qemu-timer: Avoid type casts
[qemu/cris-port.git] / qemu-timer.c
blobe8e5e15c8ee7f0f932bd7d427dcf2d5a95d9012f
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "sysemu.h"
26 #include "net.h"
27 #include "monitor.h"
28 #include "console.h"
30 #include "hw/hw.h"
32 #include <unistd.h>
33 #include <fcntl.h>
34 #include <time.h>
35 #include <errno.h>
36 #include <sys/time.h>
37 #include <signal.h>
38 #ifdef __FreeBSD__
39 #include <sys/param.h>
40 #endif
42 #ifdef __linux__
43 #include <sys/ioctl.h>
44 #include <linux/rtc.h>
45 /* For the benefit of older linux systems which don't supply it,
46 we use a local copy of hpet.h. */
47 /* #include <linux/hpet.h> */
48 #include "hpet.h"
49 #endif
51 #ifdef _WIN32
52 #include <windows.h>
53 #include <mmsystem.h>
54 #endif
56 #include "qemu-timer.h"
58 /* Conversion factor from emulated instructions to virtual clock ticks. */
59 int icount_time_shift;
60 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
61 #define MAX_ICOUNT_SHIFT 10
62 /* Compensate for varying guest execution speed. */
63 int64_t qemu_icount_bias;
64 static QEMUTimer *icount_rt_timer;
65 static QEMUTimer *icount_vm_timer;
67 /***********************************************************/
68 /* guest cycle counter */
70 typedef struct TimersState {
71 int64_t cpu_ticks_prev;
72 int64_t cpu_ticks_offset;
73 int64_t cpu_clock_offset;
74 int32_t cpu_ticks_enabled;
75 int64_t dummy;
76 } TimersState;
78 TimersState timers_state;
80 /* return the host CPU cycle counter and handle stop/restart */
81 int64_t cpu_get_ticks(void)
83 if (use_icount) {
84 return cpu_get_icount();
86 if (!timers_state.cpu_ticks_enabled) {
87 return timers_state.cpu_ticks_offset;
88 } else {
89 int64_t ticks;
90 ticks = cpu_get_real_ticks();
91 if (timers_state.cpu_ticks_prev > ticks) {
92 /* Note: non increasing ticks may happen if the host uses
93 software suspend */
94 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
96 timers_state.cpu_ticks_prev = ticks;
97 return ticks + timers_state.cpu_ticks_offset;
101 /* return the host CPU monotonic timer and handle stop/restart */
102 static int64_t cpu_get_clock(void)
104 int64_t ti;
105 if (!timers_state.cpu_ticks_enabled) {
106 return timers_state.cpu_clock_offset;
107 } else {
108 ti = get_clock();
109 return ti + timers_state.cpu_clock_offset;
113 #ifndef CONFIG_IOTHREAD
114 static int64_t qemu_icount_delta(void)
116 if (!use_icount) {
117 return 5000 * (int64_t) 1000000;
118 } else if (use_icount == 1) {
119 /* When not using an adaptive execution frequency
120 we tend to get badly out of sync with real time,
121 so just delay for a reasonable amount of time. */
122 return 0;
123 } else {
124 return cpu_get_icount() - cpu_get_clock();
127 #endif
129 /* enable cpu_get_ticks() */
130 void cpu_enable_ticks(void)
132 if (!timers_state.cpu_ticks_enabled) {
133 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
134 timers_state.cpu_clock_offset -= get_clock();
135 timers_state.cpu_ticks_enabled = 1;
139 /* disable cpu_get_ticks() : the clock is stopped. You must not call
140 cpu_get_ticks() after that. */
141 void cpu_disable_ticks(void)
143 if (timers_state.cpu_ticks_enabled) {
144 timers_state.cpu_ticks_offset = cpu_get_ticks();
145 timers_state.cpu_clock_offset = cpu_get_clock();
146 timers_state.cpu_ticks_enabled = 0;
150 /***********************************************************/
151 /* timers */
153 #define QEMU_CLOCK_REALTIME 0
154 #define QEMU_CLOCK_VIRTUAL 1
