4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21 #include <sys/types.h>
25 #include "qemu-common.h"
30 #include "qemu/osdep.h"
31 #include "sysemu/kvm.h"
32 #include "sysemu/sysemu.h"
33 #include "hw/xen/xen.h"
34 #include "qemu/timer.h"
35 #include "qemu/config-file.h"
36 #include "qemu/error-report.h"
37 #include "exec/memory.h"
38 #include "sysemu/dma.h"
39 #include "exec/address-spaces.h"
40 #if defined(CONFIG_USER_ONLY)
42 #else /* !CONFIG_USER_ONLY */
43 #include "sysemu/xen-mapcache.h"
46 #include "exec/cpu-all.h"
48 #include "exec/cputlb.h"
49 #include "translate-all.h"
51 #include "exec/memory-internal.h"
52 #include "exec/ram_addr.h"
54 #include "qemu/range.h"
56 //#define DEBUG_SUBPAGE
58 #if !defined(CONFIG_USER_ONLY)
59 static bool in_migration
;
61 RAMList ram_list
= { .blocks
= QTAILQ_HEAD_INITIALIZER(ram_list
.blocks
) };
63 static MemoryRegion
*system_memory
;
64 static MemoryRegion
*system_io
;
66 AddressSpace address_space_io
;
67 AddressSpace address_space_memory
;
69 MemoryRegion io_mem_rom
, io_mem_notdirty
;
70 static MemoryRegion io_mem_unassigned
;
72 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
73 #define RAM_PREALLOC (1 << 0)
75 /* RAM is mmap-ed with MAP_SHARED */
76 #define RAM_SHARED (1 << 1)
80 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
81 /* current CPU in the current thread. It is only valid inside
83 DEFINE_TLS(CPUState
*, current_cpu
);
84 /* 0 = Do not count executed instructions.
85 1 = Precise instruction counting.
86 2 = Adaptive rate instruction counting. */
89 #if !defined(CONFIG_USER_ONLY)
91 typedef struct PhysPageEntry PhysPageEntry
;
93 struct PhysPageEntry
{
94 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
96 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
100 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
102 /* Size of the L2 (and L3, etc) page tables. */
103 #define ADDR_SPACE_BITS 64
106 #define P_L2_SIZE (1 << P_L2_BITS)
108 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
110 typedef PhysPageEntry Node
[P_L2_SIZE
];
112 typedef struct PhysPageMap
{
113 unsigned sections_nb
;
114 unsigned sections_nb_alloc
;
116 unsigned nodes_nb_alloc
;
118 MemoryRegionSection
*sections
;
121 struct AddressSpaceDispatch
{
122 /* This is a multi-level map on the physical address space.
123 * The bottom level has pointers to MemoryRegionSections.
125 PhysPageEntry phys_map
;
130 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
131 typedef struct subpage_t
{
135 uint16_t sub_section
[TARGET_PAGE_SIZE
];
138 #define PHYS_SECTION_UNASSIGNED 0
139 #define PHYS_SECTION_NOTDIRTY 1
140 #define PHYS_SECTION_ROM 2
141 #define PHYS_SECTION_WATCH 3
143 static void io_mem_init(void);
144 static void memory_map_init(void);
145 static void tcg_commit(MemoryListener
*listener
);
147 static MemoryRegion io_mem_watch
;
150 #if !defined(CONFIG_USER_ONLY)
152 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
154 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
155 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
* 2, 16);
156 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, map
->nodes_nb
+ nodes
);
157 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
161 static uint32_t phys_map_node_alloc(PhysPageMap
*map
)
166 ret
= map
->nodes_nb
++;
167 assert(ret
!= PHYS_MAP_NODE_NIL
);
168 assert(ret
!= map
->nodes_nb_alloc
);
169 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
170 map
->nodes
[ret
][i
].skip
= 1;
171 map
->nodes
[ret
][i
].ptr
= PHYS_MAP_NODE_NIL
;
176 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
177 hwaddr
*index
, hwaddr
*nb
, uint16_t leaf
,
182 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
184 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
185 lp
->ptr
= phys_map_node_alloc(map
);
186 p
= map
->nodes
[lp
->ptr
];
188 for (i
= 0; i
< P_L2_SIZE
; i
++) {
190 p
[i
].ptr
= PHYS_SECTION_UNASSIGNED
;
194 p
= map
->nodes
[lp
->ptr
];
196 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
198 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
199 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
205 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
211 static void phys_page_set(AddressSpaceDispatch
*d
,
212 hwaddr index
, hwaddr nb
,
215 /* Wildly overreserve - it doesn't matter much. */
216 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
218 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
221 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
222 * and update our entry so we can skip it and go directly to the destination.
224 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
, unsigned long *compacted
)
226 unsigned valid_ptr
= P_L2_SIZE
;
231 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
236 for (i
= 0; i
< P_L2_SIZE
; i
++) {
237 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
244 phys_page_compact(&p
[i
], nodes
, compacted
);
248 /* We can only compress if there's only one child. */
253 assert(valid_ptr
< P_L2_SIZE
);
255 /* Don't compress if it won't fit in the # of bits we have. */
256 if (lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 3)) {
260 lp
->ptr
= p
[valid_ptr
].ptr
;
261 if (!p
[valid_ptr
].skip
) {
262 /* If our only child is a leaf, make this a leaf. */
263 /* By design, we should have made this node a leaf to begin with so we
264 * should never reach here.
