vhost-user: Introduce a new protocol feature REPLY_ACK.
[qemu/cris-port.git] / hw / ppc / spapr.c
blob57564e5b8e504c84973900e3838c16913c392c45
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
31 #include "hw/hw.h"
32 #include "qemu/log.h"
33 #include "hw/fw-path-provider.h"
34 #include "elf.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/kvm.h"
40 #include "sysemu/device_tree.h"
41 #include "kvm_ppc.h"
42 #include "migration/migration.h"
43 #include "mmu-hash64.h"
44 #include "qom/cpu.h"
46 #include "hw/boards.h"
47 #include "hw/ppc/ppc.h"
48 #include "hw/loader.h"
50 #include "hw/ppc/spapr.h"
51 #include "hw/ppc/spapr_vio.h"
52 #include "hw/pci-host/spapr.h"
53 #include "hw/ppc/xics.h"
54 #include "hw/pci/msi.h"
56 #include "hw/pci/pci.h"
57 #include "hw/scsi/scsi.h"
58 #include "hw/virtio/virtio-scsi.h"
60 #include "exec/address-spaces.h"
61 #include "hw/usb.h"
62 #include "qemu/config-file.h"
63 #include "qemu/error-report.h"
64 #include "trace.h"
65 #include "hw/nmi.h"
67 #include "hw/compat.h"
68 #include "qemu/cutils.h"
69 #include "hw/ppc/spapr_cpu_core.h"
70 #include "qmp-commands.h"
72 #include <libfdt.h>
74 /* SLOF memory layout:
76 * SLOF raw image loaded at 0, copies its romfs right below the flat
77 * device-tree, then position SLOF itself 31M below that
79 * So we set FW_OVERHEAD to 40MB which should account for all of that
80 * and more
82 * We load our kernel at 4M, leaving space for SLOF initial image
84 #define FDT_MAX_SIZE 0x100000
85 #define RTAS_MAX_SIZE 0x10000
86 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
87 #define FW_MAX_SIZE 0x400000
88 #define FW_FILE_NAME "slof.bin"
89 #define FW_OVERHEAD 0x2800000
90 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
92 #define MIN_RMA_SLOF 128UL
94 #define PHANDLE_XICP 0x00001111
96 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
98 static XICSState *try_create_xics(const char *type, int nr_servers,
99 int nr_irqs, Error **errp)
101 Error *err = NULL;
102 DeviceState *dev;
104 dev = qdev_create(NULL, type);
105 qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
106 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
107 object_property_set_bool(OBJECT(dev), true, "realized", &err);
108 if (err) {
109 error_propagate(errp, err);
110 object_unparent(OBJECT(dev));
111 return NULL;
113 return XICS_COMMON(dev);
116 static XICSState *xics_system_init(MachineState *machine,
117 int nr_servers, int nr_irqs, Error **errp)
119 XICSState *xics = NULL;
121 if (kvm_enabled()) {
122 Error *err = NULL;
124 if (machine_kernel_irqchip_allowed(machine)) {
125 xics = try_create_xics(TYPE_XICS_SPAPR_KVM, nr_servers, nr_irqs,
126 &err);
128 if (machine_kernel_irqchip_required(machine) && !xics) {
129 error_reportf_err(err,
130 "kernel_irqchip requested but unavailable: ");
131 } else {
132 error_free(err);
136 if (!xics) {
137 xics = try_create_xics(TYPE_XICS_SPAPR, nr_servers, nr_irqs, errp);
140 return xics;
143 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
144 int smt_threads)
146 int i, ret = 0;
147 uint32_t servers_prop[smt_threads];
148 uint32_t gservers_prop[smt_threads * 2];
149 int index = ppc_get_vcpu_dt_id(cpu);
151 if (cpu->cpu_version) {
152 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
153 if (ret < 0) {
154 return ret;
158 /* Build interrupt servers and gservers properties */
159 for (i = 0; i < smt_threads; i++) {
160 servers_prop[i] = cpu_to_be32(index + i);
161 /* Hack, direct the group queues back to cpu 0 */
162 gservers_prop[i*2] = cpu_to_be32(index + i);
163 gservers_prop[i*2 + 1] = 0;
165 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
166 servers_prop, sizeof(servers_prop));
167 if (ret < 0) {
168 return ret;
170 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
171 gservers_prop, sizeof(gservers_prop));
173 return ret;
176 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
178 int ret = 0;
179 PowerPCCPU *cpu = POWERPC_CPU(cs);
180 int index = ppc_get_vcpu_dt_id(cpu);
181 uint32_t associativity[] = {cpu_to_be32(0x5),
182 cpu_to_be32(0x0),
183 cpu_to_be32(0x0),
184 cpu_to_be32(0x0),
185 cpu_to_be32(cs->numa_node),
186 cpu_to_be32(index)};
188 /* Advertise NUMA via ibm,associativity */
189 if (nb_numa_nodes > 1) {
190 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
191 sizeof(associativity));
194 return ret;
197 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
199 int ret = 0, offset, cpus_offset;
200 CPUState *cs;
201 char cpu_model[32];
202 int smt = kvmppc_smt_threads();
203 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
205 CPU_FOREACH(cs) {
206 PowerPCCPU *cpu = POWERPC_CPU(cs);
207 DeviceClass *dc = DEVICE_GET_CLASS(cs);
208 int index = ppc_get_vcpu_dt_id(cpu);
210 if ((index % smt) != 0) {
211 continue;
214 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
216 cpus_offset = fdt_path_offset(fdt, "/cpus");
217 if (cpus_offset < 0) {
218 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
219 "cpus");
220 if (cpus_offset < 0) {
221 return cpus_offset;
224 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
225 if (offset < 0) {
226 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
227 if (offset < 0) {
228 return offset;
232 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
233 pft_size_prop, sizeof(pft_size_prop));
234 if (ret < 0) {
235 return ret;
238 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
239 if (ret < 0) {
240 return ret;
243 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
244 ppc_get_compat_smt_threads(cpu));
245 if (ret < 0) {
246 return ret;
249 return ret;
253 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
254 size_t maxsize)
256 size_t maxcells = maxsize / sizeof(uint32_t);
257 int i, j, count;
258 uint32_t *p = prop;
260 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
261 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
263 if (!sps->page_shift) {
264 break;
266 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
267 if (sps->enc[count].page_shift == 0) {
268 break;
271 if ((p - prop) >= (maxcells - 3 - count * 2)) {
272 break;
274 *(p++) = cpu_to_be32(sps->page_shift);
275 *(p++) = cpu_to_be32(sps->slb_enc);
276 *(p++) = cpu_to_be32(count);
277 for (j = 0; j < count; j++) {
278 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
279 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
283 return (p - prop) * sizeof(uint32_t);
286 static hwaddr spapr_node0_size(void)
288 MachineState *machine = MACHINE(qdev_get_machine());
290 if (nb_numa_nodes) {
291 int i;
292 for (i = 0; i < nb_numa_nodes; ++i) {
293 if (numa_info[i].node_mem) {
294 return MIN(pow2floor(numa_info[i].node_mem),
295 machine->ram_size);
299 return machine->ram_size;
302 #define _FDT(exp) \
303 do { \
304 int ret = (exp); \
305 if (ret < 0) { \
306 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
307 #exp, fdt_strerror(ret)); \
308 exit(1); \
310 } while (0)
312 static void add_str(GString *s, const gchar *s1)
314 g_string_append_len(s, s1, strlen(s1) + 1);
317 static void *spapr_create_fdt_skel(hwaddr initrd_base,
318 hwaddr initrd_size,
319 hwaddr kernel_size,
320 bool little_endian,
321 const char *kernel_cmdline,
322 uint32_t epow_irq)
324 void *fdt;
325 uint32_t start_prop = cpu_to_be32(initrd_base);
326 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
327 GString *hypertas = g_string_sized_new(256);
328 GString *qemu_hypertas = g_string_sized_new(256);
329 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
330 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)};
331 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
332 char *buf;
334 add_str(hypertas, "hcall-pft");
335 add_str(hypertas, "hcall-term");
336 add_str(hypertas, "hcall-dabr");
337 add_str(hypertas, "hcall-interrupt");
338 add_str(hypertas, "hcall-tce");
339 add_str(hypertas, "hcall-vio");
340 add_str(hypertas, "hcall-splpar");
341 add_str(hypertas, "hcall-bulk");
342 add_str(hypertas, "hcall-set-mode");
343 add_str(hypertas, "hcall-sprg0");
344 add_str(hypertas, "hcall-copy");
345 add_str(hypertas, "hcall-debug");
346 add_str(qemu_hypertas, "hcall-memop1");
348 fdt = g_malloc0(FDT_MAX_SIZE);
349 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
351 if (kernel_size) {
352 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
354 if (initrd_size) {
355 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
