2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/devices.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/numa.h"
42 #include "sysemu/sysemu.h"
43 #include "sysemu/kvm.h"
44 #include "hw/boards.h"
45 #include "hw/loader.h"
46 #include "exec/address-spaces.h"
47 #include "qemu/bitops.h"
48 #include "qemu/error-report.h"
49 #include "hw/pci-host/gpex.h"
50 #include "hw/arm/virt-acpi-build.h"
51 #include "hw/arm/sysbus-fdt.h"
52 #include "hw/platform-bus.h"
53 #include "hw/arm/fdt.h"
54 #include "hw/intc/arm_gic_common.h"
56 #include "hw/smbios/smbios.h"
57 #include "qapi/visitor.h"
58 #include "standard-headers/linux/input.h"
60 /* Number of external interrupt lines to configure the GIC with */
63 #define PLATFORM_BUS_NUM_IRQS 64
65 static ARMPlatformBusSystemParams platform_bus_params
;
67 typedef struct VirtBoardInfo
{
68 struct arm_boot_info bootinfo
;
69 const char *cpu_model
;
70 const MemMapEntry
*memmap
;
75 uint32_t clock_phandle
;
83 VirtBoardInfo
*daughterboard
;
93 #define TYPE_VIRT_MACHINE MACHINE_TYPE_NAME("virt")
94 #define VIRT_MACHINE(obj) \
95 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
96 #define VIRT_MACHINE_GET_CLASS(obj) \
97 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
98 #define VIRT_MACHINE_CLASS(klass) \
99 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
101 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
102 * RAM can go up to the 256GB mark, leaving 256GB of the physical
103 * address space unallocated and free for future use between 256G and 512G.
104 * If we need to provide more RAM to VMs in the future then we need to:
105 * * allocate a second bank of RAM starting at 2TB and working up
106 * * fix the DT and ACPI table generation code in QEMU to correctly
107 * report two split lumps of RAM to the guest
108 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
109 * (We don't want to fill all the way up to 512GB with RAM because
110 * we might want it for non-RAM purposes later. Conversely it seems
111 * reasonable to assume that anybody configuring a VM with a quarter
112 * of a terabyte of RAM will be doing it on a host with more than a
113 * terabyte of physical address space.)
115 #define RAMLIMIT_GB 255
116 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
118 /* Addresses and sizes of our components.
119 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
120 * 128MB..256MB is used for miscellaneous device I/O.
121 * 256MB..1GB is reserved for possible future PCI support (ie where the
122 * PCI memory window will go if we add a PCI host controller).
123 * 1GB and up is RAM (which may happily spill over into the
124 * high memory region beyond 4GB).
125 * This represents a compromise between how much RAM can be given to
126 * a 32 bit VM and leaving space for expansion and in particular for PCI.
127 * Note that devices should generally be placed at multiples of 0x10000,
128 * to accommodate guests using 64K pages.
130 static const MemMapEntry a15memmap
[] = {
131 /* Space up to 0x8000000 is reserved for a boot ROM */
132 [VIRT_FLASH
] = { 0, 0x08000000 },
133 [VIRT_CPUPERIPHS
] = { 0x08000000, 0x00020000 },
134 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
135 [VIRT_GIC_DIST
] = { 0x08000000, 0x00010000 },
136 [VIRT_GIC_CPU
] = { 0x08010000, 0x00010000 },
137 [VIRT_GIC_V2M
] = { 0x08020000, 0x00001000 },
138 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
139 [VIRT_GIC_ITS
] = { 0x08080000, 0x00020000 },
140 /* This redistributor space allows up to 2*64kB*123 CPUs */
141 [VIRT_GIC_REDIST
] = { 0x080A0000, 0x00F60000 },
142 [VIRT_UART
] = { 0x09000000, 0x00001000 },
143 [VIRT_RTC
] = { 0x09010000, 0x00001000 },
144 [VIRT_FW_CFG
] = { 0x09020000, 0x00000018 },
145 [VIRT_GPIO
] = { 0x09030000, 0x00001000 },
146 [VIRT_SECURE_UART
] = { 0x09040000, 0x00001000 },
147 [VIRT_MMIO
] = { 0x0a000000, 0x00000200 },
148 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
149 [VIRT_PLATFORM_BUS
] = { 0x0c000000, 0x02000000 },
150 [VIRT_SECURE_MEM
] = { 0x0e000000, 0x01000000 },
151 [VIRT_PCIE_MMIO
] = { 0x10000000, 0x2eff0000 },
152 [VIRT_PCIE_PIO
] = { 0x3eff0000, 0x00010000 },
153 [VIRT_PCIE_ECAM
] = { 0x3f000000, 0x01000000 },
154 [VIRT_MEM
] = { 0x40000000, RAMLIMIT_BYTES
},
155 /* Second PCIe window, 512GB wide at the 512GB boundary */
156 [VIRT_PCIE_MMIO_HIGH
] = { 0x8000000000ULL
, 0x8000000000ULL
},
159 static const int a15irqmap
[] = {
162 [VIRT_PCIE
] = 3, /* ... to 6 */
164 [VIRT_SECURE_UART
] = 8,
165 [VIRT_MMIO
] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
166 [VIRT_GIC_V2M
] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
167 [VIRT_PLATFORM_BUS
] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
170 static VirtBoardInfo machines
[] = {
172 .cpu_model
= "cortex-a15",
177 .cpu_model
= "cortex-a53",
182 .cpu_model
= "cortex-a57",
193 static VirtBoardInfo
*find_machine_info(const char *cpu
)
197 for (i
= 0; i
< ARRAY_SIZE(machines
); i
++) {
198 if (strcmp(cpu
, machines
[i
].cpu_model
) == 0) {
205 static void create_fdt(VirtBoardInfo
*vbi
)
207 void *fdt
= create_device_tree(&vbi
->fdt_size
);
210 error_report("create_device_tree() failed");
217 qemu_fdt_setprop_string(fdt
, "/", "compatible", "linux,dummy-virt");
218 qemu_fdt_setprop_cell(fdt
, "/", "#address-cells", 0x2);
219 qemu_fdt_setprop_cell(fdt
, "/", "#size-cells", 0x2);
222 * /chosen and /memory nodes must exist for load_dtb
223 * to fill in necessary properties later
225 qemu_fdt_add_subnode(fdt
, "/chosen");
226 qemu_fdt_add_subnode(fdt
, "/memory");
227 qemu_fdt_setprop_string(fdt
, "/memory", "device_type", "memory");
229 /* Clock node, for the benefit of the UART. The kernel device tree
230 * binding documentation claims the PL011 node clock properties are
231 * optional but in practice if you omit them the kernel refuses to
232 * probe for the device.