265 * But since it's so simple to handle this, let's do it just in case we
270 lp
->skip
+= p
[valid_ptr
].skip
;
274 static void phys_page_compact_all(AddressSpaceDispatch
*d
, int nodes_nb
)
276 DECLARE_BITMAP(compacted
, nodes_nb
);
278 if (d
->phys_map
.skip
) {
279 phys_page_compact(&d
->phys_map
, d
->map
.nodes
, compacted
);
283 static MemoryRegionSection
*phys_page_find(PhysPageEntry lp
, hwaddr addr
,
284 Node
*nodes
, MemoryRegionSection
*sections
)
287 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
290 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
291 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
292 return §ions
[PHYS_SECTION_UNASSIGNED
];
295 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
298 if (sections
[lp
.ptr
].size
.hi
||
299 range_covers_byte(sections
[lp
.ptr
].offset_within_address_space
,
300 sections
[lp
.ptr
].size
.lo
, addr
)) {
301 return §ions
[lp
.ptr
];
303 return §ions
[PHYS_SECTION_UNASSIGNED
];
307 bool memory_region_is_unassigned(MemoryRegion
*mr
)
309 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
310 && mr
!= &io_mem_watch
;
313 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
315 bool resolve_subpage
)
317 MemoryRegionSection
*section
;
320 section
= phys_page_find(d
->phys_map
, addr
, d
->map
.nodes
, d
->map
.sections
);
321 if (resolve_subpage
&& section
->mr
->subpage
) {
322 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
323 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
328 static MemoryRegionSection
*
329 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
330 hwaddr
*plen
, bool resolve_subpage
)
332 MemoryRegionSection
*section
;
335 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
336 /* Compute offset within MemoryRegionSection */
337 addr
-= section
->offset_within_address_space
;
339 /* Compute offset within MemoryRegion */
340 *xlat
= addr
+ section
->offset_within_region
;
342 diff
= int128_sub(section
->mr
->size
, int128_make64(addr
));
343 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
347 static inline bool memory_access_is_direct(MemoryRegion
*mr
, bool is_write
)
349 if (memory_region_is_ram(mr
)) {
350 return !(is_write
&& mr
->readonly
);
352 if (memory_region_is_romd(mr
)) {
359 MemoryRegion
*address_space_translate(AddressSpace
*as
, hwaddr addr
,
360 hwaddr
*xlat
, hwaddr
*plen
,
364 MemoryRegionSection
*section
;
369 section
= address_space_translate_internal(as
->dispatch
, addr
, &addr
, plen
, true);
372 if (!mr
->iommu_ops
) {
376 iotlb
= mr
->iommu_ops
->translate(mr
, addr
, is_write
);
377 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
378 | (addr
& iotlb
.addr_mask
));
379 len
= MIN(len
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
380 if (!(iotlb
.perm
& (1 << is_write
))) {
381 mr
= &io_mem_unassigned
;
385 as
= iotlb
.target_as
;
388 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
389 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
390 len
= MIN(page
, len
);
398 MemoryRegionSection
*
399 address_space_translate_for_iotlb(AddressSpace
*as
, hwaddr addr
, hwaddr
*xlat
,
402 MemoryRegionSection
*section
;
403 section
= address_space_translate_internal(as
->dispatch
, addr
, xlat
, plen
, false);
405 assert(!section
->mr
->iommu_ops
);
410 void cpu_exec_init_all(void)
412 #if !defined(CONFIG_USER_ONLY)
413 qemu_mutex_init(&ram_list
.mutex
);
419 #if !defined(CONFIG_USER_ONLY)
421 static int cpu_common_post_load(void *opaque
, int version_id
)
423 CPUState
*cpu
= opaque
;
425 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
426 version_id is increased. */
427 cpu
->interrupt_request
&= ~0x01;
433 static int cpu_common_pre_load(void *opaque
)
435 CPUState
*cpu
= opaque
;
437 cpu
->exception_index
= 0;
442 static bool cpu_common_exception_index_needed(void *opaque
)
444 CPUState
*cpu
= opaque
;
446 return cpu
->exception_index
!= 0;
449 static const VMStateDescription vmstate_cpu_common_exception_index
= {
450 .name
= "cpu_common/exception_index",
452 .minimum_version_id
= 1,
453 .fields
= (VMStateField
[]) {
454 VMSTATE_INT32(exception_index
, CPUState
),
455 VMSTATE_END_OF_LIST()
459 const VMStateDescription vmstate_cpu_common
= {
460 .name
= "cpu_common",
462 .minimum_version_id
= 1,
463 .pre_load
= cpu_common_pre_load
,
464 .post_load
= cpu_common_post_load
,
465 .fields
= (VMStateField
[]) {
466 VMSTATE_UINT32(halted
, CPUState
),
467 VMSTATE_UINT32(interrupt_request
, CPUState
),
468 VMSTATE_END_OF_LIST()
470 .subsections
= (VMStateSubsection
[]) {
472 .vmsd
= &vmstate_cpu_common_exception_index
,
473 .needed
= cpu_common_exception_index_needed
,
482 CPUState
*qemu_get_cpu(int index
)
487 if (cpu
->cpu_index
== index
) {
495 #if !defined(CONFIG_USER_ONLY)
496 void tcg_cpu_address_space_init(CPUState
*cpu
, AddressSpace
*as
)
498 /* We only support one address space per cpu at the moment. */
499 assert(cpu
->as
== as
);
501 if (cpu
->tcg_as_listener
) {
502 memory_listener_unregister(cpu
->tcg_as_listener
);
504 cpu
->tcg_as_listener
= g_new0(MemoryListener
, 1);
506 cpu
->tcg_as_listener
->commit
= tcg_commit
;
507 memory_listener_register(cpu
->tcg_as_listener
, as
);
511 void cpu_exec_init(CPUArchState
*env
)
513 CPUState
*cpu
= ENV_GET_CPU(env
);
514 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
518 #if defined(CONFIG_USER_ONLY)
522 CPU_FOREACH(some_cpu
) {
525 cpu
->cpu_index
= cpu_index
;
527 QTAILQ_INIT(&cpu
->breakpoints
);
528 QTAILQ_INIT(&cpu
->watchpoints
);
529 #ifndef CONFIG_USER_ONLY
530 cpu
->as
= &address_space_memory
;
531 cpu
->thread_id
= qemu_get_thread_id();
533 QTAILQ_INSERT_TAIL(&cpus
, cpu
, node
);
534 #if defined(CONFIG_USER_ONLY)
537 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
538 vmstate_register(NULL
, cpu_index
, &vmstate_cpu_common
, cpu
);
540 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
541 register_savevm(NULL
, "cpu", cpu_index
, CPU_SAVE_VERSION
,
542 cpu_save
, cpu_load
, env
);
543 assert(cc
->vmsd
== NULL
);
544 assert(qdev_get_vmsd(DEVICE(cpu
)) == NULL
);
546 if (cc
->vmsd
!= NULL
) {
547 vmstate_register(NULL
, cpu_index
, cc
->vmsd
, cpu
);
551 #if defined(TARGET_HAS_ICE)
552 #if defined(CONFIG_USER_ONLY)
553 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
555 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
558 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
560 hwaddr phys
= cpu_get_phys_page_debug(cpu
, pc
);
562 tb_invalidate_phys_addr(cpu
->as
,
563 phys
| (pc
& ~TARGET_PAGE_MASK
));
567 #endif /* TARGET_HAS_ICE */
569 #if defined(CONFIG_USER_ONLY)
570 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
575 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
576 int flags
, CPUWatchpoint
**watchpoint
)
581 /* Add a watchpoint. */
582 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
583 int flags
, CPUWatchpoint
**watchpoint
)
585 vaddr len_mask
= ~(len
- 1);
588 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
589 if ((len
& (len
- 1)) || (addr
& ~len_mask
) ||
590 len
== 0 || len
> TARGET_PAGE_SIZE
) {
591 error_report("tried to set invalid watchpoint at %"
592 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
595 wp
= g_malloc(sizeof(*wp
));
598 wp
->len_mask
= len_mask
;
601 /* keep all GDB-injected watchpoints in front */
602 if (flags
& BP_GDB
) {
603 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
605 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
608 tlb_flush_page(cpu
, addr
);
615 /* Remove a specific watchpoint. */
616 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
619 vaddr len_mask
= ~(len
- 1);
622 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
623 if (addr
== wp
->vaddr
&& len_mask
== wp
->len_mask
624 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
625 cpu_watchpoint_remove_by_ref(cpu
, wp
);
632 /* Remove a specific watchpoint by reference. */
633 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
635 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
637 tlb_flush_page(cpu
, watchpoint
->vaddr
);
642 /* Remove all matching watchpoints. */
643 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
645 CPUWatchpoint
*wp
, *next
;
647 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
648 if (wp
->flags
& mask
) {
649 cpu_watchpoint_remove_by_ref(cpu
, wp
);
655 /* Add a breakpoint. */
656 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
657 CPUBreakpoint
**breakpoint
)
659 #if defined(TARGET_HAS_ICE)
662 bp
= g_malloc(sizeof(*bp
));
667 /* keep all GDB-injected breakpoints in front */
668 if (flags
& BP_GDB
) {
669 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
671 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
674 breakpoint_invalidate(cpu
, pc
);
685 /* Remove a specific breakpoint. */
686 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
688 #if defined(TARGET_HAS_ICE)
691 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
692 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
693 cpu_breakpoint_remove_by_ref(cpu
, bp
);
