xen-hvm: Clean up xen_hvm_init() error handling
[qemu/cris-port.git] / xen-hvm.c
blobcb7128cca3a674d5b7226ae49b2fa72ac2cee01c
1 /*
2 * Copyright (C) 2010 Citrix Ltd.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
7 * Contributions after 2012-01-13 are licensed under the terms of the
8 * GNU GPL, version 2 or (at your option) any later version.
9 */
11 #include <sys/mman.h>
13 #include "hw/pci/pci.h"
14 #include "hw/i386/pc.h"
15 #include "hw/xen/xen_common.h"
16 #include "hw/xen/xen_backend.h"
17 #include "qmp-commands.h"
19 #include "sysemu/char.h"
20 #include "qemu/error-report.h"
21 #include "qemu/range.h"
22 #include "sysemu/xen-mapcache.h"
23 #include "trace.h"
24 #include "exec/address-spaces.h"
26 #include <xen/hvm/ioreq.h>
27 #include <xen/hvm/params.h>
28 #include <xen/hvm/e820.h>
30 //#define DEBUG_XEN_HVM
32 #ifdef DEBUG_XEN_HVM
33 #define DPRINTF(fmt, ...) \
34 do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0)
35 #else
36 #define DPRINTF(fmt, ...) \
37 do { } while (0)
38 #endif
40 static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi;
41 static MemoryRegion *framebuffer;
42 static bool xen_in_migration;
44 /* Compatibility with older version */
46 /* This allows QEMU to build on a system that has Xen 4.5 or earlier
47 * installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h
48 * needs to be included before this block and hw/xen/xen_common.h needs to
49 * be included before xen/hvm/ioreq.h
51 #ifndef IOREQ_TYPE_VMWARE_PORT
52 #define IOREQ_TYPE_VMWARE_PORT 3
53 struct vmware_regs {
54 uint32_t esi;
55 uint32_t edi;
56 uint32_t ebx;
57 uint32_t ecx;
58 uint32_t edx;
60 typedef struct vmware_regs vmware_regs_t;
62 struct shared_vmport_iopage {
63 struct vmware_regs vcpu_vmport_regs[1];
65 typedef struct shared_vmport_iopage shared_vmport_iopage_t;
66 #endif
68 #if __XEN_LATEST_INTERFACE_VERSION__ < 0x0003020a
69 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i)
71 return shared_page->vcpu_iodata[i].vp_eport;
73 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu)
75 return &shared_page->vcpu_iodata[vcpu].vp_ioreq;
77 # define FMT_ioreq_size PRIx64
78 #else
79 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i)
81 return shared_page->vcpu_ioreq[i].vp_eport;
83 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu)
85 return &shared_page->vcpu_ioreq[vcpu];
87 # define FMT_ioreq_size "u"
88 #endif
90 #define BUFFER_IO_MAX_DELAY 100
92 typedef struct XenPhysmap {
93 hwaddr start_addr;
94 ram_addr_t size;
95 const char *name;
96 hwaddr phys_offset;
98 QLIST_ENTRY(XenPhysmap) list;
99 } XenPhysmap;
101 typedef struct XenIOState {
102 ioservid_t ioservid;
103 shared_iopage_t *shared_page;
104 shared_vmport_iopage_t *shared_vmport_page;
105 buffered_iopage_t *buffered_io_page;
106 QEMUTimer *buffered_io_timer;
107 CPUState **cpu_by_vcpu_id;
108 /* the evtchn port for polling the notification, */
109 evtchn_port_t *ioreq_local_port;
110 /* evtchn local port for buffered io */
111 evtchn_port_t bufioreq_local_port;
112 /* the evtchn fd for polling */
113 XenEvtchn xce_handle;
114 /* which vcpu we are serving */
115 int send_vcpu;
117 struct xs_handle *xenstore;
118 MemoryListener memory_listener;
119 MemoryListener io_listener;
120 DeviceListener device_listener;
121 QLIST_HEAD(, XenPhysmap) physmap;
122 hwaddr free_phys_offset;
123 const XenPhysmap *log_for_dirtybit;
125 Notifier exit;
126 Notifier suspend;
127 Notifier wakeup;
128 } XenIOState;
130 /* Xen specific function for piix pci */
132 int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
134 return irq_num + ((pci_dev->devfn >> 3) << 2);
137 void xen_piix3_set_irq(void *opaque, int irq_num, int level)
139 xc_hvm_set_pci_intx_level(xen_xc, xen_domid, 0, 0, irq_num >> 2,
140 irq_num & 3, level);
143 void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len)
145 int i;
147 /* Scan for updates to PCI link routes (0x60-0x63). */
148 for (i = 0; i < len; i++) {
149 uint8_t v = (val >> (8 * i)) & 0xff;
150 if (v & 0x80) {
151 v = 0;
153 v &= 0xf;
154 if (((address + i) >= 0x60) && ((address + i) <= 0x63)) {
155 xc_hvm_set_pci_link_route(xen_xc, xen_domid, address + i - 0x60, v);
160 void xen_hvm_inject_msi(uint64_t addr, uint32_t data)
162 xen_xc_hvm_inject_msi(xen_xc, xen_domid, addr, data);
165 static void xen_suspend_notifier(Notifier *notifier, void *data)
167 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3);
170 /* Xen Interrupt Controller */
172 static void xen_set_irq(void *opaque, int irq, int level)
174 xc_hvm_set_isa_irq_level(xen_xc, xen_domid, irq, level);
177 qemu_irq *xen_interrupt_controller_init(void)
179 return qemu_allocate_irqs(xen_set_irq, NULL, 16);
182 /* Memory Ops */
184 static void xen_ram_init(PCMachineState *pcms,
185 ram_addr_t ram_size, MemoryRegion **ram_memory_p)
187 MemoryRegion *sysmem = get_system_memory();
188 ram_addr_t block_len;
189 uint64_t user_lowmem = object_property_get_int(qdev_get_machine(),
190 PC_MACHINE_MAX_RAM_BELOW_4G,
191 &error_abort);
193 /* Handle the machine opt max-ram-below-4g. It is basically doing
194 * min(xen limit, user limit).
