4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include <sys/types.h>
27 #include "qemu-common.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "hw/xen/xen.h"
36 #include "qemu/timer.h"
37 #include "qemu/config-file.h"
38 #include "exec/memory.h"
39 #include "sysemu/dma.h"
40 #include "exec/address-spaces.h"
41 #if defined(CONFIG_USER_ONLY)
43 #else /* !CONFIG_USER_ONLY */
44 #include "sysemu/xen-mapcache.h"
47 #include "exec/cpu-all.h"
49 #include "exec/cputlb.h"
50 #include "translate-all.h"
52 #include "exec/memory-internal.h"
54 //#define DEBUG_SUBPAGE
56 #if !defined(CONFIG_USER_ONLY)
57 static int in_migration
;
59 RAMList ram_list
= { .blocks
= QTAILQ_HEAD_INITIALIZER(ram_list
.blocks
) };
61 static MemoryRegion
*system_memory
;
62 static MemoryRegion
*system_io
;
64 AddressSpace address_space_io
;
65 AddressSpace address_space_memory
;
67 MemoryRegion io_mem_rom
, io_mem_notdirty
;
68 static MemoryRegion io_mem_unassigned
;
72 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
73 /* current CPU in the current thread. It is only valid inside
75 DEFINE_TLS(CPUState
*, current_cpu
);
76 /* 0 = Do not count executed instructions.
77 1 = Precise instruction counting.
78 2 = Adaptive rate instruction counting. */
81 #if !defined(CONFIG_USER_ONLY)
83 typedef struct PhysPageEntry PhysPageEntry
;
85 struct PhysPageEntry
{
87 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
91 typedef PhysPageEntry Node
[L2_SIZE
];
93 struct AddressSpaceDispatch
{
94 /* This is a multi-level map on the physical address space.
95 * The bottom level has pointers to MemoryRegionSections.
97 PhysPageEntry phys_map
;
99 MemoryRegionSection
*sections
;
103 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
104 typedef struct subpage_t
{
108 uint16_t sub_section
[TARGET_PAGE_SIZE
];
111 #define PHYS_SECTION_UNASSIGNED 0
112 #define PHYS_SECTION_NOTDIRTY 1
113 #define PHYS_SECTION_ROM 2
114 #define PHYS_SECTION_WATCH 3
116 typedef struct PhysPageMap
{
117 unsigned sections_nb
;
118 unsigned sections_nb_alloc
;
120 unsigned nodes_nb_alloc
;
122 MemoryRegionSection
*sections
;
125 static PhysPageMap
*prev_map
;
126 static PhysPageMap next_map
;
128 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
130 static void io_mem_init(void);
131 static void memory_map_init(void);
132 static void *qemu_safe_ram_ptr(ram_addr_t addr
);
134 static MemoryRegion io_mem_watch
;
137 #if !defined(CONFIG_USER_ONLY)
139 static void phys_map_node_reserve(unsigned nodes
)
141 if (next_map
.nodes_nb
+ nodes
> next_map
.nodes_nb_alloc
) {
142 next_map
.nodes_nb_alloc
= MAX(next_map
.nodes_nb_alloc
* 2,
144 next_map
.nodes_nb_alloc
= MAX(next_map
.nodes_nb_alloc
,
145 next_map
.nodes_nb
+ nodes
);
146 next_map
.nodes
= g_renew(Node
, next_map
.nodes
,
147 next_map
.nodes_nb_alloc
);
151 static uint16_t phys_map_node_alloc(void)
156 ret
= next_map
.nodes_nb
++;
157 assert(ret
!= PHYS_MAP_NODE_NIL
);
158 assert(ret
!= next_map
.nodes_nb_alloc
);
159 for (i
= 0; i
< L2_SIZE
; ++i
) {
160 next_map
.nodes
[ret
][i
].is_leaf
= 0;
161 next_map
.nodes
[ret
][i
].ptr
= PHYS_MAP_NODE_NIL
;
166 static void phys_page_set_level(PhysPageEntry
*lp
, hwaddr
*index
,
167 hwaddr
*nb
, uint16_t leaf
,
172 hwaddr step
= (hwaddr
)1 << (level
* L2_BITS
);
174 if (!lp
->is_leaf
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
175 lp
->ptr
= phys_map_node_alloc();
176 p
= next_map
.nodes
[lp
->ptr
];
178 for (i
= 0; i
< L2_SIZE
; i
++) {
180 p
[i
].ptr
= PHYS_SECTION_UNASSIGNED
;
184 p
= next_map
.nodes
[lp
->ptr
];
186 lp
= &p
[(*index
>> (level
* L2_BITS
)) & (L2_SIZE
- 1)];
188 while (*nb
&& lp
< &p
[L2_SIZE
]) {
189 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
195 phys_page_set_level(lp
, index
, nb
, leaf
, level
- 1);
201 static void phys_page_set(AddressSpaceDispatch
*d
,
202 hwaddr index
, hwaddr nb
,
205 /* Wildly overreserve - it doesn't matter much. */
206 phys_map_node_reserve(3 * P_L2_LEVELS
);
208 phys_page_set_level(&d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
211 static MemoryRegionSection
*phys_page_find(PhysPageEntry lp
, hwaddr index
,
212 Node
*nodes
, MemoryRegionSection
*sections
)
217 for (i
= P_L2_LEVELS
- 1; i
>= 0 && !lp
.is_leaf
; i
--) {
218 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
219 return §ions
[PHYS_SECTION_UNASSIGNED
];
222 lp
= p
[(index
>> (i
* L2_BITS
)) & (L2_SIZE
- 1)];
224 return §ions
[lp
.ptr
];
227 bool memory_region_is_unassigned(MemoryRegion
*mr
)
229 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
230 && mr
!= &io_mem_watch
;
233 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
235 bool resolve_subpage
)
237 MemoryRegionSection
*section
;
240 section
= phys_page_find(d
->phys_map
, addr
>> TARGET_PAGE_BITS
,
241 d
->nodes
, d
->sections
);
242 if (resolve_subpage
&& section
->mr
->subpage
) {
243 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
244 section
= &d
->sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
249 static MemoryRegionSection
*
250 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
251 hwaddr
*plen
, bool resolve_subpage
)
253 MemoryRegionSection
*section
;
256 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
257 /* Compute offset within MemoryRegionSection */
258 addr
-= section
->offset_within_address_space
;
260 /* Compute offset within MemoryRegion */
261 *xlat
= addr
+ section
->offset_within_region
;
263 diff
= int128_sub(section
->mr
->size
, int128_make64(addr
));
264 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
268 MemoryRegion
*address_space_translate(AddressSpace
*as
, hwaddr addr
,
269 hwaddr
*xlat
, hwaddr
*plen
,
273 MemoryRegionSection
*section
;
278 section
= address_space_translate_internal(as
->dispatch
, addr
, &addr
, plen
, true);
281 if (!mr
->iommu_ops
) {
285 iotlb
= mr
->iommu_ops
->translate(mr
, addr
);
286 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
287 | (addr
& iotlb
.addr_mask
));
288 len
= MIN(len
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
289 if (!(iotlb
.perm
& (1 << is_write
))) {
290 mr
= &io_mem_unassigned
;
294 as
= iotlb
.target_as
;
302 MemoryRegionSection
*