357 _FDT((fdt_finish_reservemap(fdt)));
359 /* Root node */
360 _FDT((fdt_begin_node(fdt, "")));
361 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
362 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
363 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
366 * Add info to guest to indentify which host is it being run on
367 * and what is the uuid of the guest
369 if (kvmppc_get_host_model(&buf)) {
370 _FDT((fdt_property_string(fdt, "host-model", buf)));
371 g_free(buf);
373 if (kvmppc_get_host_serial(&buf)) {
374 _FDT((fdt_property_string(fdt, "host-serial", buf)));
375 g_free(buf);
378 buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
379 qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
380 qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
381 qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
382 qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
383 qemu_uuid[14], qemu_uuid[15]);
385 _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
386 if (qemu_uuid_set) {
387 _FDT((fdt_property_string(fdt, "system-id", buf)));
389 g_free(buf);
391 if (qemu_get_vm_name()) {
392 _FDT((fdt_property_string(fdt, "ibm,partition-name",
393 qemu_get_vm_name())));
396 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
397 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
399 /* /chosen */
400 _FDT((fdt_begin_node(fdt, "chosen")));
402 /* Set Form1_affinity */
403 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
405 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
406 _FDT((fdt_property(fdt, "linux,initrd-start",
407 &start_prop, sizeof(start_prop))));
408 _FDT((fdt_property(fdt, "linux,initrd-end",
409 &end_prop, sizeof(end_prop))));
410 if (kernel_size) {
411 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
412 cpu_to_be64(kernel_size) };
414 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
415 if (little_endian) {
416 _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
419 if (boot_menu) {
420 _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
422 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
423 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
424 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
426 _FDT((fdt_end_node(fdt)));
428 /* RTAS */
429 _FDT((fdt_begin_node(fdt, "rtas")));
431 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
432 add_str(hypertas, "hcall-multi-tce");
434 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
435 hypertas->len)));
436 g_string_free(hypertas, TRUE);
437 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
438 qemu_hypertas->len)));
439 g_string_free(qemu_hypertas, TRUE);
441 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
442 refpoints, sizeof(refpoints))));
444 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
445 _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate",
446 RTAS_EVENT_SCAN_RATE)));
448 if (msi_nonbroken) {
449 _FDT((fdt_property(fdt, "ibm,change-msix-capable", NULL, 0)));
453 * According to PAPR, rtas ibm,os-term does not guarantee a return
454 * back to the guest cpu.
456 * While an additional ibm,extended-os-term property indicates that
457 * rtas call return will always occur. Set this property.
459 _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));
461 _FDT((fdt_end_node(fdt)));
463 /* interrupt controller */
464 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
466 _FDT((fdt_property_string(fdt, "device_type",
467 "PowerPC-External-Interrupt-Presentation")));
468 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
469 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
470 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
471 interrupt_server_ranges_prop,
472 sizeof(interrupt_server_ranges_prop))));
473 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
474 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
475 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
477 _FDT((fdt_end_node(fdt)));
479 /* vdevice */
480 _FDT((fdt_begin_node(fdt, "vdevice")));
482 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
483 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
484 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
485 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
486 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
487 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
489 _FDT((fdt_end_node(fdt)));
491 /* event-sources */
492 spapr_events_fdt_skel(fdt, epow_irq);
494 /* /hypervisor node */
495 if (kvm_enabled()) {
496 uint8_t hypercall[16];
498 /* indicate KVM hypercall interface */
499 _FDT((fdt_begin_node(fdt, "hypervisor")));
500 _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
501 if (kvmppc_has_cap_fixup_hcalls()) {
503 * Older KVM versions with older guest kernels were broken with the
504 * magic page, don't allow the guest to map it.
506 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
507 sizeof(hypercall))) {
508 _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
509 sizeof(hypercall))));
512 _FDT((fdt_end_node(fdt)));
515 _FDT((fdt_end_node(fdt))); /* close root node */
516 _FDT((fdt_finish(fdt)));
518 return fdt;
521 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
522 hwaddr size)
524 uint32_t associativity[] = {
525 cpu_to_be32(0x4), /* length */
526 cpu_to_be32(0x0), cpu_to_be32(0x0),
527 cpu_to_be32(0x0), cpu_to_be32(nodeid)
529 char mem_name[32];
530 uint64_t mem_reg_property[2];
531 int off;
533 mem_reg_property[0] = cpu_to_be64(start);
534 mem_reg_property[1] = cpu_to_be64(size);
536 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
537 off = fdt_add_subnode(fdt, 0, mem_name);
538 _FDT(off);
539 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
540 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
541 sizeof(mem_reg_property))));
542 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
543 sizeof(associativity))));
544 return off;
547 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
549 MachineState *machine = MACHINE(spapr);
550 hwaddr mem_start, node_size;
551 int i, nb_nodes = nb_numa_nodes;
552 NodeInfo *nodes = numa_info;
553 NodeInfo ramnode;
555 /* No NUMA nodes, assume there is just one node with whole RAM */
556 if (!nb_numa_nodes) {
557 nb_nodes = 1;
558 ramnode.node_mem = machine->ram_size;
559 nodes = &ramnode;
562 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
563 if (!nodes[i].node_mem) {
564 continue;
566 if (mem_start >= machine->ram_size) {
567 node_size = 0;
568 } else {
569 node_size = nodes[i].node_mem;
570 if (node_size > machine->ram_size - mem_start) {
571 node_size = machine->ram_size - mem_start;
574 if (!mem_start) {
575 /* ppc_spapr_init() checks for rma_size <= node0_size already */
576 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
577 mem_start += spapr->rma_size;
578 node_size -= spapr->rma_size;
580 for ( ; node_size; ) {
581 hwaddr sizetmp = pow2floor(node_size);
583 /* mem_start != 0 here */
584 if (ctzl(mem_start) < ctzl(sizetmp)) {
585 sizetmp = 1ULL << ctzl(mem_start);
588 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
589 node_size -= sizetmp;
590 mem_start += sizetmp;
594 return 0;
597 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
598 sPAPRMachineState *spapr)
600 PowerPCCPU *cpu = POWERPC_CPU(cs);
601 CPUPPCState *env = &cpu->env;
602 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
603 int index = ppc_get_vcpu_dt_id(cpu);
604 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
605 0xffffffff, 0xffffffff};
606 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
607 : SPAPR_TIMEBASE_FREQ;
608 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
609 uint32_t page_sizes_prop[64];
610 size_t page_sizes_prop_size;
611 uint32_t vcpus_per_socket = smp_threads * smp_cores;
612 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
613 sPAPRDRConnector *drc;
614 sPAPRDRConnectorClass *drck;
615 int drc_index;
617 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index);
618 if (drc) {
619 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
620 drc_index = drck->get_index(drc);
621 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
624 /* Note: we keep CI large pages off for now because a 64K capable guest
625 * provisioned with large pages might otherwise try to map a qemu
626 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
627 * even if that qemu runs on a 4k host.