234 vbi
->clock_phandle
= qemu_fdt_alloc_phandle(fdt
);
235 qemu_fdt_add_subnode(fdt
, "/apb-pclk");
236 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "compatible", "fixed-clock");
237 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "#clock-cells", 0x0);
238 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "clock-frequency", 24000000);
239 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "clock-output-names",
241 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "phandle", vbi
->clock_phandle
);
245 static void fdt_add_psci_node(const VirtBoardInfo
*vbi
)
247 uint32_t cpu_suspend_fn
;
251 void *fdt
= vbi
->fdt
;
252 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(0));
254 if (!vbi
->using_psci
) {
258 qemu_fdt_add_subnode(fdt
, "/psci");
259 if (armcpu
->psci_version
== 2) {
260 const char comp
[] = "arm,psci-0.2\0arm,psci";
261 qemu_fdt_setprop(fdt
, "/psci", "compatible", comp
, sizeof(comp
));
263 cpu_off_fn
= QEMU_PSCI_0_2_FN_CPU_OFF
;
264 if (arm_feature(&armcpu
->env
, ARM_FEATURE_AARCH64
)) {
265 cpu_suspend_fn
= QEMU_PSCI_0_2_FN64_CPU_SUSPEND
;
266 cpu_on_fn
= QEMU_PSCI_0_2_FN64_CPU_ON
;
267 migrate_fn
= QEMU_PSCI_0_2_FN64_MIGRATE
;
269 cpu_suspend_fn
= QEMU_PSCI_0_2_FN_CPU_SUSPEND
;
270 cpu_on_fn
= QEMU_PSCI_0_2_FN_CPU_ON
;
271 migrate_fn
= QEMU_PSCI_0_2_FN_MIGRATE
;
274 qemu_fdt_setprop_string(fdt
, "/psci", "compatible", "arm,psci");
276 cpu_suspend_fn
= QEMU_PSCI_0_1_FN_CPU_SUSPEND
;
277 cpu_off_fn
= QEMU_PSCI_0_1_FN_CPU_OFF
;
278 cpu_on_fn
= QEMU_PSCI_0_1_FN_CPU_ON
;
279 migrate_fn
= QEMU_PSCI_0_1_FN_MIGRATE
;
282 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
283 * to the instruction that should be used to invoke PSCI functions.
284 * However, the device tree binding uses 'method' instead, so that is
285 * what we should use here.
287 qemu_fdt_setprop_string(fdt
, "/psci", "method", "hvc");
289 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_suspend", cpu_suspend_fn
);
290 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_off", cpu_off_fn
);
291 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_on", cpu_on_fn
);
292 qemu_fdt_setprop_cell(fdt
, "/psci", "migrate", migrate_fn
);
295 static void fdt_add_timer_nodes(const VirtBoardInfo
*vbi
, int gictype
)
297 /* Note that on A15 h/w these interrupts are level-triggered,
298 * but for the GIC implementation provided by both QEMU and KVM
299 * they are edge-triggered.
302 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
;
305 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
306 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
307 (1 << vbi
->smp_cpus
) - 1);
310 qemu_fdt_add_subnode(vbi
->fdt
, "/timer");
312 armcpu
= ARM_CPU(qemu_get_cpu(0));
313 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
314 const char compat
[] = "arm,armv8-timer\0arm,armv7-timer";
315 qemu_fdt_setprop(vbi
->fdt
, "/timer", "compatible",
316 compat
, sizeof(compat
));
318 qemu_fdt_setprop_string(vbi
->fdt
, "/timer", "compatible",
321 qemu_fdt_setprop(vbi
->fdt
, "/timer", "always-on", NULL
, 0);
322 qemu_fdt_setprop_cells(vbi
->fdt
, "/timer", "interrupts",
323 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_S_EL1_IRQ
, irqflags
,
324 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL1_IRQ
, irqflags
,
325 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_VIRT_IRQ
, irqflags
,
326 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL2_IRQ
, irqflags
);
329 static void fdt_add_cpu_nodes(const VirtBoardInfo
*vbi
)
336 * From Documentation/devicetree/bindings/arm/cpus.txt
337 * On ARM v8 64-bit systems value should be set to 2,
338 * that corresponds to the MPIDR_EL1 register size.
339 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
340 * in the system, #address-cells can be set to 1, since
341 * MPIDR_EL1[63:32] bits are not used for CPUs
344 * Here we actually don't know whether our system is 32- or 64-bit one.
345 * The simplest way to go is to examine affinity IDs of all our CPUs. If
346 * at least one of them has Aff3 populated, we set #address-cells to 2.
348 for (cpu
= 0; cpu
< vbi
->smp_cpus
; cpu
++) {
349 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
351 if (armcpu
->mp_affinity
& ARM_AFF3_MASK
) {
357 qemu_fdt_add_subnode(vbi
->fdt
, "/cpus");
358 qemu_fdt_setprop_cell(vbi
->fdt
, "/cpus", "#address-cells", addr_cells
);
359 qemu_fdt_setprop_cell(vbi
->fdt
, "/cpus", "#size-cells", 0x0);
361 for (cpu
= vbi
->smp_cpus
- 1; cpu
>= 0; cpu
--) {
362 char *nodename
= g_strdup_printf("/cpus/cpu@%d", cpu
);
363 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
365 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