303 address_space_translate_for_iotlb(AddressSpace
*as
, hwaddr addr
, hwaddr
*xlat
,
306 MemoryRegionSection
*section
;
307 section
= address_space_translate_internal(as
->dispatch
, addr
, xlat
, plen
, false);
309 assert(!section
->mr
->iommu_ops
);
314 void cpu_exec_init_all(void)
316 #if !defined(CONFIG_USER_ONLY)
317 qemu_mutex_init(&ram_list
.mutex
);
323 #if !defined(CONFIG_USER_ONLY)
325 static int cpu_common_post_load(void *opaque
, int version_id
)
327 CPUState
*cpu
= opaque
;
329 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
330 version_id is increased. */
331 cpu
->interrupt_request
&= ~0x01;
332 tlb_flush(cpu
->env_ptr
, 1);
337 const VMStateDescription vmstate_cpu_common
= {
338 .name
= "cpu_common",
340 .minimum_version_id
= 1,
341 .minimum_version_id_old
= 1,
342 .post_load
= cpu_common_post_load
,
343 .fields
= (VMStateField
[]) {
344 VMSTATE_UINT32(halted
, CPUState
),
345 VMSTATE_UINT32(interrupt_request
, CPUState
),
346 VMSTATE_END_OF_LIST()
352 CPUState
*qemu_get_cpu(int index
)
357 if (cpu
->cpu_index
== index
) {
365 void cpu_exec_init(CPUArchState
*env
)
367 CPUState
*cpu
= ENV_GET_CPU(env
);
368 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
372 #if defined(CONFIG_USER_ONLY)
376 CPU_FOREACH(some_cpu
) {
379 cpu
->cpu_index
= cpu_index
;
381 QTAILQ_INIT(&env
->breakpoints
);
382 QTAILQ_INIT(&env
->watchpoints
);
383 #ifndef CONFIG_USER_ONLY
384 cpu
->thread_id
= qemu_get_thread_id();
386 QTAILQ_INSERT_TAIL(&cpus
, cpu
, node
);
387 #if defined(CONFIG_USER_ONLY)
390 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
391 vmstate_register(NULL
, cpu_index
, &vmstate_cpu_common
, cpu
);
393 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
394 register_savevm(NULL
, "cpu", cpu_index
, CPU_SAVE_VERSION
,
395 cpu_save
, cpu_load
, env
);
396 assert(cc
->vmsd
== NULL
);
397 assert(qdev_get_vmsd(DEVICE(cpu
)) == NULL
);
399 if (cc
->vmsd
!= NULL
) {
400 vmstate_register(NULL
, cpu_index
, cc
->vmsd
, cpu
);
404 #if defined(TARGET_HAS_ICE)
405 #if defined(CONFIG_USER_ONLY)
406 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
408 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
411 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
413 tb_invalidate_phys_addr(cpu_get_phys_page_debug(cpu
, pc
) |
414 (pc
& ~TARGET_PAGE_MASK
));
417 #endif /* TARGET_HAS_ICE */
419 #if defined(CONFIG_USER_ONLY)
420 void cpu_watchpoint_remove_all(CPUArchState
*env
, int mask
)
425 int cpu_watchpoint_insert(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
426 int flags
, CPUWatchpoint
**watchpoint
)
431 /* Add a watchpoint. */
432 int cpu_watchpoint_insert(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
433 int flags
, CPUWatchpoint
**watchpoint
)
435 target_ulong len_mask
= ~(len
- 1);
438 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
439 if ((len
& (len
- 1)) || (addr
& ~len_mask
) ||
440 len
== 0 || len
> TARGET_PAGE_SIZE
) {
441 fprintf(stderr
, "qemu: tried to set invalid watchpoint at "
442 TARGET_FMT_lx
", len=" TARGET_FMT_lu
"\n", addr
, len
);
445 wp
= g_malloc(sizeof(*wp
));
448 wp
->len_mask
= len_mask
;
451 /* keep all GDB-injected watchpoints in front */
453 QTAILQ_INSERT_HEAD(&env
->watchpoints
, wp
, entry
);
455 QTAILQ_INSERT_TAIL(&env
->watchpoints
, wp
, entry
);
457 tlb_flush_page(env
, addr
);
464 /* Remove a specific watchpoint. */
465 int cpu_watchpoint_remove(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
468 target_ulong len_mask
= ~(len
- 1);
471 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
472 if (addr
== wp
->vaddr
&& len_mask
== wp
->len_mask
473 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
474 cpu_watchpoint_remove_by_ref(env
, wp
);
481 /* Remove a specific watchpoint by reference. */
482 void cpu_watchpoint_remove_by_ref(CPUArchState
*env
, CPUWatchpoint
*watchpoint
)
484 QTAILQ_REMOVE(&env
->watchpoints
, watchpoint
, entry
);
486 tlb_flush_page(env
, watchpoint
->vaddr
);
491 /* Remove all matching watchpoints. */
492 void cpu_watchpoint_remove_all(CPUArchState
*env
, int mask
)
494 CPUWatchpoint
*wp
, *next
;
496 QTAILQ_FOREACH_SAFE(wp
, &env
->watchpoints
, entry
, next
) {
497 if (wp
->flags
& mask
)
498 cpu_watchpoint_remove_by_ref(env
, wp
);
503 /* Add a breakpoint. */
504 int cpu_breakpoint_insert(CPUArchState
*env
, target_ulong pc
, int flags
,
505 CPUBreakpoint
**breakpoint
)
507 #if defined(TARGET_HAS_ICE)
510 bp
= g_malloc(sizeof(*bp
));
515 /* keep all GDB-injected breakpoints in front */
516 if (flags
& BP_GDB
) {
517 QTAILQ_INSERT_HEAD(&env
->breakpoints
, bp
, entry
);
519 QTAILQ_INSERT_TAIL(&env
->breakpoints
, bp
, entry
);
522 breakpoint_invalidate(ENV_GET_CPU(env
), pc
);
533 /* Remove a specific breakpoint. */
534 int cpu_breakpoint_remove(CPUArchState
*env
, target_ulong pc
, int flags
)
536 #if defined(TARGET_HAS_ICE)
539 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
540 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
541 cpu_breakpoint_remove_by_ref(env
, bp
);
551 /* Remove a specific breakpoint by reference. */
552 void cpu_breakpoint_remove_by_ref(CPUArchState
*env
, CPUBreakpoint
*breakpoint
)
554 #if defined(TARGET_HAS_ICE)
555 QTAILQ_REMOVE(&env
->breakpoints
, breakpoint
, entry
);
557 breakpoint_invalidate(ENV_GET_CPU(env
), breakpoint
->pc
);
563 /* Remove all matching breakpoints. */
564 void cpu_breakpoint_remove_all(CPUArchState
*env
, int mask
)
566 #if defined(TARGET_HAS_ICE)
567 CPUBreakpoint
*bp
, *next
;
569 QTAILQ_FOREACH_SAFE(bp
, &env
->breakpoints
, entry
, next
) {
570 if (bp
->flags
& mask
)
571 cpu_breakpoint_remove_by_ref(env
, bp
);
576 /* enable or disable single step mode. EXCP_DEBUG is returned by the
577 CPU loop after each instruction */
578 void cpu_single_step(CPUState
*cpu
, int enabled
)
580 #if defined(TARGET_HAS_ICE)
581 if (cpu
->singlestep_enabled
!= enabled
) {
582 cpu
->singlestep_enabled
= enabled
;
584 kvm_update_guest_debug(cpu
, 0);
586 /* must flush all the translated code to avoid inconsistencies */
587 /* XXX: only flush what is necessary */
588 CPUArchState
*env
= cpu
->env_ptr
;
595 void cpu_abort(CPUArchState
*env
, const char *fmt
, ...)
