qdev: introduce reset call back for qbus level
[qemu/cris-port.git] / qemu-doc.texi
blob7ce8999e81717ef4cd7e9df3f17c969cae0cc60c
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
5 @documentlanguage en
6 @documentencoding UTF-8
8 @settitle QEMU Emulator User Documentation
9 @exampleindent 0
10 @paragraphindent 0
11 @c %**end of header
13 @ifinfo
14 @direntry
15 * QEMU: (qemu-doc).    The QEMU Emulator User Documentation.
16 @end direntry
17 @end ifinfo
19 @iftex
20 @titlepage
21 @sp 7
22 @center @titlefont{QEMU Emulator}
23 @sp 1
24 @center @titlefont{User Documentation}
25 @sp 3
26 @end titlepage
27 @end iftex
29 @ifnottex
30 @node Top
31 @top
33 @menu
34 * Introduction::
35 * Installation::
36 * QEMU PC System emulator::
37 * QEMU System emulator for non PC targets::
38 * QEMU User space emulator::
39 * compilation:: Compilation from the sources
40 * License::
41 * Index::
42 @end menu
43 @end ifnottex
45 @contents
47 @node Introduction
48 @chapter Introduction
50 @menu
51 * intro_features:: Features
52 @end menu
54 @node intro_features
55 @section Features
57 QEMU is a FAST! processor emulator using dynamic translation to
58 achieve good emulation speed.
60 QEMU has two operating modes:
62 @itemize
63 @cindex operating modes
65 @item
66 @cindex system emulation
67 Full system emulation. In this mode, QEMU emulates a full system (for
68 example a PC), including one or several processors and various
69 peripherals. It can be used to launch different Operating Systems
70 without rebooting the PC or to debug system code.
72 @item
73 @cindex user mode emulation
74 User mode emulation. In this mode, QEMU can launch
75 processes compiled for one CPU on another CPU. It can be used to
76 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77 to ease cross-compilation and cross-debugging.
79 @end itemize
81 QEMU can run without an host kernel driver and yet gives acceptable
82 performance.
84 For system emulation, the following hardware targets are supported:
85 @itemize
86 @cindex emulated target systems
87 @cindex supported target systems
88 @item PC (x86 or x86_64 processor)
89 @item ISA PC (old style PC without PCI bus)
90 @item PREP (PowerPC processor)
91 @item G3 Beige PowerMac (PowerPC processor)
92 @item Mac99 PowerMac (PowerPC processor, in progress)
93 @item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
94 @item Sun4u/Sun4v (64-bit Sparc processor, in progress)
95 @item Malta board (32-bit and 64-bit MIPS processors)
96 @item MIPS Magnum (64-bit MIPS processor)
97 @item ARM Integrator/CP (ARM)
98 @item ARM Versatile baseboard (ARM)
99 @item ARM RealView Emulation/Platform baseboard (ARM)
100 @item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
101 @item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102 @item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
103 @item Freescale MCF5208EVB (ColdFire V2).
104 @item Arnewsh MCF5206 evaluation board (ColdFire V2).
105 @item Palm Tungsten|E PDA (OMAP310 processor)
106 @item N800 and N810 tablets (OMAP2420 processor)
107 @item MusicPal (MV88W8618 ARM processor)
108 @item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109 @item Siemens SX1 smartphone (OMAP310 processor)
110 @item Syborg SVP base model (ARM Cortex-A8).
111 @item AXIS-Devboard88 (CRISv32 ETRAX-FS).
112 @item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
113 @end itemize
115 @cindex supported user mode targets
116 For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117 ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118 Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
120 @node Installation
121 @chapter Installation
123 If you want to compile QEMU yourself, see @ref{compilation}.
125 @menu
126 * install_linux::   Linux
127 * install_windows:: Windows
128 * install_mac::     Macintosh
129 @end menu
131 @node install_linux
132 @section Linux
133 @cindex installation (Linux)
135 If a precompiled package is available for your distribution - you just
136 have to install it. Otherwise, see @ref{compilation}.
138 @node install_windows
139 @section Windows
140 @cindex installation (Windows)
142 Download the experimental binary installer at
143 @url{http://www.free.oszoo.org/@/download.html}.
144 TODO (no longer available)
146 @node install_mac
147 @section Mac OS X
149 Download the experimental binary installer at
150 @url{http://www.free.oszoo.org/@/download.html}.
151 TODO (no longer available)
153 @node QEMU PC System emulator
154 @chapter QEMU PC System emulator
155 @cindex system emulation (PC)
157 @menu
158 * pcsys_introduction:: Introduction
159 * pcsys_quickstart::   Quick Start
160 * sec_invocation::     Invocation
161 * pcsys_keys::         Keys
162 * pcsys_monitor::      QEMU Monitor
163 * disk_images::        Disk Images
164 * pcsys_network::      Network emulation
165 * direct_linux_boot::  Direct Linux Boot
166 * pcsys_usb::          USB emulation
167 * vnc_security::       VNC security
168 * gdb_usage::          GDB usage
169 * pcsys_os_specific::  Target OS specific information
170 @end menu
172 @node pcsys_introduction
173 @section Introduction
175 @c man begin DESCRIPTION
177 The QEMU PC System emulator simulates the
178 following peripherals:
180 @itemize @minus
181 @item
182 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
183 @item
184 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
185 extensions (hardware level, including all non standard modes).
186 @item
187 PS/2 mouse and keyboard
188 @item
189 2 PCI IDE interfaces with hard disk and CD-ROM support
190 @item
191 Floppy disk
192 @item
193 PCI and ISA network adapters
194 @item
195 Serial ports
196 @item
197 Creative SoundBlaster 16 sound card
198 @item
199 ENSONIQ AudioPCI ES1370 sound card
200 @item
201 Intel 82801AA AC97 Audio compatible sound card
202 @item
203 Intel HD Audio Controller and HDA codec
204 @item
205 Adlib(OPL2) - Yamaha YM3812 compatible chip
206 @item
207 Gravis Ultrasound GF1 sound card
208 @item
209 CS4231A compatible sound card
210 @item
211 PCI UHCI USB controller and a virtual USB hub.
212 @end itemize
214 SMP is supported with up to 255 CPUs.
216 Note that adlib, gus and cs4231a are only available when QEMU was
217 configured with --audio-card-list option containing the name(s) of
218 required card(s).
220 QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
221 VGA BIOS.
223 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
225 QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
226 by Tibor "TS" Schütz.
228 Not that, by default, GUS shares IRQ(7) with parallel ports and so
229 qemu must be told to not have parallel ports to have working GUS
231 @example
232 qemu dos.img -soundhw gus -parallel none
233 @end example
235 Alternatively:
236 @example
237 qemu dos.img -device gus,irq=5
238 @end example
240 Or some other unclaimed IRQ.
242 CS4231A is the chip used in Windows Sound System and GUSMAX products
244 @c man end
246 @node pcsys_quickstart
247 @section Quick Start
248 @cindex quick start
250 Download and uncompress the linux image (@file{linux.img}) and type:
252 @example
253 qemu linux.img
254 @end example
256 Linux should boot and give you a prompt.
258 @node sec_invocation
259 @section Invocation
261 @example
262 @c man begin SYNOPSIS
263 usage: qemu [options] [@var{disk_image}]
264 @c man end
265 @end example
267 @c man begin OPTIONS
268 @var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
269 targets do not need a disk image.
271 @include qemu-options.texi
273 @c man end
275 @node pcsys_keys
276 @section Keys
278 @c man begin OPTIONS
280 During the graphical emulation, you can use the following keys:
281 @table @key
282 @item Ctrl-Alt-f
283 @kindex Ctrl-Alt-f
284 Toggle full screen
286 @item Ctrl-Alt-u
287 @kindex Ctrl-Alt-u
288 Restore the screen's un-scaled dimensions
290 @item Ctrl-Alt-n
291 @kindex Ctrl-Alt-n
292 Switch to virtual console 'n'. Standard console mappings are:
293 @table @emph
294 @item 1
295 Target system display
296 @item 2
297 Monitor
298 @item 3
299 Serial port
300 @end table
302 @item Ctrl-Alt
303 @kindex Ctrl-Alt
304 Toggle mouse and keyboard grab.
305 @end table
307 @kindex Ctrl-Up
308 @kindex Ctrl-Down
309 @kindex Ctrl-PageUp
310 @kindex Ctrl-PageDown
311 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
312 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
314 @kindex Ctrl-a h
315 During emulation, if you are using the @option{-nographic} option, use
316 @key{Ctrl-a h} to get terminal commands:
318 @table @key
319 @item Ctrl-a h
320 @kindex Ctrl-a h
321 @item Ctrl-a ?
322 @kindex Ctrl-a ?
323 Print this help
324 @item Ctrl-a x
325 @kindex Ctrl-a x
326 Exit emulator
327 @item Ctrl-a s
328 @kindex Ctrl-a s
329 Save disk data back to file (if -snapshot)
330 @item Ctrl-a t
331 @kindex Ctrl-a t
332 Toggle console timestamps
333 @item Ctrl-a b
334 @kindex Ctrl-a b
335 Send break (magic sysrq in Linux)
336 @item Ctrl-a c
337 @kindex Ctrl-a c
338 Switch between console and monitor
339 @item Ctrl-a Ctrl-a
340 @kindex Ctrl-a a
341 Send Ctrl-a
342 @end table
343 @c man end
345 @ignore
347 @c man begin SEEALSO
348 The HTML documentation of QEMU for more precise information and Linux
349 user mode emulator invocation.