366 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "device_type", "cpu");
367 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "compatible",
368 armcpu
->dtb_compatible
);
370 if (vbi
->using_psci
&& vbi
->smp_cpus
> 1) {
371 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
372 "enable-method", "psci");
375 if (addr_cells
== 2) {
376 qemu_fdt_setprop_u64(vbi
->fdt
, nodename
, "reg",
377 armcpu
->mp_affinity
);
379 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "reg",
380 armcpu
->mp_affinity
);
383 for (i
= 0; i
< nb_numa_nodes
; i
++) {
384 if (test_bit(cpu
, numa_info
[i
].node_cpu
)) {
385 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "numa-node-id", i
);
393 static void fdt_add_v2m_gic_node(VirtBoardInfo
*vbi
)
395 vbi
->v2m_phandle
= qemu_fdt_alloc_phandle(vbi
->fdt
);
396 qemu_fdt_add_subnode(vbi
->fdt
, "/intc/v2m");
397 qemu_fdt_setprop_string(vbi
->fdt
, "/intc/v2m", "compatible",
398 "arm,gic-v2m-frame");
399 qemu_fdt_setprop(vbi
->fdt
, "/intc/v2m", "msi-controller", NULL
, 0);
400 qemu_fdt_setprop_sized_cells(vbi
->fdt
, "/intc/v2m", "reg",
401 2, vbi
->memmap
[VIRT_GIC_V2M
].base
,
402 2, vbi
->memmap
[VIRT_GIC_V2M
].size
);
403 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc/v2m", "phandle", vbi
->v2m_phandle
);
406 static void fdt_add_gic_node(VirtBoardInfo
*vbi
, int type
)
408 vbi
->gic_phandle
= qemu_fdt_alloc_phandle(vbi
->fdt
);
409 qemu_fdt_setprop_cell(vbi
->fdt
, "/", "interrupt-parent", vbi
->gic_phandle
);
411 qemu_fdt_add_subnode(vbi
->fdt
, "/intc");
412 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "#interrupt-cells", 3);
413 qemu_fdt_setprop(vbi
->fdt
, "/intc", "interrupt-controller", NULL
, 0);
414 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "#address-cells", 0x2);
415 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "#size-cells", 0x2);
416 qemu_fdt_setprop(vbi
->fdt
, "/intc", "ranges", NULL
, 0);
418 qemu_fdt_setprop_string(vbi
->fdt
, "/intc", "compatible",
420 qemu_fdt_setprop_sized_cells(vbi
->fdt
, "/intc", "reg",
421 2, vbi
->memmap
[VIRT_GIC_DIST
].base
,
422 2, vbi
->memmap
[VIRT_GIC_DIST
].size
,
423 2, vbi
->memmap
[VIRT_GIC_REDIST
].base
,
424 2, vbi
->memmap
[VIRT_GIC_REDIST
].size
);
426 /* 'cortex-a15-gic' means 'GIC v2' */
427 qemu_fdt_setprop_string(vbi
->fdt
, "/intc", "compatible",
428 "arm,cortex-a15-gic");
429 qemu_fdt_setprop_sized_cells(vbi
->fdt
, "/intc", "reg",
430 2, vbi
->memmap
[VIRT_GIC_DIST
].base
,
431 2, vbi
->memmap
[VIRT_GIC_DIST
].size
,
432 2, vbi
->memmap
[VIRT_GIC_CPU
].base
,
433 2, vbi
->memmap
[VIRT_GIC_CPU
].size
);
436 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "phandle", vbi
->gic_phandle
);
439 static void create_v2m(VirtBoardInfo
*vbi
, qemu_irq
*pic
)
442 int irq
= vbi
->irqmap
[VIRT_GIC_V2M
];
445 dev
= qdev_create(NULL
, "arm-gicv2m");
446 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vbi
->memmap
[VIRT_GIC_V2M
].base
);
447 qdev_prop_set_uint32(dev
, "base-spi", irq
);
448 qdev_prop_set_uint32(dev
, "num-spi", NUM_GICV2M_SPIS
);
449 qdev_init_nofail(dev
);
451 for (i
= 0; i
< NUM_GICV2M_SPIS
; i
++) {
452 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
455 fdt_add_v2m_gic_node(vbi
);
458 static void create_gic(VirtBoardInfo
*vbi
, qemu_irq
*pic
, int type
, bool secure
)
460 /* We create a standalone GIC */
462 SysBusDevice
*gicbusdev
;
466 gictype
= (type
== 3) ? gicv3_class_name() : gic_class_name();
468 gicdev
= qdev_create(NULL
, gictype
);
469 qdev_prop_set_uint32(gicdev
, "revision", type
);
470 qdev_prop_set_uint32(gicdev
, "num-cpu", smp_cpus
);
471 /* Note that the num-irq property counts both internal and external
472 * interrupts; there are always 32 of the former (mandated by GIC spec).
474 qdev_prop_set_uint32(gicdev
, "num-irq", NUM_IRQS
+ 32);
475 if (!kvm_irqchip_in_kernel()) {
476 qdev_prop_set_bit(gicdev
, "has-security-extensions", secure
);
478 qdev_init_nofail(gicdev
);
479 gicbusdev
= SYS_BUS_DEVICE(gicdev
);
480 sysbus_mmio_map(gicbusdev
, 0, vbi
->memmap
[VIRT_GIC_DIST
].base
);
482 sysbus_mmio_map(gicbusdev
, 1, vbi
->memmap
[VIRT_GIC_REDIST
].base
);
484 sysbus_mmio_map(gicbusdev
, 1, vbi
->memmap
[VIRT_GIC_CPU
].base
);
487 /* Wire the outputs from each CPU's generic timer to the
488 * appropriate GIC PPI inputs, and the GIC's IRQ output to
489 * the CPU's IRQ input.
491 for (i
= 0; i
< smp_cpus
; i
++) {
492 DeviceState
*cpudev
= DEVICE(qemu_get_cpu(i
));
493 int ppibase
= NUM_IRQS
+ i
* GIC_INTERNAL
+ GIC_NR_SGIS
;
495 /* Mapping from the output timer irq lines from the CPU to the
496 * GIC PPI inputs we use for the virt board.