703 /* Remove a specific breakpoint by reference. */
704 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
706 #if defined(TARGET_HAS_ICE)
707 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
709 breakpoint_invalidate(cpu
, breakpoint
->pc
);
715 /* Remove all matching breakpoints. */
716 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
718 #if defined(TARGET_HAS_ICE)
719 CPUBreakpoint
*bp
, *next
;
721 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
722 if (bp
->flags
& mask
) {
723 cpu_breakpoint_remove_by_ref(cpu
, bp
);
729 /* enable or disable single step mode. EXCP_DEBUG is returned by the
730 CPU loop after each instruction */
731 void cpu_single_step(CPUState
*cpu
, int enabled
)
733 #if defined(TARGET_HAS_ICE)
734 if (cpu
->singlestep_enabled
!= enabled
) {
735 cpu
->singlestep_enabled
= enabled
;
737 kvm_update_guest_debug(cpu
, 0);
739 /* must flush all the translated code to avoid inconsistencies */
740 /* XXX: only flush what is necessary */
741 CPUArchState
*env
= cpu
->env_ptr
;
748 void cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
755 fprintf(stderr
, "qemu: fatal: ");
756 vfprintf(stderr
, fmt
, ap
);
757 fprintf(stderr
, "\n");
758 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
759 if (qemu_log_enabled()) {
760 qemu_log("qemu: fatal: ");
761 qemu_log_vprintf(fmt
, ap2
);
763 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
769 #if defined(CONFIG_USER_ONLY)
771 struct sigaction act
;
772 sigfillset(&act
.sa_mask
);
773 act
.sa_handler
= SIG_DFL
;
774 sigaction(SIGABRT
, &act
, NULL
);
780 #if !defined(CONFIG_USER_ONLY)
781 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
785 /* The list is protected by the iothread lock here. */
786 block
= ram_list
.mru_block
;
787 if (block
&& addr
- block
->offset
< block
->length
) {
790 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
791 if (addr
- block
->offset
< block
->length
) {
796 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
800 ram_list
.mru_block
= block
;
804 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
810 end
= TARGET_PAGE_ALIGN(start
+ length
);
811 start
&= TARGET_PAGE_MASK
;
813 block
= qemu_get_ram_block(start
);
814 assert(block
== qemu_get_ram_block(end
- 1));
815 start1
= (uintptr_t)block
->host
+ (start
- block
->offset
);
816 cpu_tlb_reset_dirty_all(start1
, length
);
819 /* Note: start and end must be within the same ram block. */
820 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t length
,
825 cpu_physical_memory_clear_dirty_range(start
, length
, client
);
828 tlb_reset_dirty_range_all(start
, length
);
832 static void cpu_physical_memory_set_dirty_tracking(bool enable
)
834 in_migration
= enable
;
837 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
838 MemoryRegionSection
*section
,
840 hwaddr paddr
, hwaddr xlat
,
842 target_ulong
*address
)
847 if (memory_region_is_ram(section
->mr
)) {
849 iotlb
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
851 if (!section
->readonly
) {
852 iotlb
|= PHYS_SECTION_NOTDIRTY
;
854 iotlb
|= PHYS_SECTION_ROM
;
857 iotlb
= section
- section
->address_space
->dispatch
->map
.sections
;
861 /* Make accesses to pages with watchpoints go via the
862 watchpoint trap routines. */
863 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
864 if (vaddr
== (wp
->vaddr
& TARGET_PAGE_MASK
)) {
865 /* Avoid trapping reads of pages with a write breakpoint. */
866 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
867 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
868 *address
|= TLB_MMIO
;
876 #endif /* defined(CONFIG_USER_ONLY) */
878 #if !defined(CONFIG_USER_ONLY)
880 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
882 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
);
884 static void *(*phys_mem_alloc
)(size_t size
) = qemu_anon_ram_alloc
;
887 * Set a custom physical guest memory alloator.
888 * Accelerators with unusual needs may need this. Hopefully, we can
889 * get rid of it eventually.
891 void phys_mem_set_alloc(void *(*alloc
)(size_t))
893 phys_mem_alloc
= alloc
;
896 static uint16_t phys_section_add(PhysPageMap
*map
,
897 MemoryRegionSection
*section
)
899 /* The physical section number is ORed with a page-aligned
900 * pointer to produce the iotlb entries. Thus it should
901 * never overflow into the page-aligned value.
903 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
905 if (map
->sections_nb
== map
->sections_nb_alloc
) {
906 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
907 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
908 map
->sections_nb_alloc
);
910 map
->sections
[map
->sections_nb
] = *section
;
911 memory_region_ref(section
->mr
);
912 return map
->sections_nb
++;
915 static void phys_section_destroy(MemoryRegion
*mr
)
917 memory_region_unref(mr
);
920 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
921 object_unref(OBJECT(&subpage
->iomem
));
926 static void phys_sections_free(PhysPageMap
*map
)
928 while (map
->sections_nb
> 0) {
929 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
930 phys_section_destroy(section
->mr
);
932 g_free(map
->sections
);
936 static void register_subpage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
939 hwaddr base
= section
->offset_within_address_space
941 MemoryRegionSection
*existing
= phys_page_find(d
->phys_map
, base
,
942 d
->map
.nodes
, d
->map
.sections
);
943 MemoryRegionSection subsection
= {
944 .offset_within_address_space
= base
,
945 .size
= int128_make64(TARGET_PAGE_SIZE
),
949 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
951 if (!(existing
->mr
->subpage
)) {
952 subpage
= subpage_init(d
->as
, base
);
953 subsection
.address_space
= d
->as
;
954 subsection
.mr
= &subpage
->iomem
;
955 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
956 phys_section_add(&d
->map
, &subsection
));
958 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
960 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
961 end
= start
+ int128_get64(section
->size
) - 1;
962 subpage_register(subpage
, start
, end
,
963 phys_section_add(&d
->map
, section
));
967 static void register_multipage(AddressSpaceDispatch
*d
,
968 MemoryRegionSection
*section
)
970 hwaddr start_addr
= section
->offset_within_address_space
;
971 uint16_t section_index
= phys_section_add(&d
->map
, section
);
972 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
976 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
979 static void mem_add(MemoryListener
*listener
, MemoryRegionSection
*section
)
981 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
982 AddressSpaceDispatch
*d
= as
->next_dispatch
;
983 MemoryRegionSection now
= *section
, remain
= *section
;
984 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
986 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
987 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
988 - now
.offset_within_address_space
;
990 now
.size
= int128_min(int128_make64(left
), now
.size
);
991 register_subpage(d
, &now
);
993 now
.size
= int128_zero();
995 while (int128_ne(remain
.size
, now
.size
)) {
996 remain
.size
= int128_sub(remain
.size
, now
.size
);
997 remain
.offset_within_address_space
+= int128_get64(now
.size
);
998 remain
.offset_within_region
+= int128_get64(now
.size
);
1000 if (int128_lt(remain
.size
, page_size
)) {
1001 register_subpage(d
, &now
);
1002 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1003 now
.size
= page_size
;
1004 register_subpage(d
, &now
);
1006 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1007 register_multipage(d
, &now
);
1012 void qemu_flush_coalesced_mmio_buffer(void)
1015 kvm_flush_coalesced_mmio_buffer();
1018 void qemu_mutex_lock_ramlist(void)
1020 qemu_mutex_lock(&ram_list
.mutex
);
1023 void qemu_mutex_unlock_ramlist(void)
1025 qemu_mutex_unlock(&ram_list
.mutex
);
1030 #include <sys/vfs.h>
1032 #define HUGETLBFS_MAGIC 0x958458f6
1034 static long gethugepagesize(const char *path
)
1040 ret
= statfs(path
, &fs
);
1041 } while (ret
!= 0 && errno
== EINTR
);
1048 if (fs
.f_type
!= HUGETLBFS_MAGIC
)
1049 fprintf(stderr
, "Warning: path not on HugeTLBFS: %s\n", path
);
1054 static void *file_ram_alloc(RAMBlock
*block
,
1060 char *sanitized_name
;
1064 unsigned long hpagesize
;
1066 hpagesize
= gethugepagesize(path
);
1071 if (memory
< hpagesize
) {
1075 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1077 "host lacks kvm mmu notifiers, -mem-path unsupported");
1081 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1082 sanitized_name
= g_strdup(memory_region_name(block
->mr
));
1083 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1088 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1090 g_free(sanitized_name
);
1092 fd
= mkstemp(filename
);
1094 error_setg_errno(errp
, errno
,
1095 "unable to create backing store for hugepages");
1102 memory
= (memory
+hpagesize
-1) & ~(hpagesize
-1);
1105 * ftruncate is not supported by hugetlbfs in older
1106 * hosts, so don't bother bailing out on errors.