350 @c man end
352 @c man begin AUTHOR
353 Fabrice Bellard
354 @c man end
356 @end ignore
358 @node pcsys_monitor
359 @section QEMU Monitor
360 @cindex QEMU monitor
362 The QEMU monitor is used to give complex commands to the QEMU
363 emulator. You can use it to:
365 @itemize @minus
367 @item
368 Remove or insert removable media images
369 (such as CD-ROM or floppies).
371 @item
372 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
373 from a disk file.
375 @item Inspect the VM state without an external debugger.
377 @end itemize
379 @subsection Commands
381 The following commands are available:
383 @include qemu-monitor.texi
385 @subsection Integer expressions
387 The monitor understands integers expressions for every integer
388 argument. You can use register names to get the value of specifics
389 CPU registers by prefixing them with @emph{$}.
391 @node disk_images
392 @section Disk Images
394 Since version 0.6.1, QEMU supports many disk image formats, including
395 growable disk images (their size increase as non empty sectors are
396 written), compressed and encrypted disk images. Version 0.8.3 added
397 the new qcow2 disk image format which is essential to support VM
398 snapshots.
400 @menu
401 * disk_images_quickstart::    Quick start for disk image creation
402 * disk_images_snapshot_mode:: Snapshot mode
403 * vm_snapshots::              VM snapshots
404 * qemu_img_invocation::       qemu-img Invocation
405 * qemu_nbd_invocation::       qemu-nbd Invocation
406 * host_drives::               Using host drives
407 * disk_images_fat_images::    Virtual FAT disk images
408 * disk_images_nbd::           NBD access
409 @end menu
411 @node disk_images_quickstart
412 @subsection Quick start for disk image creation
414 You can create a disk image with the command:
415 @example
416 qemu-img create myimage.img mysize
417 @end example
418 where @var{myimage.img} is the disk image filename and @var{mysize} is its
419 size in kilobytes. You can add an @code{M} suffix to give the size in
420 megabytes and a @code{G} suffix for gigabytes.
422 See @ref{qemu_img_invocation} for more information.
424 @node disk_images_snapshot_mode
425 @subsection Snapshot mode
427 If you use the option @option{-snapshot}, all disk images are
428 considered as read only. When sectors in written, they are written in
429 a temporary file created in @file{/tmp}. You can however force the
430 write back to the raw disk images by using the @code{commit} monitor
431 command (or @key{C-a s} in the serial console).
433 @node vm_snapshots
434 @subsection VM snapshots
436 VM snapshots are snapshots of the complete virtual machine including
437 CPU state, RAM, device state and the content of all the writable
438 disks. In order to use VM snapshots, you must have at least one non
439 removable and writable block device using the @code{qcow2} disk image
440 format. Normally this device is the first virtual hard drive.
442 Use the monitor command @code{savevm} to create a new VM snapshot or
443 replace an existing one. A human readable name can be assigned to each
444 snapshot in addition to its numerical ID.
446 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
447 a VM snapshot. @code{info snapshots} lists the available snapshots
448 with their associated information:
450 @example
451 (qemu) info snapshots
452 Snapshot devices: hda
453 Snapshot list (from hda):
454 ID        TAG                 VM SIZE                DATE       VM CLOCK
455 1         start                   41M 2006-08-06 12:38:02   00:00:14.954
456 2                                 40M 2006-08-06 12:43:29   00:00:18.633
457 3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
458 @end example
460 A VM snapshot is made of a VM state info (its size is shown in
461 @code{info snapshots}) and a snapshot of every writable disk image.
462 The VM state info is stored in the first @code{qcow2} non removable
463 and writable block device. The disk image snapshots are stored in
464 every disk image. The size of a snapshot in a disk image is difficult
465 to evaluate and is not shown by @code{info snapshots} because the
466 associated disk sectors are shared among all the snapshots to save
467 disk space (otherwise each snapshot would need a full copy of all the
468 disk images).
470 When using the (unrelated) @code{-snapshot} option
471 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
472 but they are deleted as soon as you exit QEMU.
474 VM snapshots currently have the following known limitations:
475 @itemize
476 @item
477 They cannot cope with removable devices if they are removed or
478 inserted after a snapshot is done.
479 @item
480 A few device drivers still have incomplete snapshot support so their
481 state is not saved or restored properly (in particular USB).
482 @end itemize
484 @node qemu_img_invocation
485 @subsection @code{qemu-img} Invocation
487 @include qemu-img.texi
489 @node qemu_nbd_invocation
490 @subsection @code{qemu-nbd} Invocation
492 @include qemu-nbd.texi
494 @node host_drives
495 @subsection Using host drives
497 In addition to disk image files, QEMU can directly access host
498 devices. We describe here the usage for QEMU version >= 0.8.3.
500 @subsubsection Linux
502 On Linux, you can directly use the host device filename instead of a
503 disk image filename provided you have enough privileges to access
504 it. For example, use @file{/dev/cdrom} to access to the CDROM or
505 @file{/dev/fd0} for the floppy.
507 @table @code
508 @item CD
509 You can specify a CDROM device even if no CDROM is loaded. QEMU has
510 specific code to detect CDROM insertion or removal. CDROM ejection by
511 the guest OS is supported. Currently only data CDs are supported.
512 @item Floppy
513 You can specify a floppy device even if no floppy is loaded. Floppy
514 removal is currently not detected accurately (if you change floppy
515 without doing floppy access while the floppy is not loaded, the guest
516 OS will think that the same floppy is loaded).
517 @item Hard disks
518 Hard disks can be used. Normally you must specify the whole disk
519 (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
520 see it as a partitioned disk. WARNING: unless you know what you do, it
521 is better to only make READ-ONLY accesses to the hard disk otherwise
522 you may corrupt your host data (use the @option{-snapshot} command
523 line option or modify the device permissions accordingly).
524 @end table
526 @subsubsection Windows
528 @table @code
529 @item CD
530 The preferred syntax is the drive letter (e.g. @file{d:}). The
531 alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
532 supported as an alias to the first CDROM drive.
534 Currently there is no specific code to handle removable media, so it
535 is better to use the @code{change} or @code{eject} monitor commands to
536 change or eject media.
537 @item Hard disks
538 Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
539 where @var{N} is the drive number (0 is the first hard disk).
541 WARNING: unless you know what you do, it is better to only make
542 READ-ONLY accesses to the hard disk otherwise you may corrupt your
543 host data (use the @option{-snapshot} command line so that the
544 modifications are written in a temporary file).
545 @end table
548 @subsubsection Mac OS X
550 @file{/dev/cdrom} is an alias to the first CDROM.
552 Currently there is no specific code to handle removable media, so it
553 is better to use the @code{change} or @code{eject} monitor commands to
554 change or eject media.
556 @node disk_images_fat_images
557 @subsection Virtual FAT disk images
559 QEMU can automatically create a virtual FAT disk image from a
560 directory tree. In order to use it, just type:
562 @example
563 qemu linux.img -hdb fat:/my_directory
564 @end example
566 Then you access access to all the files in the @file{/my_directory}
567 directory without having to copy them in a disk image or to export
568 them via SAMBA or NFS. The default access is @emph{read-only}.
570 Floppies can be emulated with the @code{:floppy:} option:
572 @example
573 qemu linux.img -fda fat:floppy:/my_directory
574 @end example
576 A read/write support is available for testing (beta stage) with the
577 @code{:rw:} option:
579 @example
580 qemu linux.img -fda fat:floppy:rw:/my_directory
581 @end example
583 What you should @emph{never} do:
584 @itemize
585 @item use non-ASCII filenames ;
586 @item use "-snapshot" together with ":rw:" ;
587 @item expect it to work when loadvm'ing ;
588 @item write to the FAT directory on the host system while accessing it with the guest system.
589 @end itemize
591 @node disk_images_nbd
592 @subsection NBD access
594 QEMU can access directly to block device exported using the Network Block Device
595 protocol.
597 @example
598 qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
599 @end example
601 If the NBD server is located on the same host, you can use an unix socket instead
602 of an inet socket:
604 @example
605 qemu linux.img -hdb nbd:unix:/tmp/my_socket
606 @end example
608 In this case, the block device must be exported using qemu-nbd:
610 @example
611 qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
612 @end example
614 The use of qemu-nbd allows to share a disk between several guests:
615 @example
616 qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
617 @end example
619 and then you can use it with two guests:
620 @example
621 qemu linux1.img -hdb nbd:unix:/tmp/my_socket
622 qemu linux2.img -hdb nbd:unix:/tmp/my_socket
623 @end example
625 If the nbd-server uses named exports (since NBD 2.9.18), you must use the
626 "exportname" option:
627 @example
628 qemu -cdrom nbd:localhost:exportname=debian-500-ppc-netinst
629 qemu -cdrom nbd:localhost:exportname=openSUSE-11.1-ppc-netinst
630 @end example
632 @node pcsys_network
633 @section Network emulation
635 QEMU can simulate several network cards (PCI or ISA cards on the PC
636 target) and can connect them to an arbitrary number of Virtual Local
637 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
638 VLAN. VLAN can be connected between separate instances of QEMU to
639 simulate large networks. For simpler usage, a non privileged user mode
640 network stack can replace the TAP device to have a basic network
641 connection.
643 @subsection VLANs
645 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
646 connection between several network devices. These devices can be for
647 example QEMU virtual Ethernet cards or virtual Host ethernet devices
648 (TAP devices).
650 @subsection Using TAP network interfaces
652 This is the standard way to connect QEMU to a real network. QEMU adds
653 a virtual network device on your host (called @code{tapN}), and you
654 can then configure it as if it was a real ethernet card.