498 const int timer_irq
[] = {
499 [GTIMER_PHYS
] = ARCH_TIMER_NS_EL1_IRQ
,
500 [GTIMER_VIRT
] = ARCH_TIMER_VIRT_IRQ
,
501 [GTIMER_HYP
] = ARCH_TIMER_NS_EL2_IRQ
,
502 [GTIMER_SEC
] = ARCH_TIMER_S_EL1_IRQ
,
505 for (irq
= 0; irq
< ARRAY_SIZE(timer_irq
); irq
++) {
506 qdev_connect_gpio_out(cpudev
, irq
,
507 qdev_get_gpio_in(gicdev
,
508 ppibase
+ timer_irq
[irq
]));
511 sysbus_connect_irq(gicbusdev
, i
, qdev_get_gpio_in(cpudev
, ARM_CPU_IRQ
));
512 sysbus_connect_irq(gicbusdev
, i
+ smp_cpus
,
513 qdev_get_gpio_in(cpudev
, ARM_CPU_FIQ
));
516 for (i
= 0; i
< NUM_IRQS
; i
++) {
517 pic
[i
] = qdev_get_gpio_in(gicdev
, i
);
520 fdt_add_gic_node(vbi
, type
);
523 create_v2m(vbi
, pic
);
527 static void create_uart(const VirtBoardInfo
*vbi
, qemu_irq
*pic
, int uart
,
531 hwaddr base
= vbi
->memmap
[uart
].base
;
532 hwaddr size
= vbi
->memmap
[uart
].size
;
533 int irq
= vbi
->irqmap
[uart
];
534 const char compat
[] = "arm,pl011\0arm,primecell";
535 const char clocknames
[] = "uartclk\0apb_pclk";
536 DeviceState
*dev
= qdev_create(NULL
, "pl011");
537 SysBusDevice
*s
= SYS_BUS_DEVICE(dev
);
539 qdev_init_nofail(dev
);
540 memory_region_add_subregion(mem
, base
,
541 sysbus_mmio_get_region(s
, 0));
542 sysbus_connect_irq(s
, 0, pic
[irq
]);
544 nodename
= g_strdup_printf("/pl011@%" PRIx64
, base
);
545 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
546 /* Note that we can't use setprop_string because of the embedded NUL */
547 qemu_fdt_setprop(vbi
->fdt
, nodename
, "compatible",
548 compat
, sizeof(compat
));
549 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
551 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
552 GIC_FDT_IRQ_TYPE_SPI
, irq
,
553 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
554 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "clocks",
555 vbi
->clock_phandle
, vbi
->clock_phandle
);
556 qemu_fdt_setprop(vbi
->fdt
, nodename
, "clock-names",
557 clocknames
, sizeof(clocknames
));
559 if (uart
== VIRT_UART
) {
560 qemu_fdt_setprop_string(vbi
->fdt
, "/chosen", "stdout-path", nodename
);
562 /* Mark as not usable by the normal world */
563 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "status", "disabled");
564 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "secure-status", "okay");
570 static void create_rtc(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
573 hwaddr base
= vbi
->memmap
[VIRT_RTC
].base
;
574 hwaddr size
= vbi
->memmap
[VIRT_RTC
].size
;
575 int irq
= vbi
->irqmap
[VIRT_RTC
];
576 const char compat
[] = "arm,pl031\0arm,primecell";
578 sysbus_create_simple("pl031", base
, pic
[irq
]);
580 nodename
= g_strdup_printf("/pl031@%" PRIx64
, base
);
581 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
582 qemu_fdt_setprop(vbi
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
583 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
585 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
586 GIC_FDT_IRQ_TYPE_SPI
, irq
,
587 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
588 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "clocks", vbi
->clock_phandle
);
589 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "clock-names", "apb_pclk");
593 static DeviceState
*gpio_key_dev
;
594 static void virt_powerdown_req(Notifier
*n
, void *opaque
)
596 /* use gpio Pin 3 for power button event */
597 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev
, 0), 1);
600 static Notifier virt_system_powerdown_notifier
= {
601 .notify
= virt_powerdown_req
604 static void create_gpio(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
607 DeviceState
*pl061_dev
;
608 hwaddr base
= vbi
->memmap
[VIRT_GPIO
].base
;
609 hwaddr size
= vbi
->memmap
[VIRT_GPIO
].size
;
610 int irq
= vbi
->irqmap
[VIRT_GPIO
];
611 const char compat
[] = "arm,pl061\0arm,primecell";
613 pl061_dev
= sysbus_create_simple("pl061", base
, pic
[irq
]);
615 uint32_t phandle
= qemu_fdt_alloc_phandle(vbi
->fdt
);
616 nodename
= g_strdup_printf("/pl061@%" PRIx64
, base
);
617 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
618 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
620 qemu_fdt_setprop(vbi
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
621 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#gpio-cells", 2);
622 qemu_fdt_setprop(vbi
->fdt
, nodename
, "gpio-controller", NULL
, 0);
623 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
624 GIC_FDT_IRQ_TYPE_SPI
, irq
,
625 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
626 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "clocks", vbi
->clock_phandle
);
627 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "clock-names", "apb_pclk");
628 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "phandle", phandle
);
630 gpio_key_dev
= sysbus_create_simple("gpio-key", -1,
631 qdev_get_gpio_in(pl061_dev
, 3));
632 qemu_fdt_add_subnode(vbi
->fdt
, "/gpio-keys");
633 qemu_fdt_setprop_string(vbi
->fdt
, "/gpio-keys", "compatible", "gpio-keys");
634 qemu_fdt_setprop_cell(vbi
->fdt
, "/gpio-keys", "#size-cells", 0);
635 qemu_fdt_setprop_cell(vbi
->fdt
, "/gpio-keys", "#address-cells", 1);
637 qemu_fdt_add_subnode(vbi
->fdt
, "/gpio-keys/poweroff");
638 qemu_fdt_setprop_string(vbi
->fdt
, "/gpio-keys/poweroff",
639 "label", "GPIO Key Poweroff");
640 qemu_fdt_setprop_cell(vbi
->fdt
, "/gpio-keys/poweroff", "linux,code",
642 qemu_fdt_setprop_cells(vbi
->fdt
, "/gpio-keys/poweroff",
643 "gpios", phandle
, 3, 0);
645 /* connect powerdown request */
646 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier
);
651 static void create_virtio_devices(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
654 hwaddr size
= vbi
->memmap
[VIRT_MMIO
].size
;
656 /* We create the transports in forwards order. Since qbus_realize()
657 * prepends (not appends) new child buses, the incrementing loop below will
658 * create a list of virtio-mmio buses with decreasing base addresses.
660 * When a -device option is processed from the command line,
661 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
662 * order. The upshot is that -device options in increasing command line
663 * order are mapped to virtio-mmio buses with decreasing base addresses.
665 * When this code was originally written, that arrangement ensured that the
666 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
667 * the first -device on the command line. (The end-to-end order is a
668 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
669 * guest kernel's name-to-address assignment strategy.)
671 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
672 * the message, if not necessarily the code, of commit 70161ff336.
673 * Therefore the loop now establishes the inverse of the original intent.
675 * Unfortunately, we can't counteract the kernel change by reversing the
676 * loop; it would break existing command lines.
678 * In any case, the kernel makes no guarantee about the stability of
679 * enumeration order of virtio devices (as demonstrated by it changing
680 * between kernel versions). For reliable and stable identification
681 * of disks users must use UUIDs or similar mechanisms.
683 for (i
= 0; i
< NUM_VIRTIO_TRANSPORTS
; i
++) {
684 int irq
= vbi
->irqmap
[VIRT_MMIO
] + i
;
685 hwaddr base
= vbi
->memmap
[VIRT_MMIO
].base
+ i
* size
;
687 sysbus_create_simple("virtio-mmio", base
, pic
[irq
]);
690 /* We add dtb nodes in reverse order so that they appear in the finished
691 * device tree lowest address first.
693 * Note that this mapping is independent of the loop above. The previous
694 * loop influences virtio device to virtio transport assignment, whereas
695 * this loop controls how virtio transports are laid out in the dtb.
697 for (i
= NUM_VIRTIO_TRANSPORTS
- 1; i
>= 0; i
--) {
699 int irq
= vbi
->irqmap
[VIRT_MMIO
] + i
;
700 hwaddr base
= vbi
->memmap
[VIRT_MMIO
].base
+ i
* size
;
702 nodename
= g_strdup_printf("/virtio_mmio@%" PRIx64
, base
);
703 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
704 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
705 "compatible", "virtio,mmio");
706 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
708 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
709 GIC_FDT_IRQ_TYPE_SPI
, irq
,
710 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
715 static void create_one_flash(const char *name
, hwaddr flashbase
,
716 hwaddr flashsize
, const char *file
,
717 MemoryRegion
*sysmem
)
719 /* Create and map a single flash device. We use the same
720 * parameters as the flash devices on the Versatile Express board.
