (s->count - d) & 0xffff;
80 break;
81 case 3:
82 /* XXX: may be incorrect for odd counts */
83 counter = s->count - ((2 * d) % s->count);
84 break;
85 default:
86 counter = s->count - (d % s->count);
87 break;
89 return counter;
92 /* get pit output bit */
93 static int pit_get_out1(PITChannelState *s, int64_t current_time)
95 uint64_t d;
96 int out;
98 d = muldiv64(current_time - s->count_load_time, PIT_FREQ,
99 get_ticks_per_sec());
100 switch(s->mode) {
101 default:
102 case 0:
103 out = (d >= s->count);
104 break;
105 case 1:
106 out = (d < s->count);
107 break;
108 case 2:
109 if ((d % s->count) == 0 && d != 0)
110 out = 1;
111 else
112 out = 0;
113 break;
114 case 3:
115 out = (d % s->count) < ((s->count + 1) >> 1);
116 break;
117 case 4:
118 case 5:
119 out = (d == s->count);
120 break;
122 return out;
125 int pit_get_out(ISADevice *dev, int channel, int64_t current_time)
127 PITState *pit = DO_UPCAST(PITState, dev, dev);
128 PITChannelState *s = &pit->channels[channel];
129 return pit_get_out1(s, current_time);
132 /* return -1 if no transition will occur. */
133 static int64_t pit_get_next_transition_time(PITChannelState *s,
134 int64_t current_time)
136 uint64_t d, next_time, base;
137 int period2;
139 d = muldiv64(current_time - s->count_load_time, PIT_FREQ,
140 get_ticks_per_sec());
141 switch(s->mode) {
142 default:
143 case 0:
144 case 1:
145 if (d < s->count)
146 next_time = s->count;
147 else
148 return -1;
149 break;
150 case 2:
151 base = (d / s->count) * s->count;
152 if ((d - base) == 0 && d != 0)
153 next_time = base + s->count;
154 else
155 next_time = base + s->count + 1;
156 break;
157 case 3:
158 base = (d / s->count) * s->count;
159 period2 = ((s->count + 1) >> 1);
160 if ((d - base) < period2)
161 next_time = base + period2;
162 else
163 next_time = base + s->count;
164 break;
165 case 4:
166 case 5:
167 if (d < s->count)
168 next_time = s->count;
169 else if (d == s->count)
170 next_time = s->count + 1;
171 else
172 return -1;
173 break;
175 /* convert to timer units */
176 next_time = s->count_load_time + muldiv64(next_time, get_ticks_per_sec(),
177 PIT_FREQ);
178 /* fix potential rounding problems */
179 /* XXX: better solution: use a clock at PIT_FREQ Hz */
180 if (next_time <= current_time)
181 next_time = current_time + 1;
182 return next_time;
185 /* val must be 0 or 1 */
186 void pit_set_gate(ISADevice *dev, int channel, int val)
188 PITState *pit = DO_UPCAST(PITState, dev, dev);
189 PITChannelState *s = &pit->channels[channel];
191 switch(s->mode) {
192 default:
193 case 0:
194 case 4:
195 /* XXX: just disable/enable counting */
196 break;
197 case 1:
198 case 5:
199 if (s->gate < val) {
200 /* restart counting on rising edge */
201 s->count_load_time = qemu_get_clock_ns(vm_clock);
202 pit_irq_timer_update(s, s->count_load_time);
204 break;
205 case 2:
206 case 3:
207 if (s->gate < val) {
208 /* restart counting on rising edge */
209 s->count_load_time = qemu_get_clock_ns(vm_clock);
210 pit_irq_timer_update(s, s->count_load_time);
212 /* XXX: disable/enable counting */
213 break;
215 s->gate = val;
218 int pit_get_gate(ISADevice *dev, int channel)
220 PITState *pit = DO_UPCAST(PITState, dev, dev);
221 PITChannelState *s = &pit->channels[channel];
222 return s->gate;
225 int pit_get_initial_count(ISADevice *dev, int channel)
227 PITState *pit = DO_UPCAST(PITState, dev, dev);
228 PITChannelState *s = &pit->channels[channel];
229 return s->count;
232 int pit_get_mode(ISADevice *dev, int channel)
234 PITState *pit = DO_UPCAST(PITState, dev, dev);
235 PITChannelState *s = &pit->channels[channel];
236 return s->mode;
239 static inline void pit_load_count(PITChannelState *s, int val)
241 if (val == 0)
242 val = 0x10000;
243 s->count_load_time = qemu_get_clock_ns(vm_clock);
