crypto: fix build with nettle >= 3.0.0
[qemu/cris-port.git] / util / qemu-thread-win32.c
blob406b52f91d6c2d442d4431b35e48b7db66d05f0d
1 /*
2 * Win32 implementation for mutex/cond/thread functions
4 * Copyright Red Hat, Inc. 2010
6 * Author:
7 * Paolo Bonzini <pbonzini@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
13 #include "qemu-common.h"
14 #include "qemu/thread.h"
15 #include "qemu/notify.h"
16 #include <process.h>
17 #include <assert.h>
18 #include <limits.h>
20 static bool name_threads;
22 void qemu_thread_naming(bool enable)
24 /* But note we don't actually name them on Windows yet */
25 name_threads = enable;
27 fprintf(stderr, "qemu: thread naming not supported on this host\n");
30 static void error_exit(int err, const char *msg)
32 char *pstr;
34 FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER,
35 NULL, err, 0, (LPTSTR)&pstr, 2, NULL);
36 fprintf(stderr, "qemu: %s: %s\n", msg, pstr);
37 LocalFree(pstr);
38 abort();
41 void qemu_mutex_init(QemuMutex *mutex)
43 mutex->owner = 0;
44 InitializeCriticalSection(&mutex->lock);
47 void qemu_mutex_destroy(QemuMutex *mutex)
49 assert(mutex->owner == 0);
50 DeleteCriticalSection(&mutex->lock);
53 void qemu_mutex_lock(QemuMutex *mutex)
55 EnterCriticalSection(&mutex->lock);
57 /* Win32 CRITICAL_SECTIONs are recursive. Assert that we're not
58 * using them as such.
60 assert(mutex->owner == 0);
61 mutex->owner = GetCurrentThreadId();
64 int qemu_mutex_trylock(QemuMutex *mutex)
66 int owned;
68 owned = TryEnterCriticalSection(&mutex->lock);
69 if (owned) {
70 assert(mutex->owner == 0);
71 mutex->owner = GetCurrentThreadId();
73 return !owned;
76 void qemu_mutex_unlock(QemuMutex *mutex)
78 assert(mutex->owner == GetCurrentThreadId());
79 mutex->owner = 0;
80 LeaveCriticalSection(&mutex->lock);
83 void qemu_cond_init(QemuCond *cond)
85 memset(cond, 0, sizeof(*cond));
87 cond->sema = CreateSemaphore(NULL, 0, LONG_MAX, NULL);
88 if (!cond->sema) {
89 error_exit(GetLastError(), __func__);
91 cond->continue_event = CreateEvent(NULL, /* security */
92 FALSE, /* auto-reset */
93 FALSE, /* not signaled */
94 NULL); /* name */
95 if (!cond->continue_event) {
96 error_exit(GetLastError(), __func__);
100 void qemu_cond_destroy(QemuCond *cond)
102 BOOL result;
103 result = CloseHandle(cond->continue_event);
104 if (!result) {
105 error_exit(GetLastError(), __func__);
107 cond->continue_event = 0;
108 result = CloseHandle(cond->sema);
109 if (!result) {
110 error_exit(GetLastError(), __func__);
112 cond->sema = 0;
115 void qemu_cond_signal(QemuCond *cond)
117 DWORD result;
120 * Signal only when there are waiters. cond->waiters is
121 * incremented by pthread_cond_wait under the external lock,
122 * so we are safe about that.
124 if (cond->waiters == 0) {
125 return;
129 * Waiting threads decrement it outside the external lock, but
130 * only if another thread is executing pthread_cond_broadcast and
131 * has the mutex. So, it also cannot be decremented concurrently
132 * with this particular access.
134 cond->target = cond->waiters - 1;
135 result = SignalObjectAndWait(cond->sema, cond->continue_event,
136 INFINITE, FALSE);
137 if (result == WAIT_ABANDONED || result == WAIT_FAILED) {
138 error_exit(GetLastError(), __func__);
142 void qemu_cond_broadcast(QemuCond *cond)
144 BOOLEAN result;
146 * As in pthread_cond_signal, access to cond->waiters and
147 * cond->target is locked via the external mutex.