722 DriveInfo
*dinfo
= drive_get_next(IF_PFLASH
);
723 DeviceState
*dev
= qdev_create(NULL
, "cfi.pflash01");
724 SysBusDevice
*sbd
= SYS_BUS_DEVICE(dev
);
725 const uint64_t sectorlength
= 256 * 1024;
728 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
732 qdev_prop_set_uint32(dev
, "num-blocks", flashsize
/ sectorlength
);
733 qdev_prop_set_uint64(dev
, "sector-length", sectorlength
);
734 qdev_prop_set_uint8(dev
, "width", 4);
735 qdev_prop_set_uint8(dev
, "device-width", 2);
736 qdev_prop_set_bit(dev
, "big-endian", false);
737 qdev_prop_set_uint16(dev
, "id0", 0x89);
738 qdev_prop_set_uint16(dev
, "id1", 0x18);
739 qdev_prop_set_uint16(dev
, "id2", 0x00);
740 qdev_prop_set_uint16(dev
, "id3", 0x00);
741 qdev_prop_set_string(dev
, "name", name
);
742 qdev_init_nofail(dev
);
744 memory_region_add_subregion(sysmem
, flashbase
,
745 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0));
751 if (drive_get(IF_PFLASH
, 0, 0)) {
752 error_report("The contents of the first flash device may be "
753 "specified with -bios or with -drive if=pflash... "
754 "but you cannot use both options at once");
757 fn
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, file
);
759 error_report("Could not find ROM image '%s'", file
);
762 image_size
= load_image_mr(fn
, sysbus_mmio_get_region(sbd
, 0));
764 if (image_size
< 0) {
765 error_report("Could not load ROM image '%s'", file
);
771 static void create_flash(const VirtBoardInfo
*vbi
,
772 MemoryRegion
*sysmem
,
773 MemoryRegion
*secure_sysmem
)
775 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
776 * Any file passed via -bios goes in the first of these.
777 * sysmem is the system memory space. secure_sysmem is the secure view
778 * of the system, and the first flash device should be made visible only
779 * there. The second flash device is visible to both secure and nonsecure.
780 * If sysmem == secure_sysmem this means there is no separate Secure
781 * address space and both flash devices are generally visible.
783 hwaddr flashsize
= vbi
->memmap
[VIRT_FLASH
].size
/ 2;
784 hwaddr flashbase
= vbi
->memmap
[VIRT_FLASH
].base
;
787 create_one_flash("virt.flash0", flashbase
, flashsize
,
788 bios_name
, secure_sysmem
);
789 create_one_flash("virt.flash1", flashbase
+ flashsize
, flashsize
,
792 if (sysmem
== secure_sysmem
) {
793 /* Report both flash devices as a single node in the DT */
794 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
795 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
796 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "compatible", "cfi-flash");
797 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
798 2, flashbase
, 2, flashsize
,
799 2, flashbase
+ flashsize
, 2, flashsize
);
800 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "bank-width", 4);
803 /* Report the devices as separate nodes so we can mark one as
804 * only visible to the secure world.
806 nodename
= g_strdup_printf("/secflash@%" PRIx64
, flashbase
);
807 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
808 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "compatible", "cfi-flash");
809 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
810 2, flashbase
, 2, flashsize
);
811 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "bank-width", 4);
812 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "status", "disabled");
813 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "secure-status", "okay");
816 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
817 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
818 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "compatible", "cfi-flash");
819 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
820 2, flashbase
+ flashsize
, 2, flashsize
);
821 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "bank-width", 4);
826 static void create_fw_cfg(const VirtBoardInfo
*vbi
, AddressSpace
*as
)
828 hwaddr base
= vbi
->memmap
[VIRT_FW_CFG
].base
;
829 hwaddr size
= vbi
->memmap
[VIRT_FW_CFG
].size
;
832 fw_cfg_init_mem_wide(base
+ 8, base
, 8, base
+ 16, as
);
834 nodename
= g_strdup_printf("/fw-cfg@%" PRIx64
, base
);
835 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
836 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
837 "compatible", "qemu,fw-cfg-mmio");
838 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
843 static void create_pcie_irq_map(const VirtBoardInfo
*vbi
, uint32_t gic_phandle
,
844 int first_irq
, const char *nodename
)
847 uint32_t full_irq_map
[4 * 4 * 10] = { 0 };
848 uint32_t *irq_map
= full_irq_map
;
850 for (devfn
= 0; devfn
<= 0x18; devfn
+= 0x8) {
851 for (pin
= 0; pin
< 4; pin
++) {
852 int irq_type
= GIC_FDT_IRQ_TYPE_SPI
;
853 int irq_nr
= first_irq
+ ((pin
+ PCI_SLOT(devfn
)) % PCI_NUM_PINS
);
854 int irq_level
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
858 devfn
<< 8, 0, 0, /* devfn */
859 pin
+ 1, /* PCI pin */
860 gic_phandle
, 0, 0, irq_type
, irq_nr
, irq_level
}; /* GIC irq */
862 /* Convert map to big endian */
863 for (i
= 0; i
< 10; i
++) {
864 irq_map
[i
] = cpu_to_be32(map
[i
]);
870 qemu_fdt_setprop(vbi
->fdt
, nodename
, "interrupt-map",
871 full_irq_map
, sizeof(full_irq_map
));
873 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupt-map-mask",
874 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
878 static void create_pcie(const VirtBoardInfo
*vbi
, qemu_irq
*pic
,
881 hwaddr base_mmio
= vbi
->memmap
[VIRT_PCIE_MMIO
].base
;
882 hwaddr size_mmio
= vbi
->memmap
[VIRT_PCIE_MMIO
].size
;
883 hwaddr base_mmio_high
= vbi
->memmap
[VIRT_PCIE_MMIO_HIGH
].base
;
884 hwaddr size_mmio_high
= vbi
->memmap
[VIRT_PCIE_MMIO_HIGH
].size
;
885 hwaddr base_pio
= vbi
->memmap
[VIRT_PCIE_PIO
].base
;
886 hwaddr size_pio
= vbi
->memmap
[VIRT_PCIE_PIO
].size
;
887 hwaddr base_ecam
= vbi
->memmap
[VIRT_PCIE_ECAM
].base
;
888 hwaddr size_ecam
= vbi
->memmap
[VIRT_PCIE_ECAM
].size
;
