switch scsi bus to inplace allocation.
[qemu/cris-port.git] / hw / stellaris.c
blobbcde0a2977565ad14e9f18088f09f589f1bcc266
1 /*
2 * Luminary Micro Stellaris peripherals
4 * Copyright (c) 2006 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licenced under the GPL.
8 */
10 #include "sysbus.h"
11 #include "ssi.h"
12 #include "arm-misc.h"
13 #include "devices.h"
14 #include "qemu-timer.h"
15 #include "i2c.h"
16 #include "net.h"
17 #include "sysemu.h"
18 #include "boards.h"
20 #define GPIO_A 0
21 #define GPIO_B 1
22 #define GPIO_C 2
23 #define GPIO_D 3
24 #define GPIO_E 4
25 #define GPIO_F 5
26 #define GPIO_G 6
28 #define BP_OLED_I2C 0x01
29 #define BP_OLED_SSI 0x02
30 #define BP_GAMEPAD 0x04
32 typedef const struct {
33 const char *name;
34 uint32_t did0;
35 uint32_t did1;
36 uint32_t dc0;
37 uint32_t dc1;
38 uint32_t dc2;
39 uint32_t dc3;
40 uint32_t dc4;
41 uint32_t peripherals;
42 } stellaris_board_info;
44 /* General purpose timer module. */
46 typedef struct gptm_state {
47 SysBusDevice busdev;
48 uint32_t config;
49 uint32_t mode[2];
50 uint32_t control;
51 uint32_t state;
52 uint32_t mask;
53 uint32_t load[2];
54 uint32_t match[2];
55 uint32_t prescale[2];
56 uint32_t match_prescale[2];
57 uint32_t rtc;
58 int64_t tick[2];
59 struct gptm_state *opaque[2];
60 QEMUTimer *timer[2];
61 /* The timers have an alternate output used to trigger the ADC. */
62 qemu_irq trigger;
63 qemu_irq irq;
64 } gptm_state;
66 static void gptm_update_irq(gptm_state *s)
68 int level;
69 level = (s->state & s->mask) != 0;
70 qemu_set_irq(s->irq, level);
73 static void gptm_stop(gptm_state *s, int n)
75 qemu_del_timer(s->timer[n]);
78 static void gptm_reload(gptm_state *s, int n, int reset)
80 int64_t tick;
81 if (reset)
82 tick = qemu_get_clock(vm_clock);
83 else
84 tick = s->tick[n];
86 if (s->config == 0) {
87 /* 32-bit CountDown. */
88 uint32_t count;
89 count = s->load[0] | (s->load[1] << 16);
90 tick += (int64_t)count * system_clock_scale;
91 } else if (s->config == 1) {
92 /* 32-bit RTC. 1Hz tick. */
93 tick += get_ticks_per_sec();
94 } else if (s->mode[n] == 0xa) {
95 /* PWM mode. Not implemented. */
96 } else {
97 hw_error("TODO: 16-bit timer mode 0x%x\n", s->mode[n]);
99 s->tick[n] = tick;
100 qemu_mod_timer(s->timer[n], tick);
103 static void gptm_tick(void *opaque)
105 gptm_state **p = (gptm_state **)opaque;
106 gptm_state *s;
107 int n;
109 s = *p;
110 n = p - s->opaque;
111 if (s->config == 0) {
112 s->state |= 1;
113 if ((s->control & 0x20)) {
114 /* Output trigger. */
115 qemu_irq_pulse(s->trigger);
117 if (s->mode[0] & 1) {
118 /* One-shot. */
119 s->control &= ~1;
120 } else {
121 /* Periodic. */
122 gptm_reload(s, 0, 0);
124 } else if (s->config == 1) {
125 /* RTC. */
126 uint32_t match;
127 s->rtc++;
128 match = s->match[0] | (s->match[1] << 16);
129 if (s->rtc > match)
130 s->rtc = 0;
131 if (s->rtc == 0) {
132 s->state |= 8;
134 gptm_reload(s, 0, 0);
135 } else if (s->mode[n] == 0xa) {
136 /* PWM mode. Not implemented. */
137 } else {
138 hw_error("TODO: 16-bit timer mode 0x%x\n", s->mode[n]);
140 gptm_update_irq(s);
143 static uint32_t gptm_read(void *opaque, target_phys_addr_t offset)
145 gptm_state *s = (gptm_state *)opaque;
147 switch (offset) {
148 case 0x00: /* CFG */
149 return s->config;
150 case 0x04: /* TAMR */
151 return s->mode[0];
152 case 0x08: /* TBMR */
153 return s->mode[1];
154 case 0x0c: /* CTL */
155 return s->control;
156 case 0x18: /* IMR */
157 return s->mask;
158 case 0x1c: /* RIS */
159 return s->state;
160 case 0x20: /* MIS */
161 return s->state & s->mask;
162 case 0x24: /* CR */
163 return 0;
164 case 0x28: /* TAILR */
165 return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
166 case 0x2c: /* TBILR */
167 return s->load[1];
168 case 0x30: /* TAMARCHR */
169 return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
170 case 0x34: /* TBMATCHR */
171 return s->match[1];
172 case 0x38: /* TAPR */
173 return s->prescale[0];
174 case 0x3c: /* TBPR */
175 return s->prescale[1];
176 case 0x40: /* TAPMR */
177 return s->match_prescale[0];
178 case 0x44: /* TBPMR */
179 return s->match_prescale[1];
180 case 0x48: /* TAR */
181 if (s->control == 1)
182 return s->rtc;
183 case 0x4c: /* TBR */
184 hw_error("TODO: Timer value read\n");
185 default:
186 hw_error("gptm_read: Bad offset 0x%x\n", (int)offset);
187 return 0;
191 static void gptm_write(void *opaque, target_phys_addr_t offset, uint32_t value)
193 gptm_state *s = (gptm_state *)opaque;
194 uint32_t oldval;
196 /* The timers should be disabled before changing the configuration.
