intel_iommu: allow queued invalidation for IR
[qemu/cris-port.git] / hw / i386 / intel_iommu.c
blob26e322a48460e81f3700530714719f4c2e7ff376
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "hw/sysbus.h"
24 #include "exec/address-spaces.h"
25 #include "intel_iommu_internal.h"
26 #include "hw/pci/pci.h"
27 #include "hw/pci/pci_bus.h"
28 #include "hw/i386/pc.h"
29 #include "hw/boards.h"
30 #include "hw/i386/x86-iommu.h"
32 /*#define DEBUG_INTEL_IOMMU*/
33 #ifdef DEBUG_INTEL_IOMMU
34 enum {
35 DEBUG_GENERAL, DEBUG_CSR, DEBUG_INV, DEBUG_MMU, DEBUG_FLOG,
36 DEBUG_CACHE,
38 #define VTD_DBGBIT(x) (1 << DEBUG_##x)
39 static int vtd_dbgflags = VTD_DBGBIT(GENERAL) | VTD_DBGBIT(CSR);
41 #define VTD_DPRINTF(what, fmt, ...) do { \
42 if (vtd_dbgflags & VTD_DBGBIT(what)) { \
43 fprintf(stderr, "(vtd)%s: " fmt "\n", __func__, \
44 ## __VA_ARGS__); } \
45 } while (0)
46 #else
47 #define VTD_DPRINTF(what, fmt, ...) do {} while (0)
48 #endif
50 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
51 uint64_t wmask, uint64_t w1cmask)
53 stq_le_p(&s->csr[addr], val);
54 stq_le_p(&s->wmask[addr], wmask);
55 stq_le_p(&s->w1cmask[addr], w1cmask);
58 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
60 stq_le_p(&s->womask[addr], mask);
63 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
64 uint32_t wmask, uint32_t w1cmask)
66 stl_le_p(&s->csr[addr], val);
67 stl_le_p(&s->wmask[addr], wmask);
68 stl_le_p(&s->w1cmask[addr], w1cmask);
71 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
73 stl_le_p(&s->womask[addr], mask);
76 /* "External" get/set operations */
77 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
79 uint64_t oldval = ldq_le_p(&s->csr[addr]);
80 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
81 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
82 stq_le_p(&s->csr[addr],
83 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
86 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
88 uint32_t oldval = ldl_le_p(&s->csr[addr]);
89 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
90 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
91 stl_le_p(&s->csr[addr],
92 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
95 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
97 uint64_t val = ldq_le_p(&s->csr[addr]);
98 uint64_t womask = ldq_le_p(&s->womask[addr]);
99 return val & ~womask;
102 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
104 uint32_t val = ldl_le_p(&s->csr[addr]);
105 uint32_t womask = ldl_le_p(&s->womask[addr]);
106 return val & ~womask;
109 /* "Internal" get/set operations */
110 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
112 return ldq_le_p(&s->csr[addr]);
115 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
117 return ldl_le_p(&s->csr[addr]);
120 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
122 stq_le_p(&s->csr[addr], val);
125 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
126 uint32_t clear, uint32_t mask)
128 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
129 stl_le_p(&s->csr[addr], new_val);
130 return new_val;
133 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
134 uint64_t clear, uint64_t mask)
136 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
137 stq_le_p(&s->csr[addr], new_val);
138 return new_val;
141 /* GHashTable functions */
142 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
144 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
147 static guint vtd_uint64_hash(gconstpointer v)
149 return (guint)*(const uint64_t *)v;
152 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
153 gpointer user_data)
155 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
156 uint16_t domain_id = *(uint16_t *)user_data;
157 return entry->domain_id == domain_id;
160 /* The shift of an addr for a certain level of paging structure */
161 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
163 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
166 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
168 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
171 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
172 gpointer user_data)
174 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
175 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
176 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
177 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
178 return (entry->domain_id == info->domain_id) &&
179 (((entry->gfn & info->mask) == gfn) ||
180 (entry->gfn == gfn_tlb));
183 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
184 * IntelIOMMUState to 1.
186 static void vtd_reset_context_cache(IntelIOMMUState *s)
188 VTDAddressSpace *vtd_as;
189 VTDBus *vtd_bus;
190 GHashTableIter bus_it;
191 uint32_t devfn_it;
193 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
195 VTD_DPRINTF(CACHE, "global context_cache_gen=1");
196 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
197 for (devfn_it = 0; devfn_it < X86_IOMMU_PCI_DEVFN_MAX; ++devfn_it) {
198 vtd_as = vtd_bus->dev_as[devfn_it];
199 if (!vtd_as) {
200 continue;
202 vtd_as->context_cache_entry.context_cache_gen = 0;
205 s->context_cache_gen = 1;
208 static void vtd_reset_iotlb(IntelIOMMUState *s)
210 assert(s->iotlb);
211 g_hash_table_remove_all(s->iotlb);
214 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint8_t source_id,
215 uint32_t level)
217 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
218 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
221 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
223 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
226 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
227 hwaddr addr)
229 VTDIOTLBEntry *entry;
230 uint64_t key;
231 int level;
233 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
234 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
235 source_id, level);
236 entry = g_hash_table_lookup(s->iotlb, &key);
237 if (entry) {
238 goto out;
242 out:
243 return entry;
246 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
247 uint16_t domain_id, hwaddr addr, uint64_t slpte,
248 bool read_flags, bool write_flags,
249 uint32_t level)
251 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
252 uint64_t *key = g_malloc(sizeof(*key));
253 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
255 VTD_DPRINTF(CACHE, "update iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
256 " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr, slpte,
257 domain_id);
258 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
259 VTD_DPRINTF(CACHE, "iotlb exceeds size limit, forced to reset");
260 vtd_reset_iotlb(s);
263 entry->gfn = gfn;
264 entry->domain_id = domain_id;
265 entry->slpte = slpte;
266 entry->read_flags = read_flags;
267 entry->write_flags = write_flags;
268 entry->mask = vtd_slpt_level_page_mask(level);
269 *key = vtd_get_iotlb_key(gfn, source_id, level);
270 g_hash_table_replace(s->iotlb, key, entry);
273 /* Given the reg addr of both the message data and address, generate an
274 * interrupt via MSI.
276 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
277 hwaddr mesg_data_reg)
279 hwaddr addr;
280 uint32_t data;
282 assert(mesg_data_reg < DMAR_REG_SIZE);
283 assert(mesg_addr_reg < DMAR_REG_SIZE);
285 addr = vtd_get_long_raw(s, mesg_addr_reg);
286 data = vtd_get_long_raw(s, mesg_data_reg);
288 VTD_DPRINTF(FLOG, "msi: addr 0x%"PRIx64 " data 0x%"PRIx32, addr, data);
289 address_space_stl_le(&address_space_memory, addr, data,
290 MEMTXATTRS_UNSPECIFIED, NULL);
293 /* Generate a fault event to software via MSI if conditions are met.
294 * Notice that the value of FSTS_REG being passed to it should be the one
295 * before any update.
297 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
299 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
300 pre_fsts & VTD_FSTS_IQE) {
301 VTD_DPRINTF(FLOG, "there are previous interrupt conditions "
302 "to be serviced by software, fault event is not generated "
303 "(FSTS_REG 0x%"PRIx32 ")", pre_fsts);
304 return;
306 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
307 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
308 VTD_DPRINTF(FLOG, "Interrupt Mask set, fault event is not generated");
309 } else {
310 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
311 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
315 /* Check if the Fault (F) field of the Fault Recording Register referenced by
316 * @index is Set.
318 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
320 /* Each reg is 128-bit */
321 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
322 addr += 8; /* Access the high 64-bit half */
324 assert(index < DMAR_FRCD_REG_NR);
326 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
329 /* Update the PPF field of Fault Status Register.
330 * Should be called whenever change the F field of any fault recording
331 * registers.