629 * We can later add this bit back when we are confident this is not
630 * an issue (!HV KVM or 64K host)
632 uint8_t pa_features_206[] = { 6, 0,
633 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
634 uint8_t pa_features_207[] = { 24, 0,
635 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
636 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
637 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
638 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
639 uint8_t *pa_features;
640 size_t pa_size;
642 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
643 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
645 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
646 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
647 env->dcache_line_size)));
648 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
649 env->dcache_line_size)));
650 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
651 env->icache_line_size)));
652 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
653 env->icache_line_size)));
655 if (pcc->l1_dcache_size) {
656 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
657 pcc->l1_dcache_size)));
658 } else {
659 fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
661 if (pcc->l1_icache_size) {
662 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
663 pcc->l1_icache_size)));
664 } else {
665 fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
668 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
669 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
670 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
671 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
672 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
673 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
675 if (env->spr_cb[SPR_PURR].oea_read) {
676 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
679 if (env->mmu_model & POWERPC_MMU_1TSEG) {
680 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
681 segs, sizeof(segs))));
684 /* Advertise VMX/VSX (vector extensions) if available
685 * 0 / no property == no vector extensions
686 * 1 == VMX / Altivec available
687 * 2 == VSX available */
688 if (env->insns_flags & PPC_ALTIVEC) {
689 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
691 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
694 /* Advertise DFP (Decimal Floating Point) if available
695 * 0 / no property == no DFP
696 * 1 == DFP available */
697 if (env->insns_flags2 & PPC2_DFP) {
698 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
701 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
702 sizeof(page_sizes_prop));
703 if (page_sizes_prop_size) {
704 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
705 page_sizes_prop, page_sizes_prop_size)));
708 /* Do the ibm,pa-features property, adjust it for ci-large-pages */
709 if (env->mmu_model == POWERPC_MMU_2_06) {
710 pa_features = pa_features_206;
711 pa_size = sizeof(pa_features_206);
712 } else /* env->mmu_model == POWERPC_MMU_2_07 */ {
713 pa_features = pa_features_207;
714 pa_size = sizeof(pa_features_207);
716 if (env->ci_large_pages) {
717 pa_features[3] |= 0x20;
719 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
721 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
722 cs->cpu_index / vcpus_per_socket)));
724 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
725 pft_size_prop, sizeof(pft_size_prop))));
727 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
729 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
730 ppc_get_compat_smt_threads(cpu)));
733 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
735 CPUState *cs;
736 int cpus_offset;
737 char *nodename;
738 int smt = kvmppc_smt_threads();
740 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
741 _FDT(cpus_offset);
742 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
743 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
746 * We walk the CPUs in reverse order to ensure that CPU DT nodes
747 * created by fdt_add_subnode() end up in the right order in FDT
748 * for the guest kernel the enumerate the CPUs correctly.
750 CPU_FOREACH_REVERSE(cs) {
751 PowerPCCPU *cpu = POWERPC_CPU(cs);
752 int index = ppc_get_vcpu_dt_id(cpu);
753 DeviceClass *dc = DEVICE_GET_CLASS(cs);
754 int offset;
756 if ((index % smt) != 0) {
757 continue;
760 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
761 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
762 g_free(nodename);
763 _FDT(offset);
764 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
770 * Adds ibm,dynamic-reconfiguration-memory node.
771 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
772 * of this device tree node.
774 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
776 MachineState *machine = MACHINE(spapr);
777 int ret, i, offset;
778 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
779 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
780 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
781 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
782 memory_region_size(&spapr->hotplug_memory.mr)) /
783 lmb_size;
784 uint32_t *int_buf, *cur_index, buf_len;
785 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
788 * Don't create the node if there is no hotpluggable memory
790 if (machine->ram_size == machine->maxram_size) {
791 return 0;
795 * Allocate enough buffer size to fit in ibm,dynamic-memory
796 * or ibm,associativity-lookup-arrays
798 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
799 * sizeof(uint32_t);
800 cur_index = int_buf = g_malloc0(buf_len);
802 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
804 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
805 sizeof(prop_lmb_size));
806 if (ret < 0) {
807 goto out;
810 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
811 if (ret < 0) {
812 goto out;
815 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
816 if (ret < 0) {
817 goto out;
820 /* ibm,dynamic-memory */
821 int_buf[0] = cpu_to_be32(nr_lmbs);
822 cur_index++;
823 for (i = 0; i < nr_lmbs; i++) {
824 uint64_t addr = i * lmb_size;
825 uint32_t *dynamic_memory = cur_index;
827 if (i >= hotplug_lmb_start) {
828 sPAPRDRConnector *drc;
829 sPAPRDRConnectorClass *drck;
831 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i);
832 g_assert(drc);
833 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
835 dynamic_memory[0] = cpu_to_be32(addr >> 32);
836 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
837 dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
838 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
839 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
840 if (memory_region_present(get_system_memory(), addr)) {
841 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
842 } else {
843 dynamic_memory[5] = cpu_to_be32(0);
845 } else {
847 * LMB information for RMA, boot time RAM and gap b/n RAM and
848 * hotplug memory region -- all these are marked as reserved
849 * and as having no valid DRC.
851 dynamic_memory[0] = cpu_to_be32(addr >> 32);
852 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
853 dynamic_memory[2] = cpu_to_be32(0);
854 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
855 dynamic_memory[4] = cpu_to_be32(-1);
856 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
857 SPAPR_LMB_FLAGS_DRC_INVALID);
860 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
862 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
863 if (ret < 0) {
864 goto out;
867 /* ibm,associativity-lookup-arrays */
868 cur_index = int_buf;
869 int_buf[0] = cpu_to_be32(nr_nodes);
870 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
871 cur_index += 2;
872 for (i = 0; i < nr_nodes; i++) {
873 uint32_t associativity[] = {
874 cpu_to_be32(0x0),
875 cpu_to_be32(0x0),
876 cpu_to_be32(0x0),
877 cpu_to_be32(i)
879 memcpy(cur_index, associativity, sizeof(associativity));
880 cur_index += 4;
882 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
883 (cur_index - int_buf) * sizeof(uint32_t));
884 out:
885 g_free(int_buf);
886 return ret;
889 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
890 target_ulong addr, target_ulong size,
891 bool cpu_update, bool memory_update)
893 void *fdt, *fdt_skel;
894 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
895 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
897 size -= sizeof(hdr);
899 /* Create sceleton */
900 fdt_skel = g_malloc0(size);
901 _FDT((fdt_create(fdt_skel, size)));
902 _FDT((fdt_begin_node(fdt_skel, "")));
903 _FDT((fdt_end_node(fdt_skel)));
904 _FDT((fdt_finish(fdt_skel)));
905 fdt = g_malloc0(size);
906 _FDT((fdt_open_into(fdt_skel, fdt, size)));
907 g_free(fdt_skel);
909 /* Fixup cpu nodes */
910 if (cpu_update) {
911 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
914 /* Generate ibm,dynamic-reconfiguration-memory node if required */
915 if (memory_update && smc->dr_lmb_enabled) {
916 _FDT((spapr_populate_drconf_memory(spapr, fdt)));
919 /* Pack resulting tree */
920 _FDT((fdt_pack(fdt)));
922 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
923 trace_spapr_cas_failed(size);
924 return -1;
927 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
928 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
929 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
930 g_free(fdt);
932 return 0;
935 static void spapr_finalize_fdt(sPAPRMachineState *spapr,
936 hwaddr fdt_addr,
937 hwaddr rtas_addr,
938 hwaddr rtas_size)
940 MachineState *machine = MACHINE(qdev_get_machine());
941 MachineClass *mc = MACHINE_GET_CLASS(machine);
942 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
943 const char *boot_device = machine->boot_order;
944 int ret, i;
945 size_t cb = 0;
946 char *bootlist;
947 void *fdt;
948 sPAPRPHBState *phb;
950 fdt = g_malloc(FDT_MAX_SIZE);
952 /* open out the base tree into a temp buffer for the final tweaks */
953 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
955 ret = spapr_populate_memory(spapr, fdt);
956 if (ret < 0) {
957 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
958 exit(1);
961 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
962 if (ret < 0) {