597 CPUState
*cpu
= ENV_GET_CPU(env
);
603 fprintf(stderr
, "qemu: fatal: ");
604 vfprintf(stderr
, fmt
, ap
);
605 fprintf(stderr
, "\n");
606 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
607 if (qemu_log_enabled()) {
608 qemu_log("qemu: fatal: ");
609 qemu_log_vprintf(fmt
, ap2
);
611 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
617 #if defined(CONFIG_USER_ONLY)
619 struct sigaction act
;
620 sigfillset(&act
.sa_mask
);
621 act
.sa_handler
= SIG_DFL
;
622 sigaction(SIGABRT
, &act
, NULL
);
628 #if !defined(CONFIG_USER_ONLY)
629 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t end
,
634 /* we modify the TLB cache so that the dirty bit will be set again
635 when accessing the range */
636 start1
= (uintptr_t)qemu_safe_ram_ptr(start
);
637 /* Check that we don't span multiple blocks - this breaks the
638 address comparisons below. */
639 if ((uintptr_t)qemu_safe_ram_ptr(end
- 1) - start1
640 != (end
- 1) - start
) {
643 cpu_tlb_reset_dirty_all(start1
, length
);
647 /* Note: start and end must be within the same ram block. */
648 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
653 start
&= TARGET_PAGE_MASK
;
654 end
= TARGET_PAGE_ALIGN(end
);
656 length
= end
- start
;
659 cpu_physical_memory_mask_dirty_range(start
, length
, dirty_flags
);
662 tlb_reset_dirty_range_all(start
, end
, length
);
666 static int cpu_physical_memory_set_dirty_tracking(int enable
)
669 in_migration
= enable
;
673 hwaddr
memory_region_section_get_iotlb(CPUArchState
*env
,
674 MemoryRegionSection
*section
,
676 hwaddr paddr
, hwaddr xlat
,
678 target_ulong
*address
)
683 if (memory_region_is_ram(section
->mr
)) {
685 iotlb
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
687 if (!section
->readonly
) {
688 iotlb
|= PHYS_SECTION_NOTDIRTY
;
690 iotlb
|= PHYS_SECTION_ROM
;
693 iotlb
= section
- address_space_memory
.dispatch
->sections
;
697 /* Make accesses to pages with watchpoints go via the
698 watchpoint trap routines. */
699 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
700 if (vaddr
== (wp
->vaddr
& TARGET_PAGE_MASK
)) {
701 /* Avoid trapping reads of pages with a write breakpoint. */
702 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
703 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
704 *address
|= TLB_MMIO
;
712 #endif /* defined(CONFIG_USER_ONLY) */
714 #if !defined(CONFIG_USER_ONLY)
716 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
718 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
);
720 static void *(*phys_mem_alloc
)(size_t size
) = qemu_anon_ram_alloc
;
723 * Set a custom physical guest memory alloator.
724 * Accelerators with unusual needs may need this. Hopefully, we can
725 * get rid of it eventually.
727 void phys_mem_set_alloc(void *(*alloc
)(size_t))
729 phys_mem_alloc
= alloc
;
732 static uint16_t phys_section_add(MemoryRegionSection
*section
)
734 /* The physical section number is ORed with a page-aligned
735 * pointer to produce the iotlb entries. Thus it should
736 * never overflow into the page-aligned value.
738 assert(next_map
.sections_nb
< TARGET_PAGE_SIZE
);
740 if (next_map
.sections_nb
== next_map
.sections_nb_alloc
) {
741 next_map
.sections_nb_alloc
= MAX(next_map
.sections_nb_alloc
* 2,
743 next_map
.sections
= g_renew(MemoryRegionSection
, next_map
.sections
,
744 next_map
.sections_nb_alloc
);
746 next_map
.sections
[next_map
.sections_nb
] = *section
;
747 memory_region_ref(section
->mr
);
748 return next_map
.sections_nb
++;
751 static void phys_section_destroy(MemoryRegion
*mr
)
753 memory_region_unref(mr
);
756 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
757 memory_region_destroy(&subpage
->iomem
);
762 static void phys_sections_free(PhysPageMap
*map
)
764 while (map
->sections_nb
> 0) {
765 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
766 phys_section_destroy(section
->mr
);
768 g_free(map
->sections
);
773 static void register_subpage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
776 hwaddr base
= section
->offset_within_address_space
778 MemoryRegionSection
*existing
= phys_page_find(d
->phys_map
, base
>> TARGET_PAGE_BITS
,
779 next_map
.nodes
, next_map
.sections
);
780 MemoryRegionSection subsection
= {
781 .offset_within_address_space
= base
,
782 .size
= int128_make64(TARGET_PAGE_SIZE
),
786 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
788 if (!(existing
->mr
->subpage
)) {
789 subpage
= subpage_init(d
->as
, base
);
790 subsection
.mr
= &subpage
->iomem
;
791 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
792 phys_section_add(&subsection
));
794 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
796 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
797 end
= start
+ int128_get64(section
->size
) - 1;
798 subpage_register(subpage
, start
, end
, phys_section_add(section
));
802 static void register_multipage(AddressSpaceDispatch
*d
,
803 MemoryRegionSection
*section
)
805 hwaddr start_addr
= section
->offset_within_address_space
;
806 uint16_t section_index
= phys_section_add(section
);
807 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
811 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
814 static void mem_add(MemoryListener
*listener
, MemoryRegionSection
*section
)
816 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
817 AddressSpaceDispatch
*d
= as
->next_dispatch
;
818 MemoryRegionSection now
= *section
, remain
= *section
;
819 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
821 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
822 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
823 - now
.offset_within_address_space
;
825 now
.size
= int128_min(int128_make64(left
), now
.size
);
826 register_subpage(d
, &now
);
828 now
.size
= int128_zero();
830 while (int128_ne(remain
.size
, now
.size
)) {
831 remain
.size
= int128_sub(remain
.size
, now
.size
);
832 remain
.offset_within_address_space
+= int128_get64(now
.size
);
833 remain
.offset_within_region
+= int128_get64(now
.size
);
835 if (int128_lt(remain
.size
, page_size
)) {
836 register_subpage(d
, &now
);
837 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
838 now
.size
= page_size
;
839 register_subpage(d
, &now
);
841 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
842 register_multipage(d
, &now
);
847 void qemu_flush_coalesced_mmio_buffer(void)
850 kvm_flush_coalesced_mmio_buffer();
853 void qemu_mutex_lock_ramlist(void)
855 qemu_mutex_lock(&ram_list
.mutex
);
858 void qemu_mutex_unlock_ramlist(void)
860 qemu_mutex_unlock(&ram_list
.mutex
);
867 #define HUGETLBFS_MAGIC 0x958458f6
869 static long gethugepagesize(const char *path
)
875 ret
= statfs(path
, &fs
);
876 } while (ret
!= 0 && errno
== EINTR
);
883 if (fs
.f_type
!= HUGETLBFS_MAGIC
)
884 fprintf(stderr
, "Warning: path not on HugeTLBFS: %s\n", path
);
889 static void *file_ram_alloc(RAMBlock
*block
,
894 char *sanitized_name
;
901 unsigned long hpagesize
;
903 hpagesize
= gethugepagesize(path
);
908 if (memory
< hpagesize
) {
912 if (kvm_enabled() && !kvm_has_sync_mmu()) {
913 fprintf(stderr
, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
917 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
918 sanitized_name
= g_strdup(block
->mr
->name
);
919 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
924 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
926 g_free(sanitized_name
);
928 fd
= mkstemp(filename
);
930 perror("unable to create backing store for hugepages");
937 memory
= (memory
+hpagesize
-1) & ~(hpagesize
-1);
940 * ftruncate is not supported by hugetlbfs in older
941 * hosts, so don't bother bailing out on errors.
