4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu-common.h"
21 #ifdef CONFIG_USER_ONLY
33 #include "qemu-char.h"
38 #define MAX_PACKET_LENGTH 4096
40 #include "qemu_socket.h"
48 GDB_SIGNAL_UNKNOWN
= 143
51 #ifdef CONFIG_USER_ONLY
53 /* Map target signal numbers to GDB protocol signal numbers and vice
54 * versa. For user emulation's currently supported systems, we can
55 * assume most signals are defined.
58 static int gdb_signal_table
[] = {
218 /* In system mode we only need SIGINT and SIGTRAP; other signals
219 are not yet supported. */
226 static int gdb_signal_table
[] = {
236 #ifdef CONFIG_USER_ONLY
237 static int target_signal_to_gdb (int sig
)
240 for (i
= 0; i
< ARRAY_SIZE (gdb_signal_table
); i
++)
241 if (gdb_signal_table
[i
] == sig
)
243 return GDB_SIGNAL_UNKNOWN
;
247 static int gdb_signal_to_target (int sig
)
249 if (sig
< ARRAY_SIZE (gdb_signal_table
))
250 return gdb_signal_table
[sig
];
257 typedef struct GDBRegisterState
{
263 struct GDBRegisterState
*next
;
274 typedef struct GDBState
{
275 CPUState
*c_cpu
; /* current CPU for step/continue ops */
276 CPUState
*g_cpu
; /* current CPU for other ops */
277 CPUState
*query_cpu
; /* for q{f|s}ThreadInfo */
278 enum RSState state
; /* parsing state */
279 char line_buf
[MAX_PACKET_LENGTH
];
282 uint8_t last_packet
[MAX_PACKET_LENGTH
+ 4];
285 #ifdef CONFIG_USER_ONLY
289 CharDriverState
*chr
;
290 CharDriverState
*mon_chr
;
294 /* By default use no IRQs and no timers while single stepping so as to
295 * make single stepping like an ICE HW step.
297 static int sstep_flags
= SSTEP_ENABLE
|SSTEP_NOIRQ
|SSTEP_NOTIMER
;
299 static GDBState
*gdbserver_state
;
301 /* This is an ugly hack to cope with both new and old gdb.
302 If gdb sends qXfer:features:read then assume we're talking to a newish
303 gdb that understands target descriptions. */
304 static int gdb_has_xml
;
306 #ifdef CONFIG_USER_ONLY
307 /* XXX: This is not thread safe. Do we care? */
308 static int gdbserver_fd
= -1;
310 static int get_char(GDBState
*s
)
316 ret
= recv(s
->fd
, &ch
, 1, 0);
318 if (errno
== ECONNRESET
)
320 if (errno
!= EINTR
&& errno
!= EAGAIN
)
322 } else if (ret
== 0) {
334 static gdb_syscall_complete_cb gdb_current_syscall_cb
;
342 /* If gdb is connected when the first semihosting syscall occurs then use
343 remote gdb syscalls. Otherwise use native file IO. */
344 int use_gdb_syscalls(void)
346 if (gdb_syscall_mode
== GDB_SYS_UNKNOWN
) {
347 gdb_syscall_mode
= (gdbserver_state
? GDB_SYS_ENABLED
350 return gdb_syscall_mode
== GDB_SYS_ENABLED
;
353 /* Resume execution. */
354 static inline void gdb_continue(GDBState
*s
)
356 #ifdef CONFIG_USER_ONLY
357 s
->running_state
= 1;
363 static void put_buffer(GDBState
*s
, const uint8_t *buf
, int len
)
365 #ifdef CONFIG_USER_ONLY
369 ret
= send(s
->fd
, buf
, len
, 0);
371 if (errno
!= EINTR
&& errno
!= EAGAIN
)
379 qemu_chr_write(s
->chr
, buf
, len
);
383 static inline int fromhex(int v
)
385 if (v
>= '0' && v
<= '9')
387 else if (v
>= 'A' && v
<= 'F')
389 else if (v
>= 'a' && v
<= 'f')
395 static inline int tohex(int v
)
403 static void memtohex(char *buf
, const uint8_t *mem
, int len
)
408 for(i
= 0; i
< len
; i
++) {
410 *q
++ = tohex(c
>> 4);
411 *q
++ = tohex(c
& 0xf);
416 static void hextomem(uint8_t *mem
, const char *buf
, int len
)
420 for(i
= 0; i
< len
; i
++) {
421 mem
[i
] = (fromhex(buf
[0]) << 4) | fromhex(buf
[1]);
426 /* return -1 if error, 0 if OK */
427 static int put_packet_binary(GDBState
*s
, const char *buf
, int len
)
438 for(i
= 0; i
< len
; i
++) {
442 *(p
++) = tohex((csum
>> 4) & 0xf);
443 *(p
++) = tohex((csum
) & 0xf);
445 s
->last_packet_len
= p
- s
->last_packet
;
446 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
448 #ifdef CONFIG_USER_ONLY
461 /* return -1 if error, 0 if OK */
462 static int put_packet(GDBState
*s
, const char *buf
)
465 printf("reply='%s'\n", buf
);
468 return put_packet_binary(s
, buf
, strlen(buf
));
471 /* The GDB remote protocol transfers values in target byte order. This means
472 we can use the raw memory access routines to access the value buffer.