1107 * If anything goes wrong with it under other filesystems,
1110 if (ftruncate(fd
, memory
)) {
1111 perror("ftruncate");
1114 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
,
1115 (block
->flags
& RAM_SHARED
? MAP_SHARED
: MAP_PRIVATE
),
1117 if (area
== MAP_FAILED
) {
1118 error_setg_errno(errp
, errno
,
1119 "unable to map backing store for hugepages");
1125 os_mem_prealloc(fd
, area
, memory
);
1139 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1141 RAMBlock
*block
, *next_block
;
1142 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1144 assert(size
!= 0); /* it would hand out same offset multiple times */
1146 if (QTAILQ_EMPTY(&ram_list
.blocks
))
1149 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1150 ram_addr_t end
, next
= RAM_ADDR_MAX
;
1152 end
= block
->offset
+ block
->length
;
1154 QTAILQ_FOREACH(next_block
, &ram_list
.blocks
, next
) {
1155 if (next_block
->offset
>= end
) {
1156 next
= MIN(next
, next_block
->offset
);
1159 if (next
- end
>= size
&& next
- end
< mingap
) {
1161 mingap
= next
- end
;
1165 if (offset
== RAM_ADDR_MAX
) {
1166 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1174 ram_addr_t
last_ram_offset(void)
1177 ram_addr_t last
= 0;
1179 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
)
1180 last
= MAX(last
, block
->offset
+ block
->length
);
1185 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1189 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1190 if (!qemu_opt_get_bool(qemu_get_machine_opts(),
1191 "dump-guest-core", true)) {
1192 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1194 perror("qemu_madvise");
1195 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1196 "but dump_guest_core=off specified\n");
1201 static RAMBlock
*find_ram_block(ram_addr_t addr
)
1205 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1206 if (block
->offset
== addr
) {
1214 void qemu_ram_set_idstr(ram_addr_t addr
, const char *name
, DeviceState
*dev
)
1216 RAMBlock
*new_block
= find_ram_block(addr
);
1220 assert(!new_block
->idstr
[0]);
1223 char *id
= qdev_get_dev_path(dev
);
1225 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1229 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1231 /* This assumes the iothread lock is taken here too. */
1232 qemu_mutex_lock_ramlist();
1233 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1234 if (block
!= new_block
&& !strcmp(block
->idstr
, new_block
->idstr
)) {
1235 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1240 qemu_mutex_unlock_ramlist();
1243 void qemu_ram_unset_idstr(ram_addr_t addr
)
1245 RAMBlock
*block
= find_ram_block(addr
);
1248 memset(block
->idstr
, 0, sizeof(block
->idstr
));
1252 static int memory_try_enable_merging(void *addr
, size_t len
)
1254 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
1255 /* disabled by the user */
1259 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1262 static ram_addr_t
ram_block_add(RAMBlock
*new_block
)
1265 ram_addr_t old_ram_size
, new_ram_size
;
1267 old_ram_size
= last_ram_offset() >> TARGET_PAGE_BITS
;
1269 /* This assumes the iothread lock is taken here too. */
1270 qemu_mutex_lock_ramlist();
1271 new_block
->offset
= find_ram_offset(new_block
->length
);
1273 if (!new_block
->host
) {
1274 if (xen_enabled()) {
1275 xen_ram_alloc(new_block
->offset
, new_block
->length
, new_block
->mr
);
1277 new_block
->host
= phys_mem_alloc(new_block
->length
);
1278 if (!new_block
->host
) {
1279 fprintf(stderr
, "Cannot set up guest memory '%s': %s\n",
1280 memory_region_name(new_block
->mr
), strerror(errno
));
1283 memory_try_enable_merging(new_block
->host
, new_block
->length
);
1287 /* Keep the list sorted from biggest to smallest block. */
1288 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1289 if (block
->length
< new_block
->length
) {
1294 QTAILQ_INSERT_BEFORE(block
, new_block
, next
);
1296 QTAILQ_INSERT_TAIL(&ram_list
.blocks
, new_block
, next
);
1298 ram_list
.mru_block
= NULL
;
1301 qemu_mutex_unlock_ramlist();
1303 new_ram_size
= last_ram_offset() >> TARGET_PAGE_BITS
;
1305 if (new_ram_size
> old_ram_size
) {
1307 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
1308 ram_list
.dirty_memory
[i
] =
1309 bitmap_zero_extend(ram_list
.dirty_memory
[i
],
1310 old_ram_size
, new_ram_size
);
1313 cpu_physical_memory_set_dirty_range(new_block
->offset
, new_block
->length
);
1315 qemu_ram_setup_dump(new_block
->host
, new_block
->length
);
1316 qemu_madvise(new_block
->host
, new_block
->length
, QEMU_MADV_HUGEPAGE
);
1317 qemu_madvise(new_block
->host
, new_block
->length
, QEMU_MADV_DONTFORK
);
1319 if (kvm_enabled()) {
1320 kvm_setup_guest_memory(new_block
->host
, new_block
->length
);
1323 return new_block
->offset
;
1327 ram_addr_t
qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
1328 bool share
, const char *mem_path
,
1331 RAMBlock
*new_block
;
1333 if (xen_enabled()) {
1334 error_setg(errp
, "-mem-path not supported with Xen");
1338 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
1340 * file_ram_alloc() needs to allocate just like
1341 * phys_mem_alloc, but we haven't bothered to provide
1345 "-mem-path not supported with this accelerator");
1349 size
= TARGET_PAGE_ALIGN(size
);
1350 new_block
= g_malloc0(sizeof(*new_block
));
1352 new_block
->length
= size
;
1353 new_block
->flags
= share
? RAM_SHARED
: 0;
1354 new_block
->host
= file_ram_alloc(new_block
, size
,
1356 if (!new_block
->host
) {
1361 return ram_block_add(new_block
);
1365 ram_addr_t
qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
1368 RAMBlock
*new_block
;
1370 size
= TARGET_PAGE_ALIGN(size
);
1371 new_block
= g_malloc0(sizeof(*new_block
));
1373 new_block
->length
= size
;
1375 new_block
->host
= host
;
1377 new_block
->flags
|= RAM_PREALLOC
;
1379 return ram_block_add(new_block
);
1382 ram_addr_t
qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
)
1384 return qemu_ram_alloc_from_ptr(size
, NULL
, mr
);
1387 void qemu_ram_free_from_ptr(ram_addr_t addr
)
1391 /* This assumes the iothread lock is taken here too. */
1392 qemu_mutex_lock_ramlist();
1393 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1394 if (addr
== block
->offset
) {
1395 QTAILQ_REMOVE(&ram_list
.blocks
, block
, next
);
1396 ram_list
.mru_block
= NULL
;
1402 qemu_mutex_unlock_ramlist();
1405 void qemu_ram_free(ram_addr_t addr
)
1409 /* This assumes the iothread lock is taken here too. */
1410 qemu_mutex_lock_ramlist();
1411 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1412 if (addr
== block
->offset
) {
1413 QTAILQ_REMOVE(&ram_list
.blocks
, block
, next
);
1414 ram_list
.mru_block
= NULL
;
1416 if (block
->flags
& RAM_PREALLOC
) {
1418 } else if (xen_enabled()) {
1419 xen_invalidate_map_cache_entry(block
->host
);
1421 } else if (block
->fd
>= 0) {
1422 munmap(block
->host
, block
->length
);
1426 qemu_anon_ram_free(block
->host
, block
->length
);
1432 qemu_mutex_unlock_ramlist();
1437 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
1444 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1445 offset
= addr
- block
->offset
;
1446 if (offset
< block
->length
) {
1447 vaddr
= block
->host
+ offset
;
1448 if (block
->flags
& RAM_PREALLOC
) {
1450 } else if (xen_enabled()) {
1454 munmap(vaddr
, length
);
1455 if (block
->fd
>= 0) {
1456 flags
|= (block
->flags
& RAM_SHARED
?