155 #define QEMU_CLOCK_HOST 2
157 struct QEMUClock {
158 int type;
159 int enabled;
161 QEMUTimer *warp_timer;
164 struct QEMUTimer {
165 QEMUClock *clock;
166 int64_t expire_time; /* in nanoseconds */
167 int scale;
168 QEMUTimerCB *cb;
169 void *opaque;
170 struct QEMUTimer *next;
173 struct qemu_alarm_timer {
174 char const *name;
175 int (*start)(struct qemu_alarm_timer *t);
176 void (*stop)(struct qemu_alarm_timer *t);
177 void (*rearm)(struct qemu_alarm_timer *t);
178 #if defined(__linux__)
179 int fd;
180 timer_t timer;
181 #elif defined(_WIN32)
182 HANDLE timer;
183 #endif
184 char expired;
185 char pending;
188 static struct qemu_alarm_timer *alarm_timer;
190 static bool qemu_timer_expired_ns(QEMUTimer *timer_head, int64_t current_time)
192 return timer_head && (timer_head->expire_time <= current_time);
195 int qemu_alarm_pending(void)
197 return alarm_timer->pending;
200 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
202 return !!t->rearm;
205 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
207 if (!alarm_has_dynticks(t))
208 return;
210 t->rearm(t);
213 /* TODO: MIN_TIMER_REARM_NS should be optimized */
214 #define MIN_TIMER_REARM_NS 250000
216 #ifdef _WIN32
218 static int win32_start_timer(struct qemu_alarm_timer *t);
219 static void win32_stop_timer(struct qemu_alarm_timer *t);
220 static void win32_rearm_timer(struct qemu_alarm_timer *t);
222 #else
224 static int unix_start_timer(struct qemu_alarm_timer *t);
225 static void unix_stop_timer(struct qemu_alarm_timer *t);
227 #ifdef __linux__
229 static int dynticks_start_timer(struct qemu_alarm_timer *t);
230 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
231 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
233 static int hpet_start_timer(struct qemu_alarm_timer *t);
234 static void hpet_stop_timer(struct qemu_alarm_timer *t);
236 static int rtc_start_timer(struct qemu_alarm_timer *t);
237 static void rtc_stop_timer(struct qemu_alarm_timer *t);
239 #endif /* __linux__ */
241 #endif /* _WIN32 */
243 /* Correlation between real and virtual time is always going to be
244 fairly approximate, so ignore small variation.
245 When the guest is idle real and virtual time will be aligned in
246 the IO wait loop. */
247 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
249 static void icount_adjust(void)
251 int64_t cur_time;
252 int64_t cur_icount;
253 int64_t delta;
254 static int64_t last_delta;
255 /* If the VM is not running, then do nothing. */
256 if (!vm_running)
257 return;
259 cur_time = cpu_get_clock();
260 cur_icount = qemu_get_clock_ns(vm_clock);
261 delta = cur_icount - cur_time;
262 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
263 if (delta > 0
264 && last_delta + ICOUNT_WOBBLE < delta * 2
265 && icount_time_shift > 0) {
266 /* The guest is getting too far ahead. Slow time down. */
267 icount_time_shift--;
269 if (delta < 0
270 && last_delta - ICOUNT_WOBBLE > delta * 2
271 && icount_time_shift < MAX_ICOUNT_SHIFT) {
272 /* The guest is getting too far behind. Speed time up. */
273 icount_time_shift++;
275 last_delta = delta;
276 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
279 static void icount_adjust_rt(void * opaque)
281 qemu_mod_timer(icount_rt_timer,
282 qemu_get_clock_ms(rt_clock) + 1000);
283 icount_adjust();
286 static void icount_adjust_vm(void * opaque)
288 qemu_mod_timer(icount_vm_timer,
289 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
290 icount_adjust();
293 int64_t qemu_icount_round(int64_t count)