656 @subsubsection Linux host
658 As an example, you can download the @file{linux-test-xxx.tar.gz}
659 archive and copy the script @file{qemu-ifup} in @file{/etc} and
660 configure properly @code{sudo} so that the command @code{ifconfig}
661 contained in @file{qemu-ifup} can be executed as root. You must verify
662 that your host kernel supports the TAP network interfaces: the
663 device @file{/dev/net/tun} must be present.
665 See @ref{sec_invocation} to have examples of command lines using the
666 TAP network interfaces.
668 @subsubsection Windows host
670 There is a virtual ethernet driver for Windows 2000/XP systems, called
671 TAP-Win32. But it is not included in standard QEMU for Windows,
672 so you will need to get it separately. It is part of OpenVPN package,
673 so download OpenVPN from : @url{http://openvpn.net/}.
675 @subsection Using the user mode network stack
677 By using the option @option{-net user} (default configuration if no
678 @option{-net} option is specified), QEMU uses a completely user mode
679 network stack (you don't need root privilege to use the virtual
680 network). The virtual network configuration is the following:
682 @example
684          QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
685                            |          (10.0.2.2)
686                            |
687                            ---->  DNS server (10.0.2.3)
688                            |
689                            ---->  SMB server (10.0.2.4)
690 @end example
692 The QEMU VM behaves as if it was behind a firewall which blocks all
693 incoming connections. You can use a DHCP client to automatically
694 configure the network in the QEMU VM. The DHCP server assign addresses
695 to the hosts starting from 10.0.2.15.
697 In order to check that the user mode network is working, you can ping
698 the address 10.0.2.2 and verify that you got an address in the range
699 10.0.2.x from the QEMU virtual DHCP server.
701 Note that @code{ping} is not supported reliably to the internet as it
702 would require root privileges. It means you can only ping the local
703 router (10.0.2.2).
705 When using the built-in TFTP server, the router is also the TFTP
706 server.
708 When using the @option{-redir} option, TCP or UDP connections can be
709 redirected from the host to the guest. It allows for example to
710 redirect X11, telnet or SSH connections.
712 @subsection Connecting VLANs between QEMU instances
714 Using the @option{-net socket} option, it is possible to make VLANs
715 that span several QEMU instances. See @ref{sec_invocation} to have a
716 basic example.
718 @section Other Devices
720 @subsection Inter-VM Shared Memory device
722 With KVM enabled on a Linux host, a shared memory device is available.  Guests
723 map a POSIX shared memory region into the guest as a PCI device that enables
724 zero-copy communication to the application level of the guests.  The basic
725 syntax is:
727 @example
728 qemu -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
729 @end example
731 If desired, interrupts can be sent between guest VMs accessing the same shared
732 memory region.  Interrupt support requires using a shared memory server and
733 using a chardev socket to connect to it.  The code for the shared memory server
734 is qemu.git/contrib/ivshmem-server.  An example syntax when using the shared
735 memory server is:
737 @example
738 qemu -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
739                         [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
740 qemu -chardev socket,path=<path>,id=<id>
741 @end example
743 When using the server, the guest will be assigned a VM ID (>=0) that allows guests
744 using the same server to communicate via interrupts.  Guests can read their
745 VM ID from a device register (see example code).  Since receiving the shared
746 memory region from the server is asynchronous, there is a (small) chance the
747 guest may boot before the shared memory is attached.  To allow an application
748 to ensure shared memory is attached, the VM ID register will return -1 (an
749 invalid VM ID) until the memory is attached.  Once the shared memory is
750 attached, the VM ID will return the guest's valid VM ID.  With these semantics,
751 the guest application can check to ensure the shared memory is attached to the
752 guest before proceeding.
754 The @option{role} argument can be set to either master or peer and will affect
755 how the shared memory is migrated.  With @option{role=master}, the guest will
756 copy the shared memory on migration to the destination host.  With
757 @option{role=peer}, the guest will not be able to migrate with the device attached.
758 With the @option{peer} case, the device should be detached and then reattached
759 after migration using the PCI hotplug support.
761 @node direct_linux_boot
762 @section Direct Linux Boot
764 This section explains how to launch a Linux kernel inside QEMU without
765 having to make a full bootable image. It is very useful for fast Linux
766 kernel testing.
768 The syntax is:
769 @example
770 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
771 @end example
773 Use @option{-kernel} to provide the Linux kernel image and
774 @option{-append} to give the kernel command line arguments. The
775 @option{-initrd} option can be used to provide an INITRD image.
777 When using the direct Linux boot, a disk image for the first hard disk
778 @file{hda} is required because its boot sector is used to launch the
779 Linux kernel.
781 If you do not need graphical output, you can disable it and redirect
782 the virtual serial port and the QEMU monitor to the console with the
783 @option{-nographic} option. The typical command line is:
784 @example
785 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
786      -append "root=/dev/hda console=ttyS0" -nographic
787 @end example
789 Use @key{Ctrl-a c} to switch between the serial console and the
790 monitor (@pxref{pcsys_keys}).
792 @node pcsys_usb
793 @section USB emulation
795 QEMU emulates a PCI UHCI USB controller. You can virtually plug
796 virtual USB devices or real host USB devices (experimental, works only
797 on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
798 as necessary to connect multiple USB devices.
800 @menu
801 * usb_devices::
802 * host_usb_devices::
803 @end menu
804 @node usb_devices
805 @subsection Connecting USB devices
807 USB devices can be connected with the @option{-usbdevice} commandline option
808 or the @code{usb_add} monitor command.  Available devices are:
810 @table @code
811 @item mouse
812 Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
813 @item tablet
814 Pointer device that uses absolute coordinates (like a touchscreen).
815 This means qemu is able to report the mouse position without having
816 to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
817 @item disk:@var{file}
818 Mass storage device based on @var{file} (@pxref{disk_images})
819 @item host:@var{bus.addr}
820 Pass through the host device identified by @var{bus.addr}
821 (Linux only)
822 @item host:@var{vendor_id:product_id}
823 Pass through the host device identified by @var{vendor_id:product_id}
824 (Linux only)
825 @item wacom-tablet
826 Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
827 above but it can be used with the tslib library because in addition to touch
828 coordinates it reports touch pressure.
829 @item keyboard
830 Standard USB keyboard.  Will override the PS/2 keyboard (if present).
831 @item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
832 Serial converter. This emulates an FTDI FT232BM chip connected to host character
833 device @var{dev}. The available character devices are the same as for the
834 @code{-serial} option. The @code{vendorid} and @code{productid} options can be
835 used to override the default 0403:6001. For instance, 
836 @example
837 usb_add serial:productid=FA00:tcp:192.168.0.2:4444
838 @end example
839 will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
840 serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
841 @item braille
842 Braille device.  This will use BrlAPI to display the braille output on a real
843 or fake device.
844 @item net:@var{options}
845 Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
846 specifies NIC options as with @code{-net nic,}@var{options} (see description).
847 For instance, user-mode networking can be used with
848 @example
849 qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
850 @end example
851 Currently this cannot be used in machines that support PCI NICs.
852 @item bt[:@var{hci-type}]
853 Bluetooth dongle whose type is specified in the same format as with
854 the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
855 no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
856 This USB device implements the USB Transport Layer of HCI.  Example
857 usage:
858 @example
859 qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
860 @end example
861 @end table
863 @node host_usb_devices
864 @subsection Using host USB devices on a Linux host
866 WARNING: this is an experimental feature. QEMU will slow down when
867 using it. USB devices requiring real time streaming (i.e. USB Video
868 Cameras) are not supported yet.
870 @enumerate
871 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
872 is actually using the USB device. A simple way to do that is simply to
873 disable the corresponding kernel module by renaming it from @file{mydriver.o}
874 to @file{mydriver.o.disabled}.
876 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
877 @example
878 ls /proc/bus/usb
879 001  devices  drivers
880 @end example
882 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
883 @example
884 chown -R myuid /proc/bus/usb
885 @end example
887 @item Launch QEMU and do in the monitor:
888 @example
889 info usbhost
890   Device 1.2, speed 480 Mb/s
891     Class 00: USB device 1234:5678, USB DISK
892 @end example
893 You should see the list of the devices you can use (Never try to use
894 hubs, it won't work).
896 @item Add the device in QEMU by using:
897 @example
898 usb_add host:1234:5678
899 @end example
901 Normally the guest OS should report that a new USB device is
902 plugged. You can use the option @option{-usbdevice} to do the same.
904 @item Now you can try to use the host USB device in QEMU.
906 @end enumerate
908 When relaunching QEMU, you may have to unplug and plug again the USB
909 device to make it work again (this is a bug).
911 @node vnc_security
912 @section VNC security
914 The VNC server capability provides access to the graphical console
915 of the guest VM across the network. This has a number of security
916 considerations depending on the deployment scenarios.
918 @menu
919 * vnc_sec_none::
920 * vnc_sec_password::
921 * vnc_sec_certificate::
922 * vnc_sec_certificate_verify::
923 * vnc_sec_certificate_pw::
924 * vnc_sec_sasl::
925 * vnc_sec_certificate_sasl::
926 * vnc_generate_cert::
927 * vnc_setup_sasl::
928 @end menu
929 @node vnc_sec_none
930 @subsection Without passwords
932 The simplest VNC server setup does not include any form of authentication.
933 For this setup it is recommended to restrict it to listen on a UNIX domain
934 socket only. For example
936 @example
937 qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
938 @end example
940 This ensures that only users on local box with read/write access to that
941 path can access the VNC server. To securely access the VNC server from a
942 remote machine, a combination of netcat+ssh can be used to provide a secure
943 tunnel.