1457 MAP_SHARED
: MAP_PRIVATE
);
1458 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1459 flags
, block
->fd
, offset
);
1462 * Remap needs to match alloc. Accelerators that
1463 * set phys_mem_alloc never remap. If they did,
1464 * we'd need a remap hook here.
1466 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
1468 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1469 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1472 if (area
!= vaddr
) {
1473 fprintf(stderr
, "Could not remap addr: "
1474 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
1478 memory_try_enable_merging(vaddr
, length
);
1479 qemu_ram_setup_dump(vaddr
, length
);
1485 #endif /* !_WIN32 */
1487 int qemu_get_ram_fd(ram_addr_t addr
)
1489 RAMBlock
*block
= qemu_get_ram_block(addr
);
1494 void *qemu_get_ram_block_host_ptr(ram_addr_t addr
)
1496 RAMBlock
*block
= qemu_get_ram_block(addr
);
1501 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1502 With the exception of the softmmu code in this file, this should
1503 only be used for local memory (e.g. video ram) that the device owns,
1504 and knows it isn't going to access beyond the end of the block.
1506 It should not be used for general purpose DMA.
1507 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1509 void *qemu_get_ram_ptr(ram_addr_t addr
)
1511 RAMBlock
*block
= qemu_get_ram_block(addr
);
1513 if (xen_enabled()) {
1514 /* We need to check if the requested address is in the RAM
1515 * because we don't want to map the entire memory in QEMU.
1516 * In that case just map until the end of the page.
1518 if (block
->offset
== 0) {
1519 return xen_map_cache(addr
, 0, 0);
1520 } else if (block
->host
== NULL
) {
1522 xen_map_cache(block
->offset
, block
->length
, 1);
1525 return block
->host
+ (addr
- block
->offset
);
1528 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1529 * but takes a size argument */
1530 static void *qemu_ram_ptr_length(ram_addr_t addr
, hwaddr
*size
)
1535 if (xen_enabled()) {
1536 return xen_map_cache(addr
, *size
, 1);
1540 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1541 if (addr
- block
->offset
< block
->length
) {
1542 if (addr
- block
->offset
+ *size
> block
->length
)
1543 *size
= block
->length
- addr
+ block
->offset
;
1544 return block
->host
+ (addr
- block
->offset
);
1548 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1553 /* Some of the softmmu routines need to translate from a host pointer
1554 (typically a TLB entry) back to a ram offset. */
1555 MemoryRegion
*qemu_ram_addr_from_host(void *ptr
, ram_addr_t
*ram_addr
)
1558 uint8_t *host
= ptr
;
1560 if (xen_enabled()) {
1561 *ram_addr
= xen_ram_addr_from_mapcache(ptr
);
1562 return qemu_get_ram_block(*ram_addr
)->mr
;
1565 block
= ram_list
.mru_block
;
1566 if (block
&& block
->host
&& host
- block
->host
< block
->length
) {
1570 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1571 /* This case append when the block is not mapped. */
1572 if (block
->host
== NULL
) {
1575 if (host
- block
->host
< block
->length
) {
1583 *ram_addr
= block
->offset
+ (host
- block
->host
);
1587 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
1588 uint64_t val
, unsigned size
)
1590 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
1591 tb_invalidate_phys_page_fast(ram_addr
, size
);
1595 stb_p(qemu_get_ram_ptr(ram_addr
), val
);
1598 stw_p(qemu_get_ram_ptr(ram_addr
), val
);
1601 stl_p(qemu_get_ram_ptr(ram_addr
), val
);
1606 cpu_physical_memory_set_dirty_range_nocode(ram_addr
, size
);
1607 /* we remove the notdirty callback only if the code has been
1609 if (!cpu_physical_memory_is_clean(ram_addr
)) {
1610 CPUArchState
*env
= current_cpu
->env_ptr
;
1611 tlb_set_dirty(env
, current_cpu
->mem_io_vaddr
);
1615 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
1616 unsigned size
, bool is_write
)
1621 static const MemoryRegionOps notdirty_mem_ops
= {
1622 .write
= notdirty_mem_write
,
1623 .valid
.accepts
= notdirty_mem_accepts
,
1624 .endianness
= DEVICE_NATIVE_ENDIAN
,
1627 /* Generate a debug exception if a watchpoint has been hit. */
1628 static void check_watchpoint(int offset
, int len_mask
, int flags
)
1630 CPUState
*cpu
= current_cpu
;
1631 CPUArchState
*env
= cpu
->env_ptr
;
1632 target_ulong pc
, cs_base
;
1637 if (cpu
->watchpoint_hit
) {
1638 /* We re-entered the check after replacing the TB. Now raise
1639 * the debug interrupt so that is will trigger after the
1640 * current instruction. */
1641 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
1644 vaddr
= (cpu
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
1645 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1646 if ((vaddr
== (wp
->vaddr
& len_mask
) ||
1647 (vaddr
& wp
->len_mask
) == wp
->vaddr
) && (wp
->flags
& flags
)) {
1648 wp
->flags
|= BP_WATCHPOINT_HIT
;
1649 if (!cpu
->watchpoint_hit
) {
1650 cpu
->watchpoint_hit
= wp
;
1651 tb_check_watchpoint(cpu
);
1652 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
1653 cpu
->exception_index
= EXCP_DEBUG
;
1656 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
1657 tb_gen_code(cpu
, pc
, cs_base
, cpu_flags
, 1);
1658 cpu_resume_from_signal(cpu
, NULL
);
1662 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
1667 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1668 so these check for a hit then pass through to the normal out-of-line
1670 static uint64_t watch_mem_read(void *opaque
, hwaddr addr
,
1673 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~(size
- 1), BP_MEM_READ
);
1675 case 1: return ldub_phys(&address_space_memory
, addr
);
1676 case 2: return lduw_phys(&address_space_memory
, addr
);
1677 case 4: return ldl_phys(&address_space_memory
, addr
);
1682 static void watch_mem_write(void *opaque
, hwaddr addr
,
1683 uint64_t val
, unsigned size
)
1685 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~(size
- 1), BP_MEM_WRITE
);
1688 stb_phys(&address_space_memory
, addr
, val
);
1691 stw_phys(&address_space_memory
, addr
, val
);
1694 stl_phys(&address_space_memory
, addr
, val
);
1700 static const MemoryRegionOps watch_mem_ops
= {
1701 .read
= watch_mem_read
,
1702 .write
= watch_mem_write
,
1703 .endianness
= DEVICE_NATIVE_ENDIAN
,
1706 static uint64_t subpage_read(void *opaque
, hwaddr addr
,
1709 subpage_t
*subpage
= opaque
;
1712 #if defined(DEBUG_SUBPAGE)
1713 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