889 hwaddr base
= base_mmio
;
890 int nr_pcie_buses
= size_ecam
/ PCIE_MMCFG_SIZE_MIN
;
891 int irq
= vbi
->irqmap
[VIRT_PCIE
];
892 MemoryRegion
*mmio_alias
;
893 MemoryRegion
*mmio_reg
;
894 MemoryRegion
*ecam_alias
;
895 MemoryRegion
*ecam_reg
;
901 dev
= qdev_create(NULL
, TYPE_GPEX_HOST
);
902 qdev_init_nofail(dev
);
904 /* Map only the first size_ecam bytes of ECAM space */
905 ecam_alias
= g_new0(MemoryRegion
, 1);
906 ecam_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0);
907 memory_region_init_alias(ecam_alias
, OBJECT(dev
), "pcie-ecam",
908 ecam_reg
, 0, size_ecam
);
909 memory_region_add_subregion(get_system_memory(), base_ecam
, ecam_alias
);
911 /* Map the MMIO window into system address space so as to expose
912 * the section of PCI MMIO space which starts at the same base address
913 * (ie 1:1 mapping for that part of PCI MMIO space visible through
916 mmio_alias
= g_new0(MemoryRegion
, 1);
917 mmio_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 1);
918 memory_region_init_alias(mmio_alias
, OBJECT(dev
), "pcie-mmio",
919 mmio_reg
, base_mmio
, size_mmio
);
920 memory_region_add_subregion(get_system_memory(), base_mmio
, mmio_alias
);
923 /* Map high MMIO space */
924 MemoryRegion
*high_mmio_alias
= g_new0(MemoryRegion
, 1);
926 memory_region_init_alias(high_mmio_alias
, OBJECT(dev
), "pcie-mmio-high",
927 mmio_reg
, base_mmio_high
, size_mmio_high
);
928 memory_region_add_subregion(get_system_memory(), base_mmio_high
,
932 /* Map IO port space */
933 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 2, base_pio
);
935 for (i
= 0; i
< GPEX_NUM_IRQS
; i
++) {
936 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
939 pci
= PCI_HOST_BRIDGE(dev
);
941 for (i
= 0; i
< nb_nics
; i
++) {
942 NICInfo
*nd
= &nd_table
[i
];
945 nd
->model
= g_strdup("virtio");
948 pci_nic_init_nofail(nd
, pci
->bus
, nd
->model
, NULL
);
952 nodename
= g_strdup_printf("/pcie@%" PRIx64
, base
);
953 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
954 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
955 "compatible", "pci-host-ecam-generic");
956 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "device_type", "pci");
957 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#address-cells", 3);
958 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#size-cells", 2);
959 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "bus-range", 0,
962 if (vbi
->v2m_phandle
) {
963 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "msi-parent",
967 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
968 2, base_ecam
, 2, size_ecam
);
971 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "ranges",
972 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
973 2, base_pio
, 2, size_pio
,
974 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
975 2, base_mmio
, 2, size_mmio
,
976 1, FDT_PCI_RANGE_MMIO_64BIT
,
978 2, base_mmio_high
, 2, size_mmio_high
);
980 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "ranges",
981 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
982 2, base_pio
, 2, size_pio
,
983 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
984 2, base_mmio
, 2, size_mmio
);
987 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#interrupt-cells", 1);
988 create_pcie_irq_map(vbi
, vbi
->gic_phandle
, irq
, nodename
);
993 static void create_platform_bus(VirtBoardInfo
*vbi
, qemu_irq
*pic
)
998 ARMPlatformBusFDTParams
*fdt_params
= g_new(ARMPlatformBusFDTParams
, 1);
999 MemoryRegion
*sysmem
= get_system_memory();
1001 platform_bus_params
.platform_bus_base
= vbi
->memmap
[VIRT_PLATFORM_BUS
].base
;
1002 platform_bus_params
.platform_bus_size
= vbi
->memmap
[VIRT_PLATFORM_BUS
].size
;
1003 platform_bus_params
.platform_bus_first_irq
= vbi
->irqmap
[VIRT_PLATFORM_BUS
];
1004 platform_bus_params
.platform_bus_num_irqs
= PLATFORM_BUS_NUM_IRQS
;
1006 fdt_params
->system_params
= &platform_bus_params
;
1007 fdt_params
->binfo
= &vbi
->bootinfo
;
1008 fdt_params
->intc
= "/intc";
1010 * register a machine init done notifier that creates the device tree
1011 * nodes of the platform bus and its children dynamic sysbus devices
1013 arm_register_platform_bus_fdt_creator(fdt_params
);
1015 dev
= qdev_create(NULL
, TYPE_PLATFORM_BUS_DEVICE
);
1016 dev
->id
= TYPE_PLATFORM_BUS_DEVICE
;
1017 qdev_prop_set_uint32(dev
, "num_irqs",
1018 platform_bus_params
.platform_bus_num_irqs
);
1019 qdev_prop_set_uint32(dev
, "mmio_size",
1020 platform_bus_params
.platform_bus_size
);
1021 qdev_init_nofail(dev
);
1022 s
= SYS_BUS_DEVICE(dev
);
1024 for (i
= 0; i
< platform_bus_params
.platform_bus_num_irqs
; i
++) {
1025 int irqn
= platform_bus_params
.platform_bus_first_irq
+ i
;
1026 sysbus_connect_irq(s
, i
, pic
[irqn
]);
1029 memory_region_add_subregion(sysmem
,
1030 platform_bus_params
.platform_bus_base
,
1031 sysbus_mmio_get_region(s
, 0));
1034 static void create_secure_ram(VirtBoardInfo
*vbi
, MemoryRegion
*secure_sysmem
)
1036 MemoryRegion
*secram
= g_new(MemoryRegion
, 1);
1038 hwaddr base
= vbi
->memmap
[VIRT_SECURE_MEM
].base
;
1039 hwaddr size
= vbi
->memmap
[VIRT_SECURE_MEM
].size
;
1041 memory_region_init_ram(secram
, NULL
, "virt.secure-ram", size
, &error_fatal
);
1042 vmstate_register_ram_global(secram
);
1043 memory_region_add_subregion(secure_sysmem
, base
, secram
);
1045 nodename
= g_strdup_printf("/secram@%" PRIx64
, base
);
1046 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
1047 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "device_type", "memory");
1048 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg", 2, base
, 2, size
);
1049 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "status", "disabled");
1050 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "secure-status", "okay");
1055 static void *machvirt_dtb(const struct arm_boot_info
*binfo
, int *fdt_size
)
1057 const VirtBoardInfo
*board
= (const VirtBoardInfo