333 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
335 uint32_t i;
336 uint32_t ppf_mask = 0;
338 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
339 if (vtd_is_frcd_set(s, i)) {
340 ppf_mask = VTD_FSTS_PPF;
341 break;
344 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
345 VTD_DPRINTF(FLOG, "set PPF of FSTS_REG to %d", ppf_mask ? 1 : 0);
348 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
350 /* Each reg is 128-bit */
351 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
352 addr += 8; /* Access the high 64-bit half */
354 assert(index < DMAR_FRCD_REG_NR);
356 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
357 vtd_update_fsts_ppf(s);
360 /* Must not update F field now, should be done later */
361 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
362 uint16_t source_id, hwaddr addr,
363 VTDFaultReason fault, bool is_write)
365 uint64_t hi = 0, lo;
366 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
368 assert(index < DMAR_FRCD_REG_NR);
370 lo = VTD_FRCD_FI(addr);
371 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
372 if (!is_write) {
373 hi |= VTD_FRCD_T;
375 vtd_set_quad_raw(s, frcd_reg_addr, lo);
376 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
377 VTD_DPRINTF(FLOG, "record to FRCD_REG #%"PRIu16 ": hi 0x%"PRIx64
378 ", lo 0x%"PRIx64, index, hi, lo);
381 /* Try to collapse multiple pending faults from the same requester */
382 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
384 uint32_t i;
385 uint64_t frcd_reg;
386 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
388 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
389 frcd_reg = vtd_get_quad_raw(s, addr);
390 VTD_DPRINTF(FLOG, "frcd_reg #%d 0x%"PRIx64, i, frcd_reg);
391 if ((frcd_reg & VTD_FRCD_F) &&
392 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
393 return true;
395 addr += 16; /* 128-bit for each */
397 return false;
400 /* Log and report an DMAR (address translation) fault to software */
401 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
402 hwaddr addr, VTDFaultReason fault,
403 bool is_write)
405 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
407 assert(fault < VTD_FR_MAX);
409 if (fault == VTD_FR_RESERVED_ERR) {
410 /* This is not a normal fault reason case. Drop it. */
411 return;
413 VTD_DPRINTF(FLOG, "sid 0x%"PRIx16 ", fault %d, addr 0x%"PRIx64
414 ", is_write %d", source_id, fault, addr, is_write);
415 if (fsts_reg & VTD_FSTS_PFO) {
416 VTD_DPRINTF(FLOG, "new fault is not recorded due to "
417 "Primary Fault Overflow");
418 return;
420 if (vtd_try_collapse_fault(s, source_id)) {
421 VTD_DPRINTF(FLOG, "new fault is not recorded due to "
422 "compression of faults");
423 return;
425 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
426 VTD_DPRINTF(FLOG, "Primary Fault Overflow and "
427 "new fault is not recorded, set PFO field");
428 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
429 return;
432 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
434 if (fsts_reg & VTD_FSTS_PPF) {
435 VTD_DPRINTF(FLOG, "there are pending faults already, "
436 "fault event is not generated");
437 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
438 s->next_frcd_reg++;
439 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
440 s->next_frcd_reg = 0;
442 } else {
443 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
444 VTD_FSTS_FRI(s->next_frcd_reg));
445 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
446 s->next_frcd_reg++;
447 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
448 s->next_frcd_reg = 0;
450 /* This case actually cause the PPF to be Set.
451 * So generate fault event (interrupt).
453 vtd_generate_fault_event(s, fsts_reg);
457 /* Handle Invalidation Queue Errors of queued invalidation interface error
458 * conditions.
460 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
462 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
464 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
465 vtd_generate_fault_event(s, fsts_reg);
468 /* Set the IWC field and try to generate an invalidation completion interrupt */
469 static void vtd_generate_completion_event(IntelIOMMUState *s)
471 VTD_DPRINTF(INV, "completes an invalidation wait command with "
472 "Interrupt Flag");
473 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
474 VTD_DPRINTF(INV, "there is a previous interrupt condition to be "
475 "serviced by software, "
476 "new invalidation event is not generated");
477 return;
479 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
480 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
481 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
482 VTD_DPRINTF(INV, "IM filed in IECTL_REG is set, new invalidation "
483 "event is not generated");
484 return;
485 } else {
486 /* Generate the interrupt event */
487 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
488 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
492 static inline bool vtd_root_entry_present(VTDRootEntry *root)
494 return root->val & VTD_ROOT_ENTRY_P;
497 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
498 VTDRootEntry *re)
500 dma_addr_t addr;
502 addr = s->root + index * sizeof(*re);
503 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
504 VTD_DPRINTF(GENERAL, "error: fail to access root-entry at 0x%"PRIx64
505 " + %"PRIu8, s->root, index);
506 re->val = 0;
507 return -VTD_FR_ROOT_TABLE_INV;
509 re->val = le64_to_cpu(re->val);
510 return 0;
513 static inline bool vtd_context_entry_present(VTDContextEntry *context)
515 return context->lo & VTD_CONTEXT_ENTRY_P;
518 static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
519 VTDContextEntry *ce)
521 dma_addr_t addr;
523 if (!vtd_root_entry_present(root)) {
524 VTD_DPRINTF(GENERAL, "error: root-entry is not present");
525 return -VTD_FR_ROOT_ENTRY_P;
527 addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
528 if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
529 VTD_DPRINTF(GENERAL, "error: fail to access context-entry at 0x%"PRIx64
530 " + %"PRIu8,
531 (uint64_t)(root->val & VTD_ROOT_ENTRY_CTP), index);
532 return -VTD_FR_CONTEXT_TABLE_INV;
534 ce->lo = le64_to_cpu(ce->lo);
535 ce->hi = le64_to_cpu(ce->hi);
536 return 0;
539 static inline dma_addr_t vtd_get_slpt_base_from_context(VTDContextEntry *ce)
541 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
544 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte)
546 return slpte & VTD_SL_PT_BASE_ADDR_MASK;
549 /* Whether the pte indicates the address of the page frame */
550 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
552 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
555 /* Get the content of a spte located in @base_addr[@index] */
556 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
558 uint64_t slpte;
560 assert(index < VTD_SL_PT_ENTRY_NR);
562 if (dma_memory_read(&address_space_memory,
563 base_addr + index * sizeof(slpte), &slpte,
564 sizeof(slpte))) {
565 slpte = (uint64_t)-1;
566 return slpte;
568 slpte = le64_to_cpu(slpte);
569 return slpte;
572 /* Given a gpa and the level of paging structure, return the offset of current
573 * level.
575 static inline uint32_t vtd_gpa_level_offset(uint64_t gpa, uint32_t level)
577 return (gpa >> vtd_slpt_level_shift(level)) &
578 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
581 /* Check Capability Register to see if the @level of page-table is supported */
582 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
584 return VTD_CAP_SAGAW_MASK & s->cap &
585 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
588 /* Get the page-table level that hardware should use for the second-level
589 * page-table walk from the Address Width field of context-entry.
591 static inline uint32_t vtd_get_level_from_context_entry(VTDContextEntry *ce)
593 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
596 static inline uint32_t vtd_get_agaw_from_context_entry(VTDContextEntry *ce)
598 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
601 static const uint64_t vtd_paging_entry_rsvd_field[] = {
602 [0] = ~0ULL,
603 /* For not large page */
604 [1] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
605 [2] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
606 [3] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
607 [4] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
608 /* For large page */
609 [5] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
610 [6] = 0x1ff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
611 [7] = 0x3ffff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
612 [8] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
615 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
617 if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
618 /* Maybe large page */
619 return slpte & vtd_paging_entry_rsvd_field[level + 4];
620 } else {
621 return slpte & vtd_paging_entry_rsvd_field[level];
625 /* Given the @gpa, get relevant @slptep. @slpte_level will be the last level
626 * of the translation, can be used for deciding the size of large page.
628 static int vtd_gpa_to_slpte(VTDContextEntry *ce, uint64_t gpa, bool is_write,
629 uint64_t *slptep, uint32_t *slpte_level,
630 bool *reads, bool *writes)
632 dma_addr_t addr = vtd_get_slpt_base_from_context(ce);
633 uint32_t level = vtd_get_level_from_context_entry(ce);
634 uint32_t offset;
635 uint64_t slpte;
636 uint32_t ce_agaw = vtd_get_agaw_from_context_entry(ce);
637 uint64_t access_right_check;
639 /* Check if @gpa is above 2^X-1, where X is the minimum of MGAW in CAP_REG
640 * and AW in context-entry.