197 We take advantage of this and defer everything until the timer
198 is enabled. */
199 switch (offset) {
200 case 0x00: /* CFG */
201 s->config = value;
202 break;
203 case 0x04: /* TAMR */
204 s->mode[0] = value;
205 break;
206 case 0x08: /* TBMR */
207 s->mode[1] = value;
208 break;
209 case 0x0c: /* CTL */
210 oldval = s->control;
211 s->control = value;
212 /* TODO: Implement pause. */
213 if ((oldval ^ value) & 1) {
214 if (value & 1) {
215 gptm_reload(s, 0, 1);
216 } else {
217 gptm_stop(s, 0);
220 if (((oldval ^ value) & 0x100) && s->config >= 4) {
221 if (value & 0x100) {
222 gptm_reload(s, 1, 1);
223 } else {
224 gptm_stop(s, 1);
227 break;
228 case 0x18: /* IMR */
229 s->mask = value & 0x77;
230 gptm_update_irq(s);
231 break;
232 case 0x24: /* CR */
233 s->state &= ~value;
234 break;
235 case 0x28: /* TAILR */
236 s->load[0] = value & 0xffff;
237 if (s->config < 4) {
238 s->load[1] = value >> 16;
240 break;
241 case 0x2c: /* TBILR */
242 s->load[1] = value & 0xffff;
243 break;
244 case 0x30: /* TAMARCHR */
245 s->match[0] = value & 0xffff;
246 if (s->config < 4) {
247 s->match[1] = value >> 16;
249 break;
250 case 0x34: /* TBMATCHR */
251 s->match[1] = value >> 16;
252 break;
253 case 0x38: /* TAPR */
254 s->prescale[0] = value;
255 break;
256 case 0x3c: /* TBPR */
257 s->prescale[1] = value;
258 break;
259 case 0x40: /* TAPMR */
260 s->match_prescale[0] = value;
261 break;
262 case 0x44: /* TBPMR */
263 s->match_prescale[0] = value;
264 break;
265 default:
266 hw_error("gptm_write: Bad offset 0x%x\n", (int)offset);
268 gptm_update_irq(s);
271 static CPUReadMemoryFunc * const gptm_readfn[] = {
272 gptm_read,
273 gptm_read,
274 gptm_read
277 static CPUWriteMemoryFunc * const gptm_writefn[] = {
278 gptm_write,
279 gptm_write,
280 gptm_write
283 static void gptm_save(QEMUFile *f, void *opaque)
285 gptm_state *s = (gptm_state *)opaque;
287 qemu_put_be32(f, s->config);
288 qemu_put_be32(f, s->mode[0]);
289 qemu_put_be32(f, s->mode[1]);
290 qemu_put_be32(f, s->control);
291 qemu_put_be32(f, s->state);
292 qemu_put_be32(f, s->mask);
293 qemu_put_be32(f, s->mode[0]);
294 qemu_put_be32(f, s->mode[0]);
295 qemu_put_be32(f, s->load[0]);
296 qemu_put_be32(f, s->load[1]);
297 qemu_put_be32(f, s->match[0]);
298 qemu_put_be32(f, s->match[1]);
299 qemu_put_be32(f, s->prescale[0]);
300 qemu_put_be32(f, s->prescale[1]);
301 qemu_put_be32(f, s->match_prescale[0]);
302 qemu_put_be32(f, s->match_prescale[1]);
303 qemu_put_be32(f, s->rtc);
304 qemu_put_be64(f, s->tick[0]);
305 qemu_put_be64(f, s->tick[1]);
306 qemu_put_timer(f, s->timer[0]);
307 qemu_put_timer(f, s->timer[1]);
310 static int gptm_load(QEMUFile *f, void *opaque, int version_id)
312 gptm_state *s = (gptm_state *)opaque;
314 if (version_id != 1)
315 return -EINVAL;
317 s->config = qemu_get_be32(f);
318 s->mode[0] = qemu_get_be32(f);
319 s->mode[1] = qemu_get_be32(f);
320 s->control = qemu_get_be32(f);
321 s->state = qemu_get_be32(f);
322 s->mask = qemu_get_be32(f);
323 s->mode[0] = qemu_get_be32(f);
324 s->mode[0] = qemu_get_be32(f);
325 s->load[0] = qemu_get_be32(f);
326 s->load[1] = qemu_get_be32(f);
327 s->match[0] = qemu_get_be32(f);
328 s->match[1] = qemu_get_be32(f);
329 s->prescale[0] = qemu_get_be32(f);
330 s->prescale[1] = qemu_get_be32(f);
331 s->match_prescale[0] = qemu_get_be32(f);
332 s->match_prescale[1] = qemu_get_be32(f);
333 s->rtc = qemu_get_be32(f);
334 s->tick[0] = qemu_get_be64(f);
335 s->tick[1] = qemu_get_be64(f);
336 qemu_get_timer(f, s->timer[0]);
337 qemu_get_timer(f, s->timer[1]);
339 return 0;
342 static int stellaris_gptm_init(SysBusDevice *dev)
344 int iomemtype;
345 gptm_state *s = FROM_SYSBUS(gptm_state, dev);
347 sysbus_init_irq(dev, &s->irq);
348 qdev_init_gpio_out(&dev->qdev, &s->trigger, 1);
350 iomemtype = cpu_register_io_memory(gptm_readfn,
351 gptm_writefn, s);
352 sysbus_init_mmio(dev, 0x1000, iomemtype);
354 s->opaque[0] = s->opaque[1] = s;
355 s->timer[0] = qemu_new_timer(vm_clock, gptm_tick, &s->opaque[0]);
356 s->timer[1] = qemu_new_timer(vm_clock, gptm_tick, &s->opaque[1]);
357 register_savevm("stellaris_gptm", -1, 1, gptm_save, gptm_load, s);
358 return 0;
362 /* System controller. */
364 typedef struct {
365 uint32_t pborctl;
366 uint32_t ldopctl;
367 uint32_t int_status;
368 uint32_t int_mask;
369 uint32_t resc;
370 uint32_t rcc;
371 uint32_t rcgc[3];
372 uint32_t scgc[3];
373 uint32_t dcgc[3];
374 uint32_t clkvclr;
375 uint32_t ldoarst;
376 uint32_t user0;
377 uint32_t user1;
378 qemu_irq irq;
379 stellaris_board_info *board;
380 } ssys_state;
382 static void ssys_update(ssys_state *s)
384 qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