945 @node vnc_sec_password
946 @subsection With passwords
948 The VNC protocol has limited support for password based authentication. Since
949 the protocol limits passwords to 8 characters it should not be considered
950 to provide high security. The password can be fairly easily brute-forced by
951 a client making repeat connections. For this reason, a VNC server using password
952 authentication should be restricted to only listen on the loopback interface
953 or UNIX domain sockets. Password authentication is requested with the @code{password}
954 option, and then once QEMU is running the password is set with the monitor. Until
955 the monitor is used to set the password all clients will be rejected.
957 @example
958 qemu [...OPTIONS...] -vnc :1,password -monitor stdio
959 (qemu) change vnc password
960 Password: ********
961 (qemu)
962 @end example
964 @node vnc_sec_certificate
965 @subsection With x509 certificates
967 The QEMU VNC server also implements the VeNCrypt extension allowing use of
968 TLS for encryption of the session, and x509 certificates for authentication.
969 The use of x509 certificates is strongly recommended, because TLS on its
970 own is susceptible to man-in-the-middle attacks. Basic x509 certificate
971 support provides a secure session, but no authentication. This allows any
972 client to connect, and provides an encrypted session.
974 @example
975 qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
976 @end example
978 In the above example @code{/etc/pki/qemu} should contain at least three files,
979 @code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
980 users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
981 NB the @code{server-key.pem} file should be protected with file mode 0600 to
982 only be readable by the user owning it.
984 @node vnc_sec_certificate_verify
985 @subsection With x509 certificates and client verification
987 Certificates can also provide a means to authenticate the client connecting.
988 The server will request that the client provide a certificate, which it will
989 then validate against the CA certificate. This is a good choice if deploying
990 in an environment with a private internal certificate authority.
992 @example
993 qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
994 @end example
997 @node vnc_sec_certificate_pw
998 @subsection With x509 certificates, client verification and passwords
1000 Finally, the previous method can be combined with VNC password authentication
1001 to provide two layers of authentication for clients.
1003 @example
1004 qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1005 (qemu) change vnc password
1006 Password: ********
1007 (qemu)
1008 @end example
1011 @node vnc_sec_sasl
1012 @subsection With SASL authentication
1014 The SASL authentication method is a VNC extension, that provides an
1015 easily extendable, pluggable authentication method. This allows for
1016 integration with a wide range of authentication mechanisms, such as
1017 PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1018 The strength of the authentication depends on the exact mechanism
1019 configured. If the chosen mechanism also provides a SSF layer, then
1020 it will encrypt the datastream as well.
1022 Refer to the later docs on how to choose the exact SASL mechanism
1023 used for authentication, but assuming use of one supporting SSF,
1024 then QEMU can be launched with:
1026 @example
1027 qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
1028 @end example
1030 @node vnc_sec_certificate_sasl
1031 @subsection With x509 certificates and SASL authentication
1033 If the desired SASL authentication mechanism does not supported
1034 SSF layers, then it is strongly advised to run it in combination
1035 with TLS and x509 certificates. This provides securely encrypted
1036 data stream, avoiding risk of compromising of the security
1037 credentials. This can be enabled, by combining the 'sasl' option
1038 with the aforementioned TLS + x509 options:
1040 @example
1041 qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1042 @end example
1045 @node vnc_generate_cert
1046 @subsection Generating certificates for VNC
1048 The GNU TLS packages provides a command called @code{certtool} which can
1049 be used to generate certificates and keys in PEM format. At a minimum it
1050 is neccessary to setup a certificate authority, and issue certificates to
1051 each server. If using certificates for authentication, then each client
1052 will also need to be issued a certificate. The recommendation is for the
1053 server to keep its certificates in either @code{/etc/pki/qemu} or for
1054 unprivileged users in @code{$HOME/.pki/qemu}.
1056 @menu
1057 * vnc_generate_ca::
1058 * vnc_generate_server::
1059 * vnc_generate_client::
1060 @end menu
1061 @node vnc_generate_ca
1062 @subsubsection Setup the Certificate Authority
1064 This step only needs to be performed once per organization / organizational
1065 unit. First the CA needs a private key. This key must be kept VERY secret
1066 and secure. If this key is compromised the entire trust chain of the certificates
1067 issued with it is lost.
1069 @example
1070 # certtool --generate-privkey > ca-key.pem
1071 @end example
1073 A CA needs to have a public certificate. For simplicity it can be a self-signed
1074 certificate, or one issue by a commercial certificate issuing authority. To
1075 generate a self-signed certificate requires one core piece of information, the
1076 name of the organization.
1078 @example
1079 # cat > ca.info <<EOF
1080 cn = Name of your organization
1082 cert_signing_key
1084 # certtool --generate-self-signed \
1085            --load-privkey ca-key.pem
1086            --template ca.info \
1087            --outfile ca-cert.pem
1088 @end example
1090 The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1091 TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1093 @node vnc_generate_server
1094 @subsubsection Issuing server certificates
1096 Each server (or host) needs to be issued with a key and certificate. When connecting
1097 the certificate is sent to the client which validates it against the CA certificate.
1098 The core piece of information for a server certificate is the hostname. This should
1099 be the fully qualified hostname that the client will connect with, since the client
1100 will typically also verify the hostname in the certificate. On the host holding the
1101 secure CA private key:
1103 @example
1104 # cat > server.info <<EOF
1105 organization = Name  of your organization
1106 cn = server.foo.example.com
1107 tls_www_server
1108 encryption_key
1109 signing_key
1111 # certtool --generate-privkey > server-key.pem
1112 # certtool --generate-certificate \
1113            --load-ca-certificate ca-cert.pem \
1114            --load-ca-privkey ca-key.pem \
1115            --load-privkey server server-key.pem \
1116            --template server.info \
1117            --outfile server-cert.pem
1118 @end example
1120 The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1121 to the server for which they were generated. The @code{server-key.pem} is security
1122 sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1124 @node vnc_generate_client
1125 @subsubsection Issuing client certificates
1127 If the QEMU VNC server is to use the @code{x509verify} option to validate client
1128 certificates as its authentication mechanism, each client also needs to be issued
1129 a certificate. The client certificate contains enough metadata to uniquely identify
1130 the client, typically organization, state, city, building, etc. On the host holding
1131 the secure CA private key:
1133 @example
1134 # cat > client.info <<EOF
1135 country = GB
1136 state = London
1137 locality = London
1138 organiazation = Name of your organization
1139 cn = client.foo.example.com
1140 tls_www_client
1141 encryption_key
1142 signing_key
1144 # certtool --generate-privkey > client-key.pem
1145 # certtool --generate-certificate \
1146            --load-ca-certificate ca-cert.pem \
1147            --load-ca-privkey ca-key.pem \
1148            --load-privkey client-key.pem \
1149            --template client.info \
1150            --outfile client-cert.pem
1151 @end example
1153 The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1154 copied to the client for which they were generated.
1157 @node vnc_setup_sasl
1159 @subsection Configuring SASL mechanisms
1161 The following documentation assumes use of the Cyrus SASL implementation on a
1162 Linux host, but the principals should apply to any other SASL impl. When SASL
1163 is enabled, the mechanism configuration will be loaded from system default
1164 SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1165 unprivileged user, an environment variable SASL_CONF_PATH can be used
1166 to make it search alternate locations for the service config.
1168 The default configuration might contain
1170 @example
1171 mech_list: digest-md5
1172 sasldb_path: /etc/qemu/passwd.db
1173 @end example
1175 This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1176 Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1177 in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1178 command. While this mechanism is easy to configure and use, it is not
1179 considered secure by modern standards, so only suitable for developers /
1180 ad-hoc testing.
1182 A more serious deployment might use Kerberos, which is done with the 'gssapi'
1183 mechanism
1185 @example
1186 mech_list: gssapi
1187 keytab: /etc/qemu/krb5.tab
1188 @end example
1190 For this to work the administrator of your KDC must generate a Kerberos
1191 principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
1192 replacing 'somehost.example.com' with the fully qualified host name of the
1193 machine running QEMU, and 'EXAMPLE.COM' with the Keberos Realm.
1195 Other configurations will be left as an exercise for the reader. It should
1196 be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1197 encryption. For all other mechanisms, VNC should always be configured to
1198 use TLS and x509 certificates to protect security credentials from snooping.
1200 @node gdb_usage
1201 @section GDB usage
1203 QEMU has a primitive support to work with gdb, so that you can do
1204 'Ctrl-C' while the virtual machine is running and inspect its state.