642 if (gpa & ~((1ULL << MIN(ce_agaw, VTD_MGAW)) - 1)) {
643 VTD_DPRINTF(GENERAL, "error: gpa 0x%"PRIx64 " exceeds limits", gpa);
644 return -VTD_FR_ADDR_BEYOND_MGAW;
647 /* FIXME: what is the Atomics request here? */
648 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
650 while (true) {
651 offset = vtd_gpa_level_offset(gpa, level);
652 slpte = vtd_get_slpte(addr, offset);
654 if (slpte == (uint64_t)-1) {
655 VTD_DPRINTF(GENERAL, "error: fail to access second-level paging "
656 "entry at level %"PRIu32 " for gpa 0x%"PRIx64,
657 level, gpa);
658 if (level == vtd_get_level_from_context_entry(ce)) {
659 /* Invalid programming of context-entry */
660 return -VTD_FR_CONTEXT_ENTRY_INV;
661 } else {
662 return -VTD_FR_PAGING_ENTRY_INV;
665 *reads = (*reads) && (slpte & VTD_SL_R);
666 *writes = (*writes) && (slpte & VTD_SL_W);
667 if (!(slpte & access_right_check)) {
668 VTD_DPRINTF(GENERAL, "error: lack of %s permission for "
669 "gpa 0x%"PRIx64 " slpte 0x%"PRIx64,
670 (is_write ? "write" : "read"), gpa, slpte);
671 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
673 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
674 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in second "
675 "level paging entry level %"PRIu32 " slpte 0x%"PRIx64,
676 level, slpte);
677 return -VTD_FR_PAGING_ENTRY_RSVD;
680 if (vtd_is_last_slpte(slpte, level)) {
681 *slptep = slpte;
682 *slpte_level = level;
683 return 0;
685 addr = vtd_get_slpte_addr(slpte);
686 level--;
690 /* Map a device to its corresponding domain (context-entry) */
691 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
692 uint8_t devfn, VTDContextEntry *ce)
694 VTDRootEntry re;
695 int ret_fr;
697 ret_fr = vtd_get_root_entry(s, bus_num, &re);
698 if (ret_fr) {
699 return ret_fr;
702 if (!vtd_root_entry_present(&re)) {
703 VTD_DPRINTF(GENERAL, "error: root-entry #%"PRIu8 " is not present",
704 bus_num);
705 return -VTD_FR_ROOT_ENTRY_P;
706 } else if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD)) {
707 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in root-entry "
708 "hi 0x%"PRIx64 " lo 0x%"PRIx64, re.rsvd, re.val);
709 return -VTD_FR_ROOT_ENTRY_RSVD;
712 ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
713 if (ret_fr) {
714 return ret_fr;
717 if (!vtd_context_entry_present(ce)) {
718 VTD_DPRINTF(GENERAL,
719 "error: context-entry #%"PRIu8 "(bus #%"PRIu8 ") "
720 "is not present", devfn, bus_num);
721 return -VTD_FR_CONTEXT_ENTRY_P;
722 } else if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
723 (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO)) {
724 VTD_DPRINTF(GENERAL,
725 "error: non-zero reserved field in context-entry "
726 "hi 0x%"PRIx64 " lo 0x%"PRIx64, ce->hi, ce->lo);
727 return -VTD_FR_CONTEXT_ENTRY_RSVD;
729 /* Check if the programming of context-entry is valid */
730 if (!vtd_is_level_supported(s, vtd_get_level_from_context_entry(ce))) {
731 VTD_DPRINTF(GENERAL, "error: unsupported Address Width value in "
732 "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
733 ce->hi, ce->lo);
734 return -VTD_FR_CONTEXT_ENTRY_INV;
735 } else if (ce->lo & VTD_CONTEXT_ENTRY_TT) {
736 VTD_DPRINTF(GENERAL, "error: unsupported Translation Type in "
737 "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
738 ce->hi, ce->lo);
739 return -VTD_FR_CONTEXT_ENTRY_INV;
741 return 0;
744 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
746 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
749 static const bool vtd_qualified_faults[] = {
750 [VTD_FR_RESERVED] = false,
751 [VTD_FR_ROOT_ENTRY_P] = false,
752 [VTD_FR_CONTEXT_ENTRY_P] = true,
753 [VTD_FR_CONTEXT_ENTRY_INV] = true,
754 [VTD_FR_ADDR_BEYOND_MGAW] = true,
755 [VTD_FR_WRITE] = true,
756 [VTD_FR_READ] = true,
757 [VTD_FR_PAGING_ENTRY_INV] = true,
758 [VTD_FR_ROOT_TABLE_INV] = false,
759 [VTD_FR_CONTEXT_TABLE_INV] = false,
760 [VTD_FR_ROOT_ENTRY_RSVD] = false,
761 [VTD_FR_PAGING_ENTRY_RSVD] = true,
762 [VTD_FR_CONTEXT_ENTRY_TT] = true,
763 [VTD_FR_RESERVED_ERR] = false,
764 [VTD_FR_MAX] = false,
767 /* To see if a fault condition is "qualified", which is reported to software
768 * only if the FPD field in the context-entry used to process the faulting
769 * request is 0.
771 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
773 return vtd_qualified_faults[fault];
776 static inline bool vtd_is_interrupt_addr(hwaddr addr)
778 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
781 /* Map dev to context-entry then do a paging-structures walk to do a iommu
782 * translation.
784 * Called from RCU critical section.
786 * @bus_num: The bus number
787 * @devfn: The devfn, which is the combined of device and function number
788 * @is_write: The access is a write operation
789 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
791 static void vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
792 uint8_t devfn, hwaddr addr, bool is_write,
793 IOMMUTLBEntry *entry)
795 IntelIOMMUState *s = vtd_as->iommu_state;
796 VTDContextEntry ce;
797 uint8_t bus_num = pci_bus_num(bus);
798 VTDContextCacheEntry *cc_entry = &vtd_as->context_cache_entry;
799 uint64_t slpte, page_mask;
800 uint32_t level;
801 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
802 int ret_fr;
803 bool is_fpd_set = false;
804 bool reads = true;
805 bool writes = true;
806 VTDIOTLBEntry *iotlb_entry;
808 /* Check if the request is in interrupt address range */
809 if (vtd_is_interrupt_addr(addr)) {
810 if (is_write) {
811 /* FIXME: since we don't know the length of the access here, we
812 * treat Non-DWORD length write requests without PASID as
813 * interrupt requests, too. Withoud interrupt remapping support,
814 * we just use 1:1 mapping.
