pc: acpi: drop manual hole punching for CPU hotplug resources
[qemu/cris-port.git] / cputlb.c
blob38f21511666171b7e18f20b1575f9fe5a11903a2
1 /*
2 * Common CPU TLB handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "config.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "exec/memory.h"
24 #include "exec/address-spaces.h"
25 #include "exec/cpu_ldst.h"
27 #include "exec/cputlb.h"
29 #include "exec/memory-internal.h"
30 #include "exec/ram_addr.h"
31 #include "tcg/tcg.h"
33 //#define DEBUG_TLB
34 //#define DEBUG_TLB_CHECK
36 /* statistics */
37 int tlb_flush_count;
39 /* NOTE:
40 * If flush_global is true (the usual case), flush all tlb entries.
41 * If flush_global is false, flush (at least) all tlb entries not
42 * marked global.
44 * Since QEMU doesn't currently implement a global/not-global flag
45 * for tlb entries, at the moment tlb_flush() will also flush all
46 * tlb entries in the flush_global == false case. This is OK because
47 * CPU architectures generally permit an implementation to drop
48 * entries from the TLB at any time, so flushing more entries than
49 * required is only an efficiency issue, not a correctness issue.
51 void tlb_flush(CPUState *cpu, int flush_global)
53 CPUArchState *env = cpu->env_ptr;
55 #if defined(DEBUG_TLB)
56 printf("tlb_flush:\n");
57 #endif
58 /* must reset current TB so that interrupts cannot modify the
59 links while we are modifying them */
60 cpu->current_tb = NULL;
62 memset(env->tlb_table, -1, sizeof(env->tlb_table));
63 memset(env->tlb_v_table, -1, sizeof(env->tlb_v_table));
64 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
66 env->vtlb_index = 0;
67 env->tlb_flush_addr = -1;
68 env->tlb_flush_mask = 0;
69 tlb_flush_count++;
72 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
74 if (addr == (tlb_entry->addr_read &
75 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
76 addr == (tlb_entry->addr_write &
77 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
78 addr == (tlb_entry->addr_code &
79 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
80 memset(tlb_entry, -1, sizeof(*tlb_entry));
84 void tlb_flush_page(CPUState *cpu, target_ulong addr)
86 CPUArchState *env = cpu->env_ptr;
87 int i;
88 int mmu_idx;
90 #if defined(DEBUG_TLB)
91 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
92 #endif
93 /* Check if we need to flush due to large pages. */
94 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
95 #if defined(DEBUG_TLB)
96 printf("tlb_flush_page: forced full flush ("
97 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
98 env->tlb_flush_addr, env->tlb_flush_mask);
99 #endif
100 tlb_flush(cpu, 1);
101 return;
103 /* must reset current TB so that interrupts cannot modify the
104 links while we are modifying them */
105 cpu->current_tb = NULL;
107 addr &= TARGET_PAGE_MASK;
108 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
109 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
110 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
113 /* check whether there are entries that need to be flushed in the vtlb */
114 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
115 int k;
116 for (k = 0; k < CPU_VTLB_SIZE; k++) {
117 tlb_flush_entry(&env->tlb_v_table[mmu_idx][k], addr);
121 tb_flush_jmp_cache(cpu, addr);
124 /* update the TLBs so that writes to code in the virtual page 'addr'
125 can be detected */
126 void tlb_protect_code(ram_addr_t ram_addr)
128 cpu_physical_memory_reset_dirty(ram_addr, TARGET_PAGE_SIZE,
129 DIRTY_MEMORY_CODE);
132 /* update the TLB so that writes in physical page 'phys_addr' are no longer
133 tested for self modifying code */
134 void tlb_unprotect_code_phys(CPUState *cpu, ram_addr_t ram_addr,
135 target_ulong vaddr)
137 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
140 static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
142 return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
145 void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
146 uintptr_t length)
148 uintptr_t addr;
150 if (tlb_is_dirty_ram(tlb_entry)) {
151 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
152 if ((addr - start) < length) {
153 tlb_entry->addr_write |= TLB_NOTDIRTY;
158 static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
160 ram_addr_t ram_addr;
162 if (qemu_ram_addr_from_host(ptr, &ram_addr) == NULL) {
163 fprintf(stderr, "Bad ram pointer %p\n", ptr);
164 abort();
166 return ram_addr;
169 void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length)
171 CPUState *cpu;
172 CPUArchState *env;
174 CPU_FOREACH(cpu) {
175 int mmu_idx;
177 env = cpu->env_ptr;
178 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
179 unsigned int i;
181 for (i = 0; i < CPU_TLB_SIZE; i++) {
182 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
183 start1, length);
186 for (i = 0; i < CPU_VTLB_SIZE; i++) {
187 tlb_reset_dirty_range(&env->tlb_v_table[mmu_idx][i],
188 start1, length);
194 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
196 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
197 tlb_entry->addr_write = vaddr;
201 /* update the TLB corresponding to virtual page vaddr
202 so that it is no longer dirty */
203 void tlb_set_dirty(CPUArchState *env, target_ulong vaddr)
205 int i;
206 int mmu_idx;
208 vaddr &= TARGET_PAGE_MASK;
209 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
210 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
211 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
214 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
215 int k;
216 for (k = 0; k < CPU_VTLB_SIZE; k++) {
217 tlb_set_dirty1(&env->tlb_v_table[mmu_idx][k], vaddr);
222 /* Our TLB does not support large pages, so remember the area covered by
223 large pages and trigger a full TLB flush if these are invalidated. */
224 static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
225 target_ulong size)
227 target_ulong mask = ~(size - 1);
229 if (env->tlb_flush_addr == (target_ulong)-1) {
230 env->tlb_flush_addr = vaddr & mask;
231 env->tlb_flush_mask = mask;
232 return;
234 /* Extend the existing region to include the new page.