*)binfo
;
1059 *fdt_size
= board
->fdt_size
;
1063 static void virt_build_smbios(VirtGuestInfo
*guest_info
)
1065 FWCfgState
*fw_cfg
= guest_info
->fw_cfg
;
1066 uint8_t *smbios_tables
, *smbios_anchor
;
1067 size_t smbios_tables_len
, smbios_anchor_len
;
1068 const char *product
= "QEMU Virtual Machine";
1074 if (kvm_enabled()) {
1075 product
= "KVM Virtual Machine";
1078 smbios_set_defaults("QEMU", product
,
1079 "1.0", false, true, SMBIOS_ENTRY_POINT_30
);
1081 smbios_get_tables(NULL
, 0, &smbios_tables
, &smbios_tables_len
,
1082 &smbios_anchor
, &smbios_anchor_len
);
1084 if (smbios_anchor
) {
1085 fw_cfg_add_file(fw_cfg
, "etc/smbios/smbios-tables",
1086 smbios_tables
, smbios_tables_len
);
1087 fw_cfg_add_file(fw_cfg
, "etc/smbios/smbios-anchor",
1088 smbios_anchor
, smbios_anchor_len
);
1093 void virt_guest_info_machine_done(Notifier
*notifier
, void *data
)
1095 VirtGuestInfoState
*guest_info_state
= container_of(notifier
,
1096 VirtGuestInfoState
, machine_done
);
1097 virt_acpi_setup(&guest_info_state
->info
);
1098 virt_build_smbios(&guest_info_state
->info
);
1101 static void machvirt_init(MachineState
*machine
)
1103 VirtMachineState
*vms
= VIRT_MACHINE(machine
);
1104 qemu_irq pic
[NUM_IRQS
];
1105 MemoryRegion
*sysmem
= get_system_memory();
1106 MemoryRegion
*secure_sysmem
= NULL
;
1107 int gic_version
= vms
->gic_version
;
1108 int n
, virt_max_cpus
;
1109 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
1110 const char *cpu_model
= machine
->cpu_model
;
1112 VirtGuestInfoState
*guest_info_state
= g_malloc0(sizeof *guest_info_state
);
1113 VirtGuestInfo
*guest_info
= &guest_info_state
->info
;
1115 bool firmware_loaded
= bios_name
|| drive_get(IF_PFLASH
, 0, 0);
1118 cpu_model
= "cortex-a15";
1121 /* We can probe only here because during property set
1122 * KVM is not available yet
1125 gic_version
= kvm_arm_vgic_probe();
1127 error_report("Unable to determine GIC version supported by host");
1128 error_printf("KVM acceleration is probably not supported\n");
1133 /* Separate the actual CPU model name from any appended features */
1134 cpustr
= g_strsplit(cpu_model
, ",", 2);
1136 vbi
= find_machine_info(cpustr
[0]);
1139 error_report("mach-virt: CPU %s not supported", cpustr
[0]);
1143 /* If we have an EL3 boot ROM then the assumption is that it will
1144 * implement PSCI itself, so disable QEMU's internal implementation
1145 * so it doesn't get in the way. Instead of starting secondary
1146 * CPUs in PSCI powerdown state we will start them all running and
1147 * let the boot ROM sort them out.
1148 * The usual case is that we do use QEMU's PSCI implementation.
1150 vbi
->using_psci
= !(vms
->secure
&& firmware_loaded
);
1152 /* The maximum number of CPUs depends on the GIC version, or on how
1153 * many redistributors we can fit into the memory map.
1155 if (gic_version
== 3) {
1156 virt_max_cpus
= vbi
->memmap
[VIRT_GIC_REDIST
].size
/ 0x20000;
1158 virt_max_cpus
= GIC_NCPU
;
1161 if (max_cpus
> virt_max_cpus
) {
1162 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1163 "supported by machine 'mach-virt' (%d)",
1164 max_cpus
, virt_max_cpus
);
1168 vbi
->smp_cpus
= smp_cpus
;
1170 if (machine
->ram_size
> vbi
->memmap
[VIRT_MEM
].size
) {
1171 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB
);
1176 if (kvm_enabled()) {
1177 error_report("mach-virt: KVM does not support Security extensions");
1181 /* The Secure view of the world is the same as the NonSecure,
1182 * but with a few extra devices. Create it as a container region
1183 * containing the system memory at low priority; any secure-only
1184 * devices go in at higher priority and take precedence.
1186 secure_sysmem
= g_new(MemoryRegion
, 1);
1187 memory_region_init(secure_sysmem
, OBJECT(machine
), "secure-memory",
1189 memory_region_add_subregion_overlap(secure_sysmem
, 0, sysmem
, -1);
1194 for (n
= 0; n
< smp_cpus
; n
++) {
1195 ObjectClass
*oc
= cpu_class_by_name(TYPE_ARM_CPU
, cpustr
[0]);
1196 CPUClass
*cc
= CPU_CLASS(oc
);
1199 char *cpuopts
= g_strdup(cpustr
[1]);
1202 error_report("Unable to find CPU definition");
1205 cpuobj
= object_new(object_class_get_name(oc
));
1207 /* Handle any CPU options specified by the user */
1208 cc
->parse_features(CPU(cpuobj
), cpuopts
, &err
);
1211 error_report_err(err
);
1216 object_property_set_bool(cpuobj
, false, "has_el3", NULL
);
1219 if (vbi
->using_psci
) {
1220 object_property_set_int(cpuobj
, QEMU_PSCI_CONDUIT_HVC
,
1221 "psci-conduit", NULL
);
1223 /* Secondary CPUs start in PSCI powered-down state */
1225 object_property_set_bool(cpuobj
, true,
1226 "start-powered-off", NULL
);
1230 if (object_property_find(cpuobj
, "reset-cbar", NULL
)) {
1231 object_property_set_int(cpuobj
, vbi
->memmap
[VIRT_CPUPERIPHS
].base
,
1232 "reset-cbar", &error_abort
);
1235 object_property_set_link(cpuobj
, OBJECT(sysmem
), "memory",
1238 object_property_set_link(cpuobj
, OBJECT(secure_sysmem
),
1239 "secure-memory", &error_abort
);
1242 object_property_set_bool(cpuobj
, true, "realized", NULL
);
1245 fdt_add_timer_nodes(vbi
, gic_version
);
1246 fdt_add_cpu_nodes(vbi
);
1247 fdt_add_psci_node(vbi
);
1249 memory_region_allocate_system_memory(ram
, NULL
, "mach-virt.ram",
1251 memory_region_add_subregion(sysmem
, vbi
->memmap
[VIRT_MEM
].base
, ram
);
1253 create_flash(vbi
, sysmem
, secure_sysmem
? secure_sysmem
: sysmem
);
1255 create_gic(vbi
, pic
, gic_version
, vms
->secure
);
1257 create_uart(vbi
, pic
, VIRT_UART
, sysmem
);
1260 create_secure_ram(vbi
, secure_sysmem
);
1261 create_uart(vbi
, pic
, VIRT_SECURE_UART
, secure_sysmem
);
1264 create_rtc(vbi
, pic
);
1266 create_pcie(vbi
, pic
, vms
->highmem
);
1268 create_gpio(vbi
, pic
);
1270 /* Create mmio transports, so the user can create virtio backends
1271 * (which will be automatically plugged in to the transports). If
1272 * no backend is created the transport will just sit harmlessly idle.