1206 In order to use gdb, launch qemu with the '-s' option. It will wait for a
1207 gdb connection:
1208 @example
1209 > qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1210        -append "root=/dev/hda"
1211 Connected to host network interface: tun0
1212 Waiting gdb connection on port 1234
1213 @end example
1215 Then launch gdb on the 'vmlinux' executable:
1216 @example
1217 > gdb vmlinux
1218 @end example
1220 In gdb, connect to QEMU:
1221 @example
1222 (gdb) target remote localhost:1234
1223 @end example
1225 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1226 @example
1227 (gdb) c
1228 @end example
1230 Here are some useful tips in order to use gdb on system code:
1232 @enumerate
1233 @item
1234 Use @code{info reg} to display all the CPU registers.
1235 @item
1236 Use @code{x/10i $eip} to display the code at the PC position.
1237 @item
1238 Use @code{set architecture i8086} to dump 16 bit code. Then use
1239 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1240 @end enumerate
1242 Advanced debugging options:
1244 The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1245 @table @code
1246 @item maintenance packet qqemu.sstepbits
1248 This will display the MASK bits used to control the single stepping IE:
1249 @example
1250 (gdb) maintenance packet qqemu.sstepbits
1251 sending: "qqemu.sstepbits"
1252 received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1253 @end example
1254 @item maintenance packet qqemu.sstep
1256 This will display the current value of the mask used when single stepping IE:
1257 @example
1258 (gdb) maintenance packet qqemu.sstep
1259 sending: "qqemu.sstep"
1260 received: "0x7"
1261 @end example
1262 @item maintenance packet Qqemu.sstep=HEX_VALUE
1264 This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1265 @example
1266 (gdb) maintenance packet Qqemu.sstep=0x5
1267 sending: "qemu.sstep=0x5"
1268 received: "OK"
1269 @end example
1270 @end table
1272 @node pcsys_os_specific
1273 @section Target OS specific information
1275 @subsection Linux
1277 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1278 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1279 color depth in the guest and the host OS.
1281 When using a 2.6 guest Linux kernel, you should add the option
1282 @code{clock=pit} on the kernel command line because the 2.6 Linux
1283 kernels make very strict real time clock checks by default that QEMU
1284 cannot simulate exactly.
1286 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1287 not activated because QEMU is slower with this patch. The QEMU
1288 Accelerator Module is also much slower in this case. Earlier Fedora
1289 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1290 patch by default. Newer kernels don't have it.
1292 @subsection Windows
1294 If you have a slow host, using Windows 95 is better as it gives the
1295 best speed. Windows 2000 is also a good choice.
1297 @subsubsection SVGA graphic modes support
1299 QEMU emulates a Cirrus Logic GD5446 Video
1300 card. All Windows versions starting from Windows 95 should recognize
1301 and use this graphic card. For optimal performances, use 16 bit color
1302 depth in the guest and the host OS.
1304 If you are using Windows XP as guest OS and if you want to use high
1305 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1306 1280x1024x16), then you should use the VESA VBE virtual graphic card
1307 (option @option{-std-vga}).
1309 @subsubsection CPU usage reduction
1311 Windows 9x does not correctly use the CPU HLT
1312 instruction. The result is that it takes host CPU cycles even when
1313 idle. You can install the utility from
1314 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1315 problem. Note that no such tool is needed for NT, 2000 or XP.
1317 @subsubsection Windows 2000 disk full problem
1319 Windows 2000 has a bug which gives a disk full problem during its
1320 installation. When installing it, use the @option{-win2k-hack} QEMU
1321 option to enable a specific workaround. After Windows 2000 is
1322 installed, you no longer need this option (this option slows down the
1323 IDE transfers).
1325 @subsubsection Windows 2000 shutdown
1327 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1328 can. It comes from the fact that Windows 2000 does not automatically
1329 use the APM driver provided by the BIOS.
1331 In order to correct that, do the following (thanks to Struan
1332 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1333 Add/Troubleshoot a device => Add a new device & Next => No, select the
1334 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1335 (again) a few times. Now the driver is installed and Windows 2000 now
1336 correctly instructs QEMU to shutdown at the appropriate moment.
1338 @subsubsection Share a directory between Unix and Windows
1340 See @ref{sec_invocation} about the help of the option @option{-smb}.
1342 @subsubsection Windows XP security problem
1344 Some releases of Windows XP install correctly but give a security
1345 error when booting:
1346 @example
1347 A problem is preventing Windows from accurately checking the
1348 license for this computer. Error code: 0x800703e6.
1349 @end example
1351 The workaround is to install a service pack for XP after a boot in safe
1352 mode. Then reboot, and the problem should go away. Since there is no
1353 network while in safe mode, its recommended to download the full
1354 installation of SP1 or SP2 and transfer that via an ISO or using the
1355 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1357 @subsection MS-DOS and FreeDOS
1359 @subsubsection CPU usage reduction
1361 DOS does not correctly use the CPU HLT instruction. The result is that
1362 it takes host CPU cycles even when idle. You can install the utility
1363 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1364 problem.
1366 @node QEMU System emulator for non PC targets
1367 @chapter QEMU System emulator for non PC targets
1369 QEMU is a generic emulator and it emulates many non PC
1370 machines. Most of the options are similar to the PC emulator. The
1371 differences are mentioned in the following sections.
1373 @menu
1374 * PowerPC System emulator::
1375 * Sparc32 System emulator::
1376 * Sparc64 System emulator::
1377 * MIPS System emulator::
1378 * ARM System emulator::
1379 * ColdFire System emulator::
1380 * Cris System emulator::
1381 * Microblaze System emulator::
1382 * SH4 System emulator::
1383 @end menu
1385 @node PowerPC System emulator
1386 @section PowerPC System emulator
1387 @cindex system emulation (PowerPC)
1389 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1390 or PowerMac PowerPC system.
1392 QEMU emulates the following PowerMac peripherals:
1394 @itemize @minus
1395 @item
1396 UniNorth or Grackle PCI Bridge
1397 @item
1398 PCI VGA compatible card with VESA Bochs Extensions
1399 @item
1400 2 PMAC IDE interfaces with hard disk and CD-ROM support
1401 @item
1402 NE2000 PCI adapters
1403 @item
1404 Non Volatile RAM
1405 @item
1406 VIA-CUDA with ADB keyboard and mouse.
1407 @end itemize
1409 QEMU emulates the following PREP peripherals:
1411 @itemize @minus
1412 @item
1413 PCI Bridge
1414 @item
1415 PCI VGA compatible card with VESA Bochs Extensions
1416 @item
1417 2 IDE interfaces with hard disk and CD-ROM support
1418 @item
1419 Floppy disk
1420 @item
1421 NE2000 network adapters
1422 @item
1423 Serial port
1424 @item
1425 PREP Non Volatile RAM
1426 @item
1427 PC compatible keyboard and mouse.
1428 @end itemize
1430 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1431 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1433 Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1434 for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1435 v2) portable firmware implementation. The goal is to implement a 100%
1436 IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1438 @c man begin OPTIONS
1440 The following options are specific to the PowerPC emulation:
1442 @table @option
1444 @item -g @var{W}x@var{H}[x@var{DEPTH}]
1446 Set the initial VGA graphic mode. The default is 800x600x15.
1448 @item -prom-env @var{string}
1450 Set OpenBIOS variables in NVRAM, for example:
1452 @example
1453 qemu-system-ppc -prom-env 'auto-boot?=false' \
1454  -prom-env 'boot-device=hd:2,\yaboot' \
1455  -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1456 @end example
1458 These variables are not used by Open Hack'Ware.
1460 @end table
1462 @c man end
1465 More information is available at
1466 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1468 @node Sparc32 System emulator
1469 @section Sparc32 System emulator
1470 @cindex system emulation (Sparc32)
1472 Use the executable @file{qemu-system-sparc} to simulate the following
1473 Sun4m architecture machines:
1474 @itemize @minus
1475 @item
1476 SPARCstation 4
1477 @item
1478 SPARCstation 5
1479 @item
1480 SPARCstation 10
1481 @item
1482 SPARCstation 20
1483 @item
1484 SPARCserver 600MP
1485 @item
1486 SPARCstation LX
1487 @item
1488 SPARCstation Voyager
1489 @item
1490 SPARCclassic
1491 @item
1492 SPARCbook
1493 @end itemize
1495 The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1496 but Linux limits the number of usable CPUs to 4.
1498 It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1499 SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1500 emulators are not usable yet.
1502 QEMU emulates the following sun4m/sun4c/sun4d peripherals:
1504 @itemize @minus
1505 @item
1506 IOMMU or IO-UNITs
1507 @item
1508 TCX Frame buffer
1509 @item
1510 Lance (Am7990) Ethernet
1511 @item
1512 Non Volatile RAM M48T02/M48T08
1513 @item
1514 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1515 and power/reset logic
1516 @item
1517 ESP SCSI controller with hard disk and CD-ROM support
1518 @item
1519 Floppy drive (not on SS-600MP)
1520 @item
1521 CS4231 sound device (only on SS-5, not working yet)
1522 @end itemize
1524 The number of peripherals is fixed in the architecture.  Maximum
1525 memory size depends on the machine type, for SS-5 it is 256MB and for
1526 others 2047MB.
1528 Since version 0.8.2, QEMU uses OpenBIOS
1529 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1530 firmware implementation. The goal is to implement a 100% IEEE
1531 1275-1994 (referred to as Open Firmware) compliant firmware.
1533 A sample Linux 2.6 series kernel and ram disk image are available on
1534 the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1535 some kernel versions work. Please note that currently Solaris kernels
1536 don't work probably due to interface issues between OpenBIOS and
1537 Solaris.
1539 @c man begin OPTIONS
1541 The following options are specific to the Sparc32 emulation:
1543 @table @option
1545 @item -g @var{W}x@var{H}x[x@var{DEPTH}]
1547 Set the initial TCX graphic mode. The default is 1024x768x8, currently
1548 the only other possible mode is 1024x768x24.
1550 @item -prom-env @var{string}
1552 Set OpenBIOS variables in NVRAM, for example:
1554 @example
1555 qemu-system-sparc -prom-env 'auto-boot?=false' \
1556  -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1557 @end example
1559 @item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook|SS-2|SS-1000|SS-2000]
1561 Set the emulated machine type. Default is SS-5.
1563 @end table
1565 @c man end
1567 @node Sparc64 System emulator
1568 @section Sparc64 System emulator
1569 @cindex system emulation (Sparc64)
1571 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1572 (UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1573 Niagara (T1) machine. The emulator is not usable for anything yet, but
1574 it can launch some kernels.