387 static uint32_t pllcfg_sandstorm[16] = {
388 0x31c0, /* 1 Mhz */
389 0x1ae0, /* 1.8432 Mhz */
390 0x18c0, /* 2 Mhz */
391 0xd573, /* 2.4576 Mhz */
392 0x37a6, /* 3.57954 Mhz */
393 0x1ae2, /* 3.6864 Mhz */
394 0x0c40, /* 4 Mhz */
395 0x98bc, /* 4.906 Mhz */
396 0x935b, /* 4.9152 Mhz */
397 0x09c0, /* 5 Mhz */
398 0x4dee, /* 5.12 Mhz */
399 0x0c41, /* 6 Mhz */
400 0x75db, /* 6.144 Mhz */
401 0x1ae6, /* 7.3728 Mhz */
402 0x0600, /* 8 Mhz */
403 0x585b /* 8.192 Mhz */
406 static uint32_t pllcfg_fury[16] = {
407 0x3200, /* 1 Mhz */
408 0x1b20, /* 1.8432 Mhz */
409 0x1900, /* 2 Mhz */
410 0xf42b, /* 2.4576 Mhz */
411 0x37e3, /* 3.57954 Mhz */
412 0x1b21, /* 3.6864 Mhz */
413 0x0c80, /* 4 Mhz */
414 0x98ee, /* 4.906 Mhz */
415 0xd5b4, /* 4.9152 Mhz */
416 0x0a00, /* 5 Mhz */
417 0x4e27, /* 5.12 Mhz */
418 0x1902, /* 6 Mhz */
419 0xec1c, /* 6.144 Mhz */
420 0x1b23, /* 7.3728 Mhz */
421 0x0640, /* 8 Mhz */
422 0xb11c /* 8.192 Mhz */
425 static uint32_t ssys_read(void *opaque, target_phys_addr_t offset)
427 ssys_state *s = (ssys_state *)opaque;
429 switch (offset) {
430 case 0x000: /* DID0 */
431 return s->board->did0;
432 case 0x004: /* DID1 */
433 return s->board->did1;
434 case 0x008: /* DC0 */
435 return s->board->dc0;
436 case 0x010: /* DC1 */
437 return s->board->dc1;
438 case 0x014: /* DC2 */
439 return s->board->dc2;
440 case 0x018: /* DC3 */
441 return s->board->dc3;
442 case 0x01c: /* DC4 */
443 return s->board->dc4;
444 case 0x030: /* PBORCTL */
445 return s->pborctl;
446 case 0x034: /* LDOPCTL */
447 return s->ldopctl;
448 case 0x040: /* SRCR0 */
449 return 0;
450 case 0x044: /* SRCR1 */
451 return 0;
452 case 0x048: /* SRCR2 */
453 return 0;
454 case 0x050: /* RIS */
455 return s->int_status;
456 case 0x054: /* IMC */
457 return s->int_mask;
458 case 0x058: /* MISC */
459 return s->int_status & s->int_mask;
460 case 0x05c: /* RESC */
461 return s->resc;
462 case 0x060: /* RCC */
463 return s->rcc;
464 case 0x064: /* PLLCFG */
466 int xtal;
467 xtal = (s->rcc >> 6) & 0xf;
468 if (s->board->did0 & (1 << 16)) {
469 return pllcfg_fury[xtal];
470 } else {
471 return pllcfg_sandstorm[xtal];
474 case 0x100: /* RCGC0 */
475 return s->rcgc[0];
476 case 0x104: /* RCGC1 */
477 return s->rcgc[1];
478 case 0x108: /* RCGC2 */
479 return s->rcgc[2];
480 case 0x110: /* SCGC0 */
481 return s->scgc[0];
482 case 0x114: /* SCGC1 */
483 return s->scgc[1];
484 case 0x118: /* SCGC2 */
485 return s->scgc[2];
486 case 0x120: /* DCGC0 */
487 return s->dcgc[0];
488 case 0x124: /* DCGC1 */
489 return s->dcgc[1];
490 case 0x128: /* DCGC2 */
491 return s->dcgc[2];
492 case 0x150: /* CLKVCLR */
493 return s->clkvclr;
494 case 0x160: /* LDOARST */
495 return s->ldoarst;
496 case 0x1e0: /* USER0 */
497 return s->user0;
498 case 0x1e4: /* USER1 */
499 return s->user1;
500 default:
501 hw_error("ssys_read: Bad offset 0x%x\n", (int)offset);
502 return 0;
506 static void ssys_calculate_system_clock(ssys_state *s)
508 system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1);
511 static void ssys_write(void *opaque, target_phys_addr_t offset, uint32_t value)
513 ssys_state *s = (ssys_state *)opaque;
515 switch (offset) {
516 case 0x030: /* PBORCTL */
517 s->pborctl = value & 0xffff;
518 break;
519 case 0x034: /* LDOPCTL */
520 s->ldopctl = value & 0x1f;
521 break;
522 case 0x040: /* SRCR0 */
523 case 0x044: /* SRCR1 */
524 case 0x048: /* SRCR2 */
525 fprintf(stderr, "Peripheral reset not implemented\n");
526 break;
527 case 0x054: /* IMC */
528 s->int_mask = value & 0x7f;
529 break;
530 case 0x058: /* MISC */
531 s->int_status &= ~value;
532 break;
533 case 0x05c: /* RESC */
534 s->resc = value & 0x3f;
535 break;
536 case 0x060: /* RCC */
537 if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
538 /* PLL enable. */
539 s->int_status |= (1 << 6);
541 s->rcc = value;
542 ssys_calculate_system_clock(s);
543 break;
544 case 0x100: /* RCGC0 */
545 s->rcgc[0] = value;
546 break;
547 case 0x104: /* RCGC1 */
548 s->rcgc[1] = value;
549 break;
550 case 0x108: /* RCGC2 */
551 s->rcgc[2] = value;
552 break;
553 case 0x110: /* SCGC0 */
554 s->scgc[0] = value;
555 break;
556 case 0x114: /* SCGC1 */
557 s->scgc[1] = value;
558 break;
559 case 0x118: /* SCGC2 */
560 s->scgc[2] = value;
561 break;
562 case 0x120: /* DCGC0 */
563 s->dcgc[0] = value;
564 break;
565 case 0x124: /* DCGC1 */
566 s->dcgc[1] = value;
567 break;
568 case 0x128: /* DCGC2 */
569 s->dcgc[2] = value;
570 break;
571 case 0x150: /* CLKVCLR */
572 s->clkvclr = value;
573 break;
574 case 0x160: /* LDOARST */
575 s->ldoarst = value;
576 break;
577 default:
578 hw_error("ssys_write: Bad offset 0x%x\n", (int)offset);
580 ssys_update(s);