942 * If anything goes wrong with it under other filesystems,
945 if (ftruncate(fd
, memory
))
949 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
950 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
951 * to sidestep this quirk.
953 flags
= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
: MAP_PRIVATE
;
954 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, flags
, fd
, 0);
956 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, MAP_PRIVATE
, fd
, 0);
958 if (area
== MAP_FAILED
) {
959 perror("file_ram_alloc: can't mmap RAM pages");
967 static void *file_ram_alloc(RAMBlock
*block
,
971 fprintf(stderr
, "-mem-path not supported on this host\n");
976 static ram_addr_t
find_ram_offset(ram_addr_t size
)
978 RAMBlock
*block
, *next_block
;
979 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
981 assert(size
!= 0); /* it would hand out same offset multiple times */
983 if (QTAILQ_EMPTY(&ram_list
.blocks
))
986 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
987 ram_addr_t end
, next
= RAM_ADDR_MAX
;
989 end
= block
->offset
+ block
->length
;
991 QTAILQ_FOREACH(next_block
, &ram_list
.blocks
, next
) {
992 if (next_block
->offset
>= end
) {
993 next
= MIN(next
, next_block
->offset
);
996 if (next
- end
>= size
&& next
- end
< mingap
) {
1002 if (offset
== RAM_ADDR_MAX
) {
1003 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1011 ram_addr_t
last_ram_offset(void)
1014 ram_addr_t last
= 0;
1016 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
)
1017 last
= MAX(last
, block
->offset
+ block
->length
);
1022 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1026 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1027 if (!qemu_opt_get_bool(qemu_get_machine_opts(),
1028 "dump-guest-core", true)) {
1029 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1031 perror("qemu_madvise");
1032 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1033 "but dump_guest_core=off specified\n");
1038 void qemu_ram_set_idstr(ram_addr_t addr
, const char *name
, DeviceState
*dev
)
1040 RAMBlock
*new_block
, *block
;
1043 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1044 if (block
->offset
== addr
) {
1050 assert(!new_block
->idstr
[0]);
1053 char *id
= qdev_get_dev_path(dev
);
1055 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1059 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1061 /* This assumes the iothread lock is taken here too. */
1062 qemu_mutex_lock_ramlist();
1063 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1064 if (block
!= new_block
&& !strcmp(block
->idstr
, new_block
->idstr
)) {
1065 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1070 qemu_mutex_unlock_ramlist();
1073 static int memory_try_enable_merging(void *addr
, size_t len
)
1075 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
1076 /* disabled by the user */
1080 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1083 ram_addr_t
qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
1086 RAMBlock
*block
, *new_block
;
1088 size
= TARGET_PAGE_ALIGN(size
);
1089 new_block
= g_malloc0(sizeof(*new_block
));
1092 /* This assumes the iothread lock is taken here too. */
1093 qemu_mutex_lock_ramlist();
1095 new_block
->offset
= find_ram_offset(size
);
1097 new_block
->host
= host
;
1098 new_block
->flags
|= RAM_PREALLOC_MASK
;
1099 } else if (xen_enabled()) {
1101 fprintf(stderr
, "-mem-path not supported with Xen\n");
1104 xen_ram_alloc(new_block
->offset
, size
, mr
);
1107 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
1109 * file_ram_alloc() needs to allocate just like
1110 * phys_mem_alloc, but we haven't bothered to provide
1114 "-mem-path not supported with this accelerator\n");
1117 new_block
->host
= file_ram_alloc(new_block
, size
, mem_path
);
1119 if (!new_block
->host
) {
1120 new_block
->host
= phys_mem_alloc(size
);
1121 if (!new_block
->host
) {
1122 fprintf(stderr
, "Cannot set up guest memory '%s': %s\n",
1123 new_block
->mr
->name
, strerror(errno
));
1126 memory_try_enable_merging(new_block
->host
, size
);
1129 new_block
->length
= size
;
1131 /* Keep the list sorted from biggest to smallest block. */
1132 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1133 if (block
->length
< new_block
->length
) {
1138 QTAILQ_INSERT_BEFORE(block
, new_block
, next
);
1140 QTAILQ_INSERT_TAIL(&ram_list
.blocks
, new_block
, next
);
1142 ram_list
.mru_block
= NULL
;
1145 qemu_mutex_unlock_ramlist();
1147 ram_list
.phys_dirty
= g_realloc(ram_list
.phys_dirty
,
1148 last_ram_offset() >> TARGET_PAGE_BITS
);
1149 memset(ram_list
.phys_dirty
+ (new_block
->offset
>> TARGET_PAGE_BITS
),
1150 0, size
>> TARGET_PAGE_BITS
);
1151 cpu_physical_memory_set_dirty_range(new_block
->offset
, size
, 0xff);
1153 qemu_ram_setup_dump(new_block
->host
, size
);
1154 qemu_madvise(new_block
->host
, size
, QEMU_MADV_HUGEPAGE
);
1155 qemu_madvise(new_block
->host
, size
, QEMU_MADV_DONTFORK
);
1158 kvm_setup_guest_memory(new_block
->host
, size
);
1160 return new_block
->offset
;
1163 ram_addr_t
qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
)
1165 return qemu_ram_alloc_from_ptr(size
, NULL
, mr
);
1168 void qemu_ram_free_from_ptr(ram_addr_t addr
)
1172 /* This assumes the iothread lock is taken here too. */
1173 qemu_mutex_lock_ramlist();
1174 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1175 if (addr
== block
->offset
) {
1176 QTAILQ_REMOVE(&ram_list
.blocks
, block
, next
);
1177 ram_list
.mru_block
= NULL
;
1183 qemu_mutex_unlock_ramlist();
1186 void qemu_ram_free(ram_addr_t addr
)
1190 /* This assumes the iothread lock is taken here too. */
1191 qemu_mutex_lock_ramlist();
1192 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1193 if (addr
== block
->offset
) {
1194 QTAILQ_REMOVE(&ram_list
.blocks
, block
, next
);
1195 ram_list
.mru_block
= NULL
;
1197 if (block
->flags
& RAM_PREALLOC_MASK
) {
1199 } else if (xen_enabled()) {
1200 xen_invalidate_map_cache_entry(block
->host
);
1202 } else if (block
->fd
>= 0) {
1203 munmap(block
->host
, block
->length
);
1207 qemu_anon_ram_free(block
->host
, block
->length
);
1213 qemu_mutex_unlock_ramlist();
1218 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
1225 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1226 offset
= addr
- block
->offset
;
1227 if (offset
< block
->length
) {
1228 vaddr
= block
->host
+ offset
;
1229 if (block
->flags
& RAM_PREALLOC_MASK
) {
1231 } else if (xen_enabled()) {
1235 munmap(vaddr
, length
);
1236 if (block
->fd
>= 0) {
1238 flags
|= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
:
1241 flags
|= MAP_PRIVATE
;
1243 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1244 flags
, block
->fd
, offset
);
1247 * Remap needs to match alloc. Accelerators that
1248 * set phys_mem_alloc never remap. If they did,
1249 * we'd need a remap hook here.