295 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
298 static struct qemu_alarm_timer alarm_timers[] = {
299 #ifndef _WIN32
300 #ifdef __linux__
301 {"dynticks", dynticks_start_timer,
302 dynticks_stop_timer, dynticks_rearm_timer},
303 /* HPET - if available - is preferred */
304 {"hpet", hpet_start_timer, hpet_stop_timer, NULL},
305 /* ...otherwise try RTC */
306 {"rtc", rtc_start_timer, rtc_stop_timer, NULL},
307 #endif
308 {"unix", unix_start_timer, unix_stop_timer, NULL},
309 #else
310 {"dynticks", win32_start_timer, win32_stop_timer, win32_rearm_timer},
311 {"win32", win32_start_timer, win32_stop_timer, NULL},
312 #endif
313 {NULL, }
316 static void show_available_alarms(void)
318 int i;
320 printf("Available alarm timers, in order of precedence:\n");
321 for (i = 0; alarm_timers[i].name; i++)
322 printf("%s\n", alarm_timers[i].name);
325 void configure_alarms(char const *opt)
327 int i;
328 int cur = 0;
329 int count = ARRAY_SIZE(alarm_timers) - 1;
330 char *arg;
331 char *name;
332 struct qemu_alarm_timer tmp;
334 if (!strcmp(opt, "?")) {
335 show_available_alarms();
336 exit(0);
339 arg = qemu_strdup(opt);
341 /* Reorder the array */
342 name = strtok(arg, ",");
343 while (name) {
344 for (i = 0; i < count && alarm_timers[i].name; i++) {
345 if (!strcmp(alarm_timers[i].name, name))
346 break;
349 if (i == count) {
350 fprintf(stderr, "Unknown clock %s\n", name);
351 goto next;
354 if (i < cur)
355 /* Ignore */
356 goto next;
358 /* Swap */
359 tmp = alarm_timers[i];
360 alarm_timers[i] = alarm_timers[cur];
361 alarm_timers[cur] = tmp;
363 cur++;
364 next:
365 name = strtok(NULL, ",");
368 qemu_free(arg);
370 if (cur) {
371 /* Disable remaining timers */
372 for (i = cur; i < count; i++)
373 alarm_timers[i].name = NULL;
374 } else {
375 show_available_alarms();
376 exit(1);
380 #define QEMU_NUM_CLOCKS 3
382 QEMUClock *rt_clock;
383 QEMUClock *vm_clock;
384 QEMUClock *host_clock;
386 static QEMUTimer *active_timers[QEMU_NUM_CLOCKS];
388 static QEMUClock *qemu_new_clock(int type)
390 QEMUClock *clock;
391 clock = qemu_mallocz(sizeof(QEMUClock));
392 clock->type = type;
393 clock->enabled = 1;
394 return clock;
397 void qemu_clock_enable(QEMUClock *clock, int enabled)
399 clock->enabled = enabled;
402 static int64_t vm_clock_warp_start;
404 static void icount_warp_rt(void *opaque)
406 if (vm_clock_warp_start == -1) {
407 return;
410 if (vm_running) {
411 int64_t clock = qemu_get_clock_ns(rt_clock);
412 int64_t warp_delta = clock - vm_clock_warp_start;
413 if (use_icount == 1) {
414 qemu_icount_bias += warp_delta;
415 } else {
417 * In adaptive mode, do not let the vm_clock run too
418 * far ahead of real time.
420 int64_t cur_time = cpu_get_clock();
421 int64_t cur_icount = qemu_get_clock_ns(vm_clock);
422 int64_t delta = cur_time - cur_icount;
423 qemu_icount_bias += MIN(warp_delta, delta);
425 if (qemu_timer_expired(active_timers[QEMU_CLOCK_VIRTUAL],
426 qemu_get_clock_ns(vm_clock))) {
427 qemu_notify_event();
430 vm_clock_warp_start = -1;
433 void qemu_clock_warp(QEMUClock *clock)
435 int64_t deadline;
437 if (!clock->warp_timer) {
438 return;
442 * There are too many global variables to make the "warp" behavior
443 * applicable to other clocks. But a clock argument removes the
444 * need for if statements all over the place.
446 assert(clock == vm_clock);
449 * If the CPUs have been sleeping, advance the vm_clock timer now. This
450 * ensures that the deadline for the timer is computed correctly below.