963 fprintf(stderr, "couldn't setup vio devices in fdt\n");
964 exit(1);
967 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
968 ret = spapr_rng_populate_dt(fdt);
969 if (ret < 0) {
970 fprintf(stderr, "could not set up rng device in the fdt\n");
971 exit(1);
975 QLIST_FOREACH(phb, &spapr->phbs, list) {
976 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
977 if (ret < 0) {
978 error_report("couldn't setup PCI devices in fdt");
979 exit(1);
983 /* RTAS */
984 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
985 if (ret < 0) {
986 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
989 /* cpus */
990 spapr_populate_cpus_dt_node(fdt, spapr);
992 bootlist = get_boot_devices_list(&cb, true);
993 if (cb && bootlist) {
994 int offset = fdt_path_offset(fdt, "/chosen");
995 if (offset < 0) {
996 exit(1);
998 for (i = 0; i < cb; i++) {
999 if (bootlist[i] == '\n') {
1000 bootlist[i] = ' ';
1004 ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
1007 if (boot_device && strlen(boot_device)) {
1008 int offset = fdt_path_offset(fdt, "/chosen");
1010 if (offset < 0) {
1011 exit(1);
1013 fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
1016 if (!spapr->has_graphics) {
1017 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
1020 if (smc->dr_lmb_enabled) {
1021 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1024 if (mc->query_hotpluggable_cpus) {
1025 int offset = fdt_path_offset(fdt, "/cpus");
1026 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1027 SPAPR_DR_CONNECTOR_TYPE_CPU);
1028 if (ret < 0) {
1029 error_report("Couldn't set up CPU DR device tree properties");
1030 exit(1);
1034 _FDT((fdt_pack(fdt)));
1036 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1037 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1038 fdt_totalsize(fdt), FDT_MAX_SIZE);
1039 exit(1);
1042 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1043 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1045 g_free(bootlist);
1046 g_free(fdt);
1049 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1051 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1054 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
1056 CPUPPCState *env = &cpu->env;
1058 if (msr_pr) {
1059 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1060 env->gpr[3] = H_PRIVILEGE;
1061 } else {
1062 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1066 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1067 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1068 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1069 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1070 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1073 * Get the fd to access the kernel htab, re-opening it if necessary
1075 static int get_htab_fd(sPAPRMachineState *spapr)
1077 if (spapr->htab_fd >= 0) {
1078 return spapr->htab_fd;
1081 spapr->htab_fd = kvmppc_get_htab_fd(false);
1082 if (spapr->htab_fd < 0) {
1083 error_report("Unable to open fd for reading hash table from KVM: %s",
1084 strerror(errno));
1087 return spapr->htab_fd;
1090 static void close_htab_fd(sPAPRMachineState *spapr)
1092 if (spapr->htab_fd >= 0) {
1093 close(spapr->htab_fd);
1095 spapr->htab_fd = -1;
1098 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1100 int shift;
1102 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1103 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1104 * that's much more than is needed for Linux guests */
1105 shift = ctz64(pow2ceil(ramsize)) - 7;
1106 shift = MAX(shift, 18); /* Minimum architected size */
1107 shift = MIN(shift, 46); /* Maximum architected size */
1108 return shift;
1111 static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1112 Error **errp)
1114 long rc;
1116 /* Clean up any HPT info from a previous boot */
1117 g_free(spapr->htab);
1118 spapr->htab = NULL;
1119 spapr->htab_shift = 0;
1120 close_htab_fd(spapr);
1122 rc = kvmppc_reset_htab(shift);
1123 if (rc < 0) {
1124 /* kernel-side HPT needed, but couldn't allocate one */
1125 error_setg_errno(errp, errno,
1126 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1127 shift);
1128 /* This is almost certainly fatal, but if the caller really
1129 * wants to carry on with shift == 0, it's welcome to try */
1130 } else if (rc > 0) {
1131 /* kernel-side HPT allocated */
1132 if (rc != shift) {
1133 error_setg(errp,
1134 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1135 shift, rc);
1138 spapr->htab_shift = shift;
1139 spapr->htab = NULL;
1140 } else {
1141 /* kernel-side HPT not needed, allocate in userspace instead */
1142 size_t size = 1ULL << shift;
1143 int i;
1145 spapr->htab = qemu_memalign(size, size);
1146 if (!spapr->htab) {
1147 error_setg_errno(errp, errno,
1148 "Could not allocate HPT of order %d", shift);
1149 return;
1152 memset(spapr->htab, 0, size);
1153 spapr->htab_shift = shift;
1155 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1156 DIRTY_HPTE(HPTE(spapr->htab, i));
1161 static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1163 bool matched = false;
1165 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1166 matched = true;
1169 if (!matched) {
1170 error_report("Device %s is not supported by this machine yet.",
1171 qdev_fw_name(DEVICE(sbdev)));
1172 exit(1);
1175 return 0;
1178 static void ppc_spapr_reset(void)
1180 MachineState *machine = MACHINE(qdev_get_machine());
1181 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1182 PowerPCCPU *first_ppc_cpu;
1183 uint32_t rtas_limit;
1185 /* Check for unknown sysbus devices */
1186 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1188 /* Allocate and/or reset the hash page table */
1189 spapr_reallocate_hpt(spapr,
1190 spapr_hpt_shift_for_ramsize(machine->maxram_size),
1191 &error_fatal);
1193 /* Update the RMA size if necessary */
1194 if (spapr->vrma_adjust) {
1195 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1196 spapr->htab_shift);
1199 qemu_devices_reset();
1202 * We place the device tree and RTAS just below either the top of the RMA,
1203 * or just below 2GB, whichever is lowere, so that it can be
1204 * processed with 32-bit real mode code if necessary
1206 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1207 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1208 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1210 /* Load the fdt */
1211 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
1212 spapr->rtas_size);
1214 /* Copy RTAS over */
1215 cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
1216 spapr->rtas_size);
1218 /* Set up the entry state */
1219 first_ppc_cpu = POWERPC_CPU(first_cpu);
1220 first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
1221 first_ppc_cpu->env.gpr[5] = 0;
1222 first_cpu->halted = 0;
1223 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1227 static void spapr_create_nvram(sPAPRMachineState *spapr)
1229 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1230 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1232 if (dinfo) {
1233 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1234 &error_fatal);
1237 qdev_init_nofail(dev);
1239 spapr->nvram = (struct sPAPRNVRAM *)dev;
1242 static void spapr_rtc_create(sPAPRMachineState *spapr)
1244 DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1246 qdev_init_nofail(dev);
1247 spapr->rtc = dev;
1249 object_property_add_alias(qdev_get_machine(), "rtc-time",
1250 OBJECT(spapr->rtc), "date", NULL);
1253 /* Returns whether we want to use VGA or not */
1254 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1256 switch (vga_interface_type) {
1257 case VGA_NONE:
1258 return false;
1259 case VGA_DEVICE:
1260 return true;
1261 case VGA_STD:
1262 case VGA_VIRTIO:
1263 return pci_vga_init(pci_bus) != NULL;
1264 default:
1265 error_setg(errp,
1266 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1267 return false;
1271 static int spapr_post_load(void *opaque, int version_id)
1273 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1274 int err = 0;
1276 /* In earlier versions, there was no separate qdev for the PAPR
1277 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1278 * So when migrating from those versions, poke the incoming offset
1279 * value into the RTC device */
1280 if (version_id < 3) {
1281 err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1284 return err;
1287 static bool version_before_3(void *opaque, int version_id)
1289 return version_id < 3;
1292 static const VMStateDescription vmstate_spapr = {
1293 .name = "spapr",
1294 .version_id = 3,
1295 .minimum_version_id = 1,
1296 .post_load = spapr_post_load,
1297 .fields = (VMStateField[]) {
1298 /* used to be @next_irq */
1299 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1301 /* RTC offset */
1302 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1304 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1305 VMSTATE_END_OF_LIST()
1309 static int htab_save_setup(QEMUFile *f, void *opaque)
1311 sPAPRMachineState *spapr = opaque;
1313 /* "Iteration" header */
1314 qemu_put_be32(f, spapr->htab_shift);
1316 if (spapr->htab) {
1317 spapr->htab_save_index = 0;
1318 spapr->htab_first_pass = true;
1319 } else {
1320 assert(kvm_enabled());
1324 return 0;
1327 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1328 int64_t max_ns)
1330 bool has_timeout = max_ns != -1;
1331 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1332 int index = spapr->htab_save_index;
1333 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1335 assert(spapr->htab_first_pass);
1337 do {
1338 int chunkstart;
1340 /* Consume invalid HPTEs */
1341 while ((index < htabslots)
1342 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1343 index++;
1344 CLEAN_HPTE(HPTE(spapr->htab, index));
1347 /* Consume valid HPTEs */
1348 chunkstart = index;
1349 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1350 && HPTE_VALID(HPTE(spapr->htab, index))) {
1351 index++;
1352 CLEAN_HPTE(HPTE(spapr->htab, index));
1355 if (index > chunkstart) {
1356 int n_valid = index - chunkstart;
1358 qemu_put_be32(f, chunkstart);
1359 qemu_put_be16(f, n_valid);
1360 qemu_put_be16(f, 0);