473 Conveniently, these also handle the case where the buffer is mis-aligned.
475 #define GET_REG8(val) do { \
476 stb_p(mem_buf, val); \
479 #define GET_REG16(val) do { \
480 stw_p(mem_buf, val); \
483 #define GET_REG32(val) do { \
484 stl_p(mem_buf, val); \
487 #define GET_REG64(val) do { \
488 stq_p(mem_buf, val); \
492 #if TARGET_LONG_BITS == 64
493 #define GET_REGL(val) GET_REG64(val)
494 #define ldtul_p(addr) ldq_p(addr)
496 #define GET_REGL(val) GET_REG32(val)
497 #define ldtul_p(addr) ldl_p(addr)
500 #if defined(TARGET_I386)
503 static const int gpr_map
[16] = {
504 R_EAX
, R_EBX
, R_ECX
, R_EDX
, R_ESI
, R_EDI
, R_EBP
, R_ESP
,
505 8, 9, 10, 11, 12, 13, 14, 15
508 #define gpr_map gpr_map32
510 static const int gpr_map32
[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
512 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
514 #define IDX_IP_REG CPU_NB_REGS
515 #define IDX_FLAGS_REG (IDX_IP_REG + 1)
516 #define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
517 #define IDX_FP_REGS (IDX_SEG_REGS + 6)
518 #define IDX_XMM_REGS (IDX_FP_REGS + 16)
519 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
521 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
523 if (n
< CPU_NB_REGS
) {
524 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
525 GET_REG64(env
->regs
[gpr_map
[n
]]);
526 } else if (n
< CPU_NB_REGS32
) {
527 GET_REG32(env
->regs
[gpr_map32
[n
]]);
529 } else if (n
>= IDX_FP_REGS
&& n
< IDX_FP_REGS
+ 8) {
530 #ifdef USE_X86LDOUBLE
531 /* FIXME: byteswap float values - after fixing fpregs layout. */
532 memcpy(mem_buf
, &env
->fpregs
[n
- IDX_FP_REGS
], 10);
534 memset(mem_buf
, 0, 10);
537 } else if (n
>= IDX_XMM_REGS
&& n
< IDX_XMM_REGS
+ CPU_NB_REGS
) {
539 if (n
< CPU_NB_REGS32
||
540 (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
)) {
541 stq_p(mem_buf
, env
->xmm_regs
[n
].XMM_Q(0));
542 stq_p(mem_buf
+ 8, env
->xmm_regs
[n
].XMM_Q(1));
548 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
553 case IDX_FLAGS_REG
: GET_REG32(env
->eflags
);
555 case IDX_SEG_REGS
: GET_REG32(env
->segs
[R_CS
].selector
);
556 case IDX_SEG_REGS
+ 1: GET_REG32(env
->segs
[R_SS
].selector
);
557 case IDX_SEG_REGS
+ 2: GET_REG32(env
->segs
[R_DS
].selector
);
558 case IDX_SEG_REGS
+ 3: GET_REG32(env
->segs
[R_ES
].selector
);
559 case IDX_SEG_REGS
+ 4: GET_REG32(env
->segs
[R_FS
].selector
);
560 case IDX_SEG_REGS
+ 5: GET_REG32(env
->segs
[R_GS
].selector
);
562 case IDX_FP_REGS
+ 8: GET_REG32(env
->fpuc
);
563 case IDX_FP_REGS
+ 9: GET_REG32((env
->fpus
& ~0x3800) |
564 (env
->fpstt
& 0x7) << 11);
565 case IDX_FP_REGS
+ 10: GET_REG32(0); /* ftag */
566 case IDX_FP_REGS
+ 11: GET_REG32(0); /* fiseg */
567 case IDX_FP_REGS
+ 12: GET_REG32(0); /* fioff */
568 case IDX_FP_REGS
+ 13: GET_REG32(0); /* foseg */
569 case IDX_FP_REGS
+ 14: GET_REG32(0); /* fooff */
570 case IDX_FP_REGS
+ 15: GET_REG32(0); /* fop */
572 case IDX_MXCSR_REG
: GET_REG32(env
->mxcsr
);
578 static int cpu_x86_gdb_load_seg(CPUState
*env
, int sreg
, uint8_t *mem_buf
)
580 uint16_t selector
= ldl_p(mem_buf
);
582 if (selector
!= env
->segs
[sreg
].selector
) {
583 #if defined(CONFIG_USER_ONLY)
584 cpu_x86_load_seg(env
, sreg
, selector
);
586 unsigned int limit
, flags
;
589 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
590 base
= selector
<< 4;
594 if (!cpu_x86_get_descr_debug(env
, selector
, &base
, &limit
, &flags
))
597 cpu_x86_load_seg_cache(env
, sreg
, selector
, base
, limit
, flags
);
603 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
607 if (n
< CPU_NB_REGS
) {
608 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
609 env
->regs
[gpr_map
[n
]] = ldtul_p(mem_buf
);
610 return sizeof(target_ulong
);
611 } else if (n
< CPU_NB_REGS32
) {
613 env
->regs
[n
] &= ~0xffffffffUL
;
614 env
->regs
[n
] |= (uint32_t)ldl_p(mem_buf
);
617 } else if (n
>= IDX_FP_REGS
&& n
< IDX_FP_REGS
+ 8) {
618 #ifdef USE_X86LDOUBLE
619 /* FIXME: byteswap float values - after fixing fpregs layout. */
620 memcpy(&env
->fpregs
[n
- IDX_FP_REGS
], mem_buf
, 10);
623 } else if (n
>= IDX_XMM_REGS
&& n
< IDX_XMM_REGS
+ CPU_NB_REGS
) {
625 if (n
< CPU_NB_REGS32
||
626 (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
)) {
627 env
->xmm_regs
[n
].XMM_Q(0) = ldq_p(mem_buf
);
628 env
->xmm_regs
[n
].XMM_Q(1) = ldq_p(mem_buf
+ 8);
634 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
635 env
->eip
= ldq_p(mem_buf
);
638 env
->eip
&= ~0xffffffffUL
;
639 env
->eip
|= (uint32_t)ldl_p(mem_buf
);
643 env
->eflags
= ldl_p(mem_buf
);
646 case IDX_SEG_REGS
: return cpu_x86_gdb_load_seg(env
, R_CS
, mem_buf
);
647 case IDX_SEG_REGS
+ 1: return cpu_x86_gdb_load_seg(env
, R_SS
, mem_buf
);
648 case IDX_SEG_REGS
+ 2: return cpu_x86_gdb_load_seg(env
, R_DS
, mem_buf
);
649 case IDX_SEG_REGS
+ 3: return cpu_x86_gdb_load_seg(env
, R_ES
, mem_buf
);
650 case IDX_SEG_REGS
+ 4: return cpu_x86_gdb_load_seg(env
, R_FS
, mem_buf
);
651 case IDX_SEG_REGS
+ 5: return cpu_x86_gdb_load_seg(env
, R_GS
, mem_buf
);
653 case IDX_FP_REGS
+ 8:
654 env
->fpuc
= ldl_p(mem_buf
);
656 case IDX_FP_REGS
+ 9:
657 tmp
= ldl_p(mem_buf
);
658 env
->fpstt
= (tmp
>> 11) & 7;
659 env
->fpus
= tmp
& ~0x3800;
661 case IDX_FP_REGS
+ 10: /* ftag */ return 4;
662 case IDX_FP_REGS
+ 11: /* fiseg */ return 4;
663 case IDX_FP_REGS
+ 12: /* fioff */ return 4;
664 case IDX_FP_REGS
+ 13: /* foseg */ return 4;
665 case IDX_FP_REGS
+ 14: /* fooff */ return 4;
666 case IDX_FP_REGS
+ 15: /* fop */ return 4;
669 env
->mxcsr
= ldl_p(mem_buf
);
673 /* Unrecognised register. */
677 #elif defined (TARGET_PPC)
679 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
680 expects whatever the target description contains. Due to a
681 historical mishap the FP registers appear in between core integer
682 regs and PC, MSR, CR, and so forth. We hack round this by giving the
683 FP regs zero size when talking to a newer gdb. */
684 #define NUM_CORE_REGS 71