451 * This also makes sure that the insn counter is synchronized before the
452 * CPU starts running, in case the CPU is woken by an event other than
453 * the earliest vm_clock timer.
455 icount_warp_rt(NULL);
456 if (!all_cpu_threads_idle() || !active_timers[clock->type]) {
457 qemu_del_timer(clock->warp_timer);
458 return;
461 vm_clock_warp_start = qemu_get_clock_ns(rt_clock);
462 deadline = qemu_next_icount_deadline();
463 if (deadline > 0) {
465 * Ensure the vm_clock proceeds even when the virtual CPU goes to
466 * sleep. Otherwise, the CPU might be waiting for a future timer
467 * interrupt to wake it up, but the interrupt never comes because
468 * the vCPU isn't running any insns and thus doesn't advance the
469 * vm_clock.
471 * An extreme solution for this problem would be to never let VCPUs
472 * sleep in icount mode if there is a pending vm_clock timer; rather
473 * time could just advance to the next vm_clock event. Instead, we
474 * do stop VCPUs and only advance vm_clock after some "real" time,
475 * (related to the time left until the next event) has passed. This
476 * rt_clock timer will do this. This avoids that the warps are too
477 * visible externally---for example, you will not be sending network
478 * packets continously instead of every 100ms.
480 qemu_mod_timer(clock->warp_timer, vm_clock_warp_start + deadline);
481 } else {
482 qemu_notify_event();
486 QEMUTimer *qemu_new_timer(QEMUClock *clock, int scale,
487 QEMUTimerCB *cb, void *opaque)
489 QEMUTimer *ts;
491 ts = qemu_mallocz(sizeof(QEMUTimer));
492 ts->clock = clock;
493 ts->cb = cb;
494 ts->opaque = opaque;
495 ts->scale = scale;
496 return ts;
499 void qemu_free_timer(QEMUTimer *ts)
501 qemu_free(ts);
504 /* stop a timer, but do not dealloc it */
505 void qemu_del_timer(QEMUTimer *ts)
507 QEMUTimer **pt, *t;
509 /* NOTE: this code must be signal safe because
510 qemu_timer_expired() can be called from a signal. */
511 pt = &active_timers[ts->clock->type];
512 for(;;) {
513 t = *pt;
514 if (!t)
515 break;
516 if (t == ts) {
517 *pt = t->next;
518 break;
520 pt = &t->next;
524 /* modify the current timer so that it will be fired when current_time
525 >= expire_time. The corresponding callback will be called. */
526 static void qemu_mod_timer_ns(QEMUTimer *ts, int64_t expire_time)
528 QEMUTimer **pt, *t;
530 qemu_del_timer(ts);
532 /* add the timer in the sorted list */
533 /* NOTE: this code must be signal safe because
534 qemu_timer_expired() can be called from a signal. */
535 pt = &active_timers[ts->clock->type];
536 for(;;) {
537 t = *pt;
538 if (!qemu_timer_expired_ns(t, expire_time)) {
539 break;
541 pt = &t->next;
543 ts->expire_time = expire_time;
544 ts->next = *pt;
545 *pt = ts;
547 /* Rearm if necessary */
548 if (pt == &active_timers[ts->clock->type]) {
549 if (!alarm_timer->pending) {
550 qemu_rearm_alarm_timer(alarm_timer);
552 /* Interrupt execution to force deadline recalculation. */
553 qemu_clock_warp(ts->clock);
554 if (use_icount) {
555 qemu_notify_event();
560 /* modify the current timer so that it will be fired when current_time
561 >= expire_time. The corresponding callback will be called. */
562 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
564 qemu_mod_timer_ns(ts, expire_time * ts->scale);
567 int qemu_timer_pending(QEMUTimer *ts)
569 QEMUTimer *t;
570 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
571 if (t == ts)
572 return 1;
574 return 0;
577 int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