196 if (HVM_BELOW_4G_RAM_END <= user_lowmem) {
197 user_lowmem = HVM_BELOW_4G_RAM_END;
200 if (ram_size >= user_lowmem) {
201 pcms->above_4g_mem_size = ram_size - user_lowmem;
202 pcms->below_4g_mem_size = user_lowmem;
203 } else {
204 pcms->above_4g_mem_size = 0;
205 pcms->below_4g_mem_size = ram_size;
207 if (!pcms->above_4g_mem_size) {
208 block_len = ram_size;
209 } else {
211 * Xen does not allocate the memory continuously, it keeps a
212 * hole of the size computed above or passed in.
214 block_len = (1ULL << 32) + pcms->above_4g_mem_size;
216 memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len,
217 &error_fatal);
218 *ram_memory_p = &ram_memory;
219 vmstate_register_ram_global(&ram_memory);
221 memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k",
222 &ram_memory, 0, 0xa0000);
223 memory_region_add_subregion(sysmem, 0, &ram_640k);
224 /* Skip of the VGA IO memory space, it will be registered later by the VGA
225 * emulated device.
227 * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load
228 * the Options ROM, so it is registered here as RAM.
230 memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo",
231 &ram_memory, 0xc0000,
232 pcms->below_4g_mem_size - 0xc0000);
233 memory_region_add_subregion(sysmem, 0xc0000, &ram_lo);
234 if (pcms->above_4g_mem_size > 0) {
235 memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi",
236 &ram_memory, 0x100000000ULL,
237 pcms->above_4g_mem_size);
238 memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi);
242 void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr)
244 /* FIXME caller ram_block_add() wants error_setg() on failure */
245 unsigned long nr_pfn;
246 xen_pfn_t *pfn_list;
247 int i;
249 if (runstate_check(RUN_STATE_INMIGRATE)) {
250 /* RAM already populated in Xen */
251 fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT
252 " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n",
253 __func__, size, ram_addr);
254 return;
257 if (mr == &ram_memory) {
258 return;
261 trace_xen_ram_alloc(ram_addr, size);
263 nr_pfn = size >> TARGET_PAGE_BITS;
264 pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn);
266 for (i = 0; i < nr_pfn; i++) {
267 pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i;
270 if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) {
271 hw_error("xen: failed to populate ram at " RAM_ADDR_FMT, ram_addr);
274 g_free(pfn_list);
277 static XenPhysmap *get_physmapping(XenIOState *state,
278 hwaddr start_addr, ram_addr_t size)
280 XenPhysmap *physmap = NULL;
282 start_addr &= TARGET_PAGE_MASK;
284 QLIST_FOREACH(physmap, &state->physmap, list) {
285 if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) {
286 return physmap;
289 return NULL;
292 static hwaddr xen_phys_offset_to_gaddr(hwaddr start_addr,
293 ram_addr_t size, void *opaque)
295 hwaddr addr = start_addr & TARGET_PAGE_MASK;
296 XenIOState *xen_io_state = opaque;
297 XenPhysmap *physmap = NULL;
299 QLIST_FOREACH(physmap, &xen_io_state->physmap, list) {
300 if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) {
301 return physmap->start_addr;
305 return start_addr;
308 #if CONFIG_XEN_CTRL_INTERFACE_VERSION >= 340
309 static int xen_add_to_physmap(XenIOState *state,
310 hwaddr start_addr,
311 ram_addr_t size,
312 MemoryRegion *mr,
313 hwaddr offset_within_region)
315 unsigned long i = 0;
316 int rc = 0;
317 XenPhysmap *physmap = NULL;
318 hwaddr pfn, start_gpfn;
319 hwaddr phys_offset = memory_region_get_ram_addr(mr);
320 char path[80], value[17];
321 const char *mr_name;
323 if (get_physmapping(state, start_addr, size)) {
324 return 0;
326 if (size <= 0) {
327 return -1;
330 /* Xen can only handle a single dirty log region for now and we want
331 * the linear framebuffer to be that region.