685 #if defined (TARGET_PPC64)
686 #define GDB_CORE_XML "power64-core.xml"
688 #define GDB_CORE_XML "power-core.xml"
691 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
695 GET_REGL(env
->gpr
[n
]);
700 stfq_p(mem_buf
, env
->fpr
[n
-32]);
704 case 64: GET_REGL(env
->nip
);
705 case 65: GET_REGL(env
->msr
);
710 for (i
= 0; i
< 8; i
++)
711 cr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
714 case 67: GET_REGL(env
->lr
);
715 case 68: GET_REGL(env
->ctr
);
716 case 69: GET_REGL(env
->xer
);
721 GET_REG32(0); /* fpscr */
728 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
732 env
->gpr
[n
] = ldtul_p(mem_buf
);
733 return sizeof(target_ulong
);
738 env
->fpr
[n
-32] = ldfq_p(mem_buf
);
743 env
->nip
= ldtul_p(mem_buf
);
744 return sizeof(target_ulong
);
746 ppc_store_msr(env
, ldtul_p(mem_buf
));
747 return sizeof(target_ulong
);
750 uint32_t cr
= ldl_p(mem_buf
);
752 for (i
= 0; i
< 8; i
++)
753 env
->crf
[i
] = (cr
>> (32 - ((i
+ 1) * 4))) & 0xF;
757 env
->lr
= ldtul_p(mem_buf
);
758 return sizeof(target_ulong
);
760 env
->ctr
= ldtul_p(mem_buf
);
761 return sizeof(target_ulong
);
763 env
->xer
= ldtul_p(mem_buf
);
764 return sizeof(target_ulong
);
775 #elif defined (TARGET_SPARC)
777 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
778 #define NUM_CORE_REGS 86
780 #define NUM_CORE_REGS 72
784 #define GET_REGA(val) GET_REG32(val)
786 #define GET_REGA(val) GET_REGL(val)
789 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
793 GET_REGA(env
->gregs
[n
]);
796 /* register window */
797 GET_REGA(env
->regwptr
[n
- 8]);
799 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
802 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
804 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
806 case 64: GET_REGA(env
->y
);
807 case 65: GET_REGA(GET_PSR(env
));
808 case 66: GET_REGA(env
->wim
);
809 case 67: GET_REGA(env
->tbr
);
810 case 68: GET_REGA(env
->pc
);
811 case 69: GET_REGA(env
->npc
);
812 case 70: GET_REGA(env
->fsr
);
813 case 71: GET_REGA(0); /* csr */
814 default: GET_REGA(0);
819 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
822 /* f32-f62 (double width, even numbers only) */
825 val
= (uint64_t)*((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) << 32;
826 val
|= *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]);
830 case 80: GET_REGL(env
->pc
);
831 case 81: GET_REGL(env
->npc
);
832 case 82: GET_REGL(((uint64_t)GET_CCR(env
) << 32) |
833 ((env
->asi
& 0xff) << 24) |
834 ((env
->pstate
& 0xfff) << 8) |
836 case 83: GET_REGL(env
->fsr
);
837 case 84: GET_REGL(env
->fprs
);
838 case 85: GET_REGL(env
->y
);
844 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
846 #if defined(TARGET_ABI32)
849 tmp
= ldl_p(mem_buf
);
853 tmp
= ldtul_p(mem_buf
);
860 /* register window */
861 env
->regwptr
[n
- 8] = tmp
;
863 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
866 *((uint32_t *)&env
->fpr
[n
- 32]) = tmp
;
868 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
870 case 64: env
->y
= tmp
; break;
871 case 65: PUT_PSR(env
, tmp
); break;
872 case 66: env
->wim
= tmp
; break;
873 case 67: env
->tbr
= tmp
; break;
874 case 68: env
->pc
= tmp
; break;
875 case 69: env
->npc
= tmp
; break;
876 case 70: env
->fsr
= tmp
; break;
884 env
->fpr
[n
] = ldfl_p(mem_buf
);
887 /* f32-f62 (double width, even numbers only) */
888 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) = tmp
>> 32;
889 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]) = tmp
;
892 case 80: env
->pc
= tmp
; break;
893 case 81: env
->npc
= tmp
; break;
895 PUT_CCR(env
, tmp
>> 32);
896 env
->asi
= (tmp
>> 24) & 0xff;
897 env
->pstate
= (tmp
>> 8) & 0xfff;
898 PUT_CWP64(env
, tmp
& 0xff);
900 case 83: env
->fsr
= tmp
; break;
901 case 84: env
->fprs
= tmp
; break;
902 case 85: env
->y
= tmp
; break;
909 #elif defined (TARGET_ARM)
911 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
912 whatever the target description contains. Due to a historical mishap
913 the FPA registers appear in between core integer regs and the CPSR.
914 We hack round this by giving the FPA regs zero size when talking to a
916 #define NUM_CORE_REGS 26
917 #define GDB_CORE_XML "arm-core.xml"
919 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
922 /* Core integer register. */
923 GET_REG32(env
->regs
[n
]);
929 memset(mem_buf
, 0, 12);
934 /* FPA status register. */
940 GET_REG32(cpsr_read(env
));
942 /* Unknown register. */
946 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
950 tmp
= ldl_p(mem_buf
);
952 /* Mask out low bit of PC to workaround gdb bugs. This will probably
953 cause problems if we ever implement the Jazelle DBX extensions. */
958 /* Core integer register. */
962 if (n
< 24) { /* 16-23 */
963 /* FPA registers (ignored). */
970 /* FPA status register (ignored). */
976 cpsr_write (env
, tmp
, 0xffffffff);
979 /* Unknown register. */
983 #elif defined (TARGET_M68K)
985 #define NUM_CORE_REGS 18
987 #define GDB_CORE_XML "cf-core.xml"
989 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
993 GET_REG32(env
->dregs
[n
]);
996 GET_REG32(env
->aregs
[n
- 8]);
999 case 16: GET_REG32(env
->sr
);
1000 case 17: GET_REG32(env
->pc
);
1003 /* FP registers not included here because they vary between
1004 ColdFire and m68k. Use XML bits for these. */
1008 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1012 tmp
= ldl_p(mem_buf
);
1016 env
->dregs
[n
] = tmp
;
1019 env
->aregs
[n
- 8] = tmp
;
1022 case 16: env
->sr
= tmp
; break;
1023 case 17: env
->pc
= tmp
; break;
1029 #elif defined (TARGET_MIPS)
1031 #define NUM_CORE_REGS 73
1033 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1036 GET_REGL(env
->active_tc
.gpr
[n
]);
1038 if (env
->CP0_Config1
& (1 << CP0C1_FP
)) {
1039 if (n
>= 38 && n
< 70) {
1040 if (env
->CP0_Status
& (1 << CP0St_FR
))
1041 GET_REGL(env
->active_fpu
.fpr
[n
- 38].d
);
1043 GET_REGL(env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
]);