1576 QEMU emulates the following peripherals:
1578 @itemize @minus
1579 @item
1580 UltraSparc IIi APB PCI Bridge
1581 @item
1582 PCI VGA compatible card with VESA Bochs Extensions
1583 @item
1584 PS/2 mouse and keyboard
1585 @item
1586 Non Volatile RAM M48T59
1587 @item
1588 PC-compatible serial ports
1589 @item
1590 2 PCI IDE interfaces with hard disk and CD-ROM support
1591 @item
1592 Floppy disk
1593 @end itemize
1595 @c man begin OPTIONS
1597 The following options are specific to the Sparc64 emulation:
1599 @table @option
1601 @item -prom-env @var{string}
1603 Set OpenBIOS variables in NVRAM, for example:
1605 @example
1606 qemu-system-sparc64 -prom-env 'auto-boot?=false'
1607 @end example
1609 @item -M [sun4u|sun4v|Niagara]
1611 Set the emulated machine type. The default is sun4u.
1613 @end table
1615 @c man end
1617 @node MIPS System emulator
1618 @section MIPS System emulator
1619 @cindex system emulation (MIPS)
1621 Four executables cover simulation of 32 and 64-bit MIPS systems in
1622 both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1623 @file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1624 Five different machine types are emulated:
1626 @itemize @minus
1627 @item
1628 A generic ISA PC-like machine "mips"
1629 @item
1630 The MIPS Malta prototype board "malta"
1631 @item
1632 An ACER Pica "pica61". This machine needs the 64-bit emulator.
1633 @item
1634 MIPS emulator pseudo board "mipssim"
1635 @item
1636 A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1637 @end itemize
1639 The generic emulation is supported by Debian 'Etch' and is able to
1640 install Debian into a virtual disk image. The following devices are
1641 emulated:
1643 @itemize @minus
1644 @item
1645 A range of MIPS CPUs, default is the 24Kf
1646 @item
1647 PC style serial port
1648 @item
1649 PC style IDE disk
1650 @item
1651 NE2000 network card
1652 @end itemize
1654 The Malta emulation supports the following devices:
1656 @itemize @minus
1657 @item
1658 Core board with MIPS 24Kf CPU and Galileo system controller
1659 @item
1660 PIIX4 PCI/USB/SMbus controller
1661 @item
1662 The Multi-I/O chip's serial device
1663 @item
1664 PCI network cards (PCnet32 and others)
1665 @item
1666 Malta FPGA serial device
1667 @item
1668 Cirrus (default) or any other PCI VGA graphics card
1669 @end itemize
1671 The ACER Pica emulation supports:
1673 @itemize @minus
1674 @item
1675 MIPS R4000 CPU
1676 @item
1677 PC-style IRQ and DMA controllers
1678 @item
1679 PC Keyboard
1680 @item
1681 IDE controller
1682 @end itemize
1684 The mipssim pseudo board emulation provides an environment similiar
1685 to what the proprietary MIPS emulator uses for running Linux.
1686 It supports:
1688 @itemize @minus
1689 @item
1690 A range of MIPS CPUs, default is the 24Kf
1691 @item
1692 PC style serial port
1693 @item
1694 MIPSnet network emulation
1695 @end itemize
1697 The MIPS Magnum R4000 emulation supports:
1699 @itemize @minus
1700 @item
1701 MIPS R4000 CPU
1702 @item
1703 PC-style IRQ controller
1704 @item
1705 PC Keyboard
1706 @item
1707 SCSI controller
1708 @item
1709 G364 framebuffer
1710 @end itemize
1713 @node ARM System emulator
1714 @section ARM System emulator
1715 @cindex system emulation (ARM)
1717 Use the executable @file{qemu-system-arm} to simulate a ARM
1718 machine. The ARM Integrator/CP board is emulated with the following
1719 devices:
1721 @itemize @minus
1722 @item
1723 ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
1724 @item
1725 Two PL011 UARTs
1726 @item
1727 SMC 91c111 Ethernet adapter
1728 @item
1729 PL110 LCD controller
1730 @item
1731 PL050 KMI with PS/2 keyboard and mouse.
1732 @item
1733 PL181 MultiMedia Card Interface with SD card.
1734 @end itemize
1736 The ARM Versatile baseboard is emulated with the following devices:
1738 @itemize @minus
1739 @item
1740 ARM926E, ARM1136 or Cortex-A8 CPU
1741 @item
1742 PL190 Vectored Interrupt Controller
1743 @item
1744 Four PL011 UARTs
1745 @item
1746 SMC 91c111 Ethernet adapter
1747 @item
1748 PL110 LCD controller
1749 @item
1750 PL050 KMI with PS/2 keyboard and mouse.
1751 @item
1752 PCI host bridge.  Note the emulated PCI bridge only provides access to
1753 PCI memory space.  It does not provide access to PCI IO space.
1754 This means some devices (eg. ne2k_pci NIC) are not usable, and others
1755 (eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1756 mapped control registers.
1757 @item
1758 PCI OHCI USB controller.
1759 @item
1760 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1761 @item
1762 PL181 MultiMedia Card Interface with SD card.
1763 @end itemize
1765 Several variants of the ARM RealView baseboard are emulated,
1766 including the EB, PB-A8 and PBX-A9.  Due to interactions with the
1767 bootloader, only certain Linux kernel configurations work out
1768 of the box on these boards.
1770 Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1771 enabled in the kernel, and expect 512M RAM.  Kernels for The PBX-A9 board
1772 should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1773 disabled and expect 1024M RAM.
1775 The following devices are emuilated:
1777 @itemize @minus
1778 @item
1779 ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
1780 @item
1781 ARM AMBA Generic/Distributed Interrupt Controller
1782 @item
1783 Four PL011 UARTs
1784 @item
1785 SMC 91c111 or SMSC LAN9118 Ethernet adapter
1786 @item
1787 PL110 LCD controller
1788 @item
1789 PL050 KMI with PS/2 keyboard and mouse
1790 @item
1791 PCI host bridge
1792 @item
1793 PCI OHCI USB controller
1794 @item
1795 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
1796 @item
1797 PL181 MultiMedia Card Interface with SD card.
1798 @end itemize
1800 The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1801 and "Terrier") emulation includes the following peripherals:
1803 @itemize @minus
1804 @item
1805 Intel PXA270 System-on-chip (ARM V5TE core)
1806 @item
1807 NAND Flash memory
1808 @item
1809 IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1810 @item
1811 On-chip OHCI USB controller
1812 @item
1813 On-chip LCD controller
1814 @item
1815 On-chip Real Time Clock
1816 @item
1817 TI ADS7846 touchscreen controller on SSP bus
1818 @item
1819 Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1820 @item
1821 GPIO-connected keyboard controller and LEDs
1822 @item
1823 Secure Digital card connected to PXA MMC/SD host
1824 @item
1825 Three on-chip UARTs
1826 @item
1827 WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1828 @end itemize
1830 The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
1831 following elements:
1833 @itemize @minus
1834 @item
1835 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1836 @item
1837 ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
1838 @item
1839 On-chip LCD controller
1840 @item
1841 On-chip Real Time Clock
1842 @item
1843 TI TSC2102i touchscreen controller / analog-digital converter / Audio
1844 CODEC, connected through MicroWire and I@math{^2}S busses
1845 @item
1846 GPIO-connected matrix keypad
1847 @item
1848 Secure Digital card connected to OMAP MMC/SD host
1849 @item
1850 Three on-chip UARTs
1851 @end itemize
1853 Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
1854 emulation supports the following elements:
1856 @itemize @minus
1857 @item
1858 Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
1859 @item
1860 RAM and non-volatile OneNAND Flash memories
1861 @item
1862 Display connected to EPSON remote framebuffer chip and OMAP on-chip
1863 display controller and a LS041y3 MIPI DBI-C controller
1864 @item
1865 TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
1866 driven through SPI bus
1867 @item
1868 National Semiconductor LM8323-controlled qwerty keyboard driven
1869 through I@math{^2}C bus
1870 @item
1871 Secure Digital card connected to OMAP MMC/SD host
1872 @item
1873 Three OMAP on-chip UARTs and on-chip STI debugging console
1874 @item
1875 A Bluetooth(R) transciever and HCI connected to an UART
1876 @item
1877 Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
1878 TUSB6010 chip - only USB host mode is supported
1879 @item
1880 TI TMP105 temperature sensor driven through I@math{^2}C bus
1881 @item
1882 TI TWL92230C power management companion with an RTC on I@math{^2}C bus
1883 @item
1884 Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
1885 through CBUS
1886 @end itemize
1888 The Luminary Micro Stellaris LM3S811EVB emulation includes the following
1889 devices:
1891 @itemize @minus
1892 @item
1893 Cortex-M3 CPU core.
1894 @item
1895 64k Flash and 8k SRAM.
1896 @item
1897 Timers, UARTs, ADC and I@math{^2}C interface.
1898 @item
1899 OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
1900 @end itemize
1902 The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
1903 devices:
1905 @itemize @minus
1906 @item
1907 Cortex-M3 CPU core.
1908 @item
1909 256k Flash and 64k SRAM.
1910 @item
1911 Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
1912 @item
1913 OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
1914 @end itemize
1916 The Freecom MusicPal internet radio emulation includes the following
1917 elements:
1919 @itemize @minus
1920 @item
1921 Marvell MV88W8618 ARM core.
1922 @item
1923 32 MB RAM, 256 KB SRAM, 8 MB flash.