579 return qemu_timer_expired_ns(timer_head, current_time * timer_head->scale);
582 static void qemu_run_timers(QEMUClock *clock)
584 QEMUTimer **ptimer_head, *ts;
585 int64_t current_time;
587 if (!clock->enabled)
588 return;
590 current_time = qemu_get_clock_ns(clock);
591 ptimer_head = &active_timers[clock->type];
592 for(;;) {
593 ts = *ptimer_head;
594 if (!qemu_timer_expired_ns(ts, current_time)) {
595 break;
597 /* remove timer from the list before calling the callback */
598 *ptimer_head = ts->next;
599 ts->next = NULL;
601 /* run the callback (the timer list can be modified) */
602 ts->cb(ts->opaque);
606 int64_t qemu_get_clock_ns(QEMUClock *clock)
608 switch(clock->type) {
609 case QEMU_CLOCK_REALTIME:
610 return get_clock();
611 default:
612 case QEMU_CLOCK_VIRTUAL:
613 if (use_icount) {
614 return cpu_get_icount();
615 } else {
616 return cpu_get_clock();
618 case QEMU_CLOCK_HOST:
619 return get_clock_realtime();
623 void init_clocks(void)
625 rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME);
626 vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL);
627 host_clock = qemu_new_clock(QEMU_CLOCK_HOST);
629 rtc_clock = host_clock;
632 /* save a timer */
633 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
635 uint64_t expire_time;
637 if (qemu_timer_pending(ts)) {
638 expire_time = ts->expire_time;
639 } else {
640 expire_time = -1;
642 qemu_put_be64(f, expire_time);
645 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
647 uint64_t expire_time;
649 expire_time = qemu_get_be64(f);
650 if (expire_time != -1) {
651 qemu_mod_timer_ns(ts, expire_time);
652 } else {
653 qemu_del_timer(ts);
657 static const VMStateDescription vmstate_timers = {
658 .name = "timer",
659 .version_id = 2,
660 .minimum_version_id = 1,
661 .minimum_version_id_old = 1,
662 .fields = (VMStateField []) {
663 VMSTATE_INT64(cpu_ticks_offset, TimersState),
664 VMSTATE_INT64(dummy, TimersState),
665 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
666 VMSTATE_END_OF_LIST()
670 void configure_icount(const char *option)
672 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
673 if (!option)
674 return;
676 #ifdef CONFIG_IOTHREAD
677 vm_clock->warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);
678 #endif
680 if (strcmp(option, "auto") != 0) {
681 icount_time_shift = strtol(option, NULL, 0);
682 use_icount = 1;
683 return;
686 use_icount = 2;
688 /* 125MIPS seems a reasonable initial guess at the guest speed.
689 It will be corrected fairly quickly anyway. */
690 icount_time_shift = 3;
692 /* Have both realtime and virtual time triggers for speed adjustment.
693 The realtime trigger catches emulated time passing too slowly,
694 the virtual time trigger catches emulated time passing too fast.
695 Realtime triggers occur even when idle, so use them less frequently
696 than VM triggers. */
697 icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
698 qemu_mod_timer(icount_rt_timer,
699 qemu_get_clock_ms(rt_clock) + 1000);
700 icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
701 qemu_mod_timer(icount_vm_timer,
702 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
705 void qemu_run_all_timers(void)
707 alarm_timer->pending = 0;
709 /* rearm timer, if not periodic */
710 if (alarm_timer->expired) {
711 alarm_timer->expired = 0;
712 qemu_rearm_alarm_timer(alarm_timer);
715 /* vm time timers */
716 if (vm_running) {
717 qemu_run_timers(vm_clock);
720 qemu_run_timers(rt_clock);
721 qemu_run_timers(host_clock);
724 static int64_t qemu_next_alarm_deadline(void);