1361 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1362 HASH_PTE_SIZE_64 * n_valid);
1364 if (has_timeout &&
1365 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1366 break;
1369 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1371 if (index >= htabslots) {
1372 assert(index == htabslots);
1373 index = 0;
1374 spapr->htab_first_pass = false;
1376 spapr->htab_save_index = index;
1379 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1380 int64_t max_ns)
1382 bool final = max_ns < 0;
1383 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1384 int examined = 0, sent = 0;
1385 int index = spapr->htab_save_index;
1386 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1388 assert(!spapr->htab_first_pass);
1390 do {
1391 int chunkstart, invalidstart;
1393 /* Consume non-dirty HPTEs */
1394 while ((index < htabslots)
1395 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1396 index++;
1397 examined++;
1400 chunkstart = index;
1401 /* Consume valid dirty HPTEs */
1402 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1403 && HPTE_DIRTY(HPTE(spapr->htab, index))
1404 && HPTE_VALID(HPTE(spapr->htab, index))) {
1405 CLEAN_HPTE(HPTE(spapr->htab, index));
1406 index++;
1407 examined++;
1410 invalidstart = index;
1411 /* Consume invalid dirty HPTEs */
1412 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1413 && HPTE_DIRTY(HPTE(spapr->htab, index))
1414 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1415 CLEAN_HPTE(HPTE(spapr->htab, index));
1416 index++;
1417 examined++;
1420 if (index > chunkstart) {
1421 int n_valid = invalidstart - chunkstart;
1422 int n_invalid = index - invalidstart;
1424 qemu_put_be32(f, chunkstart);
1425 qemu_put_be16(f, n_valid);
1426 qemu_put_be16(f, n_invalid);
1427 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1428 HASH_PTE_SIZE_64 * n_valid);
1429 sent += index - chunkstart;
1431 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1432 break;
1436 if (examined >= htabslots) {
1437 break;
1440 if (index >= htabslots) {
1441 assert(index == htabslots);
1442 index = 0;
1444 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1446 if (index >= htabslots) {
1447 assert(index == htabslots);
1448 index = 0;
1451 spapr->htab_save_index = index;
1453 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1456 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1457 #define MAX_KVM_BUF_SIZE 2048
1459 static int htab_save_iterate(QEMUFile *f, void *opaque)
1461 sPAPRMachineState *spapr = opaque;
1462 int fd;
1463 int rc = 0;
1465 /* Iteration header */
1466 qemu_put_be32(f, 0);
1468 if (!spapr->htab) {
1469 assert(kvm_enabled());
1471 fd = get_htab_fd(spapr);
1472 if (fd < 0) {
1473 return fd;
1476 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1477 if (rc < 0) {
1478 return rc;
1480 } else if (spapr->htab_first_pass) {
1481 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1482 } else {
1483 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1486 /* End marker */
1487 qemu_put_be32(f, 0);
1488 qemu_put_be16(f, 0);
1489 qemu_put_be16(f, 0);
1491 return rc;
1494 static int htab_save_complete(QEMUFile *f, void *opaque)
1496 sPAPRMachineState *spapr = opaque;
1497 int fd;
1499 /* Iteration header */
1500 qemu_put_be32(f, 0);
1502 if (!spapr->htab) {
1503 int rc;
1505 assert(kvm_enabled());
1507 fd = get_htab_fd(spapr);
1508 if (fd < 0) {
1509 return fd;
1512 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1513 if (rc < 0) {
1514 return rc;
1516 } else {
1517 if (spapr->htab_first_pass) {
1518 htab_save_first_pass(f, spapr, -1);
1520 htab_save_later_pass(f, spapr, -1);
1523 /* End marker */
1524 qemu_put_be32(f, 0);
1525 qemu_put_be16(f, 0);
1526 qemu_put_be16(f, 0);
1528 return 0;
1531 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1533 sPAPRMachineState *spapr = opaque;
1534 uint32_t section_hdr;
1535 int fd = -1;
1537 if (version_id < 1 || version_id > 1) {
1538 error_report("htab_load() bad version");
1539 return -EINVAL;
1542 section_hdr = qemu_get_be32(f);
1544 if (section_hdr) {
1545 Error *local_err = NULL;
1547 /* First section gives the htab size */
1548 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1549 if (local_err) {
1550 error_report_err(local_err);
1551 return -EINVAL;
1553 return 0;
1556 if (!spapr->htab) {
1557 assert(kvm_enabled());
1559 fd = kvmppc_get_htab_fd(true);
1560 if (fd < 0) {
1561 error_report("Unable to open fd to restore KVM hash table: %s",
1562 strerror(errno));
1566 while (true) {
1567 uint32_t index;
1568 uint16_t n_valid, n_invalid;
1570 index = qemu_get_be32(f);
1571 n_valid = qemu_get_be16(f);
1572 n_invalid = qemu_get_be16(f);
1574 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1575 /* End of Stream */
1576 break;
1579 if ((index + n_valid + n_invalid) >
1580 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1581 /* Bad index in stream */
1582 error_report(
1583 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1584 index, n_valid, n_invalid, spapr->htab_shift);
1585 return -EINVAL;
1588 if (spapr->htab) {
1589 if (n_valid) {
1590 qemu_get_buffer(f, HPTE(spapr->htab, index),
1591 HASH_PTE_SIZE_64 * n_valid);
1593 if (n_invalid) {
1594 memset(HPTE(spapr->htab, index + n_valid), 0,
1595 HASH_PTE_SIZE_64 * n_invalid);
1597 } else {
1598 int rc;
1600 assert(fd >= 0);
1602 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1603 if (rc < 0) {
1604 return rc;
1609 if (!spapr->htab) {
1610 assert(fd >= 0);
1611 close(fd);
1614 return 0;
1617 static void htab_cleanup(void *opaque)
1619 sPAPRMachineState *spapr = opaque;
1621 close_htab_fd(spapr);
1624 static SaveVMHandlers savevm_htab_handlers = {
1625 .save_live_setup = htab_save_setup,
1626 .save_live_iterate = htab_save_iterate,
1627 .save_live_complete_precopy = htab_save_complete,
1628 .cleanup = htab_cleanup,
1629 .load_state = htab_load,
1632 static void spapr_boot_set(void *opaque, const char *boot_device,
1633 Error **errp)
1635 MachineState *machine = MACHINE(qdev_get_machine());
1636 machine->boot_order = g_strdup(boot_device);
1640 * Reset routine for LMB DR devices.
1642 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1643 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1644 * when it walks all its children devices. LMB devices reset occurs
1645 * as part of spapr_ppc_reset().
1647 static void spapr_drc_reset(void *opaque)
1649 sPAPRDRConnector *drc = opaque;
1650 DeviceState *d = DEVICE(drc);
1652 if (d) {
1653 device_reset(d);
1657 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1659 MachineState *machine = MACHINE(spapr);
1660 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1661 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1662 int i;
1664 for (i = 0; i < nr_lmbs; i++) {
1665 sPAPRDRConnector *drc;
1666 uint64_t addr;
1668 addr = i * lmb_size + spapr->hotplug_memory.base;
1669 drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1670 addr/lmb_size);
1671 qemu_register_reset(spapr_drc_reset, drc);
1676 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1677 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1678 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1680 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
1682 int i;
1684 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1685 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1686 " is not aligned to %llu MiB",
1687 machine->ram_size,
1688 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1689 return;
1692 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1693 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1694 " is not aligned to %llu MiB",
1695 machine->ram_size,
1696 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1697 return;
1700 for (i = 0; i < nb_numa_nodes; i++) {
1701 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1702 error_setg(errp,
1703 "Node %d memory size 0x%" PRIx64
1704 " is not aligned to %llu MiB",
1705 i, numa_info[i].node_mem,
1706 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1707 return;
1712 /* pSeries LPAR / sPAPR hardware init */
1713 static void ppc_spapr_init(MachineState *machine)
1715 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1716 MachineClass *mc = MACHINE_GET_CLASS(machine);
1717 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1718 const char *kernel_filename = machine->kernel_filename;
1719 const char *kernel_cmdline = machine->kernel_cmdline;
1720 const char *initrd_filename = machine->initrd_filename;
1721 PCIHostState *phb;
1722 int i;
1723 MemoryRegion *sysmem = get_system_memory();
1724 MemoryRegion *ram = g_new(MemoryRegion, 1);
1725 MemoryRegion *rma_region;
1726 void *rma = NULL;
1727 hwaddr rma_alloc_size;
1728 hwaddr node0_size = spapr_node0_size();
1729 uint32_t initrd_base = 0;
1730 long kernel_size = 0, initrd_size = 0;
1731 long load_limit, fw_size;
1732 bool kernel_le = false;
1733 char *filename;
1734 int smt = kvmppc_smt_threads();
1735 int spapr_cores = smp_cpus / smp_threads;
1736 int spapr_max_cores = max_cpus / smp_threads;
1738 if (mc->query_hotpluggable_cpus) {
1739 if (smp_cpus % smp_threads) {
1740 error_report("smp_cpus (%u) must be multiple of threads (%u)",
1741 smp_cpus, smp_threads);
1742 exit(1);
1744 if (max_cpus % smp_threads) {
1745 error_report("max_cpus (%u) must be multiple of threads (%u)",
1746 max_cpus, smp_threads);
1747 exit(1);
1751 msi_nonbroken = true;
1753 QLIST_INIT(&spapr->phbs);
1755 cpu_ppc_hypercall = emulate_spapr_hypercall;
1757 /* Allocate RMA if necessary */
1758 rma_alloc_size = kvmppc_alloc_rma(&rma);
1760 if (rma_alloc_size == -1) {
1761 error_report("Unable to create RMA");
1762 exit(1);
1765 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1766 spapr->rma_size = rma_alloc_size;
1767 } else {
1768 spapr->rma_size = node0_size;
1770 /* With KVM, we don't actually know whether KVM supports an
1771 * unbounded RMA (PR KVM) or is limited by the hash table size
1772 * (HV KVM using VRMA), so we always assume the latter
1774 * In that case, we also limit the initial allocations for RTAS
1775 * etc... to 256M since we have no way to know what the VRMA size
1776 * is going to be as it depends on the size of the hash table
1777 * isn't determined yet.