1924 @item
1925 Up to 2 16550 UARTs
1926 @item
1927 MV88W8xx8 Ethernet controller
1928 @item
1929 MV88W8618 audio controller, WM8750 CODEC and mixer
1930 @item
1931 128×64 display with brightness control
1932 @item
1933 2 buttons, 2 navigation wheels with button function
1934 @end itemize
1936 The Siemens SX1 models v1 and v2 (default) basic emulation.
1937 The emulaton includes the following elements:
1939 @itemize @minus
1940 @item
1941 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1942 @item
1943 ROM and RAM memories (ROM firmware image can be loaded with -pflash)
1945 1 Flash of 16MB and 1 Flash of 8MB
1947 1 Flash of 32MB
1948 @item
1949 On-chip LCD controller
1950 @item
1951 On-chip Real Time Clock
1952 @item
1953 Secure Digital card connected to OMAP MMC/SD host
1954 @item
1955 Three on-chip UARTs
1956 @end itemize
1958 The "Syborg" Symbian Virtual Platform base model includes the following
1959 elements:
1961 @itemize @minus
1962 @item
1963 ARM Cortex-A8 CPU
1964 @item
1965 Interrupt controller
1966 @item
1967 Timer
1968 @item
1969 Real Time Clock
1970 @item
1971 Keyboard
1972 @item
1973 Framebuffer
1974 @item
1975 Touchscreen
1976 @item
1977 UARTs
1978 @end itemize
1980 A Linux 2.6 test image is available on the QEMU web site. More
1981 information is available in the QEMU mailing-list archive.
1983 @c man begin OPTIONS
1985 The following options are specific to the ARM emulation:
1987 @table @option
1989 @item -semihosting
1990 Enable semihosting syscall emulation.
1992 On ARM this implements the "Angel" interface.
1994 Note that this allows guest direct access to the host filesystem,
1995 so should only be used with trusted guest OS.
1997 @end table
1999 @node ColdFire System emulator
2000 @section ColdFire System emulator
2001 @cindex system emulation (ColdFire)
2002 @cindex system emulation (M68K)
2004 Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2005 The emulator is able to boot a uClinux kernel.
2007 The M5208EVB emulation includes the following devices:
2009 @itemize @minus
2010 @item
2011 MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2012 @item
2013 Three Two on-chip UARTs.
2014 @item
2015 Fast Ethernet Controller (FEC)
2016 @end itemize
2018 The AN5206 emulation includes the following devices:
2020 @itemize @minus
2021 @item
2022 MCF5206 ColdFire V2 Microprocessor.
2023 @item
2024 Two on-chip UARTs.
2025 @end itemize
2027 @c man begin OPTIONS
2029 The following options are specific to the ColdFire emulation:
2031 @table @option
2033 @item -semihosting
2034 Enable semihosting syscall emulation.
2036 On M68K this implements the "ColdFire GDB" interface used by libgloss.
2038 Note that this allows guest direct access to the host filesystem,
2039 so should only be used with trusted guest OS.
2041 @end table
2043 @node Cris System emulator
2044 @section Cris System emulator
2045 @cindex system emulation (Cris)
2047 TODO
2049 @node Microblaze System emulator
2050 @section Microblaze System emulator
2051 @cindex system emulation (Microblaze)
2053 TODO
2055 @node SH4 System emulator
2056 @section SH4 System emulator
2057 @cindex system emulation (SH4)
2059 TODO
2061 @node QEMU User space emulator
2062 @chapter QEMU User space emulator
2064 @menu
2065 * Supported Operating Systems ::
2066 * Linux User space emulator::
2067 * Mac OS X/Darwin User space emulator ::
2068 * BSD User space emulator ::
2069 @end menu
2071 @node Supported Operating Systems
2072 @section Supported Operating Systems
2074 The following OS are supported in user space emulation:
2076 @itemize @minus
2077 @item
2078 Linux (referred as qemu-linux-user)
2079 @item
2080 Mac OS X/Darwin (referred as qemu-darwin-user)
2081 @item
2082 BSD (referred as qemu-bsd-user)
2083 @end itemize
2085 @node Linux User space emulator
2086 @section Linux User space emulator
2088 @menu
2089 * Quick Start::
2090 * Wine launch::
2091 * Command line options::
2092 * Other binaries::
2093 @end menu
2095 @node Quick Start
2096 @subsection Quick Start
2098 In order to launch a Linux process, QEMU needs the process executable
2099 itself and all the target (x86) dynamic libraries used by it.
2101 @itemize
2103 @item On x86, you can just try to launch any process by using the native
2104 libraries:
2106 @example
2107 qemu-i386 -L / /bin/ls
2108 @end example
2110 @code{-L /} tells that the x86 dynamic linker must be searched with a
2111 @file{/} prefix.
2113 @item Since QEMU is also a linux process, you can launch qemu with
2114 qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2116 @example
2117 qemu-i386 -L / qemu-i386 -L / /bin/ls
2118 @end example
2120 @item On non x86 CPUs, you need first to download at least an x86 glibc
2121 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2122 @code{LD_LIBRARY_PATH} is not set:
2124 @example
2125 unset LD_LIBRARY_PATH
2126 @end example
2128 Then you can launch the precompiled @file{ls} x86 executable:
2130 @example
2131 qemu-i386 tests/i386/ls
2132 @end example
2133 You can look at @file{qemu-binfmt-conf.sh} so that
2134 QEMU is automatically launched by the Linux kernel when you try to
2135 launch x86 executables. It requires the @code{binfmt_misc} module in the
2136 Linux kernel.
2138 @item The x86 version of QEMU is also included. You can try weird things such as:
2139 @example
2140 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2141           /usr/local/qemu-i386/bin/ls-i386
2142 @end example
2144 @end itemize
2146 @node Wine launch
2147 @subsection Wine launch
2149 @itemize
2151 @item Ensure that you have a working QEMU with the x86 glibc
2152 distribution (see previous section). In order to verify it, you must be
2153 able to do:
2155 @example
2156 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2157 @end example
2159 @item Download the binary x86 Wine install
2160 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2162 @item Configure Wine on your account. Look at the provided script
2163 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2164 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2166 @item Then you can try the example @file{putty.exe}:
2168 @example
2169 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2170           /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2171 @end example
2173 @end itemize
2175 @node Command line options
2176 @subsection Command line options
2178 @example
2179 usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
2180 @end example
2182 @table @option
2183 @item -h
2184 Print the help
2185 @item -L path
2186 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2187 @item -s size
2188 Set the x86 stack size in bytes (default=524288)
2189 @item -cpu model
2190 Select CPU model (-cpu ? for list and additional feature selection)
2191 @item -ignore-environment
2192 Start with an empty environment. Without this option,
2193 the inital environment is a copy of the caller's environment.
2194 @item -E @var{var}=@var{value}
2195 Set environment @var{var} to @var{value}.
2196 @item -U @var{var}
2197 Remove @var{var} from the environment.
2198 @item -B offset
2199 Offset guest address by the specified number of bytes.  This is useful when
2200 the address region required by guest applications is reserved on the host.
2201 This option is currently only supported on some hosts.
2202 @item -R size
2203 Pre-allocate a guest virtual address space of the given size (in bytes).
2204 "G", "M", and "k" suffixes may be used when specifying the size.  
2205 @end table
2207 Debug options:
2209 @table @option
2210 @item -d
2211 Activate log (logfile=/tmp/qemu.log)
2212 @item -p pagesize
2213 Act as if the host page size was 'pagesize' bytes
2214 @item -g port
2215 Wait gdb connection to port
2216 @item -singlestep
2217 Run the emulation in single step mode.
2218 @end table
2220 Environment variables:
2222 @table @env
2223 @item QEMU_STRACE
2224 Print system calls and arguments similar to the 'strace' program
2225 (NOTE: the actual 'strace' program will not work because the user
2226 space emulator hasn't implemented ptrace).  At the moment this is
2227 incomplete.  All system calls that don't have a specific argument
2228 format are printed with information for six arguments.  Many
2229 flag-style arguments don't have decoders and will show up as numbers.
2230 @end table
2232 @node Other binaries
2233 @subsection Other binaries
2235 @cindex user mode (Alpha)
2236 @command{qemu-alpha} TODO.
2238 @cindex user mode (ARM)
2239 @command{qemu-armeb} TODO.
2241 @cindex user mode (ARM)
2242 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2243 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2244 configurations), and arm-uclinux bFLT format binaries.
2246 @cindex user mode (ColdFire)
2247 @cindex user mode (M68K)
2248 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
2249 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2250 coldfire uClinux bFLT format binaries.
2252 The binary format is detected automatically.
2254 @cindex user mode (Cris)
2255 @command{qemu-cris} TODO.
2257 @cindex user mode (i386)
2258 @command{qemu-i386} TODO.
2259 @command{qemu-x86_64} TODO.
2261 @cindex user mode (Microblaze)
2262 @command{qemu-microblaze} TODO.
2264 @cindex user mode (MIPS)
2265 @command{qemu-mips} TODO.
2266 @command{qemu-mipsel} TODO.
2268 @cindex user mode (PowerPC)
2269 @command{qemu-ppc64abi32} TODO.
2270 @command{qemu-ppc64} TODO.
2271 @command{qemu-ppc} TODO.
2273 @cindex user mode (SH4)
2274 @command{qemu-sh4eb} TODO.
2275 @command{qemu-sh4} TODO.