726 #ifdef _WIN32
727 static void CALLBACK host_alarm_handler(PVOID lpParam, BOOLEAN unused)
728 #else
729 static void host_alarm_handler(int host_signum)
730 #endif
732 struct qemu_alarm_timer *t = alarm_timer;
733 if (!t)
734 return;
736 #if 0
737 #define DISP_FREQ 1000
739 static int64_t delta_min = INT64_MAX;
740 static int64_t delta_max, delta_cum, last_clock, delta, ti;
741 static int count;
742 ti = qemu_get_clock_ns(vm_clock);
743 if (last_clock != 0) {
744 delta = ti - last_clock;
745 if (delta < delta_min)
746 delta_min = delta;
747 if (delta > delta_max)
748 delta_max = delta;
749 delta_cum += delta;
750 if (++count == DISP_FREQ) {
751 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
752 muldiv64(delta_min, 1000000, get_ticks_per_sec()),
753 muldiv64(delta_max, 1000000, get_ticks_per_sec()),
754 muldiv64(delta_cum, 1000000 / DISP_FREQ, get_ticks_per_sec()),
755 (double)get_ticks_per_sec() / ((double)delta_cum / DISP_FREQ));
756 count = 0;
757 delta_min = INT64_MAX;
758 delta_max = 0;
759 delta_cum = 0;
762 last_clock = ti;
764 #endif
765 if (alarm_has_dynticks(t) ||
766 qemu_next_alarm_deadline () <= 0) {
767 t->expired = alarm_has_dynticks(t);
768 t->pending = 1;
769 qemu_notify_event();
773 int64_t qemu_next_icount_deadline(void)
775 /* To avoid problems with overflow limit this to 2^32. */
776 int64_t delta = INT32_MAX;
778 assert(use_icount);
779 if (active_timers[QEMU_CLOCK_VIRTUAL]) {
780 delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
781 qemu_get_clock_ns(vm_clock);
784 if (delta < 0)
785 delta = 0;
787 return delta;
790 static int64_t qemu_next_alarm_deadline(void)
792 int64_t delta;
793 int64_t rtdelta;
795 if (!use_icount && active_timers[QEMU_CLOCK_VIRTUAL]) {
796 delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
797 qemu_get_clock_ns(vm_clock);
798 } else {
799 delta = INT32_MAX;
801 if (active_timers[QEMU_CLOCK_HOST]) {
802 int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time -
803 qemu_get_clock_ns(host_clock);
804 if (hdelta < delta)
805 delta = hdelta;
807 if (active_timers[QEMU_CLOCK_REALTIME]) {
808 rtdelta = (active_timers[QEMU_CLOCK_REALTIME]->expire_time -
809 qemu_get_clock_ns(rt_clock));
810 if (rtdelta < delta)
811 delta = rtdelta;
814 return delta;
817 #if defined(__linux__)
819 #define RTC_FREQ 1024
821 static void enable_sigio_timer(int fd)
823 struct sigaction act;
825 /* timer signal */
826 sigfillset(&act.sa_mask);
827 act.sa_flags = 0;
828 act.sa_handler = host_alarm_handler;
830 sigaction(SIGIO, &act, NULL);
831 fcntl_setfl(fd, O_ASYNC);
832 fcntl(fd, F_SETOWN, getpid());
835 static int hpet_start_timer(struct qemu_alarm_timer *t)
837 struct hpet_info info;
838 int r, fd;
840 fd = qemu_open("/dev/hpet", O_RDONLY);
841 if (fd < 0)
842 return -1;
844 /* Set frequency */
845 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
846 if (r < 0) {
847 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
848 "error, but for better emulation accuracy type:\n"
849 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
850 goto fail;
853 /* Check capabilities */
854 r = ioctl(fd, HPET_INFO, &info);
855 if (r < 0)
856 goto fail;
858 /* Enable periodic mode */
859 r = ioctl(fd, HPET_EPI, 0);
860 if (info.hi_flags && (r < 0))
861 goto fail;
863 /* Enable interrupt */
864 r = ioctl(fd, HPET_IE_ON, 0);
865 if (r < 0)
866 goto fail;
868 enable_sigio_timer(fd);
869 t->fd = fd;
871 return 0;
872 fail:
873 close(fd);
874 return -1;
877 static void hpet_stop_timer(struct qemu_alarm_timer *t)
879 int fd = t->fd;