149 if (cond->waiters == 0) {
150 return;
153 cond->target = 0;
154 result = ReleaseSemaphore(cond->sema, cond->waiters, NULL);
155 if (!result) {
156 error_exit(GetLastError(), __func__);
160 * At this point all waiters continue. Each one takes its
161 * slice of the semaphore. Now it's our turn to wait: Since
162 * the external mutex is held, no thread can leave cond_wait,
163 * yet. For this reason, we can be sure that no thread gets
164 * a chance to eat *more* than one slice. OTOH, it means
165 * that the last waiter must send us a wake-up.
167 WaitForSingleObject(cond->continue_event, INFINITE);
170 void qemu_cond_wait(QemuCond *cond, QemuMutex *mutex)
173 * This access is protected under the mutex.
175 cond->waiters++;
178 * Unlock external mutex and wait for signal.
179 * NOTE: we've held mutex locked long enough to increment
180 * waiters count above, so there's no problem with
181 * leaving mutex unlocked before we wait on semaphore.
183 qemu_mutex_unlock(mutex);
184 WaitForSingleObject(cond->sema, INFINITE);
186 /* Now waiters must rendez-vous with the signaling thread and
187 * let it continue. For cond_broadcast this has heavy contention
188 * and triggers thundering herd. So goes life.
190 * Decrease waiters count. The mutex is not taken, so we have
191 * to do this atomically.
193 * All waiters contend for the mutex at the end of this function
194 * until the signaling thread relinquishes it. To ensure
195 * each waiter consumes exactly one slice of the semaphore,
196 * the signaling thread stops until it is told by the last
197 * waiter that it can go on.
199 if (InterlockedDecrement(&cond->waiters) == cond->target) {
200 SetEvent(cond->continue_event);
203 qemu_mutex_lock(mutex);
206 void qemu_sem_init(QemuSemaphore *sem, int init)
208 /* Manual reset. */
209 sem->sema = CreateSemaphore(NULL, init, LONG_MAX, NULL);
212 void qemu_sem_destroy(QemuSemaphore *sem)
214 CloseHandle(sem->sema);
217 void qemu_sem_post(QemuSemaphore *sem)
219 ReleaseSemaphore(sem->sema, 1, NULL);
222 int qemu_sem_timedwait(QemuSemaphore *sem, int ms)
224 int rc = WaitForSingleObject(sem->sema, ms);
225 if (rc == WAIT_OBJECT_0) {
226 return 0;
228 if (rc != WAIT_TIMEOUT) {
229 error_exit(GetLastError(), __func__);
231 return -1;
234 void qemu_sem_wait(QemuSemaphore *sem)
236 if (WaitForSingleObject(sem->sema, INFINITE) != WAIT_OBJECT_0) {
237 error_exit(GetLastError(), __func__);
241 void qemu_event_init(QemuEvent *ev, bool init)
243 /* Manual reset. */
244 ev->event = CreateEvent(NULL, TRUE, init, NULL);
247 void qemu_event_destroy(QemuEvent *ev)
249 CloseHandle(ev->event);
252 void qemu_event_set(QemuEvent *ev)
254 SetEvent(ev->event);
257 void qemu_event_reset(QemuEvent *ev)
259 ResetEvent(ev->event);
262 void qemu_event_wait(QemuEvent *ev)
264 WaitForSingleObject(ev->event, INFINITE);
267 struct QemuThreadData {
268 /* Passed to win32_start_routine. */
269 void *(*start_routine)(void *);
270 void *arg;
271 short mode;
272 NotifierList exit;
274 /* Only used for joinable threads. */
275 bool exited;
276 void *ret;
277 CRITICAL_SECTION cs;
280 static bool atexit_registered;
281 static NotifierList main_thread_exit;