332 * Avoid tracking any regions that is not videoram and avoid tracking
333 * the legacy vga region. */
334 if (mr == framebuffer && start_addr > 0xbffff) {
335 goto go_physmap;
337 return -1;
339 go_physmap:
340 DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n",
341 start_addr, start_addr + size);
343 pfn = phys_offset >> TARGET_PAGE_BITS;
344 start_gpfn = start_addr >> TARGET_PAGE_BITS;
345 for (i = 0; i < size >> TARGET_PAGE_BITS; i++) {
346 unsigned long idx = pfn + i;
347 xen_pfn_t gpfn = start_gpfn + i;
349 rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn);
350 if (rc) {
351 DPRINTF("add_to_physmap MFN %"PRI_xen_pfn" to PFN %"
352 PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno);
353 return -rc;
357 mr_name = memory_region_name(mr);
359 physmap = g_malloc(sizeof (XenPhysmap));
361 physmap->start_addr = start_addr;
362 physmap->size = size;
363 physmap->name = mr_name;
364 physmap->phys_offset = phys_offset;
366 QLIST_INSERT_HEAD(&state->physmap, physmap, list);
368 xc_domain_pin_memory_cacheattr(xen_xc, xen_domid,
369 start_addr >> TARGET_PAGE_BITS,
370 (start_addr + size - 1) >> TARGET_PAGE_BITS,
371 XEN_DOMCTL_MEM_CACHEATTR_WB);
373 snprintf(path, sizeof(path),
374 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr",
375 xen_domid, (uint64_t)phys_offset);
376 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)start_addr);
377 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
378 return -1;
380 snprintf(path, sizeof(path),
381 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size",
382 xen_domid, (uint64_t)phys_offset);
383 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)size);
384 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
385 return -1;
387 if (mr_name) {
388 snprintf(path, sizeof(path),
389 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name",
390 xen_domid, (uint64_t)phys_offset);
391 if (!xs_write(state->xenstore, 0, path, mr_name, strlen(mr_name))) {
392 return -1;
396 return 0;
399 static int xen_remove_from_physmap(XenIOState *state,
400 hwaddr start_addr,
401 ram_addr_t size)
403 unsigned long i = 0;
404 int rc = 0;
405 XenPhysmap *physmap = NULL;
406 hwaddr phys_offset = 0;
408 physmap = get_physmapping(state, start_addr, size);
409 if (physmap == NULL) {
410 return -1;
413 phys_offset = physmap->phys_offset;
414 size = physmap->size;
416 DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at "
417 "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset);
419 size >>= TARGET_PAGE_BITS;
420 start_addr >>= TARGET_PAGE_BITS;
421 phys_offset >>= TARGET_PAGE_BITS;
422 for (i = 0; i < size; i++) {
423 xen_pfn_t idx = start_addr + i;
424 xen_pfn_t gpfn = phys_offset + i;
426 rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn);
427 if (rc) {
428 fprintf(stderr, "add_to_physmap MFN %"PRI_xen_pfn" to PFN %"
429 PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno);
430 return -rc;
434 QLIST_REMOVE(physmap, list);
435 if (state->log_for_dirtybit == physmap) {
436 state->log_for_dirtybit = NULL;
438 g_free(physmap);
440 return 0;
443 #else
444 static int xen_add_to_physmap(XenIOState *state,
445 hwaddr start_addr,
446 ram_addr_t size,
447 MemoryRegion *mr,
448 hwaddr offset_within_region)
450 return -ENOSYS;
453 static int xen_remove_from_physmap(XenIOState *state,
454 hwaddr start_addr,
455 ram_addr_t size)
457 return -ENOSYS;
459 #endif
461 static void xen_set_memory(struct MemoryListener *listener,
462 MemoryRegionSection *section,
463 bool add)
465 XenIOState *state = container_of(listener, XenIOState, memory_listener);
466 hwaddr start_addr = section->offset_within_address_space;
467 ram_addr_t size = int128_get64(section->size);
468 bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA);
469 hvmmem_type_t mem_type;
471 if (section->mr == &ram_memory) {
472 return;
473 } else {
474 if (add) {
475 xen_map_memory_section(xen_xc, xen_domid, state->ioservid,
476 section);
477 } else {
478 xen_unmap_memory_section(xen_xc, xen_domid, state->ioservid,
479 section);
483 if (!memory_region_is_ram(section->mr)) {
484 return;
487 if (log_dirty != add) {
488 return;
491 trace_xen_client_set_memory(start_addr, size, log_dirty);
493 start_addr &= TARGET_PAGE_MASK;
494 size = TARGET_PAGE_ALIGN(size);
496 if (add) {
497 if (!memory_region_is_rom(section->mr)) {
498 xen_add_to_physmap(state, start_addr, size,
499 section->mr, section->offset_within_region);
500 } else {
501 mem_type = HVMMEM_ram_ro;
502 if (xc_hvm_set_mem_type(xen_xc, xen_domid, mem_type,
503 start_addr >> TARGET_PAGE_BITS,
504 size >> TARGET_PAGE_BITS)) {
505 DPRINTF("xc_hvm_set_mem_type error, addr: "TARGET_FMT_plx"\n",
506 start_addr);
509 } else {
510 if (xen_remove_from_physmap(state, start_addr, size) < 0) {
511 DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr);
516 static void xen_region_add(MemoryListener *listener,
517 MemoryRegionSection *section)
519 memory_region_ref(section->mr);
520 xen_set_memory(listener, section, true);
523 static void xen_region_del(MemoryListener *listener,
524 MemoryRegionSection *section)
526 xen_set_memory(listener, section, false);
527 memory_region_unref(section->mr);
530 static void xen_io_add(MemoryListener *listener,
531 MemoryRegionSection *section)
533 XenIOState *state = container_of(listener, XenIOState, io_listener);
535 memory_region_ref(section->mr);
537 xen_map_io_section(xen_xc, xen_domid, state->ioservid, section);
540 static void xen_io_del(MemoryListener *listener,
541 MemoryRegionSection *section)
543 XenIOState *state = container_of(listener, XenIOState, io_listener);
545 xen_unmap_io_section(xen_xc, xen_domid, state->ioservid, section);
547 memory_region_unref(section->mr);
550 static void xen_device_realize(DeviceListener *listener,
551 DeviceState *dev)