816 VTD_DPRINTF(MMU, "write request to interrupt address "
817 "gpa 0x%"PRIx64, addr);
818 entry->iova = addr & VTD_PAGE_MASK_4K;
819 entry->translated_addr = addr & VTD_PAGE_MASK_4K;
820 entry->addr_mask = ~VTD_PAGE_MASK_4K;
821 entry->perm = IOMMU_WO;
822 return;
823 } else {
824 VTD_DPRINTF(GENERAL, "error: read request from interrupt address "
825 "gpa 0x%"PRIx64, addr);
826 vtd_report_dmar_fault(s, source_id, addr, VTD_FR_READ, is_write);
827 return;
830 /* Try to fetch slpte form IOTLB */
831 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
832 if (iotlb_entry) {
833 VTD_DPRINTF(CACHE, "hit iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
834 " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr,
835 iotlb_entry->slpte, iotlb_entry->domain_id);
836 slpte = iotlb_entry->slpte;
837 reads = iotlb_entry->read_flags;
838 writes = iotlb_entry->write_flags;
839 page_mask = iotlb_entry->mask;
840 goto out;
842 /* Try to fetch context-entry from cache first */
843 if (cc_entry->context_cache_gen == s->context_cache_gen) {
844 VTD_DPRINTF(CACHE, "hit context-cache bus %d devfn %d "
845 "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 ")",
846 bus_num, devfn, cc_entry->context_entry.hi,
847 cc_entry->context_entry.lo, cc_entry->context_cache_gen);
848 ce = cc_entry->context_entry;
849 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
850 } else {
851 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
852 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
853 if (ret_fr) {
854 ret_fr = -ret_fr;
855 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
856 VTD_DPRINTF(FLOG, "fault processing is disabled for DMA "
857 "requests through this context-entry "
858 "(with FPD Set)");
859 } else {
860 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
862 return;
864 /* Update context-cache */
865 VTD_DPRINTF(CACHE, "update context-cache bus %d devfn %d "
866 "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 "->%"PRIu32 ")",
867 bus_num, devfn, ce.hi, ce.lo,
868 cc_entry->context_cache_gen, s->context_cache_gen);
869 cc_entry->context_entry = ce;
870 cc_entry->context_cache_gen = s->context_cache_gen;
873 ret_fr = vtd_gpa_to_slpte(&ce, addr, is_write, &slpte, &level,
874 &reads, &writes);
875 if (ret_fr) {
876 ret_fr = -ret_fr;
877 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
878 VTD_DPRINTF(FLOG, "fault processing is disabled for DMA requests "
879 "through this context-entry (with FPD Set)");
880 } else {
881 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
883 return;
886 page_mask = vtd_slpt_level_page_mask(level);
887 vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
888 reads, writes, level);
889 out:
890 entry->iova = addr & page_mask;
891 entry->translated_addr = vtd_get_slpte_addr(slpte) & page_mask;
892 entry->addr_mask = ~page_mask;
893 entry->perm = (writes ? 2 : 0) + (reads ? 1 : 0);
896 static void vtd_root_table_setup(IntelIOMMUState *s)
898 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
899 s->root_extended = s->root & VTD_RTADDR_RTT;
900 s->root &= VTD_RTADDR_ADDR_MASK;
902 VTD_DPRINTF(CSR, "root_table addr 0x%"PRIx64 " %s", s->root,
903 (s->root_extended ? "(extended)" : ""));
906 static void vtd_context_global_invalidate(IntelIOMMUState *s)
908 s->context_cache_gen++;
909 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
910 vtd_reset_context_cache(s);
915 /* Find the VTD address space currently associated with a given bus number,
917 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
919 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
920 if (!vtd_bus) {
921 /* Iterate over the registered buses to find the one
922 * which currently hold this bus number, and update the bus_num lookup table:
924 GHashTableIter iter;
926 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
927 while (g_hash_table_iter_next (&iter, NULL, (void**)&vtd_bus)) {
928 if (pci_bus_num(vtd_bus->bus) == bus_num) {
929 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
930 return vtd_bus;
934 return vtd_bus;
937 /* Do a context-cache device-selective invalidation.
938 * @func_mask: FM field after shifting
940 static void vtd_context_device_invalidate(IntelIOMMUState *s,
941 uint16_t source_id,
942 uint16_t func_mask)
944 uint16_t mask;
945 VTDBus *vtd_bus;
946 VTDAddressSpace *vtd_as;
947 uint16_t devfn;
948 uint16_t devfn_it;
950 switch (func_mask & 3) {
951 case 0:
952 mask = 0; /* No bits in the SID field masked */
953 break;
954 case 1:
955 mask = 4; /* Mask bit 2 in the SID field */
956 break;
957 case 2:
958 mask = 6; /* Mask bit 2:1 in the SID field */
959 break;
960 case 3:
961 mask = 7; /* Mask bit 2:0 in the SID field */
962 break;
964 VTD_DPRINTF(INV, "device-selective invalidation source 0x%"PRIx16
965 " mask %"PRIu16, source_id, mask);
966 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
967 if (vtd_bus) {
968 devfn = VTD_SID_TO_DEVFN(source_id);
969 for (devfn_it = 0; devfn_it < X86_IOMMU_PCI_DEVFN_MAX; ++devfn_it) {
970 vtd_as = vtd_bus->dev_as[devfn_it];
971 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
972 VTD_DPRINTF(INV, "invalidate context-cahce of devfn 0x%"PRIx16,
973 devfn_it);
974 vtd_as->context_cache_entry.context_cache_gen = 0;
980 /* Context-cache invalidation
981 * Returns the Context Actual Invalidation Granularity.
982 * @val: the content of the CCMD_REG
984 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
986 uint64_t caig;
987 uint64_t type = val & VTD_CCMD_CIRG_MASK;
989 switch (type) {
990 case VTD_CCMD_DOMAIN_INVL:
991 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
992 (uint16_t)VTD_CCMD_DID(val));
993 /* Fall through */
994 case VTD_CCMD_GLOBAL_INVL:
995 VTD_DPRINTF(INV, "global invalidation");
996 caig = VTD_CCMD_GLOBAL_INVL_A;
997 vtd_context_global_invalidate(s);
998 break;
1000 case VTD_CCMD_DEVICE_INVL:
1001 caig = VTD_CCMD_DEVICE_INVL_A;
1002 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1003 break;
1005 default:
1006 VTD_DPRINTF(GENERAL, "error: invalid granularity");
1007 caig = 0;
1009 return caig;
1012 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1014 vtd_reset_iotlb(s);
1017 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1019 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1020 &domain_id);
1023 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1024 hwaddr addr, uint8_t am)
1026 VTDIOTLBPageInvInfo info;
1028 assert(am <= VTD_MAMV);
1029 info.domain_id = domain_id;
1030 info.addr = addr;
1031 info.mask = ~((1 << am) - 1);
1032 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1035 /* Flush IOTLB
1036 * Returns the IOTLB Actual Invalidation Granularity.
1037 * @val: the content of the IOTLB_REG
1039 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1041 uint64_t iaig;
1042 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1043 uint16_t domain_id;
1044 hwaddr addr;
1045 uint8_t am;
1047 switch (type) {
1048 case VTD_TLB_GLOBAL_FLUSH:
1049 VTD_DPRINTF(INV, "global invalidation");
1050 iaig = VTD_TLB_GLOBAL_FLUSH_A;
1051 vtd_iotlb_global_invalidate(s);
1052 break;
1054 case VTD_TLB_DSI_FLUSH:
1055 domain_id = VTD_TLB_DID(val);
1056 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1057 domain_id);
1058 iaig = VTD_TLB_DSI_FLUSH_A;
1059 vtd_iotlb_domain_invalidate(s, domain_id);
1060 break;
1062 case VTD_TLB_PSI_FLUSH:
1063 domain_id = VTD_TLB_DID(val);
1064 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1065 am = VTD_IVA_AM(addr);
1066 addr = VTD_IVA_ADDR(addr);
1067 VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1068 " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1069 if (am > VTD_MAMV) {
1070 VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1071 "%"PRIu8, (uint8_t)VTD_MAMV);
1072 iaig = 0;
1073 break;
1075 iaig = VTD_TLB_PSI_FLUSH_A;
1076 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1077 break;
1079 default:
1080 VTD_DPRINTF(GENERAL, "error: invalid granularity");
1081 iaig = 0;
1083 return iaig;
1086 static inline bool vtd_queued_inv_enable_check(IntelIOMMUState *s)
1088 return s->iq_tail == 0;
1091 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1093 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1094 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1097 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1099 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1101 VTD_DPRINTF(INV, "Queued Invalidation Enable %s", (en ? "on" : "off"));
1102 if (en) {
1103 if (vtd_queued_inv_enable_check(s)) {
1104 s->iq = iqa_val & VTD_IQA_IQA_MASK;
1105 /* 2^(x+8) entries */
1106 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1107 s->qi_enabled = true;
1108 VTD_DPRINTF(INV, "DMAR_IQA_REG 0x%"PRIx64, iqa_val);
1109 VTD_DPRINTF(INV, "Invalidation Queue addr 0x%"PRIx64 " size %d",
1110 s->iq, s->iq_size);
1111 /* Ok - report back to driver */
1112 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1113 } else {
1114 VTD_DPRINTF(GENERAL, "error: can't enable Queued Invalidation: "
1115 "tail %"PRIu16, s->iq_tail);
1117 } else {
1118 if (vtd_queued_inv_disable_check(s)) {
1119 /* disable Queued Invalidation */
1120 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1121 s->iq_head = 0;
1122 s->qi_enabled = false;
1123 /* Ok - report back to driver */