1714 subpage
, len
, addr
);
1716 address_space_read(subpage
->as
, addr
+ subpage
->base
, buf
, len
);
1729 static void subpage_write(void *opaque
, hwaddr addr
,
1730 uint64_t value
, unsigned len
)
1732 subpage_t
*subpage
= opaque
;
1735 #if defined(DEBUG_SUBPAGE)
1736 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
1737 " value %"PRIx64
"\n",
1738 __func__
, subpage
, len
, addr
, value
);
1753 address_space_write(subpage
->as
, addr
+ subpage
->base
, buf
, len
);
1756 static bool subpage_accepts(void *opaque
, hwaddr addr
,
1757 unsigned len
, bool is_write
)
1759 subpage_t
*subpage
= opaque
;
1760 #if defined(DEBUG_SUBPAGE)
1761 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
1762 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
1765 return address_space_access_valid(subpage
->as
, addr
+ subpage
->base
,
1769 static const MemoryRegionOps subpage_ops
= {
1770 .read
= subpage_read
,
1771 .write
= subpage_write
,
1772 .valid
.accepts
= subpage_accepts
,
1773 .endianness
= DEVICE_NATIVE_ENDIAN
,
1776 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1781 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
1783 idx
= SUBPAGE_IDX(start
);
1784 eidx
= SUBPAGE_IDX(end
);
1785 #if defined(DEBUG_SUBPAGE)
1786 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
1787 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
1789 for (; idx
<= eidx
; idx
++) {
1790 mmio
->sub_section
[idx
] = section
;
1796 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
)
1800 mmio
= g_malloc0(sizeof(subpage_t
));
1804 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
1805 NULL
, TARGET_PAGE_SIZE
);
1806 mmio
->iomem
.subpage
= true;
1807 #if defined(DEBUG_SUBPAGE)
1808 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
1809 mmio
, base
, TARGET_PAGE_SIZE
);
1811 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
1816 static uint16_t dummy_section(PhysPageMap
*map
, AddressSpace
*as
,
1820 MemoryRegionSection section
= {
1821 .address_space
= as
,
1823 .offset_within_address_space
= 0,
1824 .offset_within_region
= 0,
1825 .size
= int128_2_64(),
1828 return phys_section_add(map
, §ion
);
1831 MemoryRegion
*iotlb_to_region(AddressSpace
*as
, hwaddr index
)
1833 return as
->dispatch
->map
.sections
[index
& ~TARGET_PAGE_MASK
].mr
;
1836 static void io_mem_init(void)
1838 memory_region_init_io(&io_mem_rom
, NULL
, &unassigned_mem_ops
, NULL
, NULL
, UINT64_MAX
);
1839 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
1841 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
1843 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
1847 static void mem_begin(MemoryListener
*listener
)
1849 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1850 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
1853 n
= dummy_section(&d
->map
, as
, &io_mem_unassigned
);
1854 assert(n
== PHYS_SECTION_UNASSIGNED
);
1855 n
= dummy_section(&d
->map
, as
, &io_mem_notdirty
);
1856 assert(n
== PHYS_SECTION_NOTDIRTY
);
1857 n
= dummy_section(&d
->map
, as
, &io_mem_rom
);
1858 assert(n
== PHYS_SECTION_ROM
);
1859 n
= dummy_section(&d
->map
, as
, &io_mem_watch
);
1860 assert(n
== PHYS_SECTION_WATCH
);
1862 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
1864 as
->next_dispatch
= d
;
1867 static void mem_commit(MemoryListener
*listener
)
1869 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1870 AddressSpaceDispatch
*cur
= as
->dispatch
;
1871 AddressSpaceDispatch
*next
= as
->next_dispatch
;
1873 phys_page_compact_all(next
, next
->map
.nodes_nb
);
1875 as
->dispatch
= next
;
1878 phys_sections_free(&cur
->map
);
1883 static void tcg_commit(MemoryListener
*listener
)
1887 /* since each CPU stores ram addresses in its TLB cache, we must
1888 reset the modified entries */
1891 /* FIXME: Disentangle the cpu.h circular files deps so we can
1892 directly get the right CPU from listener. */
1893 if (cpu
->tcg_as_listener
!= listener
) {
1900 static void core_log_global_start(MemoryListener
*listener
)
1902 cpu_physical_memory_set_dirty_tracking(true);
1905 static void core_log_global_stop(MemoryListener
*listener
)
1907 cpu_physical_memory_set_dirty_tracking(false);
1910 static MemoryListener core_memory_listener
= {
1911 .log_global_start
= core_log_global_start
,
1912 .log_global_stop
= core_log_global_stop
,
1916 void address_space_init_dispatch(AddressSpace
*as
)
1918 as
->dispatch
= NULL
;
1919 as
->dispatch_listener
= (MemoryListener
) {
1921 .commit
= mem_commit
,
1922 .region_add
= mem_add
,
1923 .region_nop
= mem_add
,
1926 memory_listener_register(&as
->dispatch_listener
, as
);
1929 void address_space_destroy_dispatch(AddressSpace
*as
)
1931 AddressSpaceDispatch
*d
= as
->dispatch
;
1933 memory_listener_unregister(&as
->dispatch_listener
);
1935 as
->dispatch
= NULL
;
1938 static void memory_map_init(void)
1940 system_memory
= g_malloc(sizeof(*system_memory
));
1942 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
1943 address_space_init(&address_space_memory
, system_memory
, "memory");
1945 system_io
= g_malloc(sizeof(*system_io
));
1946 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
1948 address_space_init(&address_space_io
, system_io
, "I/O");
1950 memory_listener_register(&core_memory_listener
, &address_space_memory
);
1953 MemoryRegion
*get_system_memory(void)
1955 return system_memory
;
1958 MemoryRegion
*get_system_io(void)
1963 #endif /* !defined(CONFIG_USER_ONLY) */
1965 /* physical memory access (slow version, mainly for debug) */
1966 #if defined(CONFIG_USER_ONLY)
1967 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
1968 uint8_t *buf
, int len
, int is_write
)
1975 page
= addr
& TARGET_PAGE_MASK
;
1976 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
1979 flags
= page_get_flags(page
);
1980 if (!(flags
& PAGE_VALID
))
1983 if (!(flags
& PAGE_WRITE
))
1985 /* XXX: this code should not depend on lock_user */
1986 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
1989 unlock_user(p
, addr
, l
);
1991 if (!(flags
& PAGE_READ
))
1993 /* XXX: this code should not depend on lock_user */
1994 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
1997 unlock_user(p
, addr
, 0);
2008 static void invalidate_and_set_dirty(hwaddr addr
,
2011 if (cpu_physical_memory_is_clean(addr
)) {
2012 /* invalidate code */
2013 tb_invalidate_phys_page_range(addr
, addr
+ length
, 0);