553 XenIOState *state = container_of(listener, XenIOState, device_listener);
555 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
556 PCIDevice *pci_dev = PCI_DEVICE(dev);
558 xen_map_pcidev(xen_xc, xen_domid, state->ioservid, pci_dev);
562 static void xen_device_unrealize(DeviceListener *listener,
563 DeviceState *dev)
565 XenIOState *state = container_of(listener, XenIOState, device_listener);
567 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
568 PCIDevice *pci_dev = PCI_DEVICE(dev);
570 xen_unmap_pcidev(xen_xc, xen_domid, state->ioservid, pci_dev);
574 static void xen_sync_dirty_bitmap(XenIOState *state,
575 hwaddr start_addr,
576 ram_addr_t size)
578 hwaddr npages = size >> TARGET_PAGE_BITS;
579 const int width = sizeof(unsigned long) * 8;
580 unsigned long bitmap[(npages + width - 1) / width];
581 int rc, i, j;
582 const XenPhysmap *physmap = NULL;
584 physmap = get_physmapping(state, start_addr, size);
585 if (physmap == NULL) {
586 /* not handled */
587 return;
590 if (state->log_for_dirtybit == NULL) {
591 state->log_for_dirtybit = physmap;
592 } else if (state->log_for_dirtybit != physmap) {
593 /* Only one range for dirty bitmap can be tracked. */
594 return;
597 rc = xc_hvm_track_dirty_vram(xen_xc, xen_domid,
598 start_addr >> TARGET_PAGE_BITS, npages,
599 bitmap);
600 if (rc < 0) {
601 #ifndef ENODATA
602 #define ENODATA ENOENT
603 #endif
604 if (errno == ENODATA) {
605 memory_region_set_dirty(framebuffer, 0, size);
606 DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx
607 ", 0x" TARGET_FMT_plx "): %s\n",
608 start_addr, start_addr + size, strerror(errno));
610 return;
613 for (i = 0; i < ARRAY_SIZE(bitmap); i++) {
614 unsigned long map = bitmap[i];
615 while (map != 0) {
616 j = ctzl(map);
617 map &= ~(1ul << j);
618 memory_region_set_dirty(framebuffer,
619 (i * width + j) * TARGET_PAGE_SIZE,
620 TARGET_PAGE_SIZE);
625 static void xen_log_start(MemoryListener *listener,
626 MemoryRegionSection *section,
627 int old, int new)
629 XenIOState *state = container_of(listener, XenIOState, memory_listener);
631 if (new & ~old & (1 << DIRTY_MEMORY_VGA)) {
632 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
633 int128_get64(section->size));
637 static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section,
638 int old, int new)
640 XenIOState *state = container_of(listener, XenIOState, memory_listener);
642 if (old & ~new & (1 << DIRTY_MEMORY_VGA)) {
643 state->log_for_dirtybit = NULL;
644 /* Disable dirty bit tracking */
645 xc_hvm_track_dirty_vram(xen_xc, xen_domid, 0, 0, NULL);
649 static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section)
651 XenIOState *state = container_of(listener, XenIOState, memory_listener);
653 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
654 int128_get64(section->size));
657 static void xen_log_global_start(MemoryListener *listener)
659 if (xen_enabled()) {
660 xen_in_migration = true;
664 static void xen_log_global_stop(MemoryListener *listener)
666 xen_in_migration = false;
669 static MemoryListener xen_memory_listener = {
670 .region_add = xen_region_add,
671 .region_del = xen_region_del,
672 .log_start = xen_log_start,
673 .log_stop = xen_log_stop,
674 .log_sync = xen_log_sync,
675 .log_global_start = xen_log_global_start,
676 .log_global_stop = xen_log_global_stop,
677 .priority = 10,
680 static MemoryListener xen_io_listener = {
681 .region_add = xen_io_add,
682 .region_del = xen_io_del,
683 .priority = 10,
686 static DeviceListener xen_device_listener = {
687 .realize = xen_device_realize,
688 .unrealize = xen_device_unrealize,
691 /* get the ioreq packets from share mem */
692 static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu)
694 ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu);
696 if (req->state != STATE_IOREQ_READY) {
697 DPRINTF("I/O request not ready: "
698 "%x, ptr: %x, port: %"PRIx64", "
699 "data: %"PRIx64", count: %" FMT_ioreq_size ", size: %" FMT_ioreq_size "\n",
700 req->state, req->data_is_ptr, req->addr,
701 req->data, req->count, req->size);
702 return NULL;
705 xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */
707 req->state = STATE_IOREQ_INPROCESS;
708 return req;
711 /* use poll to get the port notification */
712 /* ioreq_vec--out,the */
713 /* retval--the number of ioreq packet */
714 static ioreq_t *cpu_get_ioreq(XenIOState *state)
716 int i;
717 evtchn_port_t port;
719 port = xc_evtchn_pending(state->xce_handle);
720 if (port == state->bufioreq_local_port) {
721 timer_mod(state->buffered_io_timer,
722 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
723 return NULL;
726 if (port != -1) {
727 for (i = 0; i < max_cpus; i++) {
728 if (state->ioreq_local_port[i] == port) {
729 break;
733 if (i == max_cpus) {
734 hw_error("Fatal error while trying to get io event!\n");
737 /* unmask the wanted port again */
738 xc_evtchn_unmask(state->xce_handle, port);
740 /* get the io packet from shared memory */
741 state->send_vcpu = i;
742 return cpu_get_ioreq_from_shared_memory(state, i);
745 /* read error or read nothing */
746 return NULL;
749 static uint32_t do_inp(pio_addr_t addr, unsigned long size)
751 switch (size) {
752 case 1:
753 return cpu_inb(addr);
754 case 2:
755 return cpu_inw(addr);
756 case 4:
757 return cpu_inl(addr);
758 default:
759 hw_error("inp: bad size: %04"FMT_pioaddr" %lx", addr, size);
763 static void do_outp(pio_addr_t addr,
764 unsigned long size, uint32_t val)
766 switch (size) {
767 case 1:
768 return cpu_outb(addr, val);
769 case 2:
770 return cpu_outw(addr, val);
771 case 4:
772 return cpu_outl(addr, val);
773 default:
774 hw_error("outp: bad size: %04"FMT_pioaddr" %lx", addr, size);
779 * Helper functions which read/write an object from/to physical guest
780 * memory, as part of the implementation of an ioreq.