1124 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1125 } else {
1126 VTD_DPRINTF(GENERAL, "error: can't disable Queued Invalidation: "
1127 "head %"PRIu16 ", tail %"PRIu16
1128 ", last_descriptor %"PRIu8,
1129 s->iq_head, s->iq_tail, s->iq_last_desc_type);
1134 /* Set Root Table Pointer */
1135 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1137 VTD_DPRINTF(CSR, "set Root Table Pointer");
1139 vtd_root_table_setup(s);
1140 /* Ok - report back to driver */
1141 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1144 /* Handle Translation Enable/Disable */
1145 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1147 VTD_DPRINTF(CSR, "Translation Enable %s", (en ? "on" : "off"));
1149 if (en) {
1150 s->dmar_enabled = true;
1151 /* Ok - report back to driver */
1152 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1153 } else {
1154 s->dmar_enabled = false;
1156 /* Clear the index of Fault Recording Register */
1157 s->next_frcd_reg = 0;
1158 /* Ok - report back to driver */
1159 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1163 /* Handle write to Global Command Register */
1164 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1166 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1167 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1168 uint32_t changed = status ^ val;
1170 VTD_DPRINTF(CSR, "value 0x%"PRIx32 " status 0x%"PRIx32, val, status);
1171 if (changed & VTD_GCMD_TE) {
1172 /* Translation enable/disable */
1173 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1175 if (val & VTD_GCMD_SRTP) {
1176 /* Set/update the root-table pointer */
1177 vtd_handle_gcmd_srtp(s);
1179 if (changed & VTD_GCMD_QIE) {
1180 /* Queued Invalidation Enable */
1181 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1185 /* Handle write to Context Command Register */
1186 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1188 uint64_t ret;
1189 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1191 /* Context-cache invalidation request */
1192 if (val & VTD_CCMD_ICC) {
1193 if (s->qi_enabled) {
1194 VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1195 "should not use register-based invalidation");
1196 return;
1198 ret = vtd_context_cache_invalidate(s, val);
1199 /* Invalidation completed. Change something to show */
1200 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1201 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1202 ret);
1203 VTD_DPRINTF(INV, "CCMD_REG write-back val: 0x%"PRIx64, ret);
1207 /* Handle write to IOTLB Invalidation Register */
1208 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1210 uint64_t ret;
1211 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1213 /* IOTLB invalidation request */
1214 if (val & VTD_TLB_IVT) {
1215 if (s->qi_enabled) {
1216 VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1217 "should not use register-based invalidation");
1218 return;
1220 ret = vtd_iotlb_flush(s, val);
1221 /* Invalidation completed. Change something to show */
1222 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1223 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1224 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1225 VTD_DPRINTF(INV, "IOTLB_REG write-back val: 0x%"PRIx64, ret);
1229 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
1230 static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1231 VTDInvDesc *inv_desc)
1233 dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1234 if (dma_memory_read(&address_space_memory, addr, inv_desc,
1235 sizeof(*inv_desc))) {
1236 VTD_DPRINTF(GENERAL, "error: fail to fetch Invalidation Descriptor "
1237 "base_addr 0x%"PRIx64 " offset %"PRIu32, base_addr, offset);
1238 inv_desc->lo = 0;
1239 inv_desc->hi = 0;
1241 return false;
1243 inv_desc->lo = le64_to_cpu(inv_desc->lo);
1244 inv_desc->hi = le64_to_cpu(inv_desc->hi);
1245 return true;
1248 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1250 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1251 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
1252 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Invalidation "
1253 "Wait Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1254 inv_desc->hi, inv_desc->lo);
1255 return false;
1257 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1258 /* Status Write */
1259 uint32_t status_data = (uint32_t)(inv_desc->lo >>
1260 VTD_INV_DESC_WAIT_DATA_SHIFT);
1262 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1264 /* FIXME: need to be masked with HAW? */
1265 dma_addr_t status_addr = inv_desc->hi;
1266 VTD_DPRINTF(INV, "status data 0x%x, status addr 0x%"PRIx64,
1267 status_data, status_addr);
1268 status_data = cpu_to_le32(status_data);
1269 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1270 sizeof(status_data))) {
1271 VTD_DPRINTF(GENERAL, "error: fail to perform a coherent write");
1272 return false;
1274 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1275 /* Interrupt flag */
1276 VTD_DPRINTF(INV, "Invalidation Wait Descriptor interrupt completion");
1277 vtd_generate_completion_event(s);
1278 } else {
1279 VTD_DPRINTF(GENERAL, "error: invalid Invalidation Wait Descriptor: "
1280 "hi 0x%"PRIx64 " lo 0x%"PRIx64, inv_desc->hi, inv_desc->lo);
1281 return false;
1283 return true;
1286 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1287 VTDInvDesc *inv_desc)
1289 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
1290 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Context-cache "
1291 "Invalidate Descriptor");
1292 return false;
1294 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1295 case VTD_INV_DESC_CC_DOMAIN:
1296 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1297 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
1298 /* Fall through */
1299 case VTD_INV_DESC_CC_GLOBAL:
1300 VTD_DPRINTF(INV, "global invalidation");
1301 vtd_context_global_invalidate(s);
1302 break;
1304 case VTD_INV_DESC_CC_DEVICE:
1305 vtd_context_device_invalidate(s, VTD_INV_DESC_CC_SID(inv_desc->lo),
1306 VTD_INV_DESC_CC_FM(inv_desc->lo));
1307 break;
1309 default:
1310 VTD_DPRINTF(GENERAL, "error: invalid granularity in Context-cache "
1311 "Invalidate Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1312 inv_desc->hi, inv_desc->lo);
1313 return false;
1315 return true;
1318 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1320 uint16_t domain_id;
1321 uint8_t am;
1322 hwaddr addr;
1324 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1325 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
1326 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in IOTLB "
1327 "Invalidate Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1328 inv_desc->hi, inv_desc->lo);
1329 return false;
1332 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1333 case VTD_INV_DESC_IOTLB_GLOBAL:
1334 VTD_DPRINTF(INV, "global invalidation");
1335 vtd_iotlb_global_invalidate(s);
1336 break;
1338 case VTD_INV_DESC_IOTLB_DOMAIN:
1339 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1340 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1341 domain_id);
1342 vtd_iotlb_domain_invalidate(s, domain_id);
1343 break;
1345 case VTD_INV_DESC_IOTLB_PAGE:
1346 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1347 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1348 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
1349 VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1350 " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1351 if (am > VTD_MAMV) {
1352 VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1353 "%"PRIu8, (uint8_t)VTD_MAMV);
1354 return false;
1356 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1357 break;
1359 default:
1360 VTD_DPRINTF(GENERAL, "error: invalid granularity in IOTLB Invalidate "
1361 "Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1362 inv_desc->hi, inv_desc->lo);
1363 return false;
1365 return true;
1368 static bool vtd_process_inv_desc(IntelIOMMUState *s)
1370 VTDInvDesc inv_desc;
1371 uint8_t desc_type;
1373 VTD_DPRINTF(INV, "iq head %"PRIu16, s->iq_head);
1374 if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
1375 s->iq_last_desc_type = VTD_INV_DESC_NONE;
1376 return false;
1378 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
1379 /* FIXME: should update at first or at last? */
1380 s->iq_last_desc_type = desc_type;
1382 switch (desc_type) {
1383 case VTD_INV_DESC_CC:
1384 VTD_DPRINTF(INV, "Context-cache Invalidate Descriptor hi 0x%"PRIx64
1385 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1386 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
1387 return false;
1389 break;
1391 case VTD_INV_DESC_IOTLB:
1392 VTD_DPRINTF(INV, "IOTLB Invalidate Descriptor hi 0x%"PRIx64
1393 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1394 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
1395 return false;
1397 break;
1399 case VTD_INV_DESC_WAIT:
1400 VTD_DPRINTF(INV, "Invalidation Wait Descriptor hi 0x%"PRIx64
1401 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1402 if (!vtd_process_wait_desc(s, &inv_desc)) {
1403 return false;
1405 break;
1407 case VTD_INV_DESC_IEC:
1408 VTD_DPRINTF(INV, "Interrupt Entry Cache Invalidation "
1409 "not implemented yet");
1411 * Since currently we do not cache interrupt entries, we can
1412 * just mark this descriptor as "good" and move on.