1046 case 70: GET_REGL((int32_t)env
->active_fpu
.fcr31
);
1047 case 71: GET_REGL((int32_t)env
->active_fpu
.fcr0
);
1051 case 32: GET_REGL((int32_t)env
->CP0_Status
);
1052 case 33: GET_REGL(env
->active_tc
.LO
[0]);
1053 case 34: GET_REGL(env
->active_tc
.HI
[0]);
1054 case 35: GET_REGL(env
->CP0_BadVAddr
);
1055 case 36: GET_REGL((int32_t)env
->CP0_Cause
);
1056 case 37: GET_REGL(env
->active_tc
.PC
);
1057 case 72: GET_REGL(0); /* fp */
1058 case 89: GET_REGL((int32_t)env
->CP0_PRid
);
1060 if (n
>= 73 && n
<= 88) {
1061 /* 16 embedded regs. */
1068 /* convert MIPS rounding mode in FCR31 to IEEE library */
1069 static unsigned int ieee_rm
[] =
1071 float_round_nearest_even
,
1072 float_round_to_zero
,
1076 #define RESTORE_ROUNDING_MODE \
1077 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1079 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1083 tmp
= ldtul_p(mem_buf
);
1086 env
->active_tc
.gpr
[n
] = tmp
;
1087 return sizeof(target_ulong
);
1089 if (env
->CP0_Config1
& (1 << CP0C1_FP
)
1090 && n
>= 38 && n
< 73) {
1092 if (env
->CP0_Status
& (1 << CP0St_FR
))
1093 env
->active_fpu
.fpr
[n
- 38].d
= tmp
;
1095 env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
] = tmp
;
1099 env
->active_fpu
.fcr31
= tmp
& 0xFF83FFFF;
1100 /* set rounding mode */
1101 RESTORE_ROUNDING_MODE
;
1102 #ifndef CONFIG_SOFTFLOAT
1103 /* no floating point exception for native float */
1104 SET_FP_ENABLE(env
->active_fpu
.fcr31
, 0);
1107 case 71: env
->active_fpu
.fcr0
= tmp
; break;
1109 return sizeof(target_ulong
);
1112 case 32: env
->CP0_Status
= tmp
; break;
1113 case 33: env
->active_tc
.LO
[0] = tmp
; break;
1114 case 34: env
->active_tc
.HI
[0] = tmp
; break;
1115 case 35: env
->CP0_BadVAddr
= tmp
; break;
1116 case 36: env
->CP0_Cause
= tmp
; break;
1117 case 37: env
->active_tc
.PC
= tmp
; break;
1118 case 72: /* fp, ignored */ break;
1122 /* Other registers are readonly. Ignore writes. */
1126 return sizeof(target_ulong
);
1128 #elif defined (TARGET_SH4)
1130 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1131 /* FIXME: We should use XML for this. */
1133 #define NUM_CORE_REGS 59
1135 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1138 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1139 GET_REGL(env
->gregs
[n
+ 16]);
1141 GET_REGL(env
->gregs
[n
]);
1143 } else if (n
< 16) {
1144 GET_REGL(env
->gregs
[n
- 8]);
1145 } else if (n
>= 25 && n
< 41) {
1146 GET_REGL(env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)]);
1147 } else if (n
>= 43 && n
< 51) {
1148 GET_REGL(env
->gregs
[n
- 43]);
1149 } else if (n
>= 51 && n
< 59) {
1150 GET_REGL(env
->gregs
[n
- (51 - 16)]);
1153 case 16: GET_REGL(env
->pc
);
1154 case 17: GET_REGL(env
->pr
);
1155 case 18: GET_REGL(env
->gbr
);
1156 case 19: GET_REGL(env
->vbr
);
1157 case 20: GET_REGL(env
->mach
);
1158 case 21: GET_REGL(env
->macl
);
1159 case 22: GET_REGL(env
->sr
);
1160 case 23: GET_REGL(env
->fpul
);
1161 case 24: GET_REGL(env
->fpscr
);
1162 case 41: GET_REGL(env
->ssr
);
1163 case 42: GET_REGL(env
->spc
);
1169 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1173 tmp
= ldl_p(mem_buf
);
1176 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1177 env
->gregs
[n
+ 16] = tmp
;
1179 env
->gregs
[n
] = tmp
;
1182 } else if (n
< 16) {
1183 env
->gregs
[n
- 8] = tmp
;
1185 } else if (n
>= 25 && n
< 41) {
1186 env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)] = tmp
;
1187 } else if (n
>= 43 && n
< 51) {
1188 env
->gregs
[n
- 43] = tmp
;
1190 } else if (n
>= 51 && n
< 59) {
1191 env
->gregs
[n
- (51 - 16)] = tmp
;
1195 case 16: env
->pc
= tmp
;
1196 case 17: env
->pr
= tmp
;
1197 case 18: env
->gbr
= tmp
;
1198 case 19: env
->vbr
= tmp
;
1199 case 20: env
->mach
= tmp
;
1200 case 21: env
->macl
= tmp
;
1201 case 22: env
->sr
= tmp
;
1202 case 23: env
->fpul
= tmp
;
1203 case 24: env
->fpscr
= tmp
;
1204 case 41: env
->ssr
= tmp
;
1205 case 42: env
->spc
= tmp
;
1211 #elif defined (TARGET_MICROBLAZE)
1213 #define NUM_CORE_REGS (32 + 5)
1215 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1218 GET_REG32(env
->regs
[n
]);
1220 GET_REG32(env
->sregs
[n
- 32]);
1225 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1229 if (n
> NUM_CORE_REGS
)
1232 tmp
= ldl_p(mem_buf
);
1237 env
->sregs
[n
- 32] = tmp
;
1241 #elif defined (TARGET_CRIS)
1243 #define NUM_CORE_REGS 49
1245 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1249 srs
= env
->pregs
[PR_SRS
];
1251 GET_REG32(env
->regs
[n
]);
1254 if (n
>= 21 && n
< 32) {
1255 GET_REG32(env
->pregs
[n
- 16]);
1257 if (n
>= 33 && n
< 49) {
1258 GET_REG32(env
->sregs
[srs
][n
- 33]);
1261 case 16: GET_REG8(env
->pregs
[0]);
1262 case 17: GET_REG8(env
->pregs
[1]);
1263 case 18: GET_REG32(env
->pregs
[2]);
1264 case 19: GET_REG8(srs
);
1265 case 20: GET_REG16(env
->pregs
[4]);
1266 case 32: GET_REG32(env
->pc
);
1272 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1279 tmp
= ldl_p(mem_buf
);
1285 if (n
>= 21 && n
< 32) {
1286 env
->pregs
[n
- 16] = tmp
;
1289 /* FIXME: Should support function regs be writable? */
1293 case 18: env
->pregs
[PR_PID
] = tmp
; break;
1296 case 32: env
->pc
= tmp
; break;
1301 #elif defined (TARGET_ALPHA)
1303 #define NUM_CORE_REGS 65
1305 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1308 GET_REGL(env
->ir
[n
]);
1316 val
= *((uint64_t *)&env
->fir
[n
-32]);
1320 GET_REGL(env
->fpcr
);
1332 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1335 tmp
= ldtul_p(mem_buf
);
1341 if (n
> 31 && n
< 63) {
1342 env
->fir
[n
- 32] = ldfl_p(mem_buf
);
1353 #define NUM_CORE_REGS 0
1355 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1360 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1367 static int num_g_regs
= NUM_CORE_REGS
;
1370 /* Encode data using the encoding for 'x' packets. */
1371 static int memtox(char *buf
, const char *mem
, int len
)
1379 case '#': case '$': case '*': case '}':
1391 static const char *get_feature_xml(const char *p