235 This is a compromise between unnecessary flushes and the cost
236 of maintaining a full variable size TLB. */
237 mask &= env->tlb_flush_mask;
238 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
239 mask <<= 1;
241 env->tlb_flush_addr &= mask;
242 env->tlb_flush_mask = mask;
245 /* Add a new TLB entry. At most one entry for a given virtual address
246 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
247 * supplied size is only used by tlb_flush_page.
249 * Called from TCG-generated code, which is under an RCU read-side
250 * critical section.
252 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
253 hwaddr paddr, int prot,
254 int mmu_idx, target_ulong size)
256 CPUArchState *env = cpu->env_ptr;
257 MemoryRegionSection *section;
258 unsigned int index;
259 target_ulong address;
260 target_ulong code_address;
261 uintptr_t addend;
262 CPUTLBEntry *te;
263 hwaddr iotlb, xlat, sz;
264 unsigned vidx = env->vtlb_index++ % CPU_VTLB_SIZE;
266 assert(size >= TARGET_PAGE_SIZE);
267 if (size != TARGET_PAGE_SIZE) {
268 tlb_add_large_page(env, vaddr, size);
271 sz = size;
272 section = address_space_translate_for_iotlb(cpu, paddr, &xlat, &sz);
273 assert(sz >= TARGET_PAGE_SIZE);
275 #if defined(DEBUG_TLB)
276 qemu_log_mask(CPU_LOG_MMU,
277 "tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
278 " prot=%x idx=%d\n",
279 vaddr, paddr, prot, mmu_idx);
280 #endif
282 address = vaddr;
283 if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) {
284 /* IO memory case */
285 address |= TLB_MMIO;
286 addend = 0;
287 } else {
288 /* TLB_MMIO for rom/romd handled below */
289 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
292 code_address = address;
293 iotlb = memory_region_section_get_iotlb(cpu, section, vaddr, paddr, xlat,
294 prot, &address);
296 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
297 te = &env->tlb_table[mmu_idx][index];
299 /* do not discard the translation in te, evict it into a victim tlb */
300 env->tlb_v_table[mmu_idx][vidx] = *te;
301 env->iotlb_v[mmu_idx][vidx] = env->iotlb[mmu_idx][index];
303 /* refill the tlb */
304 env->iotlb[mmu_idx][index] = iotlb - vaddr;
305 te->addend = addend - vaddr;
306 if (prot & PAGE_READ) {
307 te->addr_read = address;
308 } else {
309 te->addr_read = -1;
312 if (prot & PAGE_EXEC) {
313 te->addr_code = code_address;
314 } else {
315 te->addr_code = -1;
317 if (prot & PAGE_WRITE) {
318 if ((memory_region_is_ram(section->mr) && section->readonly)
319 || memory_region_is_romd(section->mr)) {
320 /* Write access calls the I/O callback. */
321 te->addr_write = address | TLB_MMIO;
322 } else if (memory_region_is_ram(section->mr)
323 && cpu_physical_memory_is_clean(section->mr->ram_addr
324 + xlat)) {
325 te->addr_write = address | TLB_NOTDIRTY;
326 } else {
327 te->addr_write = address;
329 } else {
330 te->addr_write = -1;
334 /* NOTE: this function can trigger an exception */
335 /* NOTE2: the returned address is not exactly the physical address: it
336 * is actually a ram_addr_t (in system mode; the user mode emulation
337 * version of this function returns a guest virtual address).
339 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
341 int mmu_idx, page_index, pd;
342 void *p;
343 MemoryRegion *mr;
344 CPUState *cpu = ENV_GET_CPU(env1);
346 page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
347 mmu_idx = cpu_mmu_index(env1);
348 if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
349 (addr & TARGET_PAGE_MASK))) {
350 cpu_ldub_code(env1, addr);
352 pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK;
353 mr = iotlb_to_region(cpu, pd);
354 if (memory_region_is_unassigned(mr)) {
355 CPUClass *cc = CPU_GET_CLASS(cpu);
357 if (cc->do_unassigned_access) {
358 cc->do_unassigned_access(cpu, addr, false, true, 0, 4);
359 } else {
360 cpu_abort(cpu, "Trying to execute code outside RAM or ROM at 0x"
361 TARGET_FMT_lx "\n", addr);
364 p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
365 return qemu_ram_addr_from_host_nofail(p);
368 #define MMUSUFFIX _mmu
370 #define SHIFT 0
371 #include "softmmu_template.h"
373 #define SHIFT 1
374 #include "softmmu_template.h"
376 #define SHIFT 2
377 #include "softmmu_template.h"
379 #define SHIFT 3
380 #include "softmmu_template.h"
381 #undef MMUSUFFIX
383 #define MMUSUFFIX _cmmu
384 #undef GETPC_ADJ
385 #define GETPC_ADJ 0
386 #undef GETRA
387 #define GETRA() ((uintptr_t)0)
388 #define SOFTMMU_CODE_ACCESS
390 #define SHIFT 0
391 #include "softmmu_template.h"
393 #define SHIFT 1
394 #include "softmmu_template.h"
396 #define SHIFT 2
397 #include "softmmu_template.h"
399 #define SHIFT 3
400 #include "softmmu_template.h"