1414 break;
1416 default:
1417 VTD_DPRINTF(GENERAL, "error: unkonw Invalidation Descriptor type "
1418 "hi 0x%"PRIx64 " lo 0x%"PRIx64 " type %"PRIu8,
1419 inv_desc.hi, inv_desc.lo, desc_type);
1420 return false;
1422 s->iq_head++;
1423 if (s->iq_head == s->iq_size) {
1424 s->iq_head = 0;
1426 return true;
1429 /* Try to fetch and process more Invalidation Descriptors */
1430 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
1432 VTD_DPRINTF(INV, "fetch Invalidation Descriptors");
1433 if (s->iq_tail >= s->iq_size) {
1434 /* Detects an invalid Tail pointer */
1435 VTD_DPRINTF(GENERAL, "error: iq_tail is %"PRIu16
1436 " while iq_size is %"PRIu16, s->iq_tail, s->iq_size);
1437 vtd_handle_inv_queue_error(s);
1438 return;
1440 while (s->iq_head != s->iq_tail) {
1441 if (!vtd_process_inv_desc(s)) {
1442 /* Invalidation Queue Errors */
1443 vtd_handle_inv_queue_error(s);
1444 break;
1446 /* Must update the IQH_REG in time */
1447 vtd_set_quad_raw(s, DMAR_IQH_REG,
1448 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
1449 VTD_IQH_QH_MASK);
1453 /* Handle write to Invalidation Queue Tail Register */
1454 static void vtd_handle_iqt_write(IntelIOMMUState *s)
1456 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
1458 s->iq_tail = VTD_IQT_QT(val);
1459 VTD_DPRINTF(INV, "set iq tail %"PRIu16, s->iq_tail);
1460 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1461 /* Process Invalidation Queue here */
1462 vtd_fetch_inv_desc(s);
1466 static void vtd_handle_fsts_write(IntelIOMMUState *s)
1468 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
1469 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1470 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
1472 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
1473 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1474 VTD_DPRINTF(FLOG, "all pending interrupt conditions serviced, clear "
1475 "IP field of FECTL_REG");
1477 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
1478 * Descriptors if there are any when Queued Invalidation is enabled?
1482 static void vtd_handle_fectl_write(IntelIOMMUState *s)
1484 uint32_t fectl_reg;
1485 /* FIXME: when software clears the IM field, check the IP field. But do we
1486 * need to compare the old value and the new value to conclude that
1487 * software clears the IM field? Or just check if the IM field is zero?
1489 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1490 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
1491 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
1492 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1493 VTD_DPRINTF(FLOG, "IM field is cleared, generate "
1494 "fault event interrupt");
1498 static void vtd_handle_ics_write(IntelIOMMUState *s)
1500 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
1501 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1503 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
1504 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1505 VTD_DPRINTF(INV, "pending completion interrupt condition serviced, "
1506 "clear IP field of IECTL_REG");
1510 static void vtd_handle_iectl_write(IntelIOMMUState *s)
1512 uint32_t iectl_reg;
1513 /* FIXME: when software clears the IM field, check the IP field. But do we
1514 * need to compare the old value and the new value to conclude that
1515 * software clears the IM field? Or just check if the IM field is zero?
1517 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1518 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
1519 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
1520 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1521 VTD_DPRINTF(INV, "IM field is cleared, generate "
1522 "invalidation event interrupt");
1526 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
1528 IntelIOMMUState *s = opaque;
1529 uint64_t val;
1531 if (addr + size > DMAR_REG_SIZE) {
1532 VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1533 ", got 0x%"PRIx64 " %d",
1534 (uint64_t)DMAR_REG_SIZE, addr, size);
1535 return (uint64_t)-1;
1538 switch (addr) {
1539 /* Root Table Address Register, 64-bit */
1540 case DMAR_RTADDR_REG:
1541 if (size == 4) {
1542 val = s->root & ((1ULL << 32) - 1);
1543 } else {
1544 val = s->root;
1546 break;
1548 case DMAR_RTADDR_REG_HI:
1549 assert(size == 4);
1550 val = s->root >> 32;
1551 break;
1553 /* Invalidation Queue Address Register, 64-bit */
1554 case DMAR_IQA_REG:
1555 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
1556 if (size == 4) {
1557 val = val & ((1ULL << 32) - 1);
1559 break;
1561 case DMAR_IQA_REG_HI:
1562 assert(size == 4);
1563 val = s->iq >> 32;
1564 break;
1566 default:
1567 if (size == 4) {
1568 val = vtd_get_long(s, addr);
1569 } else {
1570 val = vtd_get_quad(s, addr);
1573 VTD_DPRINTF(CSR, "addr 0x%"PRIx64 " size %d val 0x%"PRIx64,
1574 addr, size, val);
1575 return val;
1578 static void vtd_mem_write(void *opaque, hwaddr addr,
1579 uint64_t val, unsigned size)
1581 IntelIOMMUState *s = opaque;
1583 if (addr + size > DMAR_REG_SIZE) {
1584 VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1585 ", got 0x%"PRIx64 " %d",
1586 (uint64_t)DMAR_REG_SIZE, addr, size);
1587 return;
1590 switch (addr) {
1591 /* Global Command Register, 32-bit */
1592 case DMAR_GCMD_REG:
1593 VTD_DPRINTF(CSR, "DMAR_GCMD_REG write addr 0x%"PRIx64
1594 ", size %d, val 0x%"PRIx64, addr, size, val);
1595 vtd_set_long(s, addr, val);
1596 vtd_handle_gcmd_write(s);
1597 break;
1599 /* Context Command Register, 64-bit */
1600 case DMAR_CCMD_REG:
1601 VTD_DPRINTF(CSR, "DMAR_CCMD_REG write addr 0x%"PRIx64
1602 ", size %d, val 0x%"PRIx64, addr, size, val);
1603 if (size == 4) {
1604 vtd_set_long(s, addr, val);
1605 } else {
1606 vtd_set_quad(s, addr, val);
1607 vtd_handle_ccmd_write(s);
1609 break;
1611 case DMAR_CCMD_REG_HI:
1612 VTD_DPRINTF(CSR, "DMAR_CCMD_REG_HI write addr 0x%"PRIx64
1613 ", size %d, val 0x%"PRIx64, addr, size, val);
1614 assert(size == 4);
1615 vtd_set_long(s, addr, val);
1616 vtd_handle_ccmd_write(s);
1617 break;
1619 /* IOTLB Invalidation Register, 64-bit */
1620 case DMAR_IOTLB_REG:
1621 VTD_DPRINTF(INV, "DMAR_IOTLB_REG write addr 0x%"PRIx64
1622 ", size %d, val 0x%"PRIx64, addr, size, val);
1623 if (size == 4) {
1624 vtd_set_long(s, addr, val);
1625 } else {
1626 vtd_set_quad(s, addr, val);
1627 vtd_handle_iotlb_write(s);
1629 break;
1631 case DMAR_IOTLB_REG_HI:
1632 VTD_DPRINTF(INV, "DMAR_IOTLB_REG_HI write addr 0x%"PRIx64
1633 ", size %d, val 0x%"PRIx64, addr, size, val);
1634 assert(size == 4);
1635 vtd_set_long(s, addr, val);
1636 vtd_handle_iotlb_write(s);
1637 break;
1639 /* Invalidate Address Register, 64-bit */
1640 case DMAR_IVA_REG:
1641 VTD_DPRINTF(INV, "DMAR_IVA_REG write addr 0x%"PRIx64
1642 ", size %d, val 0x%"PRIx64, addr, size, val);
1643 if (size == 4) {
1644 vtd_set_long(s, addr, val);
1645 } else {
1646 vtd_set_quad(s, addr, val);
1648 break;
1650 case DMAR_IVA_REG_HI:
1651 VTD_DPRINTF(INV, "DMAR_IVA_REG_HI write addr 0x%"PRIx64
1652 ", size %d, val 0x%"PRIx64, addr, size, val);
1653 assert(size == 4);