583 static CPUReadMemoryFunc * const ssys_readfn[] = {
584 ssys_read,
585 ssys_read,
586 ssys_read
589 static CPUWriteMemoryFunc * const ssys_writefn[] = {
590 ssys_write,
591 ssys_write,
592 ssys_write
595 static void ssys_reset(void *opaque)
597 ssys_state *s = (ssys_state *)opaque;
599 s->pborctl = 0x7ffd;
600 s->rcc = 0x078e3ac0;
601 s->rcgc[0] = 1;
602 s->scgc[0] = 1;
603 s->dcgc[0] = 1;
606 static void ssys_save(QEMUFile *f, void *opaque)
608 ssys_state *s = (ssys_state *)opaque;
610 qemu_put_be32(f, s->pborctl);
611 qemu_put_be32(f, s->ldopctl);
612 qemu_put_be32(f, s->int_mask);
613 qemu_put_be32(f, s->int_status);
614 qemu_put_be32(f, s->resc);
615 qemu_put_be32(f, s->rcc);
616 qemu_put_be32(f, s->rcgc[0]);
617 qemu_put_be32(f, s->rcgc[1]);
618 qemu_put_be32(f, s->rcgc[2]);
619 qemu_put_be32(f, s->scgc[0]);
620 qemu_put_be32(f, s->scgc[1]);
621 qemu_put_be32(f, s->scgc[2]);
622 qemu_put_be32(f, s->dcgc[0]);
623 qemu_put_be32(f, s->dcgc[1]);
624 qemu_put_be32(f, s->dcgc[2]);
625 qemu_put_be32(f, s->clkvclr);
626 qemu_put_be32(f, s->ldoarst);
629 static int ssys_load(QEMUFile *f, void *opaque, int version_id)
631 ssys_state *s = (ssys_state *)opaque;
633 if (version_id != 1)
634 return -EINVAL;
636 s->pborctl = qemu_get_be32(f);
637 s->ldopctl = qemu_get_be32(f);
638 s->int_mask = qemu_get_be32(f);
639 s->int_status = qemu_get_be32(f);
640 s->resc = qemu_get_be32(f);
641 s->rcc = qemu_get_be32(f);
642 s->rcgc[0] = qemu_get_be32(f);
643 s->rcgc[1] = qemu_get_be32(f);
644 s->rcgc[2] = qemu_get_be32(f);
645 s->scgc[0] = qemu_get_be32(f);
646 s->scgc[1] = qemu_get_be32(f);
647 s->scgc[2] = qemu_get_be32(f);
648 s->dcgc[0] = qemu_get_be32(f);
649 s->dcgc[1] = qemu_get_be32(f);
650 s->dcgc[2] = qemu_get_be32(f);
651 s->clkvclr = qemu_get_be32(f);
652 s->ldoarst = qemu_get_be32(f);
653 ssys_calculate_system_clock(s);
655 return 0;
658 static int stellaris_sys_init(uint32_t base, qemu_irq irq,
659 stellaris_board_info * board,
660 uint8_t *macaddr)
662 int iomemtype;
663 ssys_state *s;
665 s = (ssys_state *)qemu_mallocz(sizeof(ssys_state));
666 s->irq = irq;
667 s->board = board;
668 /* Most devices come preprogrammed with a MAC address in the user data. */
669 s->user0 = macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16);
670 s->user1 = macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16);
672 iomemtype = cpu_register_io_memory(ssys_readfn,
673 ssys_writefn, s);
674 cpu_register_physical_memory(base, 0x00001000, iomemtype);
675 ssys_reset(s);
676 register_savevm("stellaris_sys", -1, 1, ssys_save, ssys_load, s);
677 return 0;
681 /* I2C controller. */
683 typedef struct {
684 SysBusDevice busdev;
685 i2c_bus *bus;
686 qemu_irq irq;
687 uint32_t msa;
688 uint32_t mcs;
689 uint32_t mdr;
690 uint32_t mtpr;
691 uint32_t mimr;
692 uint32_t mris;
693 uint32_t mcr;
694 } stellaris_i2c_state;
696 #define STELLARIS_I2C_MCS_BUSY 0x01
697 #define STELLARIS_I2C_MCS_ERROR 0x02
698 #define STELLARIS_I2C_MCS_ADRACK 0x04
699 #define STELLARIS_I2C_MCS_DATACK 0x08
700 #define STELLARIS_I2C_MCS_ARBLST 0x10
701 #define STELLARIS_I2C_MCS_IDLE 0x20
702 #define STELLARIS_I2C_MCS_BUSBSY 0x40
704 static uint32_t stellaris_i2c_read(void *opaque, target_phys_addr_t offset)
706 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
708 switch (offset) {
709 case 0x00: /* MSA */
710 return s->msa;
711 case 0x04: /* MCS */
712 /* We don't emulate timing, so the controller is never busy. */
713 return s->mcs | STELLARIS_I2C_MCS_IDLE;
714 case 0x08: /* MDR */
715 return s->mdr;
716 case 0x0c: /* MTPR */
717 return s->mtpr;
718 case 0x10: /* MIMR */
719 return s->mimr;
720 case 0x14: /* MRIS */
721 return s->mris;
722 case 0x18: /* MMIS */
723 return s->mris & s->mimr;
724 case 0x20: /* MCR */
725 return s->mcr;
726 default:
727 hw_error("strllaris_i2c_read: Bad offset 0x%x\n", (int)offset);
728 return 0;
732 static void stellaris_i2c_update(stellaris_i2c_state *s)
734 int level;
736 level = (s->mris & s->mimr) != 0;
737 qemu_set_irq(s->irq, level);
740 static void stellaris_i2c_write(void *opaque, target_phys_addr_t offset,
741 uint32_t value)
743 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
745 switch (offset) {
746 case 0x00: /* MSA */
747 s->msa = value & 0xff;
748 break;
749 case 0x04: /* MCS */
750 if ((s->mcr & 0x10) == 0) {
751 /* Disabled. Do nothing. */
752 break;
754 /* Grab the bus if this is starting a transfer. */
755 if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
756 if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
757 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
758 } else {
759 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