1251 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
1253 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1254 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1257 if (area
!= vaddr
) {
1258 fprintf(stderr
, "Could not remap addr: "
1259 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
1263 memory_try_enable_merging(vaddr
, length
);
1264 qemu_ram_setup_dump(vaddr
, length
);
1270 #endif /* !_WIN32 */
1272 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
1276 /* The list is protected by the iothread lock here. */
1277 block
= ram_list
.mru_block
;
1278 if (block
&& addr
- block
->offset
< block
->length
) {
1281 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1282 if (addr
- block
->offset
< block
->length
) {
1287 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1291 ram_list
.mru_block
= block
;
1295 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1296 With the exception of the softmmu code in this file, this should
1297 only be used for local memory (e.g. video ram) that the device owns,
1298 and knows it isn't going to access beyond the end of the block.
1300 It should not be used for general purpose DMA.
1301 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1303 void *qemu_get_ram_ptr(ram_addr_t addr
)
1305 RAMBlock
*block
= qemu_get_ram_block(addr
);
1307 if (xen_enabled()) {
1308 /* We need to check if the requested address is in the RAM
1309 * because we don't want to map the entire memory in QEMU.
1310 * In that case just map until the end of the page.
1312 if (block
->offset
== 0) {
1313 return xen_map_cache(addr
, 0, 0);
1314 } else if (block
->host
== NULL
) {
1316 xen_map_cache(block
->offset
, block
->length
, 1);
1319 return block
->host
+ (addr
- block
->offset
);
1322 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1323 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1325 * ??? Is this still necessary?
1327 static void *qemu_safe_ram_ptr(ram_addr_t addr
)
1331 /* The list is protected by the iothread lock here. */
1332 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1333 if (addr
- block
->offset
< block
->length
) {
1334 if (xen_enabled()) {
1335 /* We need to check if the requested address is in the RAM
1336 * because we don't want to map the entire memory in QEMU.
1337 * In that case just map until the end of the page.
1339 if (block
->offset
== 0) {
1340 return xen_map_cache(addr
, 0, 0);
1341 } else if (block
->host
== NULL
) {
1343 xen_map_cache(block
->offset
, block
->length
, 1);
1346 return block
->host
+ (addr
- block
->offset
);
1350 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1356 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1357 * but takes a size argument */
1358 static void *qemu_ram_ptr_length(ram_addr_t addr
, hwaddr
*size
)
1363 if (xen_enabled()) {
1364 return xen_map_cache(addr
, *size
, 1);
1368 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1369 if (addr
- block
->offset
< block
->length
) {
1370 if (addr
- block
->offset
+ *size
> block
->length
)
1371 *size
= block
->length
- addr
+ block
->offset
;
1372 return block
->host
+ (addr
- block
->offset
);
1376 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1381 /* Some of the softmmu routines need to translate from a host pointer
1382 (typically a TLB entry) back to a ram offset. */
1383 MemoryRegion
*qemu_ram_addr_from_host(void *ptr
, ram_addr_t
*ram_addr
)
1386 uint8_t *host
= ptr
;
1388 if (xen_enabled()) {
1389 *ram_addr
= xen_ram_addr_from_mapcache(ptr
);
1390 return qemu_get_ram_block(*ram_addr
)->mr
;
1393 block
= ram_list
.mru_block
;
1394 if (block
&& block
->host
&& host
- block
->host
< block
->length
) {
1398 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1399 /* This case append when the block is not mapped. */
1400 if (block
->host
== NULL
) {
1403 if (host
- block
->host
< block
->length
) {
1411 *ram_addr
= block
->offset
+ (host
- block
->host
);
1415 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
1416 uint64_t val
, unsigned size
)
1419 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
1420 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
1421 tb_invalidate_phys_page_fast(ram_addr
, size
);
1422 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
1426 stb_p(qemu_get_ram_ptr(ram_addr
), val
);
1429 stw_p(qemu_get_ram_ptr(ram_addr
), val
);
1432 stl_p(qemu_get_ram_ptr(ram_addr
), val
);
1437 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
1438 cpu_physical_memory_set_dirty_flags(ram_addr
, dirty_flags
);
1439 /* we remove the notdirty callback only if the code has been
1441 if (dirty_flags
== 0xff) {
1442 CPUArchState
*env
= current_cpu
->env_ptr
;
1443 tlb_set_dirty(env
, env
->mem_io_vaddr
);
1447 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
1448 unsigned size
, bool is_write
)
1453 static const MemoryRegionOps notdirty_mem_ops
= {
1454 .write
= notdirty_mem_write
,
1455 .valid
.accepts
= notdirty_mem_accepts
,
1456 .endianness
= DEVICE_NATIVE_ENDIAN
,
1459 /* Generate a debug exception if a watchpoint has been hit. */
1460 static void check_watchpoint(int offset
, int len_mask
, int flags
)
1462 CPUArchState
*env
= current_cpu
->env_ptr
;
1463 target_ulong pc
, cs_base
;
1468 if (env
->watchpoint_hit
) {
1469 /* We re-entered the check after replacing the TB. Now raise
1470 * the debug interrupt so that is will trigger after the
1471 * current instruction. */
1472 cpu_interrupt(ENV_GET_CPU(env
), CPU_INTERRUPT_DEBUG
);
1475 vaddr
= (env
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
1476 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1477 if ((vaddr
== (wp
->vaddr
& len_mask
) ||
1478 (vaddr
& wp
->len_mask
) == wp
->vaddr
) && (wp
->flags
& flags
)) {
1479 wp
->flags
|= BP_WATCHPOINT_HIT
;
1480 if (!env
->watchpoint_hit
) {
1481 env
->watchpoint_hit
= wp
;
1482 tb_check_watchpoint(env
);
1483 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
1484 env
->exception_index
= EXCP_DEBUG
;
1487 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
1488 tb_gen_code(env
, pc
, cs_base
, cpu_flags
, 1);
1489 cpu_resume_from_signal(env
, NULL
);
1493 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
1498 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1499 so these check for a hit then pass through to the normal out-of-line
1501 static uint64_t watch_mem_read(void *opaque
, hwaddr addr
,
1504 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~(size
- 1), BP_MEM_READ
);
1506 case 1: return ldub_phys(addr
);
1507 case 2: return lduw_phys(addr
);
1508 case 4: return ldl_phys(addr
);
1513 static void watch_mem_write(void *opaque