1779 if (kvm_enabled()) {
1780 spapr->vrma_adjust = 1;
1781 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1784 /* Actually we don't support unbounded RMA anymore since we
1785 * added proper emulation of HV mode. The max we can get is
1786 * 16G which also happens to be what we configure for PAPR
1787 * mode so make sure we don't do anything bigger than that
1789 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
1792 if (spapr->rma_size > node0_size) {
1793 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
1794 spapr->rma_size);
1795 exit(1);
1798 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1799 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1801 /* Set up Interrupt Controller before we create the VCPUs */
1802 spapr->xics = xics_system_init(machine,
1803 DIV_ROUND_UP(max_cpus * smt, smp_threads),
1804 XICS_IRQS_SPAPR, &error_fatal);
1806 if (smc->dr_lmb_enabled) {
1807 spapr_validate_node_memory(machine, &error_fatal);
1810 /* init CPUs */
1811 if (machine->cpu_model == NULL) {
1812 machine->cpu_model = kvm_enabled() ? "host" : "POWER7";
1815 if (mc->query_hotpluggable_cpus) {
1816 char *type = spapr_get_cpu_core_type(machine->cpu_model);
1818 spapr->cores = g_new0(Object *, spapr_max_cores);
1819 for (i = 0; i < spapr_max_cores; i++) {
1820 int core_id = i * smp_threads;
1821 sPAPRDRConnector *drc =
1822 spapr_dr_connector_new(OBJECT(spapr),
1823 SPAPR_DR_CONNECTOR_TYPE_CPU,
1824 (core_id / smp_threads) * smt);
1826 qemu_register_reset(spapr_drc_reset, drc);
1828 if (i < spapr_cores) {
1829 char *type = spapr_get_cpu_core_type(machine->cpu_model);
1830 Object *core;
1832 if (!object_class_by_name(type)) {
1833 error_report("Unable to find sPAPR CPU Core definition");
1834 exit(1);
1837 core = object_new(type);
1838 object_property_set_int(core, smp_threads, "nr-threads",
1839 &error_fatal);
1840 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
1841 &error_fatal);
1842 object_property_set_bool(core, true, "realized", &error_fatal);
1845 g_free(type);
1846 } else {
1847 for (i = 0; i < smp_cpus; i++) {
1848 PowerPCCPU *cpu = cpu_ppc_init(machine->cpu_model);
1849 if (cpu == NULL) {
1850 error_report("Unable to find PowerPC CPU definition");
1851 exit(1);
1853 spapr_cpu_init(spapr, cpu, &error_fatal);
1857 if (kvm_enabled()) {
1858 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
1859 kvmppc_enable_logical_ci_hcalls();
1860 kvmppc_enable_set_mode_hcall();
1863 /* allocate RAM */
1864 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1865 machine->ram_size);
1866 memory_region_add_subregion(sysmem, 0, ram);
1868 if (rma_alloc_size && rma) {
1869 rma_region = g_new(MemoryRegion, 1);
1870 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1871 rma_alloc_size, rma);
1872 vmstate_register_ram_global(rma_region);
1873 memory_region_add_subregion(sysmem, 0, rma_region);
1876 /* initialize hotplug memory address space */
1877 if (machine->ram_size < machine->maxram_size) {
1878 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
1880 * Limit the number of hotpluggable memory slots to half the number
1881 * slots that KVM supports, leaving the other half for PCI and other
1882 * devices. However ensure that number of slots doesn't drop below 32.
1884 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
1885 SPAPR_MAX_RAM_SLOTS;
1887 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
1888 max_memslots = SPAPR_MAX_RAM_SLOTS;
1890 if (machine->ram_slots > max_memslots) {
1891 error_report("Specified number of memory slots %"
1892 PRIu64" exceeds max supported %d",
1893 machine->ram_slots, max_memslots);
1894 exit(1);
1897 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
1898 SPAPR_HOTPLUG_MEM_ALIGN);
1899 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
1900 "hotplug-memory", hotplug_mem_size);
1901 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
1902 &spapr->hotplug_memory.mr);
1905 if (smc->dr_lmb_enabled) {
1906 spapr_create_lmb_dr_connectors(spapr);
1909 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1910 if (!filename) {
1911 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1912 exit(1);
1914 spapr->rtas_size = get_image_size(filename);
1915 if (spapr->rtas_size < 0) {
1916 error_report("Could not get size of LPAR rtas '%s'", filename);
1917 exit(1);
1919 spapr->rtas_blob = g_malloc(spapr->rtas_size);
1920 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1921 error_report("Could not load LPAR rtas '%s'", filename);
1922 exit(1);
1924 if (spapr->rtas_size > RTAS_MAX_SIZE) {
1925 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
1926 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1927 exit(1);
1929 g_free(filename);
1931 /* Set up EPOW events infrastructure */
1932 spapr_events_init(spapr);
1934 /* Set up the RTC RTAS interfaces */
1935 spapr_rtc_create(spapr);
1937 /* Set up VIO bus */
1938 spapr->vio_bus = spapr_vio_bus_init();
1940 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1941 if (serial_hds[i]) {
1942 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1946 /* We always have at least the nvram device on VIO */
1947 spapr_create_nvram(spapr);
1949 /* Set up PCI */
1950 spapr_pci_rtas_init();
1952 phb = spapr_create_phb(spapr, 0);
1954 for (i = 0; i < nb_nics; i++) {
1955 NICInfo *nd = &nd_table[i];
1957 if (!nd->model) {
1958 nd->model = g_strdup("ibmveth");
1961 if (strcmp(nd->model, "ibmveth") == 0) {
1962 spapr_vlan_create(spapr->vio_bus, nd);
1963 } else {
1964 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1968 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1969 spapr_vscsi_create(spapr->vio_bus);
1972 /* Graphics */
1973 if (spapr_vga_init(phb->bus, &error_fatal)) {
1974 spapr->has_graphics = true;
1975 machine->usb |= defaults_enabled() && !machine->usb_disabled;
1978 if (machine->usb) {
1979 if (smc->use_ohci_by_default) {
1980 pci_create_simple(phb->bus, -1, "pci-ohci");
1981 } else {
1982 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
1985 if (spapr->has_graphics) {
1986 USBBus *usb_bus = usb_bus_find(-1);
1988 usb_create_simple(usb_bus, "usb-kbd");
1989 usb_create_simple(usb_bus, "usb-mouse");
1993 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1994 error_report(
1995 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
1996 MIN_RMA_SLOF);
1997 exit(1);
2000 if (kernel_filename) {
2001 uint64_t lowaddr = 0;
2003 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
2004 NULL, &lowaddr, NULL, 1, PPC_ELF_MACHINE,
2005 0, 0);
2006 if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2007 kernel_size = load_elf(kernel_filename,
2008 translate_kernel_address, NULL,
2009 NULL, &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2010 0, 0);
2011 kernel_le = kernel_size > 0;
2013 if (kernel_size < 0) {
2014 error_report("error loading %s: %s",
2015 kernel_filename, load_elf_strerror(kernel_size));
2016 exit(1);
2019 /* load initrd */
2020 if (initrd_filename) {
2021 /* Try to locate the initrd in the gap between the kernel
2022 * and the firmware. Add a bit of space just in case
2024 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
2025 initrd_size = load_image_targphys(initrd_filename, initrd_base,
2026 load_limit - initrd_base);
2027 if (initrd_size < 0) {
2028 error_report("could not load initial ram disk '%s'",
2029 initrd_filename);
2030 exit(1);
2032 } else {
2033 initrd_base = 0;
2034 initrd_size = 0;
2038 if (bios_name == NULL) {
2039 bios_name = FW_FILE_NAME;
2041 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2042 if (!filename) {
2043 error_report("Could not find LPAR firmware '%s'", bios_name);
2044 exit(1);
2046 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2047 if (fw_size <= 0) {
2048 error_report("Could not load LPAR firmware '%s'", filename);
2049 exit(1);
2051 g_free(filename);
2053 /* FIXME: Should register things through the MachineState's qdev
2054 * interface, this is a legacy from the sPAPREnvironment structure
2055 * which predated MachineState but had a similar function */
2056 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2057 register_savevm_live(NULL, "spapr/htab", -1, 1,
2058 &savevm_htab_handlers, spapr);
2060 /* Prepare the device tree */
2061 spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
2062 kernel_size, kernel_le,
2063 kernel_cmdline,
2064 spapr->check_exception_irq);
2065 assert(spapr->fdt_skel != NULL);
2067 /* used by RTAS */
2068 QTAILQ_INIT(&spapr->ccs_list);
2069 qemu_register_reset(spapr_ccs_reset_hook, spapr);
2071 qemu_register_boot_set(spapr_boot_set, spapr);
2074 static int spapr_kvm_type(const char *vm_type)
2076 if (!vm_type) {
2077 return 0;
2080 if (!strcmp(vm_type, "HV")) {
2081 return 1;
2084 if (!strcmp(vm_type, "PR")) {
2085 return 2;
2088 error_report("Unknown kvm-type specified '%s'", vm_type);
2089 exit(1);
2093 * Implementation of an interface to adjust firmware path
2094 * for the bootindex property handling.