760 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
763 /* If we don't have the bus then indicate an error. */
764 if (!i2c_bus_busy(s->bus)
765 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
766 s->mcs |= STELLARIS_I2C_MCS_ERROR;
767 break;
769 s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
770 if (value & 1) {
771 /* Transfer a byte. */
772 /* TODO: Handle errors. */
773 if (s->msa & 1) {
774 /* Recv */
775 s->mdr = i2c_recv(s->bus) & 0xff;
776 } else {
777 /* Send */
778 i2c_send(s->bus, s->mdr);
780 /* Raise an interrupt. */
781 s->mris |= 1;
783 if (value & 4) {
784 /* Finish transfer. */
785 i2c_end_transfer(s->bus);
786 s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
788 break;
789 case 0x08: /* MDR */
790 s->mdr = value & 0xff;
791 break;
792 case 0x0c: /* MTPR */
793 s->mtpr = value & 0xff;
794 break;
795 case 0x10: /* MIMR */
796 s->mimr = 1;
797 break;
798 case 0x1c: /* MICR */
799 s->mris &= ~value;
800 break;
801 case 0x20: /* MCR */
802 if (value & 1)
803 hw_error(
804 "stellaris_i2c_write: Loopback not implemented\n");
805 if (value & 0x20)
806 hw_error(
807 "stellaris_i2c_write: Slave mode not implemented\n");
808 s->mcr = value & 0x31;
809 break;
810 default:
811 hw_error("stellaris_i2c_write: Bad offset 0x%x\n",
812 (int)offset);
814 stellaris_i2c_update(s);
817 static void stellaris_i2c_reset(stellaris_i2c_state *s)
819 if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
820 i2c_end_transfer(s->bus);
822 s->msa = 0;
823 s->mcs = 0;
824 s->mdr = 0;
825 s->mtpr = 1;
826 s->mimr = 0;
827 s->mris = 0;
828 s->mcr = 0;
829 stellaris_i2c_update(s);
832 static CPUReadMemoryFunc * const stellaris_i2c_readfn[] = {
833 stellaris_i2c_read,
834 stellaris_i2c_read,
835 stellaris_i2c_read
838 static CPUWriteMemoryFunc * const stellaris_i2c_writefn[] = {
839 stellaris_i2c_write,
840 stellaris_i2c_write,
841 stellaris_i2c_write
844 static void stellaris_i2c_save(QEMUFile *f, void *opaque)
846 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
848 qemu_put_be32(f, s->msa);
849 qemu_put_be32(f, s->mcs);
850 qemu_put_be32(f, s->mdr);
851 qemu_put_be32(f, s->mtpr);
852 qemu_put_be32(f, s->mimr);
853 qemu_put_be32(f, s->mris);
854 qemu_put_be32(f, s->mcr);
857 static int stellaris_i2c_load(QEMUFile *f, void *opaque, int version_id)
859 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
861 if (version_id != 1)
862 return -EINVAL;
864 s->msa = qemu_get_be32(f);
865 s->mcs = qemu_get_be32(f);
866 s->mdr = qemu_get_be32(f);
867 s->mtpr = qemu_get_be32(f);
868 s->mimr = qemu_get_be32(f);
869 s->mris = qemu_get_be32(f);
870 s->mcr = qemu_get_be32(f);
872 return 0;
875 static int stellaris_i2c_init(SysBusDevice * dev)
877 stellaris_i2c_state *s = FROM_SYSBUS(stellaris_i2c_state, dev);
878 i2c_bus *bus;
879 int iomemtype;
881 sysbus_init_irq(dev, &s->irq);
882 bus = i2c_init_bus(&dev->qdev, "i2c");
883 s->bus = bus;
885 iomemtype = cpu_register_io_memory(stellaris_i2c_readfn,
886 stellaris_i2c_writefn, s);
887 sysbus_init_mmio(dev, 0x1000, iomemtype);
888 /* ??? For now we only implement the master interface. */
889 stellaris_i2c_reset(s);
890 register_savevm("stellaris_i2c", -1, 1,
891 stellaris_i2c_save, stellaris_i2c_load, s);
892 return 0;
895 /* Analogue to Digital Converter. This is only partially implemented,
896 enough for applications that use a combined ADC and timer tick. */
898 #define STELLARIS_ADC_EM_CONTROLLER 0
899 #define STELLARIS_ADC_EM_COMP 1
900 #define STELLARIS_ADC_EM_EXTERNAL 4
901 #define STELLARIS_ADC_EM_TIMER 5
902 #define STELLARIS_ADC_EM_PWM0 6
903 #define STELLARIS_ADC_EM_PWM1 7
904 #define STELLARIS_ADC_EM_PWM2 8
906 #define STELLARIS_ADC_FIFO_EMPTY 0x0100
907 #define STELLARIS_ADC_FIFO_FULL 0x1000
909 typedef struct
911 SysBusDevice busdev;
912 uint32_t actss;
913 uint32_t ris;
914 uint32_t im;
915 uint32_t emux;
916 uint32_t ostat;
917 uint32_t ustat;
918 uint32_t sspri;
919 uint32_t sac;
920 struct {
921 uint32_t state;
922 uint32_t data[16];
923 } fifo[4];
924 uint32_t ssmux[4];
925 uint32_t ssctl[4];
926 uint32_t noise;
927 qemu_irq irq[4];
928 } stellaris_adc_state;
930 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
932 int tail;
934 tail = s->fifo[n].state & 0xf;
935 if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
936 s->ustat |= 1 << n;
937 } else {
938 s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
939 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
940 if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
941 s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
943 return s->fifo[n].data[tail];
946 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
947 uint32_t value)
949 int head;