881 close(fd);
884 static int rtc_start_timer(struct qemu_alarm_timer *t)
886 int rtc_fd;
887 unsigned long current_rtc_freq = 0;
889 TFR(rtc_fd = qemu_open("/dev/rtc", O_RDONLY));
890 if (rtc_fd < 0)
891 return -1;
892 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
893 if (current_rtc_freq != RTC_FREQ &&
894 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
895 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
896 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
897 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
898 goto fail;
900 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
901 fail:
902 close(rtc_fd);
903 return -1;
906 enable_sigio_timer(rtc_fd);
908 t->fd = rtc_fd;
910 return 0;
913 static void rtc_stop_timer(struct qemu_alarm_timer *t)
915 int rtc_fd = t->fd;
917 close(rtc_fd);
920 static int dynticks_start_timer(struct qemu_alarm_timer *t)
922 struct sigevent ev;
923 timer_t host_timer;
924 struct sigaction act;
926 sigfillset(&act.sa_mask);
927 act.sa_flags = 0;
928 act.sa_handler = host_alarm_handler;
930 sigaction(SIGALRM, &act, NULL);
933 * Initialize ev struct to 0 to avoid valgrind complaining
934 * about uninitialized data in timer_create call
936 memset(&ev, 0, sizeof(ev));
937 ev.sigev_value.sival_int = 0;
938 ev.sigev_notify = SIGEV_SIGNAL;
939 ev.sigev_signo = SIGALRM;
941 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
942 perror("timer_create");
944 /* disable dynticks */
945 fprintf(stderr, "Dynamic Ticks disabled\n");
947 return -1;
950 t->timer = host_timer;
952 return 0;
955 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
957 timer_t host_timer = t->timer;
959 timer_delete(host_timer);
962 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
964 timer_t host_timer = t->timer;
965 struct itimerspec timeout;
966 int64_t nearest_delta_ns = INT64_MAX;
967 int64_t current_ns;
969 assert(alarm_has_dynticks(t));
970 if (!active_timers[QEMU_CLOCK_REALTIME] &&
971 !active_timers[QEMU_CLOCK_VIRTUAL] &&
972 !active_timers[QEMU_CLOCK_HOST])
973 return;
975 nearest_delta_ns = qemu_next_alarm_deadline();
976 if (nearest_delta_ns < MIN_TIMER_REARM_NS)
977 nearest_delta_ns = MIN_TIMER_REARM_NS;
979 /* check whether a timer is already running */
980 if (timer_gettime(host_timer, &timeout)) {
981 perror("gettime");
982 fprintf(stderr, "Internal timer error: aborting\n");
983 exit(1);
985 current_ns = timeout.it_value.tv_sec * 1000000000LL + timeout.it_value.tv_nsec;
986 if (current_ns && current_ns <= nearest_delta_ns)
987 return;
989 timeout.it_interval.tv_sec = 0;
990 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
991 timeout.it_value.tv_sec = nearest_delta_ns / 1000000000;
992 timeout.it_value.tv_nsec = nearest_delta_ns % 1000000000;
993 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
994 perror("settime");
995 fprintf(stderr, "Internal timer error: aborting\n");
996 exit(1);
1000 #endif /* defined(__linux__) */
1002 #if !defined(_WIN32)
1004 static int unix_start_timer(struct qemu_alarm_timer *t)
1006 struct sigaction act;
1007 struct itimerval itv;
1008 int err;
1010 /* timer signal */
1011 sigfillset(&act.sa_mask);
1012 act.sa_flags = 0;
1013 act.sa_handler = host_alarm_handler;
1015 sigaction(SIGALRM, &act, NULL);
1017 itv.it_interval.tv_sec = 0;
1018 /* for i386 kernel 2.6 to get 1 ms */
1019 itv.it_interval.tv_usec = 999;
1020 itv.it_value.tv_sec = 0;
1021 itv.it_value.tv_usec = 10 * 1000;
1023 err = setitimer(ITIMER_REAL, &itv, NULL);
1024 if (err)
1025 return -1;