782 * Equivalent to
783 * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i,
784 * val, req->size, 0/1)
785 * except without the integer overflow problems.
787 static void rw_phys_req_item(hwaddr addr,
788 ioreq_t *req, uint32_t i, void *val, int rw)
790 /* Do everything unsigned so overflow just results in a truncated result
791 * and accesses to undesired parts of guest memory, which is up
792 * to the guest */
793 hwaddr offset = (hwaddr)req->size * i;
794 if (req->df) {
795 addr -= offset;
796 } else {
797 addr += offset;
799 cpu_physical_memory_rw(addr, val, req->size, rw);
802 static inline void read_phys_req_item(hwaddr addr,
803 ioreq_t *req, uint32_t i, void *val)
805 rw_phys_req_item(addr, req, i, val, 0);
807 static inline void write_phys_req_item(hwaddr addr,
808 ioreq_t *req, uint32_t i, void *val)
810 rw_phys_req_item(addr, req, i, val, 1);
814 static void cpu_ioreq_pio(ioreq_t *req)
816 uint32_t i;
818 trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr,
819 req->data, req->count, req->size);
821 if (req->dir == IOREQ_READ) {
822 if (!req->data_is_ptr) {
823 req->data = do_inp(req->addr, req->size);
824 trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr,
825 req->size);
826 } else {
827 uint32_t tmp;
829 for (i = 0; i < req->count; i++) {
830 tmp = do_inp(req->addr, req->size);
831 write_phys_req_item(req->data, req, i, &tmp);
834 } else if (req->dir == IOREQ_WRITE) {
835 if (!req->data_is_ptr) {
836 trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr,
837 req->size);
838 do_outp(req->addr, req->size, req->data);
839 } else {
840 for (i = 0; i < req->count; i++) {
841 uint32_t tmp = 0;
843 read_phys_req_item(req->data, req, i, &tmp);
844 do_outp(req->addr, req->size, tmp);
850 static void cpu_ioreq_move(ioreq_t *req)
852 uint32_t i;
854 trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr,
855 req->data, req->count, req->size);
857 if (!req->data_is_ptr) {
858 if (req->dir == IOREQ_READ) {
859 for (i = 0; i < req->count; i++) {
860 read_phys_req_item(req->addr, req, i, &req->data);
862 } else if (req->dir == IOREQ_WRITE) {
863 for (i = 0; i < req->count; i++) {
864 write_phys_req_item(req->addr, req, i, &req->data);
867 } else {
868 uint64_t tmp;
870 if (req->dir == IOREQ_READ) {
871 for (i = 0; i < req->count; i++) {
872 read_phys_req_item(req->addr, req, i, &tmp);
873 write_phys_req_item(req->data, req, i, &tmp);
875 } else if (req->dir == IOREQ_WRITE) {
876 for (i = 0; i < req->count; i++) {
877 read_phys_req_item(req->data, req, i, &tmp);
878 write_phys_req_item(req->addr, req, i, &tmp);
884 static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req)
886 X86CPU *cpu;
887 CPUX86State *env;
889 cpu = X86_CPU(current_cpu);
890 env = &cpu->env;
891 env->regs[R_EAX] = req->data;
892 env->regs[R_EBX] = vmport_regs->ebx;
893 env->regs[R_ECX] = vmport_regs->ecx;
894 env->regs[R_EDX] = vmport_regs->edx;
895 env->regs[R_ESI] = vmport_regs->esi;
896 env->regs[R_EDI] = vmport_regs->edi;
899 static void regs_from_cpu(vmware_regs_t *vmport_regs)
901 X86CPU *cpu = X86_CPU(current_cpu);
902 CPUX86State *env = &cpu->env;
904 vmport_regs->ebx = env->regs[R_EBX];
905 vmport_regs->ecx = env->regs[R_ECX];
906 vmport_regs->edx = env->regs[R_EDX];
907 vmport_regs->esi = env->regs[R_ESI];
908 vmport_regs->edi = env->regs[R_EDI];
911 static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req)
913 vmware_regs_t *vmport_regs;
915 assert(state->shared_vmport_page);
916 vmport_regs =
917 &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu];
918 QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs));
920 current_cpu = state->cpu_by_vcpu_id[state->send_vcpu];
921 regs_to_cpu(vmport_regs, req);
922 cpu_ioreq_pio(req);
923 regs_from_cpu(vmport_regs);
924 current_cpu = NULL;
927 static void handle_ioreq(XenIOState *state, ioreq_t *req)
929 trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr,
930 req->addr, req->data, req->count, req->size);
932 if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) &&
933 (req->size < sizeof (target_ulong))) {
934 req->data &= ((target_ulong) 1 << (8 * req->size)) - 1;
937 if (req->dir == IOREQ_WRITE)
938 trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr,
939 req->addr, req->data, req->count, req->size);
941 switch (req->type) {
942 case IOREQ_TYPE_PIO:
943 cpu_ioreq_pio(req);
944 break;
945 case IOREQ_TYPE_COPY:
946 cpu_ioreq_move(req);
947 break;
948 case IOREQ_TYPE_VMWARE_PORT:
949 handle_vmport_ioreq(state, req);
950 break;
951 case IOREQ_TYPE_TIMEOFFSET:
952 break;
953 case IOREQ_TYPE_INVALIDATE:
954 xen_invalidate_map_cache();
955 break;
956 case IOREQ_TYPE_PCI_CONFIG: {
957 uint32_t sbdf = req->addr >> 32;
958 uint32_t val;
960 /* Fake a write to port 0xCF8 so that
961 * the config space access will target the
962 * correct device model.