2096 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2097 DeviceState *dev)
2099 #define CAST(type, obj, name) \
2100 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2101 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2102 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2104 if (d) {
2105 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2106 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2107 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2109 if (spapr) {
2111 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2112 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2113 * in the top 16 bits of the 64-bit LUN
2115 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2116 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2117 (uint64_t)id << 48);
2118 } else if (virtio) {
2120 * We use SRP luns of the form 01000000 | (target << 8) | lun
2121 * in the top 32 bits of the 64-bit LUN
2122 * Note: the quote above is from SLOF and it is wrong,
2123 * the actual binding is:
2124 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2126 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2127 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2128 (uint64_t)id << 32);
2129 } else if (usb) {
2131 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2132 * in the top 32 bits of the 64-bit LUN
2134 unsigned usb_port = atoi(usb->port->path);
2135 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2136 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2137 (uint64_t)id << 32);
2141 if (phb) {
2142 /* Replace "pci" with "pci@800000020000000" */
2143 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2146 return NULL;
2149 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2151 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2153 return g_strdup(spapr->kvm_type);
2156 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2158 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2160 g_free(spapr->kvm_type);
2161 spapr->kvm_type = g_strdup(value);
2164 static void spapr_machine_initfn(Object *obj)
2166 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2168 spapr->htab_fd = -1;
2169 object_property_add_str(obj, "kvm-type",
2170 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2171 object_property_set_description(obj, "kvm-type",
2172 "Specifies the KVM virtualization mode (HV, PR)",
2173 NULL);
2176 static void spapr_machine_finalizefn(Object *obj)
2178 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2180 g_free(spapr->kvm_type);
2183 static void ppc_cpu_do_nmi_on_cpu(void *arg)
2185 CPUState *cs = arg;
2187 cpu_synchronize_state(cs);
2188 ppc_cpu_do_system_reset(cs);
2191 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2193 CPUState *cs;
2195 CPU_FOREACH(cs) {
2196 async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
2200 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr, uint64_t size,
2201 uint32_t node, Error **errp)
2203 sPAPRDRConnector *drc;
2204 sPAPRDRConnectorClass *drck;
2205 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2206 int i, fdt_offset, fdt_size;
2207 void *fdt;
2209 for (i = 0; i < nr_lmbs; i++) {
2210 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2211 addr/SPAPR_MEMORY_BLOCK_SIZE);
2212 g_assert(drc);
2214 fdt = create_device_tree(&fdt_size);
2215 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2216 SPAPR_MEMORY_BLOCK_SIZE);
2218 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2219 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
2220 addr += SPAPR_MEMORY_BLOCK_SIZE;
2222 /* send hotplug notification to the
2223 * guest only in case of hotplugged memory
2225 if (dev->hotplugged) {
2226 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, nr_lmbs);
2230 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2231 uint32_t node, Error **errp)
2233 Error *local_err = NULL;
2234 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2235 PCDIMMDevice *dimm = PC_DIMM(dev);
2236 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2237 MemoryRegion *mr = ddc->get_memory_region(dimm);
2238 uint64_t align = memory_region_get_alignment(mr);
2239 uint64_t size = memory_region_size(mr);
2240 uint64_t addr;
2242 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2243 error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2244 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2245 goto out;
2248 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2249 if (local_err) {
2250 goto out;
2253 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2254 if (local_err) {
2255 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2256 goto out;
2259 spapr_add_lmbs(dev, addr, size, node, &error_abort);
2261 out:
2262 error_propagate(errp, local_err);
2265 void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2266 sPAPRMachineState *spapr)
2268 PowerPCCPU *cpu = POWERPC_CPU(cs);
2269 DeviceClass *dc = DEVICE_GET_CLASS(cs);
2270 int id = ppc_get_vcpu_dt_id(cpu);
2271 void *fdt;
2272 int offset, fdt_size;
2273 char *nodename;
2275 fdt = create_device_tree(&fdt_size);
2276 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2277 offset = fdt_add_subnode(fdt, 0, nodename);
2279 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2280 g_free(nodename);
2282 *fdt_offset = offset;
2283 return fdt;
2286 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2287 DeviceState *dev, Error **errp)
2289 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2291 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2292 int node;
2294 if (!smc->dr_lmb_enabled) {
2295 error_setg(errp, "Memory hotplug not supported for this machine");
2296 return;
2298 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2299 if (*errp) {
2300 return;
2302 if (node < 0 || node >= MAX_NODES) {
2303 error_setg(errp, "Invaild node %d", node);
2304 return;
2308 * Currently PowerPC kernel doesn't allow hot-adding memory to
2309 * memory-less node, but instead will silently add the memory
2310 * to the first node that has some memory. This causes two
2311 * unexpected behaviours for the user.
2313 * - Memory gets hotplugged to a different node than what the user
2314 * specified.
2315 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2316 * to memory-less node, a reboot will set things accordingly
2317 * and the previously hotplugged memory now ends in the right node.
2318 * This appears as if some memory moved from one node to another.
2320 * So until kernel starts supporting memory hotplug to memory-less
2321 * nodes, just prevent such attempts upfront in QEMU.