, hwaddr addr
,
1514 uint64_t val
, unsigned size
)
1516 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~(size
- 1), BP_MEM_WRITE
);
1519 stb_phys(addr
, val
);
1522 stw_phys(addr
, val
);
1525 stl_phys(addr
, val
);
1531 static const MemoryRegionOps watch_mem_ops
= {
1532 .read
= watch_mem_read
,
1533 .write
= watch_mem_write
,
1534 .endianness
= DEVICE_NATIVE_ENDIAN
,
1537 static uint64_t subpage_read(void *opaque
, hwaddr addr
,
1540 subpage_t
*subpage
= opaque
;
1543 #if defined(DEBUG_SUBPAGE)
1544 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
1545 subpage
, len
, addr
);
1547 address_space_read(subpage
->as
, addr
+ subpage
->base
, buf
, len
);
1560 static void subpage_write(void *opaque
, hwaddr addr
,
1561 uint64_t value
, unsigned len
)
1563 subpage_t
*subpage
= opaque
;
1566 #if defined(DEBUG_SUBPAGE)
1567 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
1568 " value %"PRIx64
"\n",
1569 __func__
, subpage
, len
, addr
, value
);
1584 address_space_write(subpage
->as
, addr
+ subpage
->base
, buf
, len
);
1587 static bool subpage_accepts(void *opaque
, hwaddr addr
,
1588 unsigned len
, bool is_write
)
1590 subpage_t
*subpage
= opaque
;
1591 #if defined(DEBUG_SUBPAGE)
1592 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
1593 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
1596 return address_space_access_valid(subpage
->as
, addr
+ subpage
->base
,
1600 static const MemoryRegionOps subpage_ops
= {
1601 .read
= subpage_read
,
1602 .write
= subpage_write
,
1603 .valid
.accepts
= subpage_accepts
,
1604 .endianness
= DEVICE_NATIVE_ENDIAN
,
1607 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1612 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
1614 idx
= SUBPAGE_IDX(start
);
1615 eidx
= SUBPAGE_IDX(end
);
1616 #if defined(DEBUG_SUBPAGE)
1617 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
1618 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
1620 for (; idx
<= eidx
; idx
++) {
1621 mmio
->sub_section
[idx
] = section
;
1627 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
)
1631 mmio
= g_malloc0(sizeof(subpage_t
));
1635 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
1636 "subpage", TARGET_PAGE_SIZE
);
1637 mmio
->iomem
.subpage
= true;
1638 #if defined(DEBUG_SUBPAGE)
1639 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
1640 mmio
, base
, TARGET_PAGE_SIZE
);
1642 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
1647 static uint16_t dummy_section(MemoryRegion
*mr
)
1649 MemoryRegionSection section
= {
1651 .offset_within_address_space
= 0,
1652 .offset_within_region
= 0,
1653 .size
= int128_2_64(),
1656 return phys_section_add(§ion
);
1659 MemoryRegion
*iotlb_to_region(hwaddr index
)
1661 return address_space_memory
.dispatch
->sections
[index
& ~TARGET_PAGE_MASK
].mr
;
1664 static void io_mem_init(void)
1666 memory_region_init_io(&io_mem_rom
, NULL
, &unassigned_mem_ops
, NULL
, "rom", UINT64_MAX
);
1667 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
1668 "unassigned", UINT64_MAX
);
1669 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
1670 "notdirty", UINT64_MAX
);
1671 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
1672 "watch", UINT64_MAX
);
1675 static void mem_begin(MemoryListener
*listener
)
1677 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1678 AddressSpaceDispatch
*d
= g_new(AddressSpaceDispatch
, 1);
1680 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .is_leaf
= 0 };
1682 as
->next_dispatch
= d
;
1685 static void mem_commit(MemoryListener
*listener
)
1687 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1688 AddressSpaceDispatch
*cur
= as
->dispatch
;
1689 AddressSpaceDispatch
*next
= as
->next_dispatch
;
1691 next
->nodes
= next_map
.nodes
;
1692 next
->sections
= next_map
.sections
;
1694 as
->dispatch
= next
;
1698 static void core_begin(MemoryListener
*listener
)
1702 prev_map
= g_new(PhysPageMap
, 1);
1703 *prev_map
= next_map
;
1705 memset(&next_map
, 0, sizeof(next_map
));
1706 n
= dummy_section(&io_mem_unassigned
);
1707 assert(n
== PHYS_SECTION_UNASSIGNED
);
1708 n
= dummy_section(&io_mem_notdirty
);
1709 assert(n
== PHYS_SECTION_NOTDIRTY
);
1710 n
= dummy_section(&io_mem_rom
);
1711 assert(n
== PHYS_SECTION_ROM
);
1712 n
= dummy_section(&io_mem_watch
);
1713 assert(n
== PHYS_SECTION_WATCH
);
1716 /* This listener's commit run after the other AddressSpaceDispatch listeners'.
1717 * All AddressSpaceDispatch instances have switched to the next map.
1719 static void core_commit(MemoryListener
*listener
)
1721 phys_sections_free(prev_map
);
1724 static void tcg_commit(MemoryListener
*listener
)
1728 /* since each CPU stores ram addresses in its TLB cache, we must
1729 reset the modified entries */
1732 CPUArchState
*env
= cpu
->env_ptr
;
1738 static void core_log_global_start(MemoryListener
*listener
)
1740 cpu_physical_memory_set_dirty_tracking(1);
1743 static void core_log_global_stop(MemoryListener
*listener
)
1745 cpu_physical_memory_set_dirty_tracking(0);
1748 static MemoryListener core_memory_listener
= {
1749 .begin
= core_begin
,
1750 .commit
= core_commit
,
1751 .log_global_start
= core_log_global_start
,
1752 .log_global_stop
= core_log_global_stop
,
1756 static MemoryListener tcg_memory_listener
= {
1757 .commit
= tcg_commit
,
1760 void address_space_init_dispatch(AddressSpace
*as
)
1762 as
->dispatch
= NULL
;
1763 as
->dispatch_listener
= (MemoryListener
) {
1765 .commit
= mem_commit
,
1766 .region_add
= mem_add
,
1767 .region_nop
= mem_add
,
1770 memory_listener_register(&as
->dispatch_listener
, as
);
1773 void address_space_destroy_dispatch(AddressSpace
*as
)
1775 AddressSpaceDispatch
*d
= as
->dispatch
;
1777 memory_listener_unregister(&as
->dispatch_listener
);
1779 as
->dispatch
= NULL
;
1782 static void memory_map_init(void)
1784 system_memory
= g_malloc(sizeof(*system_memory
));
1785 memory_region_init(system_memory
, NULL
, "system", INT64_MAX
);
1786 address_space_init(&address_space_memory
, system_memory
, "memory");
1788 system_io
= g_malloc(sizeof(*system_io
));
1789 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
1791 address_space_init(&address_space_io
, system_io
, "I/O");
1793 memory_listener_register(&core_memory_listener
, &address_space_memory
);
1794 if (tcg_enabled()) {
1795 memory_listener_register(&tcg_memory_listener
, &address_space_memory
);
1799 MemoryRegion
*get_system_memory(void)
1801 return system_memory
;
1804 MemoryRegion
*get_system_io(void)
1809 #endif /* !defined(CONFIG_USER_ONLY) */
1811 /* physical memory access (slow version, mainly for debug) */
1812 #if defined(CONFIG_USER_ONLY)