964 val = (1u << 31) |
965 ((req->addr & 0x0f00) << 16) |
966 ((sbdf & 0xffff) << 8) |
967 (req->addr & 0xfc);
968 do_outp(0xcf8, 4, val);
970 /* Now issue the config space access via
971 * port 0xCFC
973 req->addr = 0xcfc | (req->addr & 0x03);
974 cpu_ioreq_pio(req);
975 break;
977 default:
978 hw_error("Invalid ioreq type 0x%x\n", req->type);
980 if (req->dir == IOREQ_READ) {
981 trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr,
982 req->addr, req->data, req->count, req->size);
986 static int handle_buffered_iopage(XenIOState *state)
988 buffered_iopage_t *buf_page = state->buffered_io_page;
989 buf_ioreq_t *buf_req = NULL;
990 ioreq_t req;
991 int qw;
993 if (!buf_page) {
994 return 0;
997 memset(&req, 0x00, sizeof(req));
999 for (;;) {
1000 uint32_t rdptr = buf_page->read_pointer, wrptr;
1002 xen_rmb();
1003 wrptr = buf_page->write_pointer;
1004 xen_rmb();
1005 if (rdptr != buf_page->read_pointer) {
1006 continue;
1008 if (rdptr == wrptr) {
1009 break;
1011 buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM];
1012 req.size = 1UL << buf_req->size;
1013 req.count = 1;
1014 req.addr = buf_req->addr;
1015 req.data = buf_req->data;
1016 req.state = STATE_IOREQ_READY;
1017 req.dir = buf_req->dir;
1018 req.df = 1;
1019 req.type = buf_req->type;
1020 req.data_is_ptr = 0;
1021 qw = (req.size == 8);
1022 if (qw) {
1023 buf_req = &buf_page->buf_ioreq[(rdptr + 1) %
1024 IOREQ_BUFFER_SLOT_NUM];
1025 req.data |= ((uint64_t)buf_req->data) << 32;
1028 handle_ioreq(state, &req);
1030 atomic_add(&buf_page->read_pointer, qw + 1);
1033 return req.count;
1036 static void handle_buffered_io(void *opaque)
1038 XenIOState *state = opaque;
1040 if (handle_buffered_iopage(state)) {
1041 timer_mod(state->buffered_io_timer,
1042 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
1043 } else {
1044 timer_del(state->buffered_io_timer);
1045 xc_evtchn_unmask(state->xce_handle, state->bufioreq_local_port);
1049 static void cpu_handle_ioreq(void *opaque)
1051 XenIOState *state = opaque;
1052 ioreq_t *req = cpu_get_ioreq(state);
1054 handle_buffered_iopage(state);
1055 if (req) {
1056 handle_ioreq(state, req);
1058 if (req->state != STATE_IOREQ_INPROCESS) {
1059 fprintf(stderr, "Badness in I/O request ... not in service?!: "
1060 "%x, ptr: %x, port: %"PRIx64", "
1061 "data: %"PRIx64", count: %" FMT_ioreq_size
1062 ", size: %" FMT_ioreq_size
1063 ", type: %"FMT_ioreq_size"\n",
1064 req->state, req->data_is_ptr, req->addr,
1065 req->data, req->count, req->size, req->type);
1066 destroy_hvm_domain(false);
1067 return;
1070 xen_wmb(); /* Update ioreq contents /then/ update state. */
1073 * We do this before we send the response so that the tools
1074 * have the opportunity to pick up on the reset before the
1075 * guest resumes and does a hlt with interrupts disabled which
1076 * causes Xen to powerdown the domain.