2323 if (nb_numa_nodes && !numa_info[node].node_mem) {
2324 error_setg(errp, "Can't hotplug memory to memory-less node %d",
2325 node);
2326 return;
2329 spapr_memory_plug(hotplug_dev, dev, node, errp);
2330 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2331 spapr_core_plug(hotplug_dev, dev, errp);
2335 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2336 DeviceState *dev, Error **errp)
2338 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2340 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2341 error_setg(errp, "Memory hot unplug not supported by sPAPR");
2342 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2343 if (!mc->query_hotpluggable_cpus) {
2344 error_setg(errp, "CPU hot unplug not supported on this machine");
2345 return;
2347 spapr_core_unplug(hotplug_dev, dev, errp);
2351 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
2352 DeviceState *dev, Error **errp)
2354 if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2355 spapr_core_pre_plug(hotplug_dev, dev, errp);
2359 static HotplugHandler *spapr_get_hotpug_handler(MachineState *machine,
2360 DeviceState *dev)
2362 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2363 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2364 return HOTPLUG_HANDLER(machine);
2366 return NULL;
2369 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2371 /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2372 * socket means much for the paravirtualized PAPR platform) */
2373 return cpu_index / smp_threads / smp_cores;
2376 static HotpluggableCPUList *spapr_query_hotpluggable_cpus(MachineState *machine)
2378 int i;
2379 HotpluggableCPUList *head = NULL;
2380 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2381 int spapr_max_cores = max_cpus / smp_threads;
2383 for (i = 0; i < spapr_max_cores; i++) {
2384 HotpluggableCPUList *list_item = g_new0(typeof(*list_item), 1);
2385 HotpluggableCPU *cpu_item = g_new0(typeof(*cpu_item), 1);
2386 CpuInstanceProperties *cpu_props = g_new0(typeof(*cpu_props), 1);
2388 cpu_item->type = spapr_get_cpu_core_type(machine->cpu_model);
2389 cpu_item->vcpus_count = smp_threads;
2390 cpu_props->has_core_id = true;
2391 cpu_props->core_id = i * smp_threads;
2392 /* TODO: add 'has_node/node' here to describe
2393 to which node core belongs */
2395 cpu_item->props = cpu_props;
2396 if (spapr->cores[i]) {
2397 cpu_item->has_qom_path = true;
2398 cpu_item->qom_path = object_get_canonical_path(spapr->cores[i]);
2400 list_item->value = cpu_item;
2401 list_item->next = head;
2402 head = list_item;
2404 return head;
2407 static void spapr_machine_class_init(ObjectClass *oc, void *data)
2409 MachineClass *mc = MACHINE_CLASS(oc);
2410 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
2411 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
2412 NMIClass *nc = NMI_CLASS(oc);
2413 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2415 mc->desc = "pSeries Logical Partition (PAPR compliant)";
2418 * We set up the default / latest behaviour here. The class_init
2419 * functions for the specific versioned machine types can override
2420 * these details for backwards compatibility
2422 mc->init = ppc_spapr_init;
2423 mc->reset = ppc_spapr_reset;
2424 mc->block_default_type = IF_SCSI;
2425 mc->max_cpus = MAX_CPUMASK_BITS;
2426 mc->no_parallel = 1;
2427 mc->default_boot_order = "";
2428 mc->default_ram_size = 512 * M_BYTE;
2429 mc->kvm_type = spapr_kvm_type;
2430 mc->has_dynamic_sysbus = true;
2431 mc->pci_allow_0_address = true;
2432 mc->get_hotplug_handler = spapr_get_hotpug_handler;
2433 hc->pre_plug = spapr_machine_device_pre_plug;
2434 hc->plug = spapr_machine_device_plug;
2435 hc->unplug = spapr_machine_device_unplug;
2436 mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
2438 smc->dr_lmb_enabled = true;
2439 mc->query_hotpluggable_cpus = spapr_query_hotpluggable_cpus;
2440 fwc->get_dev_path = spapr_get_fw_dev_path;
2441 nc->nmi_monitor_handler = spapr_nmi;
2444 static const TypeInfo spapr_machine_info = {
2445 .name = TYPE_SPAPR_MACHINE,
2446 .parent = TYPE_MACHINE,
2447 .abstract = true,
2448 .instance_size = sizeof(sPAPRMachineState),
2449 .instance_init = spapr_machine_initfn,
2450 .instance_finalize = spapr_machine_finalizefn,
2451 .class_size = sizeof(sPAPRMachineClass),
2452 .class_init = spapr_machine_class_init,
2453 .interfaces = (InterfaceInfo[]) {
2454 { TYPE_FW_PATH_PROVIDER },
2455 { TYPE_NMI },
2456 { TYPE_HOTPLUG_HANDLER },
2461 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
2462 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
2463 void *data) \
2465 MachineClass *mc = MACHINE_CLASS(oc); \
2466 spapr_machine_##suffix##_class_options(mc); \
2467 if (latest) { \
2468 mc->alias = "pseries"; \
2469 mc->is_default = 1; \
2472 static void spapr_machine_##suffix##_instance_init(Object *obj) \
2474 MachineState *machine = MACHINE(obj); \
2475 spapr_machine_##suffix##_instance_options(machine); \
2477 static const TypeInfo spapr_machine_##suffix##_info = { \
2478 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
2479 .parent = TYPE_SPAPR_MACHINE, \
2480 .class_init = spapr_machine_##suffix##_class_init, \
2481 .instance_init = spapr_machine_##suffix##_instance_init, \
2482 }; \
2483 static void spapr_machine_register_##suffix(void) \
2485 type_register(&spapr_machine_##suffix##_info); \
2487 type_init(spapr_machine_register_##suffix)
2490 * pseries-2.7
2492 static void spapr_machine_2_7_instance_options(MachineState *machine)
2496 static void spapr_machine_2_7_class_options(MachineClass *mc)
2498 /* Defaults for the latest behaviour inherited from the base class */
2501 DEFINE_SPAPR_MACHINE(2_7, "2.7", true);
2504 * pseries-2.6
2506 #define SPAPR_COMPAT_2_6 \
2507 HW_COMPAT_2_6 \
2509 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2510 .property = "ddw",\
2511 .value = stringify(off),\
2514 static void spapr_machine_2_6_instance_options(MachineState *machine)
2518 static void spapr_machine_2_6_class_options(MachineClass *mc)
2520 spapr_machine_2_7_class_options(mc);
2521 mc->query_hotpluggable_cpus = NULL;
2522 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
2525 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
2528 * pseries-2.5
2530 #define SPAPR_COMPAT_2_5 \
2531 HW_COMPAT_2_5 \
2533 .driver = "spapr-vlan", \
2534 .property = "use-rx-buffer-pools", \
2535 .value = "off", \
2538 static void spapr_machine_2_5_instance_options(MachineState *machine)
2542 static void spapr_machine_2_5_class_options(MachineClass *mc)
2544 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2546 spapr_machine_2_6_class_options(mc);
2547 smc->use_ohci_by_default = true;
2548 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
2551 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
2554 * pseries-2.4
2556 #define SPAPR_COMPAT_2_4 \
2557 HW_COMPAT_2_4
2559 static void spapr_machine_2_4_instance_options(MachineState *machine)
2561 spapr_machine_2_5_instance_options(machine);
2564 static void spapr_machine_2_4_class_options(MachineClass *mc)
2566 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2568 spapr_machine_2_5_class_options(mc);
2569 smc->dr_lmb_enabled = false;
2570 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
2573 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
2576 * pseries-2.3
2578 #define SPAPR_COMPAT_2_3 \
2579 HW_COMPAT_2_3 \
2581 .driver = "spapr-pci-host-bridge",\
2582 .property = "dynamic-reconfiguration",\
2583 .value = "off",\
2586 static void spapr_machine_2_3_instance_options(MachineState *machine)
2588 spapr_machine_2_4_instance_options(machine);
2589 savevm_skip_section_footers();
2590 global_state_set_optional();
2591 savevm_skip_configuration();
2594 static void spapr_machine_2_3_class_options(MachineClass *mc)
2596 spapr_machine_2_4_class_options(mc);
2597 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
2599 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
2602 * pseries-2.2
2605 #define SPAPR_COMPAT_2_2 \
2606 HW_COMPAT_2_2 \
2608 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2609 .property = "mem_win_size",\
2610 .value = "0x20000000",\
2613 static void spapr_machine_2_2_instance_options(MachineState *machine)
2615 spapr_machine_2_3_instance_options(machine);
2616 machine->suppress_vmdesc = true;
2619 static void spapr_machine_2_2_class_options(MachineClass *mc)
2621 spapr_machine_2_3_class_options(mc);
2622 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
2624 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
2627 * pseries-2.1
2629 #define SPAPR_COMPAT_2_1 \
2630 HW_COMPAT_2_1
2632 static void spapr_machine_2_1_instance_options(MachineState *machine)
2634 spapr_machine_2_2_instance_options(machine);
2637 static void spapr_machine_2_1_class_options(MachineClass *mc)
2639 spapr_machine_2_2_class_options(mc);
2640 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
2642 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
2644 static void spapr_machine_register_types(void)
2646 type_register_static(&spapr_machine_info);
2649 type_init(spapr_machine_register_types)