, const char **newp
)
1393 extern const char *const xml_builtin
[][2];
1397 static char target_xml
[1024];
1400 while (p
[len
] && p
[len
] != ':')
1405 if (strncmp(p
, "target.xml", len
) == 0) {
1406 /* Generate the XML description for this CPU. */
1407 if (!target_xml
[0]) {
1408 GDBRegisterState
*r
;
1410 snprintf(target_xml
, sizeof(target_xml
),
1411 "<?xml version=\"1.0\"?>"
1412 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1414 "<xi:include href=\"%s\"/>",
1417 for (r
= first_cpu
->gdb_regs
; r
; r
= r
->next
) {
1418 pstrcat(target_xml
, sizeof(target_xml
), "<xi:include href=\"");
1419 pstrcat(target_xml
, sizeof(target_xml
), r
->xml
);
1420 pstrcat(target_xml
, sizeof(target_xml
), "\"/>");
1422 pstrcat(target_xml
, sizeof(target_xml
), "</target>");
1426 for (i
= 0; ; i
++) {
1427 name
= xml_builtin
[i
][0];
1428 if (!name
|| (strncmp(name
, p
, len
) == 0 && strlen(name
) == len
))
1431 return name
? xml_builtin
[i
][1] : NULL
;
1435 static int gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1437 GDBRegisterState
*r
;
1439 if (reg
< NUM_CORE_REGS
)
1440 return cpu_gdb_read_register(env
, mem_buf
, reg
);
1442 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1443 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1444 return r
->get_reg(env
, mem_buf
, reg
- r
->base_reg
);
1450 static int gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1452 GDBRegisterState
*r
;
1454 if (reg
< NUM_CORE_REGS
)
1455 return cpu_gdb_write_register(env
, mem_buf
, reg
);
1457 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1458 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1459 return r
->set_reg(env
, mem_buf
, reg
- r
->base_reg
);
1465 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1466 specifies the first register number and these registers are included in
1467 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1468 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1471 void gdb_register_coprocessor(CPUState
* env
,
1472 gdb_reg_cb get_reg
, gdb_reg_cb set_reg
,
1473 int num_regs
, const char *xml
, int g_pos
)
1475 GDBRegisterState
*s
;
1476 GDBRegisterState
**p
;
1477 static int last_reg
= NUM_CORE_REGS
;
1479 s
= (GDBRegisterState
*)qemu_mallocz(sizeof(GDBRegisterState
));
1480 s
->base_reg
= last_reg
;
1481 s
->num_regs
= num_regs
;
1482 s
->get_reg
= get_reg
;
1483 s
->set_reg
= set_reg
;
1487 /* Check for duplicates. */
1488 if (strcmp((*p
)->xml
, xml
) == 0)
1492 /* Add to end of list. */
1493 last_reg
+= num_regs
;
1496 if (g_pos
!= s
->base_reg
) {
1497 fprintf(stderr
, "Error: Bad gdb register numbering for '%s'\n"
1498 "Expected %d got %d\n", xml
, g_pos
, s
->base_reg
);
1500 num_g_regs
= last_reg
;
1505 #ifndef CONFIG_USER_ONLY
1506 static const int xlat_gdb_type
[] = {
1507 [GDB_WATCHPOINT_WRITE
] = BP_GDB
| BP_MEM_WRITE
,
1508 [GDB_WATCHPOINT_READ
] = BP_GDB
| BP_MEM_READ
,
1509 [GDB_WATCHPOINT_ACCESS
] = BP_GDB
| BP_MEM_ACCESS
,
1513 static int gdb_breakpoint_insert(target_ulong addr
, target_ulong len
, int type
)
1519 return kvm_insert_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1522 case GDB_BREAKPOINT_SW
:
1523 case GDB_BREAKPOINT_HW
:
1524 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1525 err
= cpu_breakpoint_insert(env
, addr
, BP_GDB
, NULL
);
1530 #ifndef CONFIG_USER_ONLY
1531 case GDB_WATCHPOINT_WRITE
:
1532 case GDB_WATCHPOINT_READ
:
1533 case GDB_WATCHPOINT_ACCESS
:
1534 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1535 err
= cpu_watchpoint_insert(env
, addr
, len
, xlat_gdb_type
[type
],
1547 static int gdb_breakpoint_remove(target_ulong addr
, target_ulong len
, int type
)
1553 return kvm_remove_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1556 case GDB_BREAKPOINT_SW
:
1557 case GDB_BREAKPOINT_HW
:
1558 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1559 err
= cpu_breakpoint_remove(env
, addr
, BP_GDB
);
1564 #ifndef CONFIG_USER_ONLY
1565 case GDB_WATCHPOINT_WRITE
:
1566 case GDB_WATCHPOINT_READ
:
1567 case GDB_WATCHPOINT_ACCESS
:
1568 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1569 err
= cpu_watchpoint_remove(env
, addr
, len
, xlat_gdb_type
[type
]);
1580 static void gdb_breakpoint_remove_all(void)
1584 if (kvm_enabled()) {
1585 kvm_remove_all_breakpoints(gdbserver_state
->c_cpu
);
1589 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1590 cpu_breakpoint_remove_all(env
, BP_GDB
);
1591 #ifndef CONFIG_USER_ONLY
1592 cpu_watchpoint_remove_all(env
, BP_GDB
);
1597 static void gdb_set_cpu_pc(GDBState
*s
, target_ulong pc
)
1599 #if defined(TARGET_I386)
1600 cpu_synchronize_state(s
->c_cpu
);
1602 #elif defined (TARGET_PPC)
1604 #elif defined (TARGET_SPARC)
1606 s
->c_cpu
->npc
= pc
+ 4;
1607 #elif defined (TARGET_ARM)
1608 s
->c_cpu
->regs
[15] = pc
;
1609 #elif defined (TARGET_SH4)
1611 #elif defined (TARGET_MIPS)
1612 s
->c_cpu
->active_tc
.PC
= pc
;
1613 #elif defined (TARGET_MICROBLAZE)
1614 s
->c_cpu
->sregs
[SR_PC
] = pc
;
1615 #elif defined (TARGET_CRIS)
1617 #elif defined (TARGET_ALPHA)
1622 static inline int gdb_id(CPUState
*env
)
1624 #if defined(CONFIG_USER_ONLY) && defined(CONFIG_USE_NPTL)
1625 return env
->host_tid
;
1627 return env
->cpu_index
+ 1;
1631 static CPUState
*find_cpu(uint32_t thread_id
)
1635 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1636 if (gdb_id(env
) == thread_id
) {
1644 static int gdb_handle_packet(GDBState
*s
, const char *line_buf
)
1649 int ch
, reg_size
, type
, res
;
1650 char buf
[MAX_PACKET_LENGTH
];
1651 uint8_t mem_buf
[MAX_PACKET_LENGTH
];
1653 target_ulong addr
, len
;
1656 printf("command='%s'\n", line_buf
);
1662 /* TODO: Make this return the correct value for user-mode. */
1663 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", GDB_SIGNAL_TRAP
,
1666 /* Remove all the breakpoints when this query is issued,
1667 * because gdb is doing and initial connect and the state
1668 * should be cleaned up.