951 /* TODO: Real hardware has limited size FIFOs. We have a full 16 entry
952 FIFO fir each sequencer. */
953 head = (s->fifo[n].state >> 4) & 0xf;
954 if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
955 s->ostat |= 1 << n;
956 return;
958 s->fifo[n].data[head] = value;
959 head = (head + 1) & 0xf;
960 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
961 s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
962 if ((s->fifo[n].state & 0xf) == head)
963 s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
966 static void stellaris_adc_update(stellaris_adc_state *s)
968 int level;
969 int n;
971 for (n = 0; n < 4; n++) {
972 level = (s->ris & s->im & (1 << n)) != 0;
973 qemu_set_irq(s->irq[n], level);
977 static void stellaris_adc_trigger(void *opaque, int irq, int level)
979 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
980 int n;
982 for (n = 0; n < 4; n++) {
983 if ((s->actss & (1 << n)) == 0) {
984 continue;
987 if (((s->emux >> (n * 4)) & 0xff) != 5) {
988 continue;
991 /* Some applications use the ADC as a random number source, so introduce
992 some variation into the signal. */
993 s->noise = s->noise * 314159 + 1;
994 /* ??? actual inputs not implemented. Return an arbitrary value. */
995 stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
996 s->ris |= (1 << n);
997 stellaris_adc_update(s);
1001 static void stellaris_adc_reset(stellaris_adc_state *s)
1003 int n;
1005 for (n = 0; n < 4; n++) {
1006 s->ssmux[n] = 0;
1007 s->ssctl[n] = 0;
1008 s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
1012 static uint32_t stellaris_adc_read(void *opaque, target_phys_addr_t offset)
1014 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1016 /* TODO: Implement this. */
1017 if (offset >= 0x40 && offset < 0xc0) {
1018 int n;
1019 n = (offset - 0x40) >> 5;
1020 switch (offset & 0x1f) {
1021 case 0x00: /* SSMUX */
1022 return s->ssmux[n];
1023 case 0x04: /* SSCTL */
1024 return s->ssctl[n];
1025 case 0x08: /* SSFIFO */
1026 return stellaris_adc_fifo_read(s, n);
1027 case 0x0c: /* SSFSTAT */
1028 return s->fifo[n].state;
1029 default:
1030 break;
1033 switch (offset) {
1034 case 0x00: /* ACTSS */
1035 return s->actss;
1036 case 0x04: /* RIS */
1037 return s->ris;
1038 case 0x08: /* IM */
1039 return s->im;
1040 case 0x0c: /* ISC */
1041 return s->ris & s->im;
1042 case 0x10: /* OSTAT */
1043 return s->ostat;
1044 case 0x14: /* EMUX */
1045 return s->emux;
1046 case 0x18: /* USTAT */
1047 return s->ustat;
1048 case 0x20: /* SSPRI */
1049 return s->sspri;
1050 case 0x30: /* SAC */
1051 return s->sac;
1052 default:
1053 hw_error("strllaris_adc_read: Bad offset 0x%x\n",
1054 (int)offset);
1055 return 0;
1059 static void stellaris_adc_write(void *opaque, target_phys_addr_t offset,
1060 uint32_t value)
1062 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1064 /* TODO: Implement this. */
1065 if (offset >= 0x40 && offset < 0xc0) {
1066 int n;
1067 n = (offset - 0x40) >> 5;
1068 switch (offset & 0x1f) {
1069 case 0x00: /* SSMUX */
1070 s->ssmux[n] = value & 0x33333333;
1071 return;
1072 case 0x04: /* SSCTL */
1073 if (value != 6) {
1074 hw_error("ADC: Unimplemented sequence %x\n",
1075 value);
1077 s->ssctl[n] = value;
1078 return;
1079 default:
1080 break;
1083 switch (offset) {
1084 case 0x00: /* ACTSS */
1085 s->actss = value & 0xf;
1086 break;
1087 case 0x08: /* IM */
1088 s->im = value;
1089 break;
1090 case 0x0c: /* ISC */
1091 s->ris &= ~value;
1092 break;
1093 case 0x10: /* OSTAT */
1094 s->ostat &= ~value;
1095 break;
1096 case 0x14: /* EMUX */
1097 s->emux = value;
1098 break;
1099 case 0x18: /* USTAT */
1100 s->ustat &= ~value;
1101 break;
1102 case 0x20: /* SSPRI */
1103 s->sspri = value;
1104 break;
1105 case 0x28: /* PSSI */
1106 hw_error("Not implemented: ADC sample initiate\n");
1107 break;
1108 case 0x30: /* SAC */
1109 s->sac = value;
1110 break;
1111 default:
1112 hw_error("stellaris_adc_write: Bad offset 0x%x\n", (int)offset);
1114 stellaris_adc_update(s);
1117 static CPUReadMemoryFunc * const stellaris_adc_readfn[] = {
1118 stellaris_adc_read,
1119 stellaris_adc_read,
1120 stellaris_adc_read
1123 static CPUWriteMemoryFunc * const stellaris_adc_writefn[] = {
1124 stellaris_adc_write,
1125 stellaris_adc_write,
1126 stellaris_adc_write
1129 static void stellaris_adc_save(QEMUFile *f, void *opaque)
1131 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1132 int i;
1133 int j;
1135 qemu_put_be32(f, s->actss);
1136 qemu_put_be32(f, s->ris);
1137 qemu_put_be32(f, s->im);
1138 qemu_put_be32(f, s->emux);
1139 qemu_put_be32(f, s->ostat);
1140 qemu_put_be32(f, s->ustat);
1141 qemu_put_be32(f, s->sspri);
1142 qemu_put_be32(f, s->sac);