2015 cpu_physical_memory_set_dirty_range_nocode(addr
, length
);
2017 xen_modified_memory(addr
, length
);
2020 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
2022 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
2024 /* Regions are assumed to support 1-4 byte accesses unless
2025 otherwise specified. */
2026 if (access_size_max
== 0) {
2027 access_size_max
= 4;
2030 /* Bound the maximum access by the alignment of the address. */
2031 if (!mr
->ops
->impl
.unaligned
) {
2032 unsigned align_size_max
= addr
& -addr
;
2033 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
2034 access_size_max
= align_size_max
;
2038 /* Don't attempt accesses larger than the maximum. */
2039 if (l
> access_size_max
) {
2040 l
= access_size_max
;
2043 l
= 1 << (qemu_fls(l
) - 1);
2049 bool address_space_rw(AddressSpace
*as
, hwaddr addr
, uint8_t *buf
,
2050 int len
, bool is_write
)
2061 mr
= address_space_translate(as
, addr
, &addr1
, &l
, is_write
);
2064 if (!memory_access_is_direct(mr
, is_write
)) {
2065 l
= memory_access_size(mr
, l
, addr1
);
2066 /* XXX: could force current_cpu to NULL to avoid
2070 /* 64 bit write access */
2072 error
|= io_mem_write(mr
, addr1
, val
, 8);
2075 /* 32 bit write access */
2077 error
|= io_mem_write(mr
, addr1
, val
, 4);
2080 /* 16 bit write access */
2082 error
|= io_mem_write(mr
, addr1
, val
, 2);
2085 /* 8 bit write access */
2087 error
|= io_mem_write(mr
, addr1
, val
, 1);
2093 addr1
+= memory_region_get_ram_addr(mr
);
2095 ptr
= qemu_get_ram_ptr(addr1
);
2096 memcpy(ptr
, buf
, l
);
2097 invalidate_and_set_dirty(addr1
, l
);
2100 if (!memory_access_is_direct(mr
, is_write
)) {
2102 l
= memory_access_size(mr
, l
, addr1
);
2105 /* 64 bit read access */
2106 error
|= io_mem_read(mr
, addr1
, &val
, 8);
2110 /* 32 bit read access */
2111 error
|= io_mem_read(mr
, addr1
, &val
, 4);
2115 /* 16 bit read access */
2116 error
|= io_mem_read(mr
, addr1
, &val
, 2);
2120 /* 8 bit read access */
2121 error
|= io_mem_read(mr
, addr1
, &val
, 1);
2129 ptr
= qemu_get_ram_ptr(mr
->ram_addr
+ addr1
);
2130 memcpy(buf
, ptr
, l
);
2141 bool address_space_write(AddressSpace
*as
, hwaddr addr
,
2142 const uint8_t *buf
, int len
)
2144 return address_space_rw(as
, addr
, (uint8_t *)buf
, len
, true);
2147 bool address_space_read(AddressSpace
*as
, hwaddr addr
, uint8_t *buf
, int len
)
2149 return address_space_rw(as
, addr
, buf
, len
, false);
2153 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
2154 int len
, int is_write
)
2156 address_space_rw(&address_space_memory
, addr
, buf
, len
, is_write
);
2159 enum write_rom_type
{
2164 static inline void cpu_physical_memory_write_rom_internal(AddressSpace
*as
,
2165 hwaddr addr
, const uint8_t *buf
, int len
, enum write_rom_type type
)
2174 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2176 if (!(memory_region_is_ram(mr
) ||
2177 memory_region_is_romd(mr
))) {
2180 addr1
+= memory_region_get_ram_addr(mr
);
2182 ptr
= qemu_get_ram_ptr(addr1
);
2185 memcpy(ptr
, buf
, l
);
2186 invalidate_and_set_dirty(addr1
, l
);
2189 flush_icache_range((uintptr_t)ptr
, (uintptr_t)ptr
+ l
);
2199 /* used for ROM loading : can write in RAM and ROM */
2200 void cpu_physical_memory_write_rom(AddressSpace
*as
, hwaddr addr
,
2201 const uint8_t *buf
, int len
)
2203 cpu_physical_memory_write_rom_internal(as
, addr
, buf
, len
, WRITE_DATA
);
2206 void cpu_flush_icache_range(hwaddr start
, int len
)
2209 * This function should do the same thing as an icache flush that was
2210 * triggered from within the guest. For TCG we are always cache coherent,
2211 * so there is no need to flush anything. For KVM / Xen we need to flush
2212 * the host's instruction cache at least.
2214 if (tcg_enabled()) {
2218 cpu_physical_memory_write_rom_internal(&address_space_memory
,
2219 start
, NULL
, len
, FLUSH_CACHE
);
2229 static BounceBuffer bounce
;
2231 typedef struct MapClient
{
2233 void (*callback
)(void *opaque
);
2234 QLIST_ENTRY(MapClient
) link
;
2237 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
2238 = QLIST_HEAD_INITIALIZER(map_client_list
);
2240 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
))
2242 MapClient
*client
= g_malloc(sizeof(*client
));
2244 client
->opaque
= opaque
;
2245 client
->callback
= callback
;
2246 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
2250 static void cpu_unregister_map_client(void *_client
)
2252 MapClient
*client
= (MapClient
*)_client
;
2254 QLIST_REMOVE(client
, link
);
2258 static void cpu_notify_map_clients(void)
2262 while (!QLIST_EMPTY(&map_client_list
)) {
2263 client
= QLIST_FIRST(&map_client_list
);
2264 client
->callback(client
->opaque
);
2265 cpu_unregister_map_client(client
);
2269 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
, int len
, bool is_write
)
2276 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2277 if (!memory_access_is_direct(mr
, is_write
)) {
2278 l
= memory_access_size(mr
, l
, addr
);
2279 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
)) {
2290 /* Map a physical memory region into a host virtual address.
2291 * May map a subset of the requested range, given by and returned in *plen.
2292 * May return NULL if resources needed to perform the mapping are exhausted.
2293 * Use only for reads OR writes - not for read-modify-write operations.
2294 * Use cpu_register_map_client() to know when retrying the map operation is
2295 * likely to succeed.
2297 void *address_space_map(AddressSpace
*as
,
2304 hwaddr l
, xlat
, base
;
2305 MemoryRegion
*mr
, *this_mr
;
2313 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2314 if (!memory_access_is_direct(mr
, is_write
)) {
2315 if (bounce
.buffer
) {
2318 /* Avoid unbounded allocations */
2319 l
= MIN(l
, TARGET_PAGE_SIZE
);
2320 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
2324 memory_region_ref(mr
);
2327 address_space_read(as
, addr
, bounce
.buffer
, l
);
2331 return bounce
.buffer
;
2335 raddr
= memory_region_get_ram_addr(mr
);
2346 this_mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2347 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
2352 memory_region_ref(mr
);
2354 return qemu_ram_ptr_length(raddr
+ base
, plen
);
2357 /* Unmaps a memory region previously mapped by address_space_map().
2358 * Will also mark the memory as dirty if is_write == 1. access_len gives
2359 * the amount of memory that was actually read or written by the caller.