1078 if (runstate_is_running()) {
1079 if (qemu_shutdown_requested_get()) {
1080 destroy_hvm_domain(false);
1082 if (qemu_reset_requested_get()) {
1083 qemu_system_reset(VMRESET_REPORT);
1084 destroy_hvm_domain(true);
1088 req->state = STATE_IORESP_READY;
1089 xc_evtchn_notify(state->xce_handle, state->ioreq_local_port[state->send_vcpu]);
1093 static void xen_main_loop_prepare(XenIOState *state)
1095 int evtchn_fd = -1;
1097 if (state->xce_handle != XC_HANDLER_INITIAL_VALUE) {
1098 evtchn_fd = xc_evtchn_fd(state->xce_handle);
1101 state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io,
1102 state);
1104 if (evtchn_fd != -1) {
1105 CPUState *cpu_state;
1107 DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__);
1108 CPU_FOREACH(cpu_state) {
1109 DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n",
1110 __func__, cpu_state->cpu_index, cpu_state);
1111 state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state;
1113 qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state);
1118 static void xen_hvm_change_state_handler(void *opaque, int running,
1119 RunState rstate)
1121 XenIOState *state = opaque;
1123 if (running) {
1124 xen_main_loop_prepare(state);
1127 xen_set_ioreq_server_state(xen_xc, xen_domid,
1128 state->ioservid,
1129 (rstate == RUN_STATE_RUNNING));
1132 static void xen_exit_notifier(Notifier *n, void *data)
1134 XenIOState *state = container_of(n, XenIOState, exit);
1136 xc_evtchn_close(state->xce_handle);
1137 xs_daemon_close(state->xenstore);
1140 static void xen_read_physmap(XenIOState *state)
1142 XenPhysmap *physmap = NULL;
1143 unsigned int len, num, i;
1144 char path[80], *value = NULL;
1145 char **entries = NULL;
1147 snprintf(path, sizeof(path),
1148 "/local/domain/0/device-model/%d/physmap", xen_domid);
1149 entries = xs_directory(state->xenstore, 0, path, &num);
1150 if (entries == NULL)
1151 return;
1153 for (i = 0; i < num; i++) {
1154 physmap = g_malloc(sizeof (XenPhysmap));
1155 physmap->phys_offset = strtoull(entries[i], NULL, 16);
1156 snprintf(path, sizeof(path),
1157 "/local/domain/0/device-model/%d/physmap/%s/start_addr",
1158 xen_domid, entries[i]);
1159 value = xs_read(state->xenstore, 0, path, &len);
1160 if (value == NULL) {
1161 g_free(physmap);
1162 continue;
1164 physmap->start_addr = strtoull(value, NULL, 16);
1165 free(value);
1167 snprintf(path, sizeof(path),
1168 "/local/domain/0/device-model/%d/physmap/%s/size",
1169 xen_domid, entries[i]);
1170 value = xs_read(state->xenstore, 0, path, &len);
1171 if (value == NULL) {
1172 g_free(physmap);
1173 continue;
1175 physmap->size = strtoull(value, NULL, 16);
1176 free(value);
1178 snprintf(path, sizeof(path),
1179 "/local/domain/0/device-model/%d/physmap/%s/name",
1180 xen_domid, entries[i]);
1181 physmap->name = xs_read(state->xenstore, 0, path, &len);
1183 QLIST_INSERT_HEAD(&state->physmap, physmap, list);
1185 free(entries);
1188 static void xen_wakeup_notifier(Notifier *notifier, void *data)
1190 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0);
1193 void xen_hvm_init(PCMachineState *pcms, MemoryRegion **ram_memory)
1195 int i, rc;
1196 xen_pfn_t ioreq_pfn;
1197 xen_pfn_t bufioreq_pfn;
1198 evtchn_port_t bufioreq_evtchn;
1199 XenIOState *state;
1201 state = g_malloc0(sizeof (XenIOState));
1203 state->xce_handle = xen_xc_evtchn_open(NULL, 0);
1204 if (state->xce_handle == XC_HANDLER_INITIAL_VALUE) {
1205 perror("xen: event channel open");
1206 goto err;
1209 state->xenstore = xs_daemon_open();
1210 if (state->xenstore == NULL) {
1211 perror("xen: xenstore open");
1212 goto err;
1215 rc = xen_create_ioreq_server(xen_xc, xen_domid, &state->ioservid);
1216 if (rc < 0) {
1217 perror("xen: ioreq server create");
1218 goto err;
1221 state->exit.notify = xen_exit_notifier;
1222 qemu_add_exit_notifier(&state->exit);
1224 state->suspend.notify = xen_suspend_notifier;
1225 qemu_register_suspend_notifier(&state->suspend);
1227 state->wakeup.notify = xen_wakeup_notifier;
1228 qemu_register_wakeup_notifier(&state->wakeup);
1230 rc = xen_get_ioreq_server_info(xen_xc, xen_domid, state->ioservid,
1231 &ioreq_pfn, &bufioreq_pfn,
1232 &bufioreq_evtchn);
1233 if (rc < 0) {
1234 error_report("failed to get ioreq server info: error %d handle=" XC_INTERFACE_FMT,
1235 errno, xen_xc);
1236 goto err;
1239 DPRINTF("shared page at pfn %lx\n", ioreq_pfn);
1240 DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn);
1241 DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn);
1243 state->shared_page = xc_map_foreign_range(xen_xc, xen_domid, XC_PAGE_SIZE,
1244 PROT_READ|PROT_WRITE, ioreq_pfn);
1245 if (state->shared_page == NULL) {
1246 error_report("map shared IO page returned error %d handle=" XC_INTERFACE_FMT,