2277 @cindex user mode (SPARC)
2278 @command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2280 @command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2281 (Sparc64 CPU, 32 bit ABI).
2283 @command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2284 SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2286 @node Mac OS X/Darwin User space emulator
2287 @section Mac OS X/Darwin User space emulator
2289 @menu
2290 * Mac OS X/Darwin Status::
2291 * Mac OS X/Darwin Quick Start::
2292 * Mac OS X/Darwin Command line options::
2293 @end menu
2295 @node Mac OS X/Darwin Status
2296 @subsection Mac OS X/Darwin Status
2298 @itemize @minus
2299 @item
2300 target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2301 @item
2302 target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2303 @item
2304 target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2305 @item
2306 target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2307 @end itemize
2309 [1] If you're host commpage can be executed by qemu.
2311 @node Mac OS X/Darwin Quick Start
2312 @subsection Quick Start
2314 In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2315 itself and all the target dynamic libraries used by it. If you don't have the FAT
2316 libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2317 CD or compile them by hand.
2319 @itemize
2321 @item On x86, you can just try to launch any process by using the native
2322 libraries:
2324 @example
2325 qemu-i386 /bin/ls
2326 @end example
2328 or to run the ppc version of the executable:
2330 @example
2331 qemu-ppc /bin/ls
2332 @end example
2334 @item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2335 are installed:
2337 @example
2338 qemu-i386 -L /opt/x86_root/ /bin/ls
2339 @end example
2341 @code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2342 @file{/opt/x86_root/usr/bin/dyld}.
2344 @end itemize
2346 @node Mac OS X/Darwin Command line options
2347 @subsection Command line options
2349 @example
2350 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2351 @end example
2353 @table @option
2354 @item -h
2355 Print the help
2356 @item -L path
2357 Set the library root path (default=/)
2358 @item -s size
2359 Set the stack size in bytes (default=524288)
2360 @end table
2362 Debug options:
2364 @table @option
2365 @item -d
2366 Activate log (logfile=/tmp/qemu.log)
2367 @item -p pagesize
2368 Act as if the host page size was 'pagesize' bytes
2369 @item -singlestep
2370 Run the emulation in single step mode.
2371 @end table
2373 @node BSD User space emulator
2374 @section BSD User space emulator
2376 @menu
2377 * BSD Status::
2378 * BSD Quick Start::
2379 * BSD Command line options::
2380 @end menu
2382 @node BSD Status
2383 @subsection BSD Status
2385 @itemize @minus
2386 @item
2387 target Sparc64 on Sparc64: Some trivial programs work.
2388 @end itemize
2390 @node BSD Quick Start
2391 @subsection Quick Start
2393 In order to launch a BSD process, QEMU needs the process executable
2394 itself and all the target dynamic libraries used by it.
2396 @itemize
2398 @item On Sparc64, you can just try to launch any process by using the native
2399 libraries:
2401 @example
2402 qemu-sparc64 /bin/ls
2403 @end example
2405 @end itemize
2407 @node BSD Command line options
2408 @subsection Command line options
2410 @example
2411 usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2412 @end example
2414 @table @option
2415 @item -h
2416 Print the help
2417 @item -L path
2418 Set the library root path (default=/)
2419 @item -s size
2420 Set the stack size in bytes (default=524288)
2421 @item -ignore-environment
2422 Start with an empty environment. Without this option,
2423 the inital environment is a copy of the caller's environment.
2424 @item -E @var{var}=@var{value}
2425 Set environment @var{var} to @var{value}.
2426 @item -U @var{var}
2427 Remove @var{var} from the environment.
2428 @item -bsd type
2429 Set the type of the emulated BSD Operating system. Valid values are
2430 FreeBSD, NetBSD and OpenBSD (default).
2431 @end table
2433 Debug options:
2435 @table @option
2436 @item -d
2437 Activate log (logfile=/tmp/qemu.log)
2438 @item -p pagesize
2439 Act as if the host page size was 'pagesize' bytes
2440 @item -singlestep
2441 Run the emulation in single step mode.
2442 @end table
2444 @node compilation
2445 @chapter Compilation from the sources
2447 @menu
2448 * Linux/Unix::
2449 * Windows::
2450 * Cross compilation for Windows with Linux::
2451 * Mac OS X::
2452 * Make targets::
2453 @end menu
2455 @node Linux/Unix
2456 @section Linux/Unix
2458 @subsection Compilation
2460 First you must decompress the sources:
2461 @example
2462 cd /tmp
2463 tar zxvf qemu-x.y.z.tar.gz
2464 cd qemu-x.y.z
2465 @end example
2467 Then you configure QEMU and build it (usually no options are needed):
2468 @example
2469 ./configure
2470 make
2471 @end example
2473 Then type as root user:
2474 @example
2475 make install
2476 @end example
2477 to install QEMU in @file{/usr/local}.
2479 @node Windows
2480 @section Windows
2482 @itemize
2483 @item Install the current versions of MSYS and MinGW from
2484 @url{http://www.mingw.org/}. You can find detailed installation
2485 instructions in the download section and the FAQ.
2487 @item Download
2488 the MinGW development library of SDL 1.2.x
2489 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2490 @url{http://www.libsdl.org}. Unpack it in a temporary place and
2491 edit the @file{sdl-config} script so that it gives the
2492 correct SDL directory when invoked.
2494 @item Install the MinGW version of zlib and make sure
2495 @file{zlib.h} and @file{libz.dll.a} are in
2496 MingGW's default header and linker search paths.
2498 @item Extract the current version of QEMU.
2500 @item Start the MSYS shell (file @file{msys.bat}).
2502 @item Change to the QEMU directory. Launch @file{./configure} and
2503 @file{make}.  If you have problems using SDL, verify that
2504 @file{sdl-config} can be launched from the MSYS command line.
2506 @item You can install QEMU in @file{Program Files/Qemu} by typing
2507 @file{make install}. Don't forget to copy @file{SDL.dll} in
2508 @file{Program Files/Qemu}.
2510 @end itemize
2512 @node Cross compilation for Windows with Linux
2513 @section Cross compilation for Windows with Linux
2515 @itemize
2516 @item
2517 Install the MinGW cross compilation tools available at
2518 @url{http://www.mingw.org/}.
2520 @item Download
2521 the MinGW development library of SDL 1.2.x
2522 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2523 @url{http://www.libsdl.org}. Unpack it in a temporary place and
2524 edit the @file{sdl-config} script so that it gives the
2525 correct SDL directory when invoked.  Set up the @code{PATH} environment
2526 variable so that @file{sdl-config} can be launched by
2527 the QEMU configuration script.
2529 @item Install the MinGW version of zlib and make sure
2530 @file{zlib.h} and @file{libz.dll.a} are in
2531 MingGW's default header and linker search paths.
2533 @item
2534 Configure QEMU for Windows cross compilation:
2535 @example
2536 PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2537 @end example
2538 The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2539 MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
2540 We set the @code{PATH} environment variable to ensure the MingW version of @file{sdl-config} is used and
2541 use --cross-prefix to specify the name of the cross compiler.
2542 You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/Qemu}.
2544 Under Fedora Linux, you can run:
2545 @example
2546 yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
2547 @end example
2548 to get a suitable cross compilation environment.
2550 @item You can install QEMU in the installation directory by typing
2551 @code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
2552 installation directory.
2554 @end itemize
2556 Wine can be used to launch the resulting qemu.exe compiled for Win32.
2558 @node Mac OS X
2559 @section Mac OS X
2561 The Mac OS X patches are not fully merged in QEMU, so you should look
2562 at the QEMU mailing list archive to have all the necessary
2563 information.
2565 @node Make targets
2566 @section Make targets
2568 @table @code
2570 @item make
2571 @item make all
2572 Make everything which is typically needed.
2574 @item install
2575 TODO
2577 @item install-doc
2578 TODO
2580 @item make clean
2581 Remove most files which were built during make.
2583 @item make distclean
2584 Remove everything which was built during make.
2586 @item make dvi
2587 @item make html
2588 @item make info
2589 @item make pdf
2590 Create documentation in dvi, html, info or pdf format.
2592 @item make cscope
2593 TODO
2595 @item make defconfig
2596 (Re-)create some build configuration files.
2597 User made changes will be overwritten.
2599 @item tar
2600 @item tarbin
2601 TODO
2603 @end table
2605 @node License
2606 @appendix License
2608 QEMU is a trademark of Fabrice Bellard.
2610 QEMU is released under the GNU General Public License (TODO: add link).
2611 Parts of QEMU have specific licenses, see file LICENSE.
2613 TODO (refer to file LICENSE, include it, include the GPL?)
2615 @node Index
2616 @appendix Index
2617 @menu
2618 * Concept Index::
2619 * Function Index::
2620 * Keystroke Index::
2621 * Program Index::
2622 * Data Type Index::
2623 * Variable Index::
2624 @end menu
2626 @node Concept Index
2627 @section Concept Index
2628 This is the main index. Should we combine all keywords in one index? TODO
2629 @printindex cp
2631 @node Function Index
2632 @section Function Index
2633 This index could be used for command line options and monitor functions.
2634 @printindex fn
2636 @node Keystroke Index
2637 @section Keystroke Index
2639 This is a list of all keystrokes which have a special function
2640 in system emulation.
2642 @printindex ky
2644 @node Program Index
2645 @section Program Index
2646 @printindex pg
2648 @node Data Type Index
2649 @section Data Type Index
2651 This index could be used for qdev device names and options.
2653 @printindex tp
2655 @node Variable Index
2656 @section Variable Index
2657 @printindex vr
2659 @bye