1670 gdb_breakpoint_remove_all();
1674 addr
= strtoull(p
, (char **)&p
, 16);
1675 gdb_set_cpu_pc(s
, addr
);
1681 s
->signal
= gdb_signal_to_target (strtoul(p
, (char **)&p
, 16));
1682 if (s
->signal
== -1)
1687 if (strncmp(p
, "Cont", 4) == 0) {
1688 int res_signal
, res_thread
;
1692 put_packet(s
, "vCont;c;C;s;S");
1707 if (action
== 'C' || action
== 'S') {
1708 signal
= strtoul(p
, (char **)&p
, 16);
1709 } else if (action
!= 'c' && action
!= 's') {
1715 thread
= strtoull(p
+1, (char **)&p
, 16);
1717 action
= tolower(action
);
1718 if (res
== 0 || (res
== 'c' && action
== 's')) {
1720 res_signal
= signal
;
1721 res_thread
= thread
;
1725 if (res_thread
!= -1 && res_thread
!= 0) {
1726 env
= find_cpu(res_thread
);
1728 put_packet(s
, "E22");
1734 cpu_single_step(s
->c_cpu
, sstep_flags
);
1736 s
->signal
= res_signal
;
1742 goto unknown_command
;
1745 /* Kill the target */
1746 fprintf(stderr
, "\nQEMU: Terminated via GDBstub\n");
1750 gdb_breakpoint_remove_all();
1752 put_packet(s
, "OK");
1756 addr
= strtoull(p
, (char **)&p
, 16);
1757 gdb_set_cpu_pc(s
, addr
);
1759 cpu_single_step(s
->c_cpu
, sstep_flags
);
1767 ret
= strtoull(p
, (char **)&p
, 16);
1770 err
= strtoull(p
, (char **)&p
, 16);
1777 if (gdb_current_syscall_cb
)
1778 gdb_current_syscall_cb(s
->c_cpu
, ret
, err
);
1780 put_packet(s
, "T02");
1787 cpu_synchronize_state(s
->g_cpu
);
1789 for (addr
= 0; addr
< num_g_regs
; addr
++) {
1790 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
+ len
, addr
);
1793 memtohex(buf
, mem_buf
, len
);
1797 cpu_synchronize_state(s
->g_cpu
);
1798 registers
= mem_buf
;
1799 len
= strlen(p
) / 2;
1800 hextomem((uint8_t *)registers
, p
, len
);
1801 for (addr
= 0; addr
< num_g_regs
&& len
> 0; addr
++) {
1802 reg_size
= gdb_write_register(s
->g_cpu
, registers
, addr
);
1804 registers
+= reg_size
;
1806 put_packet(s
, "OK");
1809 addr
= strtoull(p
, (char **)&p
, 16);
1812 len
= strtoull(p
, NULL
, 16);
1813 if (cpu_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 0) != 0) {
1814 put_packet (s
, "E14");
1816 memtohex(buf
, mem_buf
, len
);
1821 addr
= strtoull(p
, (char **)&p
, 16);
1824 len
= strtoull(p
, (char **)&p
, 16);
1827 hextomem(mem_buf
, p
, len
);
1828 if (cpu_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 1) != 0)
1829 put_packet(s
, "E14");
1831 put_packet(s
, "OK");
1834 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1835 This works, but can be very slow. Anything new enough to
1836 understand XML also knows how to use this properly. */
1838 goto unknown_command
;
1839 addr
= strtoull(p
, (char **)&p
, 16);
1840 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
, addr
);
1842 memtohex(buf
, mem_buf
, reg_size
);
1845 put_packet(s
, "E14");
1850 goto unknown_command
;
1851 addr
= strtoull(p
, (char **)&p
, 16);
1854 reg_size
= strlen(p
) / 2;
1855 hextomem(mem_buf
, p
, reg_size
);
1856 gdb_write_register(s
->g_cpu
, mem_buf
, addr
);
1857 put_packet(s
, "OK");
1861 type
= strtoul(p
, (char **)&p
, 16);
1864 addr
= strtoull(p
, (char **)&p
, 16);
1867 len
= strtoull(p
, (char **)&p
, 16);
1869 res
= gdb_breakpoint_insert(addr
, len
, type
);
1871 res
= gdb_breakpoint_remove(addr
, len
, type
);
1873 put_packet(s
, "OK");
1874 else if (res
== -ENOSYS
)
1877 put_packet(s
, "E22");
1881 thread
= strtoull(p
, (char **)&p
, 16);
1882 if (thread
== -1 || thread
== 0) {
1883 put_packet(s
, "OK");
1886 env
= find_cpu(thread
);
1888 put_packet(s
, "E22");
1894 put_packet(s
, "OK");
1898 put_packet(s
, "OK");
1901 put_packet(s
, "E22");
1906 thread
= strtoull(p
, (char **)&p
, 16);
1907 env
= find_cpu(thread
);
1910 put_packet(s
, "OK");
1912 put_packet(s
, "E22");
1917 /* parse any 'q' packets here */
1918 if (!strcmp(p
,"qemu.sstepbits")) {
1919 /* Query Breakpoint bit definitions */
1920 snprintf(buf
, sizeof(buf
), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1926 } else if (strncmp(p
,"qemu.sstep",10) == 0) {
1927 /* Display or change the sstep_flags */
1930 /* Display current setting */
1931 snprintf(buf
, sizeof(buf
), "0x%x", sstep_flags
);
1936 type
= strtoul(p
, (char **)&p
, 16);
1938 put_packet(s
, "OK");
1940 } else if (strcmp(p
,"C") == 0) {
1941 /* "Current thread" remains vague in the spec, so always return
1942 * the first CPU (gdb returns the first thread). */
1943 put_packet(s
, "QC1");
1945 } else if (strcmp(p
,"fThreadInfo") == 0) {
1946 s
->query_cpu
= first_cpu
;
1947 goto report_cpuinfo
;
1948 } else if (strcmp(p
,"sThreadInfo") == 0) {
1951 snprintf(buf
, sizeof(buf
), "m%x", gdb_id(s
->query_cpu
));
1953 s
->query_cpu
= s
->query_cpu
->next_cpu
;
1957 } else if (strncmp(p
,"ThreadExtraInfo,", 16) == 0) {
1958 thread
= strtoull(p
+16, (char **)&p
, 16);
1959 env
= find_cpu(thread
);
1961 cpu_synchronize_state(env
);
1962 len
= snprintf((char *)mem_buf
, sizeof(mem_buf
),
1963 "CPU#%d [%s]", env
->cpu_index
,
1964 env
->halted
? "halted " : "running");
1965 memtohex(buf
, mem_buf