283 static __thread QemuThreadData *qemu_thread_data;
285 static void run_main_thread_exit(void)
287 notifier_list_notify(&main_thread_exit, NULL);
290 void qemu_thread_atexit_add(Notifier *notifier)
292 if (!qemu_thread_data) {
293 if (!atexit_registered) {
294 atexit_registered = true;
295 atexit(run_main_thread_exit);
297 notifier_list_add(&main_thread_exit, notifier);
298 } else {
299 notifier_list_add(&qemu_thread_data->exit, notifier);
303 void qemu_thread_atexit_remove(Notifier *notifier)
305 notifier_remove(notifier);
308 static unsigned __stdcall win32_start_routine(void *arg)
310 QemuThreadData *data = (QemuThreadData *) arg;
311 void *(*start_routine)(void *) = data->start_routine;
312 void *thread_arg = data->arg;
314 qemu_thread_data = data;
315 qemu_thread_exit(start_routine(thread_arg));
316 abort();
319 void qemu_thread_exit(void *arg)
321 QemuThreadData *data = qemu_thread_data;
323 notifier_list_notify(&data->exit, NULL);
324 if (data->mode == QEMU_THREAD_JOINABLE) {
325 data->ret = arg;
326 EnterCriticalSection(&data->cs);
327 data->exited = true;
328 LeaveCriticalSection(&data->cs);
329 } else {
330 g_free(data);
332 _endthreadex(0);
335 void *qemu_thread_join(QemuThread *thread)
337 QemuThreadData *data;
338 void *ret;
339 HANDLE handle;
341 data = thread->data;
342 if (data->mode == QEMU_THREAD_DETACHED) {
343 return NULL;
347 * Because multiple copies of the QemuThread can exist via
348 * qemu_thread_get_self, we need to store a value that cannot
349 * leak there. The simplest, non racy way is to store the TID,
350 * discard the handle that _beginthreadex gives back, and
351 * get another copy of the handle here.
353 handle = qemu_thread_get_handle(thread);
354 if (handle) {
355 WaitForSingleObject(handle, INFINITE);
356 CloseHandle(handle);
358 ret = data->ret;
359 DeleteCriticalSection(&data->cs);
360 g_free(data);
361 return ret;
364 void qemu_thread_create(QemuThread *thread, const char *name,
365 void *(*start_routine)(void *),
366 void *arg, int mode)
368 HANDLE hThread;
369 struct QemuThreadData *data;
371 data = g_malloc(sizeof *data);
372 data->start_routine = start_routine;
373 data->arg = arg;
374 data->mode = mode;
375 data->exited = false;
376 notifier_list_init(&data->exit);
378 if (data->mode != QEMU_THREAD_DETACHED) {
379 InitializeCriticalSection(&data->cs);
382 hThread = (HANDLE) _beginthreadex(NULL, 0, win32_start_routine,
383 data, 0, &thread->tid);
384 if (!hThread) {
385 error_exit(GetLastError(), __func__);
387 CloseHandle(hThread);
388 thread->data = data;
391 void qemu_thread_get_self(QemuThread *thread)
393 thread->data = qemu_thread_data;
394 thread->tid = GetCurrentThreadId();
397 HANDLE qemu_thread_get_handle(QemuThread *thread)
399 QemuThreadData *data;
400 HANDLE handle;
402 data = thread->data;
403 if (data->mode == QEMU_THREAD_DETACHED) {
404 return NULL;
407 EnterCriticalSection(&data->cs);
408 if (!data->exited) {
409 handle = OpenThread(SYNCHRONIZE | THREAD_SUSPEND_RESUME, FALSE,
410 thread->tid);
411 } else {
412 handle = NULL;
414 LeaveCriticalSection(&data->cs);
415 return handle;
418 bool qemu_thread_is_self(QemuThread *thread)
420 return GetCurrentThreadId() == thread->tid;