1027 return 0;
1030 static void unix_stop_timer(struct qemu_alarm_timer *t)
1032 struct itimerval itv;
1034 memset(&itv, 0, sizeof(itv));
1035 setitimer(ITIMER_REAL, &itv, NULL);
1038 #endif /* !defined(_WIN32) */
1041 #ifdef _WIN32
1043 static int win32_start_timer(struct qemu_alarm_timer *t)
1045 HANDLE hTimer;
1046 BOOLEAN success;
1048 /* If you call ChangeTimerQueueTimer on a one-shot timer (its period
1049 is zero) that has already expired, the timer is not updated. Since
1050 creating a new timer is relatively expensive, set a bogus one-hour
1051 interval in the dynticks case. */
1052 success = CreateTimerQueueTimer(&hTimer,
1053 NULL,
1054 host_alarm_handler,
1057 alarm_has_dynticks(t) ? 3600000 : 1,
1058 WT_EXECUTEINTIMERTHREAD);
1060 if (!success) {
1061 fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n",
1062 GetLastError());
1063 return -1;
1066 t->timer = hTimer;
1067 return 0;
1070 static void win32_stop_timer(struct qemu_alarm_timer *t)
1072 HANDLE hTimer = t->timer;
1074 if (hTimer) {
1075 DeleteTimerQueueTimer(NULL, hTimer, NULL);
1079 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1081 HANDLE hTimer = t->timer;
1082 int nearest_delta_ms;
1083 BOOLEAN success;
1085 assert(alarm_has_dynticks(t));
1086 if (!active_timers[QEMU_CLOCK_REALTIME] &&
1087 !active_timers[QEMU_CLOCK_VIRTUAL] &&
1088 !active_timers[QEMU_CLOCK_HOST])
1089 return;
1091 nearest_delta_ms = (qemu_next_alarm_deadline() + 999999) / 1000000;
1092 if (nearest_delta_ms < 1) {
1093 nearest_delta_ms = 1;
1095 success = ChangeTimerQueueTimer(NULL,
1096 hTimer,
1097 nearest_delta_ms,
1098 3600000);
1100 if (!success) {
1101 fprintf(stderr, "Failed to rearm win32 alarm timer: %ld\n",
1102 GetLastError());
1103 exit(-1);
1108 #endif /* _WIN32 */
1110 static void alarm_timer_on_change_state_rearm(void *opaque, int running, int reason)
1112 if (running)
1113 qemu_rearm_alarm_timer((struct qemu_alarm_timer *) opaque);
1116 int init_timer_alarm(void)
1118 struct qemu_alarm_timer *t = NULL;
1119 int i, err = -1;
1121 for (i = 0; alarm_timers[i].name; i++) {
1122 t = &alarm_timers[i];
1124 err = t->start(t);
1125 if (!err)
1126 break;
1129 if (err) {
1130 err = -ENOENT;
1131 goto fail;
1134 /* first event is at time 0 */
1135 t->pending = 1;
1136 alarm_timer = t;
1137 qemu_add_vm_change_state_handler(alarm_timer_on_change_state_rearm, t);
1139 return 0;
1141 fail:
1142 return err;
1145 void quit_timers(void)
1147 struct qemu_alarm_timer *t = alarm_timer;
1148 alarm_timer = NULL;
1149 t->stop(t);
1152 int qemu_calculate_timeout(void)
1154 #ifndef CONFIG_IOTHREAD
1155 int timeout;
1157 if (!vm_running)
1158 timeout = 5000;
1159 else {
1160 /* XXX: use timeout computed from timers */
1161 int64_t add;
1162 int64_t delta;
1163 /* Advance virtual time to the next event. */
1164 delta = qemu_icount_delta();
1165 if (delta > 0) {
1166 /* If virtual time is ahead of real time then just
1167 wait for IO. */
1168 timeout = (delta + 999999) / 1000000;
1169 } else {
1170 /* Wait for either IO to occur or the next
1171 timer event. */
1172 add = qemu_next_icount_deadline();
1173 /* We advance the timer before checking for IO.
1174 Limit the amount we advance so that early IO
1175 activity won't get the guest too far ahead. */
1176 if (add > 10000000)
1177 add = 10000000;
1178 delta += add;
1179 qemu_icount += qemu_icount_round (add);
1180 timeout = delta / 1000000;
1181 if (timeout < 0)
1182 timeout = 0;
1186 return timeout;
1187 #else /* CONFIG_IOTHREAD */
1188 return 1000;
1189 #endif