, len
);
1970 #ifdef CONFIG_USER_ONLY
1971 else if (strncmp(p
, "Offsets", 7) == 0) {
1972 TaskState
*ts
= s
->c_cpu
->opaque
;
1974 snprintf(buf
, sizeof(buf
),
1975 "Text=" TARGET_ABI_FMT_lx
";Data=" TARGET_ABI_FMT_lx
1976 ";Bss=" TARGET_ABI_FMT_lx
,
1977 ts
->info
->code_offset
,
1978 ts
->info
->data_offset
,
1979 ts
->info
->data_offset
);
1983 #else /* !CONFIG_USER_ONLY */
1984 else if (strncmp(p
, "Rcmd,", 5) == 0) {
1985 int len
= strlen(p
+ 5);
1987 if ((len
% 2) != 0) {
1988 put_packet(s
, "E01");
1991 hextomem(mem_buf
, p
+ 5, len
);
1994 qemu_chr_read(s
->mon_chr
, mem_buf
, len
);
1995 put_packet(s
, "OK");
1998 #endif /* !CONFIG_USER_ONLY */
1999 if (strncmp(p
, "Supported", 9) == 0) {
2000 snprintf(buf
, sizeof(buf
), "PacketSize=%x", MAX_PACKET_LENGTH
);
2002 pstrcat(buf
, sizeof(buf
), ";qXfer:features:read+");
2008 if (strncmp(p
, "Xfer:features:read:", 19) == 0) {
2010 target_ulong total_len
;
2014 xml
= get_feature_xml(p
, &p
);
2016 snprintf(buf
, sizeof(buf
), "E00");
2023 addr
= strtoul(p
, (char **)&p
, 16);
2026 len
= strtoul(p
, (char **)&p
, 16);
2028 total_len
= strlen(xml
);
2029 if (addr
> total_len
) {
2030 snprintf(buf
, sizeof(buf
), "E00");
2034 if (len
> (MAX_PACKET_LENGTH
- 5) / 2)
2035 len
= (MAX_PACKET_LENGTH
- 5) / 2;
2036 if (len
< total_len
- addr
) {
2038 len
= memtox(buf
+ 1, xml
+ addr
, len
);
2041 len
= memtox(buf
+ 1, xml
+ addr
, total_len
- addr
);
2043 put_packet_binary(s
, buf
, len
+ 1);
2047 /* Unrecognised 'q' command. */
2048 goto unknown_command
;
2052 /* put empty packet */
2060 void gdb_set_stop_cpu(CPUState
*env
)
2062 gdbserver_state
->c_cpu
= env
;
2063 gdbserver_state
->g_cpu
= env
;
2066 #ifndef CONFIG_USER_ONLY
2067 static void gdb_vm_state_change(void *opaque
, int running
, int reason
)
2069 GDBState
*s
= gdbserver_state
;
2070 CPUState
*env
= s
->c_cpu
;
2075 if (running
|| (reason
!= EXCP_DEBUG
&& reason
!= EXCP_INTERRUPT
) ||
2076 s
->state
== RS_INACTIVE
|| s
->state
== RS_SYSCALL
)
2079 /* disable single step if it was enable */
2080 cpu_single_step(env
, 0);
2082 if (reason
== EXCP_DEBUG
) {
2083 if (env
->watchpoint_hit
) {
2084 switch (env
->watchpoint_hit
->flags
& BP_MEM_ACCESS
) {
2095 snprintf(buf
, sizeof(buf
),
2096 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx
";",
2097 GDB_SIGNAL_TRAP
, gdb_id(env
), type
,
2098 env
->watchpoint_hit
->vaddr
);
2100 env
->watchpoint_hit
= NULL
;
2104 ret
= GDB_SIGNAL_TRAP
;
2106 ret
= GDB_SIGNAL_INT
;
2108 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", ret
, gdb_id(env
));
2113 /* Send a gdb syscall request.
2114 This accepts limited printf-style format specifiers, specifically:
2115 %x - target_ulong argument printed in hex.
2116 %lx - 64-bit argument printed in hex.
2117 %s - string pointer (target_ulong) and length (int) pair. */
2118 void gdb_do_syscall(gdb_syscall_complete_cb cb
, const char *fmt
, ...)
2127 s
= gdbserver_state
;
2130 gdb_current_syscall_cb
= cb
;
2131 s
->state
= RS_SYSCALL
;
2132 #ifndef CONFIG_USER_ONLY
2133 vm_stop(EXCP_DEBUG
);
2144 addr
= va_arg(va
, target_ulong
);
2145 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
, addr
);
2148 if (*(fmt
++) != 'x')
2150 i64
= va_arg(va
, uint64_t);
2151 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, "%" PRIx64
, i64
);
2154 addr
= va_arg(va
, target_ulong
);
2155 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
"/%x",
2156 addr
, va_arg(va
, int));
2160 fprintf(stderr
, "gdbstub: Bad syscall format string '%s'\n",
2171 #ifdef CONFIG_USER_ONLY
2172 gdb_handlesig(s
->c_cpu
, 0);
2178 static void gdb_read_byte(GDBState
*s
, int ch
)
2183 #ifndef CONFIG_USER_ONLY
2184 if (s
->last_packet_len
) {
2185 /* Waiting for a response to the last packet. If we see the start
2186 of a new command then abandon the previous response. */
2189 printf("Got NACK, retransmitting\n");
2191 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
2195 printf("Got ACK\n");
2197 printf("Got '%c' when expecting ACK/NACK\n", ch
);
2199 if (ch
== '+' || ch
== '$')
2200 s
->last_packet_len
= 0;
2205 /* when the CPU is running, we cannot do anything except stop
2206 it when receiving a char */
2207 vm_stop(EXCP_INTERRUPT
);
2214 s
->line_buf_index
= 0;
2215 s
->state
= RS_GETLINE
;
2220 s
->state
= RS_CHKSUM1
;
2221 } else if (s
->line_buf_index
>= sizeof(s
->line_buf
) - 1) {
2224 s
->line_buf
[s
->line_buf_index
++] = ch
;
2228 s
->line_buf
[s
->line_buf_index
] = '\0';
2229 s
->line_csum
= fromhex(ch
) << 4;
2230 s
->state
= RS_CHKSUM2
;
2233 s
->line_csum
|= fromhex(ch
);
2235 for(i
= 0; i
< s
->line_buf_index
; i
++) {
2236 csum
+= s
->line_buf
[i
];
2238 if (s
->line_csum
!= (csum
& 0xff)) {
2240 put_buffer(s
, &reply
, 1);
2244 put_buffer(s
, &reply
, 1);
2245 s
->state
= gdb_handle_packet(s
, s
->line_buf
);
2254 #ifdef CONFIG_USER_ONLY
2260 s
= gdbserver_state
;
2262 if (gdbserver_fd
< 0 || s
->fd
< 0)
2269 gdb_handlesig (CPUState
*env
, int sig