1813 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
1814 uint8_t *buf
, int len
, int is_write
)
1821 page
= addr
& TARGET_PAGE_MASK
;
1822 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
1825 flags
= page_get_flags(page
);
1826 if (!(flags
& PAGE_VALID
))
1829 if (!(flags
& PAGE_WRITE
))
1831 /* XXX: this code should not depend on lock_user */
1832 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
1835 unlock_user(p
, addr
, l
);
1837 if (!(flags
& PAGE_READ
))
1839 /* XXX: this code should not depend on lock_user */
1840 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
1843 unlock_user(p
, addr
, 0);
1854 static void invalidate_and_set_dirty(hwaddr addr
,
1857 if (!cpu_physical_memory_is_dirty(addr
)) {
1858 /* invalidate code */
1859 tb_invalidate_phys_page_range(addr
, addr
+ length
, 0);
1861 cpu_physical_memory_set_dirty_flags(addr
, (0xff & ~CODE_DIRTY_FLAG
));
1863 xen_modified_memory(addr
, length
);
1866 static inline bool memory_access_is_direct(MemoryRegion
*mr
, bool is_write
)
1868 if (memory_region_is_ram(mr
)) {
1869 return !(is_write
&& mr
->readonly
);
1871 if (memory_region_is_romd(mr
)) {
1878 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
1880 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
1882 /* Regions are assumed to support 1-4 byte accesses unless
1883 otherwise specified. */
1884 if (access_size_max
== 0) {
1885 access_size_max
= 4;
1888 /* Bound the maximum access by the alignment of the address. */
1889 if (!mr
->ops
->impl
.unaligned
) {
1890 unsigned align_size_max
= addr
& -addr
;
1891 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
1892 access_size_max
= align_size_max
;
1896 /* Don't attempt accesses larger than the maximum. */
1897 if (l
> access_size_max
) {
1898 l
= access_size_max
;
1901 l
= 1 << (qemu_fls(l
) - 1);
1907 bool address_space_rw(AddressSpace
*as
, hwaddr addr
, uint8_t *buf
,
1908 int len
, bool is_write
)
1919 mr
= address_space_translate(as
, addr
, &addr1
, &l
, is_write
);
1922 if (!memory_access_is_direct(mr
, is_write
)) {
1923 l
= memory_access_size(mr
, l
, addr1
);
1924 /* XXX: could force current_cpu to NULL to avoid
1928 /* 64 bit write access */
1930 error
|= io_mem_write(mr
, addr1
, val
, 8);
1933 /* 32 bit write access */
1935 error
|= io_mem_write(mr
, addr1
, val
, 4);
1938 /* 16 bit write access */
1940 error
|= io_mem_write(mr
, addr1
, val
, 2);
1943 /* 8 bit write access */
1945 error
|= io_mem_write(mr
, addr1
, val
, 1);
1951 addr1
+= memory_region_get_ram_addr(mr
);
1953 ptr
= qemu_get_ram_ptr(addr1
);
1954 memcpy(ptr
, buf
, l
);
1955 invalidate_and_set_dirty(addr1
, l
);
1958 if (!memory_access_is_direct(mr
, is_write
)) {
1960 l
= memory_access_size(mr
, l
, addr1
);
1963 /* 64 bit read access */
1964 error
|= io_mem_read(mr
, addr1
, &val
, 8);
1968 /* 32 bit read access */
1969 error
|= io_mem_read(mr
, addr1
, &val
, 4);
1973 /* 16 bit read access */
1974 error
|= io_mem_read(mr
, addr1
, &val
, 2);
1978 /* 8 bit read access */
1979 error
|= io_mem_read(mr
, addr1
, &val
, 1);
1987 ptr
= qemu_get_ram_ptr(mr
->ram_addr
+ addr1
);
1988 memcpy(buf
, ptr
, l
);
1999 bool address_space_write(AddressSpace
*as
, hwaddr addr
,
2000 const uint8_t *buf
, int len
)
2002 return address_space_rw(as
, addr
, (uint8_t *)buf
, len
, true);
2005 bool address_space_read(AddressSpace
*as
, hwaddr addr
, uint8_t *buf
, int len
)
2007 return address_space_rw(as
, addr
, buf
, len
, false);
2011 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
2012 int len
, int is_write
)
2014 address_space_rw(&address_space_memory
, addr
, buf
, len
, is_write
);
2017 /* used for ROM loading : can write in RAM and ROM */
2018 void cpu_physical_memory_write_rom(hwaddr addr
,
2019 const uint8_t *buf
, int len
)
2028 mr
= address_space_translate(&address_space_memory
,
2029 addr
, &addr1
, &l
, true);
2031 if (!(memory_region_is_ram(mr
) ||
2032 memory_region_is_romd(mr
))) {
2035 addr1
+= memory_region_get_ram_addr(mr
);
2037 ptr
= qemu_get_ram_ptr(addr1
);
2038 memcpy(ptr
, buf
, l
);
2039 invalidate_and_set_dirty(addr1
, l
);
2054 static BounceBuffer bounce
;
2056 typedef struct MapClient
{
2058 void (*callback
)(void *opaque
);
2059 QLIST_ENTRY(MapClient
) link
;
2062 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
2063 = QLIST_HEAD_INITIALIZER(map_client_list
);
2065 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
))
2067 MapClient
*client
= g_malloc(sizeof(*client
));
2069 client
->opaque
= opaque
;
2070 client
->callback
= callback
;
2071 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
2075 static void cpu_unregister_map_client(void *_client
)
2077 MapClient
*client
= (MapClient
*)_client
;
2079 QLIST_REMOVE(client
, link
);
2083 static void cpu_notify_map_clients(void)
2087 while (!QLIST_EMPTY(&map_client_list
)) {
2088 client
= QLIST_FIRST(&map_client_list
);
2089 client
->callback(client
->opaque
);
2090 cpu_unregister_map_client(client
);
2094 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
, int len
, bool is_write
)
2101 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2102 if (!memory_access_is_direct(mr
, is_write
)) {
2103 l
= memory_access_size(mr
, l
, addr
);
2104 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
)) {
2115 /* Map a physical memory region into a host virtual address.
2116 * May map a subset of the requested range, given by and returned in *plen.
2117 * May return NULL if resources needed to perform the mapping are exhausted.
2118 * Use only for reads OR writes - not for read-modify-write operations.
2119 * Use cpu_register_map_client() to know when retrying the map operation is
2120 * likely to succeed.
2122 void *address_space_map(AddressSpace
*as
,
2129 hwaddr l
, xlat
, base
;
2130 MemoryRegion
*mr
, *this_mr
;
2138 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2139 if (!memory_access_is_direct(mr
, is_write
)) {
2140 if (bounce
.buffer
) {
2143 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, TARGET_PAGE_SIZE
);
2147 memory_region_ref(mr
);
2150 address_space_read(as
, addr
, bounce
.buffer
, l
);
2154 return bounce
.buffer
;
2158 raddr
= memory_region_get_ram_addr(mr
);
2169 this_mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2170 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
2175 memory_region_ref(mr
);
2177 return qemu_ram_ptr_length(raddr
+ base
, plen
);
2180 /* Unmaps a memory region previously mapped by address_space_map().
2181 * Will also mark the memory as dirty if is_write == 1. access_len gives
2182 * the amount of memory that was actually read or written by the caller.