244 s->count = val;
245 pit_irq_timer_update(s, s->count_load_time);
248 /* if already latched, do not latch again */
249 static void pit_latch_count(PITChannelState *s)
251 if (!s->count_latched) {
252 s->latched_count = pit_get_count(s);
253 s->count_latched = s->rw_mode;
257 static void pit_ioport_write(void *opaque, uint32_t addr, uint32_t val)
259 PITState *pit = opaque;
260 int channel, access;
261 PITChannelState *s;
263 addr &= 3;
264 if (addr == 3) {
265 channel = val >> 6;
266 if (channel == 3) {
267 /* read back command */
268 for(channel = 0; channel < 3; channel++) {
269 s = &pit->channels[channel];
270 if (val & (2 << channel)) {
271 if (!(val & 0x20)) {
272 pit_latch_count(s);
274 if (!(val & 0x10) && !s->status_latched) {
275 /* status latch */
276 /* XXX: add BCD and null count */
277 s->status = (pit_get_out1(s, qemu_get_clock_ns(vm_clock)) << 7) |
278 (s->rw_mode << 4) |
279 (s->mode << 1) |
280 s->bcd;
281 s->status_latched = 1;
285 } else {
286 s = &pit->channels[channel];
287 access = (val >> 4) & 3;
288 if (access == 0) {
289 pit_latch_count(s);
290 } else {
291 s->rw_mode = access;
292 s->read_state = access;
293 s->write_state = access;
295 s->mode = (val >> 1) & 7;
296 s->bcd = val & 1;
297 /* XXX: update irq timer ? */
300 } else {
301 s = &pit->channels[addr];
302 switch(s->write_state) {
303 default:
304 case RW_STATE_LSB:
305 pit_load_count(s, val);
306 break;
307 case RW_STATE_MSB:
308 pit_load_count(s, val << 8);
309 break;
310 case RW_STATE_WORD0:
311 s->write_latch = val;
312 s->write_state = RW_STATE_WORD1;
313 break;
314 case RW_STATE_WORD1:
315 pit_load_count(s, s->write_latch | (val << 8));
316 s->write_state = RW_STATE_WORD0;
317 break;
322 static uint32_t pit_ioport_read(void *opaque, uint32_t addr)
324 PITState *pit = opaque;
325 int ret, count;
326 PITChannelState *s;
328 addr &= 3;
329 s = &pit->channels[addr];
330 if (s->status_latched) {
331 s->status_latched = 0;
332 ret = s->status;
333 } else if (s->count_latched) {
334 switch(s->count_latched) {
335 default:
336 case RW_STATE_LSB:
337 ret = s->latched_count & 0xff;
338 s->count_latched = 0;
339 break;
340 case RW_STATE_MSB:
341 ret = s->latched_count >> 8;
342 s->count_latched = 0;
343 break;
344 case RW_STATE_WORD0:
345 ret = s->latched_count & 0xff;
346 s->count_latched = RW_STATE_MSB;
347 break;
349 } else {
350 switch(s->read_state) {
351 default:
352 case RW_STATE_LSB:
353 count = pit_get_count(s);
354 ret = count & 0xff;
355 break;
356 case RW_STATE_MSB:
357 count = pit_get_count(s);
358 ret = (count >> 8) & 0xff;
359 break;
360 case RW_STATE_WORD0:
361 count = pit_get_count(s);
362 ret = count & 0xff;
363 s->read_state = RW_STATE_WORD1;
364 break;
365 case RW_STATE_WORD1:
366 count = pit_get_count(s);
367 ret = (count >> 8) & 0xff;
368 s->read_state = RW_STATE_WORD0;
369 break;
372 return ret;
375 static void pit_irq_timer_update(PITChannelState *s, int64_t current_time)
377 int64_t expire_time;
378 int irq_level;
380 if (!s->irq_timer)
381 return;
382 expire_time = pit_get_next_transition_time(s, current_time);
383 irq_level = pit_get_out1(s, current_time);
384 qemu_set_irq(s->irq, irq_level);
385 #ifdef DEBUG_PIT
386 printf("irq_level=%d next_delay=%f\n",
387 irq_level,
388 (double)(expire_time - current_time) / get_ticks_per_sec());
389 #endif
390 s->next_transition_time = expire_time;
391 if (expire_time != -1)
392 qemu_mod_timer(s->irq_timer, expire_time);
393 else
394 qemu_del_timer(s->irq_timer);
397 static void pit_irq_timer(void *opaque)
399 PITChannelState *s = opaque;
401 pit_irq_timer_update(s, s->next_transition_time);
404 static const VMStateDescription vmstate_pit_channel = {
405 .name = "pit channel",
406 .version_id = 2,