)
2275 s
= gdbserver_state
;
2276 if (gdbserver_fd
< 0 || s
->fd
< 0)
2279 /* disable single step if it was enabled */
2280 cpu_single_step(env
, 0);
2285 snprintf(buf
, sizeof(buf
), "S%02x", target_signal_to_gdb (sig
));
2288 /* put_packet() might have detected that the peer terminated the
2295 s
->running_state
= 0;
2296 while (s
->running_state
== 0) {
2297 n
= read (s
->fd
, buf
, 256);
2302 for (i
= 0; i
< n
; i
++)
2303 gdb_read_byte (s
, buf
[i
]);
2305 else if (n
== 0 || errno
!= EAGAIN
)
2307 /* XXX: Connection closed. Should probably wait for annother
2308 connection before continuing. */
2317 /* Tell the remote gdb that the process has exited. */
2318 void gdb_exit(CPUState
*env
, int code
)
2323 s
= gdbserver_state
;
2324 if (gdbserver_fd
< 0 || s
->fd
< 0)
2327 snprintf(buf
, sizeof(buf
), "W%02x", code
);
2331 /* Tell the remote gdb that the process has exited due to SIG. */
2332 void gdb_signalled(CPUState
*env
, int sig
)
2337 s
= gdbserver_state
;
2338 if (gdbserver_fd
< 0 || s
->fd
< 0)
2341 snprintf(buf
, sizeof(buf
), "X%02x", target_signal_to_gdb (sig
));
2345 static void gdb_accept(void)
2348 struct sockaddr_in sockaddr
;
2353 len
= sizeof(sockaddr
);
2354 fd
= accept(gdbserver_fd
, (struct sockaddr
*)&sockaddr
, &len
);
2355 if (fd
< 0 && errno
!= EINTR
) {
2358 } else if (fd
>= 0) {
2363 /* set short latency */
2365 setsockopt(fd
, IPPROTO_TCP
, TCP_NODELAY
, (char *)&val
, sizeof(val
));
2367 s
= qemu_mallocz(sizeof(GDBState
));
2368 s
->c_cpu
= first_cpu
;
2369 s
->g_cpu
= first_cpu
;
2373 gdbserver_state
= s
;
2375 fcntl(fd
, F_SETFL
, O_NONBLOCK
);
2378 static int gdbserver_open(int port
)
2380 struct sockaddr_in sockaddr
;
2383 fd
= socket(PF_INET
, SOCK_STREAM
, 0);
2389 /* allow fast reuse */
2391 setsockopt(fd
, SOL_SOCKET
, SO_REUSEADDR
, (char *)&val
, sizeof(val
));
2393 sockaddr
.sin_family
= AF_INET
;
2394 sockaddr
.sin_port
= htons(port
);
2395 sockaddr
.sin_addr
.s_addr
= 0;
2396 ret
= bind(fd
, (struct sockaddr
*)&sockaddr
, sizeof(sockaddr
));
2401 ret
= listen(fd
, 0);
2409 int gdbserver_start(int port
)
2411 gdbserver_fd
= gdbserver_open(port
);
2412 if (gdbserver_fd
< 0)
2414 /* accept connections */
2419 /* Disable gdb stub for child processes. */
2420 void gdbserver_fork(CPUState
*env
)
2422 GDBState
*s
= gdbserver_state
;
2423 if (gdbserver_fd
< 0 || s
->fd
< 0)
2427 cpu_breakpoint_remove_all(env
, BP_GDB
);
2428 cpu_watchpoint_remove_all(env
, BP_GDB
);
2431 static int gdb_chr_can_receive(void *opaque
)
2433 /* We can handle an arbitrarily large amount of data.
2434 Pick the maximum packet size, which is as good as anything. */
2435 return MAX_PACKET_LENGTH
;
2438 static void gdb_chr_receive(void *opaque
, const uint8_t *buf
, int size
)
2442 for (i
= 0; i
< size
; i
++) {
2443 gdb_read_byte(gdbserver_state
, buf
[i
]);
2447 static void gdb_chr_event(void *opaque
, int event
)
2450 case CHR_EVENT_RESET
:
2451 vm_stop(EXCP_INTERRUPT
);
2459 static void gdb_monitor_output(GDBState
*s
, const char *msg
, int len
)
2461 char buf
[MAX_PACKET_LENGTH
];
2464 if (len
> (MAX_PACKET_LENGTH
/2) - 1)
2465 len
= (MAX_PACKET_LENGTH
/2) - 1;
2466 memtohex(buf
+ 1, (uint8_t *)msg
, len
);
2470 static int gdb_monitor_write(CharDriverState
*chr
, const uint8_t *buf
, int len
)
2472 const char *p
= (const char *)buf
;
2475 max_sz
= (sizeof(gdbserver_state
->last_packet
) - 2) / 2;
2477 if (len
<= max_sz
) {
2478 gdb_monitor_output(gdbserver_state
, p
, len
);
2481 gdb_monitor_output(gdbserver_state
, p
, max_sz
);
2489 static void gdb_sigterm_handler(int signal
)
2492 vm_stop(EXCP_INTERRUPT
);
2496 int gdbserver_start(const char *device
)
2499 char gdbstub_device_name
[128];
2500 CharDriverState
*chr
= NULL
;
2501 CharDriverState
*mon_chr
;
2505 if (strcmp(device
, "none") != 0) {
2506 if (strstart(device
, "tcp:", NULL
)) {
2507 /* enforce required TCP attributes */
2508 snprintf(gdbstub_device_name
, sizeof(gdbstub_device_name
),
2509 "%s,nowait,nodelay,server", device
);
2510 device
= gdbstub_device_name
;
2513 else if (strcmp(device
, "stdio") == 0) {
2514 struct sigaction act
;
2516 memset(&act
, 0, sizeof(act
));
2517 act
.sa_handler
= gdb_sigterm_handler
;
2518 sigaction(SIGINT
, &act
, NULL
);
2521 chr
= qemu_chr_open("gdb", device
, NULL
);
2525 qemu_chr_add_handlers(chr
, gdb_chr_can_receive
, gdb_chr_receive
,
2526 gdb_chr_event
, NULL
);
2529 s
= gdbserver_state
;
2531 s
= qemu_mallocz(sizeof(GDBState
));
2532 gdbserver_state
= s
;
2534 qemu_add_vm_change_state_handler(gdb_vm_state_change
, NULL
);
2536 /* Initialize a monitor terminal for gdb */
2537 mon_chr
= qemu_mallocz(sizeof(*mon_chr
));
2538 mon_chr
->chr_write
= gdb_monitor_write
;
2539 monitor_init(mon_chr
, 0);
2542 qemu_chr_close(s
->chr
);
2543 mon_chr
= s
->mon_chr
;
2544 memset(s
, 0, sizeof(GDBState
));
2546 s
->c_cpu
= first_cpu
;
2547 s
->g_cpu
= first_cpu
;
2549 s
->state
= chr
? RS_IDLE
: RS_INACTIVE
;
2550 s
->mon_chr
= mon_chr
;