2184 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
2185 int is_write
, hwaddr access_len
)
2187 if (buffer
!= bounce
.buffer
) {
2191 mr
= qemu_ram_addr_from_host(buffer
, &addr1
);
2194 while (access_len
) {
2196 l
= TARGET_PAGE_SIZE
;
2199 invalidate_and_set_dirty(addr1
, l
);
2204 if (xen_enabled()) {
2205 xen_invalidate_map_cache_entry(buffer
);
2207 memory_region_unref(mr
);
2211 address_space_write(as
, bounce
.addr
, bounce
.buffer
, access_len
);
2213 qemu_vfree(bounce
.buffer
);
2214 bounce
.buffer
= NULL
;
2215 memory_region_unref(bounce
.mr
);
2216 cpu_notify_map_clients();
2219 void *cpu_physical_memory_map(hwaddr addr
,
2223 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
2226 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
2227 int is_write
, hwaddr access_len
)
2229 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
2232 /* warning: addr must be aligned */
2233 static inline uint32_t ldl_phys_internal(hwaddr addr
,
2234 enum device_endian endian
)
2242 mr
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2244 if (l
< 4 || !memory_access_is_direct(mr
, false)) {
2246 io_mem_read(mr
, addr1
, &val
, 4);
2247 #if defined(TARGET_WORDS_BIGENDIAN)
2248 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2252 if (endian
== DEVICE_BIG_ENDIAN
) {
2258 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
2262 case DEVICE_LITTLE_ENDIAN
:
2263 val
= ldl_le_p(ptr
);
2265 case DEVICE_BIG_ENDIAN
:
2266 val
= ldl_be_p(ptr
);
2276 uint32_t ldl_phys(hwaddr addr
)
2278 return ldl_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
2281 uint32_t ldl_le_phys(hwaddr addr
)
2283 return ldl_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
2286 uint32_t ldl_be_phys(hwaddr addr
)
2288 return ldl_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
2291 /* warning: addr must be aligned */
2292 static inline uint64_t ldq_phys_internal(hwaddr addr
,
2293 enum device_endian endian
)
2301 mr
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2303 if (l
< 8 || !memory_access_is_direct(mr
, false)) {
2305 io_mem_read(mr
, addr1
, &val
, 8);
2306 #if defined(TARGET_WORDS_BIGENDIAN)
2307 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2311 if (endian
== DEVICE_BIG_ENDIAN
) {
2317 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
2321 case DEVICE_LITTLE_ENDIAN
:
2322 val
= ldq_le_p(ptr
);
2324 case DEVICE_BIG_ENDIAN
:
2325 val
= ldq_be_p(ptr
);
2335 uint64_t ldq_phys(hwaddr addr
)
2337 return ldq_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
2340 uint64_t ldq_le_phys(hwaddr addr
)
2342 return ldq_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
2345 uint64_t ldq_be_phys(hwaddr addr
)
2347 return ldq_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
2351 uint32_t ldub_phys(hwaddr addr
)
2354 cpu_physical_memory_read(addr
, &val
, 1);
2358 /* warning: addr must be aligned */
2359 static inline uint32_t lduw_phys_internal(hwaddr addr
,
2360 enum device_endian endian
)
2368 mr
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2370 if (l
< 2 || !memory_access_is_direct(mr
, false)) {
2372 io_mem_read(mr
, addr1
, &val
, 2);
2373 #if defined(TARGET_WORDS_BIGENDIAN)
2374 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2378 if (endian
== DEVICE_BIG_ENDIAN
) {
2384 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
2388 case DEVICE_LITTLE_ENDIAN
:
2389 val
= lduw_le_p(ptr
);
2391 case DEVICE_BIG_ENDIAN
:
2392 val
= lduw_be_p(ptr
);
2402 uint32_t lduw_phys(hwaddr addr
)
2404 return lduw_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
2407 uint32_t lduw_le_phys(hwaddr addr
)
2409 return lduw_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
2412 uint32_t lduw_be_phys(hwaddr addr
)
2414 return lduw_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
2417 /* warning: addr must be aligned. The ram page is not masked as dirty
2418 and the code inside is not invalidated. It is useful if the dirty
2419 bits are used to track modified PTEs */
2420 void stl_phys_notdirty(hwaddr addr
, uint32_t val
)
2427 mr
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2429 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
2430 io_mem_write(mr
, addr1
, val
, 4);
2432 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
2433 ptr
= qemu_get_ram_ptr(addr1
);
2436 if (unlikely(in_migration
)) {
2437 if (!cpu_physical_memory_is_dirty(addr1
)) {
2438 /* invalidate code */
2439 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
2441 cpu_physical_memory_set_dirty_flags(
2442 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
2448 /* warning: addr must be aligned */
2449 static inline void stl_phys_internal(hwaddr addr
, uint32_t val
,
2450 enum device_endian endian
)
2457 mr
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2459 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
2460 #if defined(TARGET_WORDS_BIGENDIAN)
2461 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2465 if (endian
== DEVICE_BIG_ENDIAN
) {
2469 io_mem_write(mr
, addr1
, val
, 4);
2472 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
2473 ptr
= qemu_get_ram_ptr(addr1
);
2475 case DEVICE_LITTLE_ENDIAN
:
2478 case DEVICE_BIG_ENDIAN
:
2485 invalidate_and_set_dirty(addr1
, 4);
2489 void stl_phys(hwaddr addr
, uint32_t val
)
2491 stl_phys_internal(addr
, val
, DEVICE_NATIVE_ENDIAN
);
2494 void stl_le_phys(hwaddr addr
, uint32_t val
)
2496 stl_phys_internal(addr
, val
, DEVICE_LITTLE_ENDIAN
);
2499 void stl_be_phys(hwaddr addr
, uint32_t val
)
2501 stl_phys_internal(addr
, val
, DEVICE_BIG_ENDIAN
);
2505 void stb_phys(hwaddr addr
, uint32_t val
)
2508 cpu_physical_memory_write(addr
, &v
, 1);
2511 /* warning: addr must be aligned */
2512 static inline void stw_phys_internal(hwaddr addr
, uint32_t val
,
2513 enum device_endian endian
)
2520 mr
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2522 if (l
< 2 || !memory_access_is_direct(mr
, true)) {
2523 #if defined(TARGET_WORDS_BIGENDIAN)
2524 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2528 if (endian
== DEVICE_BIG_ENDIAN
) {
2532 io_mem_write(mr
, addr1
, val
, 2);
2535 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
2536 ptr
= qemu_get_ram_ptr(addr1
);
2538 case DEVICE_LITTLE_ENDIAN
:
2541 case DEVICE_BIG_ENDIAN
:
2548 invalidate_and_set_dirty(addr1
, 2);
2552 void stw_phys(hwaddr addr
, uint32_t val
)
2554 stw_phys_internal(addr
, val
, DEVICE_NATIVE_ENDIAN
);
2557 void stw_le_phys(hwaddr addr
, uint32_t val
)
2559 stw_phys_internal(addr
, val
, DEVICE_LITTLE_ENDIAN
);
2562 void stw_be_phys(hwaddr addr
, uint32_t val
)
2564 stw_phys_internal(addr
, val
, DEVICE_BIG_ENDIAN
);
2568 void stq_phys(hwaddr addr
, uint64_t val
)
2571 cpu_physical_memory_write(addr
, &val
, 8);
2574 void stq_le_phys(hwaddr addr
, uint64_t val
)
2576 val
= cpu_to_le64(val
);
2577 cpu_physical_memory_write(addr
, &val
, 8);
2580 void stq_be_phys(hwaddr addr
, uint64_t val
)
2582 val
= cpu_to_be64(val
);
2583 cpu_physical_memory_write(addr
, &val
, 8);
2586 /* virtual memory access for debug (includes writing to ROM) */
2587 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2588 uint8_t *buf
, int len
, int is_write
)
2595 page
= addr
& TARGET_PAGE_MASK
;
2596 phys_addr
= cpu_get_phys_page_debug(cpu
, page
);
2597 /* if no physical page mapped, return an error */
2598 if (phys_addr
== -1)
2600 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2603 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
2605 cpu_physical_memory_write_rom(phys_addr
, buf
, l
);
2607 cpu_physical_memory_rw(phys_addr
, buf
, l
, is_write
);
2616 #if !defined(CONFIG_USER_ONLY)
2619 * A helper function for the _utterly broken_ virtio device model to find out if
2620 * it's running on a big endian machine. Don't do this at home kids!
2622 bool virtio_is_big_endian(void);
2623 bool virtio_is_big_endian(void)
2625 #if defined(TARGET_WORDS_BIGENDIAN)
2634 #ifndef CONFIG_USER_ONLY
2635 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
2640 mr
= address_space_translate(&address_space_memory
,
2641 phys_addr
, &phys_addr
, &l
, false);
2643 return !(memory_region_is_ram(mr
) ||
2644 memory_region_is_romd(mr
));
2647 void qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
2651 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
2652 func(block
->host
, block
->offset
, block
->length
, opaque
);