407 .minimum_version_id = 2,
408 .minimum_version_id_old = 2,
409 .fields = (VMStateField []) {
410 VMSTATE_INT32(count, PITChannelState),
411 VMSTATE_UINT16(latched_count, PITChannelState),
412 VMSTATE_UINT8(count_latched, PITChannelState),
413 VMSTATE_UINT8(status_latched, PITChannelState),
414 VMSTATE_UINT8(status, PITChannelState),
415 VMSTATE_UINT8(read_state, PITChannelState),
416 VMSTATE_UINT8(write_state, PITChannelState),
417 VMSTATE_UINT8(write_latch, PITChannelState),
418 VMSTATE_UINT8(rw_mode, PITChannelState),
419 VMSTATE_UINT8(mode, PITChannelState),
420 VMSTATE_UINT8(bcd, PITChannelState),
421 VMSTATE_UINT8(gate, PITChannelState),
422 VMSTATE_INT64(count_load_time, PITChannelState),
423 VMSTATE_INT64(next_transition_time, PITChannelState),
424 VMSTATE_END_OF_LIST()
428 static int pit_load_old(QEMUFile *f, void *opaque, int version_id)
430 PITState *pit = opaque;
431 PITChannelState *s;
432 int i;
434 if (version_id != 1)
435 return -EINVAL;
437 for(i = 0; i < 3; i++) {
438 s = &pit->channels[i];
439 s->count=qemu_get_be32(f);
440 qemu_get_be16s(f, &s->latched_count);
441 qemu_get_8s(f, &s->count_latched);
442 qemu_get_8s(f, &s->status_latched);
443 qemu_get_8s(f, &s->status);
444 qemu_get_8s(f, &s->read_state);
445 qemu_get_8s(f, &s->write_state);
446 qemu_get_8s(f, &s->write_latch);
447 qemu_get_8s(f, &s->rw_mode);
448 qemu_get_8s(f, &s->mode);
449 qemu_get_8s(f, &s->bcd);
450 qemu_get_8s(f, &s->gate);
451 s->count_load_time=qemu_get_be64(f);
452 if (s->irq_timer) {
453 s->next_transition_time=qemu_get_be64(f);
454 qemu_get_timer(f, s->irq_timer);
457 return 0;
460 static const VMStateDescription vmstate_pit = {
461 .name = "i8254",
462 .version_id = 2,
463 .minimum_version_id = 2,
464 .minimum_version_id_old = 1,
465 .load_state_old = pit_load_old,
466 .fields = (VMStateField []) {
467 VMSTATE_STRUCT_ARRAY(channels, PITState, 3, 2, vmstate_pit_channel, PITChannelState),
468 VMSTATE_TIMER(channels[0].irq_timer, PITState),
469 VMSTATE_END_OF_LIST()
473 static void pit_reset(DeviceState *dev)
475 PITState *pit = container_of(dev, PITState, dev.qdev);
476 PITChannelState *s;
477 int i;
479 for(i = 0;i < 3; i++) {
480 s = &pit->channels[i];
481 s->mode = 3;
482 s->gate = (i != 2);
483 pit_load_count(s, 0);
487 /* When HPET is operating in legacy mode, i8254 timer0 is disabled */
488 void hpet_pit_disable(void) {
489 PITChannelState *s;
490 s = &pit_state.channels[0];
491 if (s->irq_timer)
492 qemu_del_timer(s->irq_timer);
495 /* When HPET is reset or leaving legacy mode, it must reenable i8254
496 * timer 0
499 void hpet_pit_enable(void)
501 PITState *pit = &pit_state;
502 PITChannelState *s;
503 s = &pit->channels[0];
504 s->mode = 3;
505 s->gate = 1;
506 pit_load_count(s, 0);
509 static int pit_initfn(ISADevice *dev)
511 PITState *pit = DO_UPCAST(PITState, dev, dev);
512 PITChannelState *s;
514 s = &pit->channels[0];
515 /* the timer 0 is connected to an IRQ */
516 s->irq_timer = qemu_new_timer_ns(vm_clock, pit_irq_timer, s);
517 s->irq = isa_get_irq(pit->irq);
519 register_ioport_write(pit->iobase, 4, 1, pit_ioport_write, pit);
520 register_ioport_read(pit->iobase, 3, 1, pit_ioport_read, pit);
521 isa_init_ioport(dev, pit->iobase);
523 qdev_set_legacy_instance_id(&dev->qdev, pit->iobase, 2);
525 return 0;
528 static ISADeviceInfo pit_info = {
529 .qdev.name = "isa-pit",
530 .qdev.size = sizeof(PITState),
531 .qdev.vmsd = &vmstate_pit,
532 .qdev.reset = pit_reset,
533 .qdev.no_user = 1,
534 .init = pit_initfn,
535 .qdev.props = (Property[]) {
536 DEFINE_PROP_UINT32("irq", PITState, irq, -1),
537 DEFINE_PROP_HEX32("iobase", PITState, iobase, -1),
538 DEFINE_PROP_END_OF_LIST(),
542 static void pit_register(void)
544 isa_qdev_register(&pit_info);
546 device_init(pit_register)