1274 create_virtio_devices(vbi
, pic
);
1276 create_fw_cfg(vbi
, &address_space_memory
);
1277 rom_set_fw(fw_cfg_find());
1279 guest_info
->smp_cpus
= smp_cpus
;
1280 guest_info
->fw_cfg
= fw_cfg_find();
1281 guest_info
->memmap
= vbi
->memmap
;
1282 guest_info
->irqmap
= vbi
->irqmap
;
1283 guest_info
->use_highmem
= vms
->highmem
;
1284 guest_info
->gic_version
= gic_version
;
1285 guest_info_state
->machine_done
.notify
= virt_guest_info_machine_done
;
1286 qemu_add_machine_init_done_notifier(&guest_info_state
->machine_done
);
1288 vbi
->bootinfo
.ram_size
= machine
->ram_size
;
1289 vbi
->bootinfo
.kernel_filename
= machine
->kernel_filename
;
1290 vbi
->bootinfo
.kernel_cmdline
= machine
->kernel_cmdline
;
1291 vbi
->bootinfo
.initrd_filename
= machine
->initrd_filename
;
1292 vbi
->bootinfo
.nb_cpus
= smp_cpus
;
1293 vbi
->bootinfo
.board_id
= -1;
1294 vbi
->bootinfo
.loader_start
= vbi
->memmap
[VIRT_MEM
].base
;
1295 vbi
->bootinfo
.get_dtb
= machvirt_dtb
;
1296 vbi
->bootinfo
.firmware_loaded
= firmware_loaded
;
1297 arm_load_kernel(ARM_CPU(first_cpu
), &vbi
->bootinfo
);
1300 * arm_load_kernel machine init done notifier registration must
1301 * happen before the platform_bus_create call. In this latter,
1302 * another notifier is registered which adds platform bus nodes.
1303 * Notifiers are executed in registration reverse order.
1305 create_platform_bus(vbi
, pic
);
1308 static bool virt_get_secure(Object
*obj
, Error
**errp
)
1310 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1315 static void virt_set_secure(Object
*obj
, bool value
, Error
**errp
)
1317 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1319 vms
->secure
= value
;
1322 static bool virt_get_highmem(Object
*obj
, Error
**errp
)
1324 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1326 return vms
->highmem
;
1329 static void virt_set_highmem(Object
*obj
, bool value
, Error
**errp
)
1331 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1333 vms
->highmem
= value
;
1336 static char *virt_get_gic_version(Object
*obj
, Error
**errp
)
1338 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1339 const char *val
= vms
->gic_version
== 3 ? "3" : "2";
1341 return g_strdup(val
);
1344 static void virt_set_gic_version(Object
*obj
, const char *value
, Error
**errp
)
1346 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1348 if (!strcmp(value
, "3")) {
1349 vms
->gic_version
= 3;
1350 } else if (!strcmp(value
, "2")) {
1351 vms
->gic_version
= 2;
1352 } else if (!strcmp(value
, "host")) {
1353 vms
->gic_version
= 0; /* Will probe later */
1355 error_setg(errp
, "Invalid gic-version value");
1356 error_append_hint(errp
, "Valid values are 3, 2, host.\n");
1360 static void virt_machine_class_init(ObjectClass
*oc
, void *data
)
1362 MachineClass
*mc
= MACHINE_CLASS(oc
);
1364 mc
->init
= machvirt_init
;
1365 /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1366 * it later in machvirt_init, where we have more information about the
1367 * configuration of the particular instance.
1369 mc
->max_cpus
= MAX_CPUMASK_BITS
;
1370 mc
->has_dynamic_sysbus
= true;
1371 mc
->block_default_type
= IF_VIRTIO
;
1373 mc
->pci_allow_0_address
= true;
1376 static const TypeInfo virt_machine_info
= {
1377 .name
= TYPE_VIRT_MACHINE
,
1378 .parent
= TYPE_MACHINE
,
1380 .instance_size
= sizeof(VirtMachineState
),
1381 .class_size
= sizeof(VirtMachineClass
),
1382 .class_init
= virt_machine_class_init
,
1385 static void virt_2_6_instance_init(Object
*obj
)
1387 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1389 /* EL3 is disabled by default on virt: this makes us consistent
1390 * between KVM and TCG for this board, and it also allows us to
1391 * boot UEFI blobs which assume no TrustZone support.
1393 vms
->secure
= false;
1394 object_property_add_bool(obj
, "secure", virt_get_secure
,
1395 virt_set_secure
, NULL
);
1396 object_property_set_description(obj
, "secure",
1397 "Set on/off to enable/disable the ARM "
1398 "Security Extensions (TrustZone)",
1401 /* High memory is enabled by default */
1402 vms
->highmem
= true;
1403 object_property_add_bool(obj
, "highmem", virt_get_highmem
,
1404 virt_set_highmem
, NULL
);
1405 object_property_set_description(obj
, "highmem",
1406 "Set on/off to enable/disable using "
1407 "physical address space above 32 bits",
1409 /* Default GIC type is v2 */
1410 vms
->gic_version
= 2;
1411 object_property_add_str(obj
, "gic-version", virt_get_gic_version
,
1412 virt_set_gic_version
, NULL
);
1413 object_property_set_description(obj
, "gic-version",
1415 "Valid values are 2, 3 and host", NULL
);
1418 static void virt_2_6_class_init(ObjectClass
*oc
, void *data
)
1420 MachineClass
*mc
= MACHINE_CLASS(oc
);
1422 mc
->desc
= "QEMU 2.6 ARM Virtual Machine";
1426 static const TypeInfo machvirt_info
= {
1427 .name
= MACHINE_TYPE_NAME("virt-2.6"),
1428 .parent
= TYPE_VIRT_MACHINE
,
1429 .instance_init
= virt_2_6_instance_init
,
1430 .class_init
= virt_2_6_class_init
,
1433 static void machvirt_machine_init(void)
1435 type_register_static(&virt_machine_info
);
1436 type_register_static(&machvirt_info
);
1439 type_init(machvirt_machine_init
);