1143 for (i = 0; i < 4; i++) {
1144 qemu_put_be32(f, s->fifo[i].state);
1145 for (j = 0; j < 16; j++) {
1146 qemu_put_be32(f, s->fifo[i].data[j]);
1148 qemu_put_be32(f, s->ssmux[i]);
1149 qemu_put_be32(f, s->ssctl[i]);
1151 qemu_put_be32(f, s->noise);
1154 static int stellaris_adc_load(QEMUFile *f, void *opaque, int version_id)
1156 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1157 int i;
1158 int j;
1160 if (version_id != 1)
1161 return -EINVAL;
1163 s->actss = qemu_get_be32(f);
1164 s->ris = qemu_get_be32(f);
1165 s->im = qemu_get_be32(f);
1166 s->emux = qemu_get_be32(f);
1167 s->ostat = qemu_get_be32(f);
1168 s->ustat = qemu_get_be32(f);
1169 s->sspri = qemu_get_be32(f);
1170 s->sac = qemu_get_be32(f);
1171 for (i = 0; i < 4; i++) {
1172 s->fifo[i].state = qemu_get_be32(f);
1173 for (j = 0; j < 16; j++) {
1174 s->fifo[i].data[j] = qemu_get_be32(f);
1176 s->ssmux[i] = qemu_get_be32(f);
1177 s->ssctl[i] = qemu_get_be32(f);
1179 s->noise = qemu_get_be32(f);
1181 return 0;
1184 static int stellaris_adc_init(SysBusDevice *dev)
1186 stellaris_adc_state *s = FROM_SYSBUS(stellaris_adc_state, dev);
1187 int iomemtype;
1188 int n;
1190 for (n = 0; n < 4; n++) {
1191 sysbus_init_irq(dev, &s->irq[n]);
1194 iomemtype = cpu_register_io_memory(stellaris_adc_readfn,
1195 stellaris_adc_writefn, s);
1196 sysbus_init_mmio(dev, 0x1000, iomemtype);
1197 stellaris_adc_reset(s);
1198 qdev_init_gpio_in(&dev->qdev, stellaris_adc_trigger, 1);
1199 register_savevm("stellaris_adc", -1, 1,
1200 stellaris_adc_save, stellaris_adc_load, s);
1201 return 0;
1204 /* Some boards have both an OLED controller and SD card connected to
1205 the same SSI port, with the SD card chip select connected to a
1206 GPIO pin. Technically the OLED chip select is connected to the SSI
1207 Fss pin. We do not bother emulating that as both devices should
1208 never be selected simultaneously, and our OLED controller ignores stray
1209 0xff commands that occur when deselecting the SD card. */
1211 typedef struct {
1212 SSISlave ssidev;
1213 qemu_irq irq;
1214 int current_dev;
1215 SSIBus *bus[2];
1216 } stellaris_ssi_bus_state;
1218 static void stellaris_ssi_bus_select(void *opaque, int irq, int level)
1220 stellaris_ssi_bus_state *s = (stellaris_ssi_bus_state *)opaque;
1222 s->current_dev = level;
1225 static uint32_t stellaris_ssi_bus_transfer(SSISlave *dev, uint32_t val)
1227 stellaris_ssi_bus_state *s = FROM_SSI_SLAVE(stellaris_ssi_bus_state, dev);
1229 return ssi_transfer(s->bus[s->current_dev], val);
1232 static void stellaris_ssi_bus_save(QEMUFile *f, void *opaque)
1234 stellaris_ssi_bus_state *s = (stellaris_ssi_bus_state *)opaque;
1236 qemu_put_be32(f, s->current_dev);
1239 static int stellaris_ssi_bus_load(QEMUFile *f, void *opaque, int version_id)
1241 stellaris_ssi_bus_state *s = (stellaris_ssi_bus_state *)opaque;
1243 if (version_id != 1)
1244 return -EINVAL;
1246 s->current_dev = qemu_get_be32(f);
1248 return 0;
1251 static int stellaris_ssi_bus_init(SSISlave *dev)
1253 stellaris_ssi_bus_state *s = FROM_SSI_SLAVE(stellaris_ssi_bus_state, dev);
1255 s->bus[0] = ssi_create_bus(&dev->qdev, "ssi0");
1256 s->bus[1] = ssi_create_bus(&dev->qdev, "ssi1");
1257 qdev_init_gpio_in(&dev->qdev, stellaris_ssi_bus_select, 1);
1259 register_savevm("stellaris_ssi_bus", -1, 1,
1260 stellaris_ssi_bus_save, stellaris_ssi_bus_load, s);
1261 return 0;
1264 /* Board init. */
1265 static stellaris_board_info stellaris_boards[] = {
1266 { "LM3S811EVB",
1268 0x0032000e,
1269 0x001f001f, /* dc0 */
1270 0x001132bf,
1271 0x01071013,
1272 0x3f0f01ff,
1273 0x0000001f,
1274 BP_OLED_I2C
1276 { "LM3S6965EVB",
1277 0x10010002,
1278 0x1073402e,
1279 0x00ff007f, /* dc0 */
1280 0x001133ff,
1281 0x030f5317,
1282 0x0f0f87ff,
1283 0x5000007f,
1284 BP_OLED_SSI | BP_GAMEPAD
1288 static void stellaris_init(const char *kernel_filename, const char *cpu_model,
1289 stellaris_board_info *board)
1291 static const int uart_irq[] = {5, 6, 33, 34};
1292 static const int timer_irq[] = {19, 21, 23, 35};
1293 static const uint32_t gpio_addr[7] =
1294 { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1295 0x40024000, 0x40025000, 0x40026000};
1296 static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
1298 qemu_irq *pic;
1299 DeviceState *gpio_dev[7];
1300 qemu_irq gpio_in[7][8];
1301 qemu_irq gpio_out[7][8];
1302 qemu_irq adc;
1303 int sram_size;
1304 int flash_size;
1305 i2c_bus *i2c;
1306 DeviceState *dev;
1307 int i;
1308 int j;
1310 flash_size = ((board->dc0 & 0xffff) + 1) << 1;
1311 sram_size = (board->dc0 >> 18) + 1;
1312 pic = armv7m_init(flash_size, sram_size, kernel_filename, cpu_model);
1314 if (board->dc1 & (1 << 16)) {