1654 vtd_set_long(s, addr, val);
1655 break;
1657 /* Fault Status Register, 32-bit */
1658 case DMAR_FSTS_REG:
1659 VTD_DPRINTF(FLOG, "DMAR_FSTS_REG write addr 0x%"PRIx64
1660 ", size %d, val 0x%"PRIx64, addr, size, val);
1661 assert(size == 4);
1662 vtd_set_long(s, addr, val);
1663 vtd_handle_fsts_write(s);
1664 break;
1666 /* Fault Event Control Register, 32-bit */
1667 case DMAR_FECTL_REG:
1668 VTD_DPRINTF(FLOG, "DMAR_FECTL_REG write addr 0x%"PRIx64
1669 ", size %d, val 0x%"PRIx64, addr, size, val);
1670 assert(size == 4);
1671 vtd_set_long(s, addr, val);
1672 vtd_handle_fectl_write(s);
1673 break;
1675 /* Fault Event Data Register, 32-bit */
1676 case DMAR_FEDATA_REG:
1677 VTD_DPRINTF(FLOG, "DMAR_FEDATA_REG write addr 0x%"PRIx64
1678 ", size %d, val 0x%"PRIx64, addr, size, val);
1679 assert(size == 4);
1680 vtd_set_long(s, addr, val);
1681 break;
1683 /* Fault Event Address Register, 32-bit */
1684 case DMAR_FEADDR_REG:
1685 VTD_DPRINTF(FLOG, "DMAR_FEADDR_REG write addr 0x%"PRIx64
1686 ", size %d, val 0x%"PRIx64, addr, size, val);
1687 assert(size == 4);
1688 vtd_set_long(s, addr, val);
1689 break;
1691 /* Fault Event Upper Address Register, 32-bit */
1692 case DMAR_FEUADDR_REG:
1693 VTD_DPRINTF(FLOG, "DMAR_FEUADDR_REG write addr 0x%"PRIx64
1694 ", size %d, val 0x%"PRIx64, addr, size, val);
1695 assert(size == 4);
1696 vtd_set_long(s, addr, val);
1697 break;
1699 /* Protected Memory Enable Register, 32-bit */
1700 case DMAR_PMEN_REG:
1701 VTD_DPRINTF(CSR, "DMAR_PMEN_REG write addr 0x%"PRIx64
1702 ", size %d, val 0x%"PRIx64, addr, size, val);
1703 assert(size == 4);
1704 vtd_set_long(s, addr, val);
1705 break;
1707 /* Root Table Address Register, 64-bit */
1708 case DMAR_RTADDR_REG:
1709 VTD_DPRINTF(CSR, "DMAR_RTADDR_REG write addr 0x%"PRIx64
1710 ", size %d, val 0x%"PRIx64, addr, size, val);
1711 if (size == 4) {
1712 vtd_set_long(s, addr, val);
1713 } else {
1714 vtd_set_quad(s, addr, val);
1716 break;
1718 case DMAR_RTADDR_REG_HI:
1719 VTD_DPRINTF(CSR, "DMAR_RTADDR_REG_HI write addr 0x%"PRIx64
1720 ", size %d, val 0x%"PRIx64, addr, size, val);
1721 assert(size == 4);
1722 vtd_set_long(s, addr, val);
1723 break;
1725 /* Invalidation Queue Tail Register, 64-bit */
1726 case DMAR_IQT_REG:
1727 VTD_DPRINTF(INV, "DMAR_IQT_REG write addr 0x%"PRIx64
1728 ", size %d, val 0x%"PRIx64, addr, size, val);
1729 if (size == 4) {
1730 vtd_set_long(s, addr, val);
1731 } else {
1732 vtd_set_quad(s, addr, val);
1734 vtd_handle_iqt_write(s);
1735 break;
1737 case DMAR_IQT_REG_HI:
1738 VTD_DPRINTF(INV, "DMAR_IQT_REG_HI write addr 0x%"PRIx64
1739 ", size %d, val 0x%"PRIx64, addr, size, val);
1740 assert(size == 4);
1741 vtd_set_long(s, addr, val);
1742 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
1743 break;
1745 /* Invalidation Queue Address Register, 64-bit */
1746 case DMAR_IQA_REG:
1747 VTD_DPRINTF(INV, "DMAR_IQA_REG write addr 0x%"PRIx64
1748 ", size %d, val 0x%"PRIx64, addr, size, val);
1749 if (size == 4) {
1750 vtd_set_long(s, addr, val);
1751 } else {
1752 vtd_set_quad(s, addr, val);
1754 break;
1756 case DMAR_IQA_REG_HI:
1757 VTD_DPRINTF(INV, "DMAR_IQA_REG_HI write addr 0x%"PRIx64
1758 ", size %d, val 0x%"PRIx64, addr, size, val);
1759 assert(size == 4);
1760 vtd_set_long(s, addr, val);
1761 break;
1763 /* Invalidation Completion Status Register, 32-bit */
1764 case DMAR_ICS_REG:
1765 VTD_DPRINTF(INV, "DMAR_ICS_REG write addr 0x%"PRIx64
1766 ", size %d, val 0x%"PRIx64, addr, size, val);
1767 assert(size == 4);
1768 vtd_set_long(s, addr, val);
1769 vtd_handle_ics_write(s);
1770 break;
1772 /* Invalidation Event Control Register, 32-bit */
1773 case DMAR_IECTL_REG:
1774 VTD_DPRINTF(INV, "DMAR_IECTL_REG write addr 0x%"PRIx64
1775 ", size %d, val 0x%"PRIx64, addr, size, val);
1776 assert(size == 4);
1777 vtd_set_long(s, addr, val);
1778 vtd_handle_iectl_write(s);
1779 break;
1781 /* Invalidation Event Data Register, 32-bit */
1782 case DMAR_IEDATA_REG:
1783 VTD_DPRINTF(INV, "DMAR_IEDATA_REG write addr 0x%"PRIx64
1784 ", size %d, val 0x%"PRIx64, addr, size, val);
1785 assert(size == 4);
1786 vtd_set_long(s, addr, val);
1787 break;
1789 /* Invalidation Event Address Register, 32-bit */
1790 case DMAR_IEADDR_REG:
1791 VTD_DPRINTF(INV, "DMAR_IEADDR_REG write addr 0x%"PRIx64
1792 ", size %d, val 0x%"PRIx64, addr, size, val);
1793 assert(size == 4);
1794 vtd_set_long(s, addr, val);
1795 break;
1797 /* Invalidation Event Upper Address Register, 32-bit */
1798 case DMAR_IEUADDR_REG:
1799 VTD_DPRINTF(INV, "DMAR_IEUADDR_REG write addr 0x%"PRIx64
1800 ", size %d, val 0x%"PRIx64, addr, size, val);
1801 assert(size == 4);
1802 vtd_set_long(s, addr, val);
1803 break;
1805 /* Fault Recording Registers, 128-bit */
1806 case DMAR_FRCD_REG_0_0:
1807 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_0 write addr 0x%"PRIx64
1808 ", size %d, val 0x%"PRIx64, addr, size, val);
1809 if (size == 4) {
1810 vtd_set_long(s, addr, val);
1811 } else {
1812 vtd_set_quad(s, addr, val);
1814 break;
1816 case DMAR_FRCD_REG_0_1:
1817 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_1 write addr 0x%"PRIx64
1818 ", size %d, val 0x%"PRIx64, addr, size, val);
1819 assert(size == 4);
1820 vtd_set_long(s, addr, val);
1821 break;
1823 case DMAR_FRCD_REG_0_2:
1824 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_2 write addr 0x%"PRIx64
1825 ", size %d, val 0x%"PRIx64, addr, size, val);
1826 if (size == 4) {
1827 vtd_set_long(s, addr, val);
1828 } else {
1829 vtd_set_quad(s, addr, val);
1830 /* May clear bit 127 (Fault), update PPF */
1831 vtd_update_fsts_ppf(s);
1833 break;
1835 case DMAR_FRCD_REG_0_3:
1836 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_3 write addr 0x%"PRIx64
1837 ", size %d, val 0x%"PRIx64, addr, size, val);
1838 assert(size == 4);
1839 vtd_set_long(s, addr, val);
1840 /* May clear bit 127 (Fault), update PPF */
1841 vtd_update_fsts_ppf(s);
1842 break;
1844 default:
1845 VTD_DPRINTF(GENERAL, "error: unhandled reg write addr 0x%"PRIx64
1846 ", size %d, val 0x%"PRIx64, addr, size, val);
1847 if (size == 4) {
1848 vtd_set_long(s, addr, val);
1849 } else {
1850 vtd_set_quad(s, addr, val);
1855 static IOMMUTLBEntry vtd_iommu_translate(MemoryRegion *iommu, hwaddr addr,
1856 bool is_write)
1858 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
1859 IntelIOMMUState *s = vtd_as->iommu_state;
1860 IOMMUTLBEntry ret = {
1861 .target_as = &address_space_memory,
1862 .iova = addr,
1863 .translated_addr = 0,
1864 .addr_mask = ~(hwaddr)0,
1865 .perm = IOMMU_NONE,
1868 if (!s->dmar_enabled) {
1869 /* DMAR disabled, passthrough, use 4k-page*/
1870 ret.iova = addr & VTD_PAGE_MASK_4K;
1871 ret.translated_addr = addr & VTD_PAGE_MASK_4K;
1872 ret.addr_mask = ~VTD_PAGE_MASK_4K;
1873 ret.perm = IOMMU_RW;
1874 return ret;
1877 vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn, addr,
1878 is_write, &ret);
1879 VTD_DPRINTF(MMU,
1880 "bus %"PRIu8 " slot %"PRIu8 " func %"PRIu8 " devfn %"PRIu8
1881 " gpa 0x%"PRIx64 " hpa 0x%"PRIx64, pci_bus_num(vtd_as->bus),
1882 VTD_PCI_SLOT(vtd_as->devfn), VTD_PCI_FUNC(vtd_as->devfn),