1247 errno, xen_xc);
1248 goto err;
1251 rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn);
1252 if (!rc) {
1253 DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn);
1254 state->shared_vmport_page =
1255 xc_map_foreign_range(xen_xc, xen_domid, XC_PAGE_SIZE,
1256 PROT_READ|PROT_WRITE, ioreq_pfn);
1257 if (state->shared_vmport_page == NULL) {
1258 error_report("map shared vmport IO page returned error %d handle="
1259 XC_INTERFACE_FMT, errno, xen_xc);
1260 goto err;
1262 } else if (rc != -ENOSYS) {
1263 error_report("get vmport regs pfn returned error %d, rc=%d",
1264 errno, rc);
1265 goto err;
1268 state->buffered_io_page = xc_map_foreign_range(xen_xc, xen_domid,
1269 XC_PAGE_SIZE,
1270 PROT_READ|PROT_WRITE,
1271 bufioreq_pfn);
1272 if (state->buffered_io_page == NULL) {
1273 error_report("map buffered IO page returned error %d", errno);
1274 goto err;
1277 /* Note: cpus is empty at this point in init */
1278 state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *));
1280 rc = xen_set_ioreq_server_state(xen_xc, xen_domid, state->ioservid, true);
1281 if (rc < 0) {
1282 error_report("failed to enable ioreq server info: error %d handle=" XC_INTERFACE_FMT,
1283 errno, xen_xc);
1284 goto err;
1287 state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t));
1289 /* FIXME: how about if we overflow the page here? */
1290 for (i = 0; i < max_cpus; i++) {
1291 rc = xc_evtchn_bind_interdomain(state->xce_handle, xen_domid,
1292 xen_vcpu_eport(state->shared_page, i));
1293 if (rc == -1) {
1294 error_report("shared evtchn %d bind error %d", i, errno);
1295 goto err;
1297 state->ioreq_local_port[i] = rc;
1300 rc = xc_evtchn_bind_interdomain(state->xce_handle, xen_domid,
1301 bufioreq_evtchn);
1302 if (rc == -1) {
1303 error_report("buffered evtchn bind error %d", errno);
1304 goto err;
1306 state->bufioreq_local_port = rc;
1308 /* Init RAM management */
1309 xen_map_cache_init(xen_phys_offset_to_gaddr, state);
1310 xen_ram_init(pcms, ram_size, ram_memory);
1312 qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state);
1314 state->memory_listener = xen_memory_listener;
1315 QLIST_INIT(&state->physmap);
1316 memory_listener_register(&state->memory_listener, &address_space_memory);
1317 state->log_for_dirtybit = NULL;
1319 state->io_listener = xen_io_listener;
1320 memory_listener_register(&state->io_listener, &address_space_io);
1322 state->device_listener = xen_device_listener;
1323 device_listener_register(&state->device_listener);
1325 /* Initialize backend core & drivers */
1326 if (xen_be_init() != 0) {
1327 error_report("xen backend core setup failed");
1328 goto err;
1330 xen_be_register("console", &xen_console_ops);
1331 xen_be_register("vkbd", &xen_kbdmouse_ops);
1332 xen_be_register("qdisk", &xen_blkdev_ops);
1333 xen_read_physmap(state);
1334 return;
1336 err:
1337 error_report("xen hardware virtual machine initialisation failed");
1338 exit(1);
1341 void destroy_hvm_domain(bool reboot)
1343 XenXC xc_handle;
1344 int sts;
1346 xc_handle = xen_xc_interface_open(0, 0, 0);
1347 if (xc_handle == XC_HANDLER_INITIAL_VALUE) {
1348 fprintf(stderr, "Cannot acquire xenctrl handle\n");
1349 } else {
1350 sts = xc_domain_shutdown(xc_handle, xen_domid,
1351 reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff);
1352 if (sts != 0) {
1353 fprintf(stderr, "xc_domain_shutdown failed to issue %s, "
1354 "sts %d, %s\n", reboot ? "reboot" : "poweroff",
1355 sts, strerror(errno));
1356 } else {
1357 fprintf(stderr, "Issued domain %d %s\n", xen_domid,
1358 reboot ? "reboot" : "poweroff");
1360 xc_interface_close(xc_handle);
1364 void xen_register_framebuffer(MemoryRegion *mr)
1366 framebuffer = mr;
1369 void xen_shutdown_fatal_error(const char *fmt, ...)
1371 va_list ap;
1373 va_start(ap, fmt);
1374 vfprintf(stderr, fmt, ap);
1375 va_end(ap);
1376 fprintf(stderr, "Will destroy the domain.\n");
1377 /* destroy the domain */
1378 qemu_system_shutdown_request();
1381 void xen_modified_memory(ram_addr_t start, ram_addr_t length)
1383 if (unlikely(xen_in_migration)) {
1384 int rc;
1385 ram_addr_t start_pfn, nb_pages;
1387 if (length == 0) {
1388 length = TARGET_PAGE_SIZE;
1390 start_pfn = start >> TARGET_PAGE_BITS;
1391 nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS)
1392 - start_pfn;
1393 rc = xc_hvm_modified_memory(xen_xc, xen_domid, start_pfn, nb_pages);
1394 if (rc) {
1395 fprintf(stderr,
1396 "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n",
1397 __func__, start, nb_pages, rc, strerror(-rc));
1402 void qmp_xen_set_global_dirty_log(bool enable, Error **errp)
1404 if (enable) {
1405 memory_global_dirty_log_start();
1406 } else {
1407 memory_global_dirty_log_stop();