1315 dev = sysbus_create_varargs("stellaris-adc", 0x40038000,
1316 pic[14], pic[15], pic[16], pic[17], NULL);
1317 adc = qdev_get_gpio_in(dev, 0);
1318 } else {
1319 adc = NULL;
1321 for (i = 0; i < 4; i++) {
1322 if (board->dc2 & (0x10000 << i)) {
1323 dev = sysbus_create_simple("stellaris-gptm",
1324 0x40030000 + i * 0x1000,
1325 pic[timer_irq[i]]);
1326 /* TODO: This is incorrect, but we get away with it because
1327 the ADC output is only ever pulsed. */
1328 qdev_connect_gpio_out(dev, 0, adc);
1332 stellaris_sys_init(0x400fe000, pic[28], board, nd_table[0].macaddr);
1334 for (i = 0; i < 7; i++) {
1335 if (board->dc4 & (1 << i)) {
1336 gpio_dev[i] = sysbus_create_simple("pl061", gpio_addr[i],
1337 pic[gpio_irq[i]]);
1338 for (j = 0; j < 8; j++) {
1339 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1340 gpio_out[i][j] = NULL;
1345 if (board->dc2 & (1 << 12)) {
1346 dev = sysbus_create_simple("stellaris-i2c", 0x40020000, pic[8]);
1347 i2c = (i2c_bus *)qdev_get_child_bus(dev, "i2c");
1348 if (board->peripherals & BP_OLED_I2C) {
1349 i2c_create_slave(i2c, "ssd0303", 0x3d);
1353 for (i = 0; i < 4; i++) {
1354 if (board->dc2 & (1 << i)) {
1355 sysbus_create_simple("pl011_luminary", 0x4000c000 + i * 0x1000,
1356 pic[uart_irq[i]]);
1359 if (board->dc2 & (1 << 4)) {
1360 dev = sysbus_create_simple("pl022", 0x40008000, pic[7]);
1361 if (board->peripherals & BP_OLED_SSI) {
1362 DeviceState *mux;
1363 void *bus;
1365 bus = qdev_get_child_bus(dev, "ssi");
1366 mux = ssi_create_slave(bus, "evb6965-ssi");
1367 gpio_out[GPIO_D][0] = qdev_get_gpio_in(mux, 0);
1369 bus = qdev_get_child_bus(mux, "ssi0");
1370 dev = ssi_create_slave(bus, "ssi-sd");
1372 bus = qdev_get_child_bus(mux, "ssi1");
1373 dev = ssi_create_slave(bus, "ssd0323");
1374 gpio_out[GPIO_C][7] = qdev_get_gpio_in(dev, 0);
1376 /* Make sure the select pin is high. */
1377 qemu_irq_raise(gpio_out[GPIO_D][0]);
1380 if (board->dc4 & (1 << 28)) {
1381 DeviceState *enet;
1383 qemu_check_nic_model(&nd_table[0], "stellaris");
1385 enet = qdev_create(NULL, "stellaris_enet");
1386 enet->nd = &nd_table[0];
1387 qdev_init(enet);
1388 sysbus_mmio_map(sysbus_from_qdev(enet), 0, 0x40048000);
1389 sysbus_connect_irq(sysbus_from_qdev(enet), 0, pic[42]);
1391 if (board->peripherals & BP_GAMEPAD) {
1392 qemu_irq gpad_irq[5];
1393 static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1395 gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1396 gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1397 gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1398 gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1399 gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1401 stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1403 for (i = 0; i < 7; i++) {
1404 if (board->dc4 & (1 << i)) {
1405 for (j = 0; j < 8; j++) {
1406 if (gpio_out[i][j]) {
1407 qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1414 /* FIXME: Figure out how to generate these from stellaris_boards. */
1415 static void lm3s811evb_init(ram_addr_t ram_size,
1416 const char *boot_device,
1417 const char *kernel_filename, const char *kernel_cmdline,
1418 const char *initrd_filename, const char *cpu_model)
1420 stellaris_init(kernel_filename, cpu_model, &stellaris_boards[0]);
1423 static void lm3s6965evb_init(ram_addr_t ram_size,
1424 const char *boot_device,
1425 const char *kernel_filename, const char *kernel_cmdline,
1426 const char *initrd_filename, const char *cpu_model)
1428 stellaris_init(kernel_filename, cpu_model, &stellaris_boards[1]);
1431 static QEMUMachine lm3s811evb_machine = {
1432 .name = "lm3s811evb",
1433 .desc = "Stellaris LM3S811EVB",
1434 .init = lm3s811evb_init,
1437 static QEMUMachine lm3s6965evb_machine = {
1438 .name = "lm3s6965evb",
1439 .desc = "Stellaris LM3S6965EVB",
1440 .init = lm3s6965evb_init,
1443 static void stellaris_machine_init(void)
1445 qemu_register_machine(&lm3s811evb_machine);
1446 qemu_register_machine(&lm3s6965evb_machine);
1449 machine_init(stellaris_machine_init);
1451 static SSISlaveInfo stellaris_ssi_bus_info = {
1452 .qdev.name = "evb6965-ssi",
1453 .qdev.size = sizeof(stellaris_ssi_bus_state),
1454 .init = stellaris_ssi_bus_init,
1455 .transfer = stellaris_ssi_bus_transfer
1458 static void stellaris_register_devices(void)
1460 sysbus_register_dev("stellaris-i2c", sizeof(stellaris_i2c_state),
1461 stellaris_i2c_init);
1462 sysbus_register_dev("stellaris-gptm", sizeof(gptm_state),
1463 stellaris_gptm_init);
1464 sysbus_register_dev("stellaris-adc", sizeof(stellaris_adc_state),
1465 stellaris_adc_init);
1466 ssi_register_slave(&stellaris_ssi_bus_info);
1469 device_init(stellaris_register_devices)