1883 vtd_as->devfn, addr, ret.translated_addr);
1884 return ret;
1887 static void vtd_iommu_notify_started(MemoryRegion *iommu)
1889 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
1891 hw_error("Device at bus %s addr %02x.%d requires iommu notifier which "
1892 "is currently not supported by intel-iommu emulation",
1893 vtd_as->bus->qbus.name, PCI_SLOT(vtd_as->devfn),
1894 PCI_FUNC(vtd_as->devfn));
1897 static const VMStateDescription vtd_vmstate = {
1898 .name = "iommu-intel",
1899 .unmigratable = 1,
1902 static const MemoryRegionOps vtd_mem_ops = {
1903 .read = vtd_mem_read,
1904 .write = vtd_mem_write,
1905 .endianness = DEVICE_LITTLE_ENDIAN,
1906 .impl = {
1907 .min_access_size = 4,
1908 .max_access_size = 8,
1910 .valid = {
1911 .min_access_size = 4,
1912 .max_access_size = 8,
1916 static Property vtd_properties[] = {
1917 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
1918 DEFINE_PROP_END_OF_LIST(),
1922 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
1924 uintptr_t key = (uintptr_t)bus;
1925 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
1926 VTDAddressSpace *vtd_dev_as;
1928 if (!vtd_bus) {
1929 /* No corresponding free() */
1930 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
1931 X86_IOMMU_PCI_DEVFN_MAX);
1932 vtd_bus->bus = bus;
1933 key = (uintptr_t)bus;
1934 g_hash_table_insert(s->vtd_as_by_busptr, &key, vtd_bus);
1937 vtd_dev_as = vtd_bus->dev_as[devfn];
1939 if (!vtd_dev_as) {
1940 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
1942 vtd_dev_as->bus = bus;
1943 vtd_dev_as->devfn = (uint8_t)devfn;
1944 vtd_dev_as->iommu_state = s;
1945 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
1946 memory_region_init_iommu(&vtd_dev_as->iommu, OBJECT(s),
1947 &s->iommu_ops, "intel_iommu", UINT64_MAX);
1948 address_space_init(&vtd_dev_as->as,
1949 &vtd_dev_as->iommu, "intel_iommu");
1951 return vtd_dev_as;
1954 /* Do the initialization. It will also be called when reset, so pay
1955 * attention when adding new initialization stuff.
1957 static void vtd_init(IntelIOMMUState *s)
1959 memset(s->csr, 0, DMAR_REG_SIZE);
1960 memset(s->wmask, 0, DMAR_REG_SIZE);
1961 memset(s->w1cmask, 0, DMAR_REG_SIZE);
1962 memset(s->womask, 0, DMAR_REG_SIZE);
1964 s->iommu_ops.translate = vtd_iommu_translate;
1965 s->iommu_ops.notify_started = vtd_iommu_notify_started;
1966 s->root = 0;
1967 s->root_extended = false;
1968 s->dmar_enabled = false;
1969 s->iq_head = 0;
1970 s->iq_tail = 0;
1971 s->iq = 0;
1972 s->iq_size = 0;
1973 s->qi_enabled = false;
1974 s->iq_last_desc_type = VTD_INV_DESC_NONE;
1975 s->next_frcd_reg = 0;
1976 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | VTD_CAP_MGAW |
1977 VTD_CAP_SAGAW | VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS;
1978 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
1980 vtd_reset_context_cache(s);
1981 vtd_reset_iotlb(s);
1983 /* Define registers with default values and bit semantics */
1984 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
1985 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
1986 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
1987 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
1988 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
1989 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
1990 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
1991 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
1992 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
1994 /* Advanced Fault Logging not supported */
1995 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
1996 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
1997 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
1998 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
2000 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
2001 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
2003 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
2005 /* Treated as RO for implementations that PLMR and PHMR fields reported
2006 * as Clear in the CAP_REG.
2007 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
2009 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
2011 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
2012 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
2013 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
2014 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
2015 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
2016 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
2017 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
2018 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
2019 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
2021 /* IOTLB registers */
2022 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
2023 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
2024 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
2026 /* Fault Recording Registers, 128-bit */
2027 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
2028 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
2031 /* Should not reset address_spaces when reset because devices will still use
2032 * the address space they got at first (won't ask the bus again).
2034 static void vtd_reset(DeviceState *dev)
2036 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
2038 VTD_DPRINTF(GENERAL, "");
2039 vtd_init(s);
2042 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
2044 IntelIOMMUState *s = opaque;
2045 VTDAddressSpace *vtd_as;
2047 assert(0 <= devfn && devfn <= X86_IOMMU_PCI_DEVFN_MAX);
2049 vtd_as = vtd_find_add_as(s, bus, devfn);
2050 return &vtd_as->as;
2053 static void vtd_realize(DeviceState *dev, Error **errp)
2055 PCIBus *bus = PC_MACHINE(qdev_get_machine())->bus;
2056 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
2058 VTD_DPRINTF(GENERAL, "");
2059 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
2060 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
2061 "intel_iommu", DMAR_REG_SIZE);
2062 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
2063 /* No corresponding destroy */
2064 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
2065 g_free, g_free);
2066 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
2067 g_free, g_free);
2068 vtd_init(s);
2069 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
2070 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
2073 static void vtd_class_init(ObjectClass *klass, void *data)
2075 DeviceClass *dc = DEVICE_CLASS(klass);
2076 X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
2078 dc->reset = vtd_reset;
2079 dc->vmsd = &vtd_vmstate;
2080 dc->props = vtd_properties;
2081 dc->hotpluggable = false;
2082 x86_class->realize = vtd_realize;
2085 static const TypeInfo vtd_info = {
2086 .name = TYPE_INTEL_IOMMU_DEVICE,
2087 .parent = TYPE_X86_IOMMU_DEVICE,
2088 .instance_size = sizeof(IntelIOMMUState),
2089 .class_init = vtd_class_init,
2092 static void vtd_register_types(void)
2094 VTD_DPRINTF(GENERAL, "");
2095 type_register_static(&vtd_info);
2098 type_init(vtd_register_types)