2361 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
2362 int is_write
, hwaddr access_len
)
2364 if (buffer
!= bounce
.buffer
) {
2368 mr
= qemu_ram_addr_from_host(buffer
, &addr1
);
2371 invalidate_and_set_dirty(addr1
, access_len
);
2373 if (xen_enabled()) {
2374 xen_invalidate_map_cache_entry(buffer
);
2376 memory_region_unref(mr
);
2380 address_space_write(as
, bounce
.addr
, bounce
.buffer
, access_len
);
2382 qemu_vfree(bounce
.buffer
);
2383 bounce
.buffer
= NULL
;
2384 memory_region_unref(bounce
.mr
);
2385 cpu_notify_map_clients();
2388 void *cpu_physical_memory_map(hwaddr addr
,
2392 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
2395 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
2396 int is_write
, hwaddr access_len
)
2398 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
2401 /* warning: addr must be aligned */
2402 static inline uint32_t ldl_phys_internal(AddressSpace
*as
, hwaddr addr
,
2403 enum device_endian endian
)
2411 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2412 if (l
< 4 || !memory_access_is_direct(mr
, false)) {
2414 io_mem_read(mr
, addr1
, &val
, 4);
2415 #if defined(TARGET_WORDS_BIGENDIAN)
2416 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2420 if (endian
== DEVICE_BIG_ENDIAN
) {
2426 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
2430 case DEVICE_LITTLE_ENDIAN
:
2431 val
= ldl_le_p(ptr
);
2433 case DEVICE_BIG_ENDIAN
:
2434 val
= ldl_be_p(ptr
);
2444 uint32_t ldl_phys(AddressSpace
*as
, hwaddr addr
)
2446 return ldl_phys_internal(as
, addr
, DEVICE_NATIVE_ENDIAN
);
2449 uint32_t ldl_le_phys(AddressSpace
*as
, hwaddr addr
)
2451 return ldl_phys_internal(as
, addr
, DEVICE_LITTLE_ENDIAN
);
2454 uint32_t ldl_be_phys(AddressSpace
*as
, hwaddr addr
)
2456 return ldl_phys_internal(as
, addr
, DEVICE_BIG_ENDIAN
);
2459 /* warning: addr must be aligned */
2460 static inline uint64_t ldq_phys_internal(AddressSpace
*as
, hwaddr addr
,
2461 enum device_endian endian
)
2469 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
2471 if (l
< 8 || !memory_access_is_direct(mr
, false)) {
2473 io_mem_read(mr
, addr1
, &val
, 8);
2474 #if defined(TARGET_WORDS_BIGENDIAN)
2475 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2479 if (endian
== DEVICE_BIG_ENDIAN
) {
2485 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
2489 case DEVICE_LITTLE_ENDIAN
:
2490 val
= ldq_le_p(ptr
);
2492 case DEVICE_BIG_ENDIAN
:
2493 val
= ldq_be_p(ptr
);
2503 uint64_t ldq_phys(AddressSpace
*as
, hwaddr addr
)
2505 return ldq_phys_internal(as
, addr
, DEVICE_NATIVE_ENDIAN
);
2508 uint64_t ldq_le_phys(AddressSpace
*as
, hwaddr addr
)
2510 return ldq_phys_internal(as
, addr
, DEVICE_LITTLE_ENDIAN
);
2513 uint64_t ldq_be_phys(AddressSpace
*as
, hwaddr addr
)
2515 return ldq_phys_internal(as
, addr
, DEVICE_BIG_ENDIAN
);
2519 uint32_t ldub_phys(AddressSpace
*as
, hwaddr addr
)
2522 address_space_rw(as
, addr
, &val
, 1, 0);
2526 /* warning: addr must be aligned */
2527 static inline uint32_t lduw_phys_internal(AddressSpace
*as
, hwaddr addr
,
2528 enum device_endian endian
)
2536 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
2538 if (l
< 2 || !memory_access_is_direct(mr
, false)) {
2540 io_mem_read(mr
, addr1
, &val
, 2);
2541 #if defined(TARGET_WORDS_BIGENDIAN)
2542 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2546 if (endian
== DEVICE_BIG_ENDIAN
) {
2552 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
2556 case DEVICE_LITTLE_ENDIAN
:
2557 val
= lduw_le_p(ptr
);
2559 case DEVICE_BIG_ENDIAN
:
2560 val
= lduw_be_p(ptr
);
2570 uint32_t lduw_phys(AddressSpace
*as
, hwaddr addr
)
2572 return lduw_phys_internal(as
, addr
, DEVICE_NATIVE_ENDIAN
);
2575 uint32_t lduw_le_phys(AddressSpace
*as
, hwaddr addr
)
2577 return lduw_phys_internal(as
, addr
, DEVICE_LITTLE_ENDIAN
);
2580 uint32_t lduw_be_phys(AddressSpace
*as
, hwaddr addr
)
2582 return lduw_phys_internal(as
, addr
, DEVICE_BIG_ENDIAN
);
2585 /* warning: addr must be aligned. The ram page is not masked as dirty
2586 and the code inside is not invalidated. It is useful if the dirty
2587 bits are used to track modified PTEs */
2588 void stl_phys_notdirty(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2595 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
2597 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
2598 io_mem_write(mr
, addr1
, val
, 4);
2600 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
2601 ptr
= qemu_get_ram_ptr(addr1
);
2604 if (unlikely(in_migration
)) {
2605 if (cpu_physical_memory_is_clean(addr1
)) {
2606 /* invalidate code */
2607 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
2609 cpu_physical_memory_set_dirty_range_nocode(addr1
, 4);
2615 /* warning: addr must be aligned */
2616 static inline void stl_phys_internal(AddressSpace
*as
,
2617 hwaddr addr
, uint32_t val
,
2618 enum device_endian endian
)
2625 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
2627 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
2628 #if defined(TARGET_WORDS_BIGENDIAN)
2629 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2633 if (endian
== DEVICE_BIG_ENDIAN
) {
2637 io_mem_write(mr
, addr1
, val
, 4);
2640 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
2641 ptr
= qemu_get_ram_ptr(addr1
);
2643 case DEVICE_LITTLE_ENDIAN
:
2646 case DEVICE_BIG_ENDIAN
:
2653 invalidate_and_set_dirty(addr1
, 4);
2657 void stl_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2659 stl_phys_internal(as
, addr
, val
, DEVICE_NATIVE_ENDIAN
);
2662 void stl_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2664 stl_phys_internal(as
, addr
, val
, DEVICE_LITTLE_ENDIAN
);
2667 void stl_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2669 stl_phys_internal(as
, addr
, val
, DEVICE_BIG_ENDIAN
);
2673 void stb_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2676 address_space_rw(as
, addr
, &v
, 1, 1);
2679 /* warning: addr must be aligned */
2680 static inline void stw_phys_internal(AddressSpace
*as
,
2681 hwaddr addr
, uint32_t val
,
2682 enum device_endian endian
)
2689 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2690 if (l
< 2 || !memory_access_is_direct(mr
, true)) {
2691 #if defined(TARGET_WORDS_BIGENDIAN)
2692 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2696 if (endian
== DEVICE_BIG_ENDIAN
) {
2700 io_mem_write(mr
, addr1
, val
, 2);
2703 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
2704 ptr
= qemu_get_ram_ptr(addr1
);
2706 case DEVICE_LITTLE_ENDIAN
:
2709 case DEVICE_BIG_ENDIAN
:
2716 invalidate_and_set_dirty(addr1
, 2);
2720 void stw_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2722 stw_phys_internal(as
, addr
, val
, DEVICE_NATIVE_ENDIAN
);
2725 void stw_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2727 stw_phys_internal(as
, addr
, val
, DEVICE_LITTLE_ENDIAN
);
2730 void stw_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2732 stw_phys_internal(as
, addr
, val
, DEVICE_BIG_ENDIAN
);
2736 void stq_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
2739 address_space_rw(as
, addr
, (void *) &val
, 8, 1);
2742 void stq_le_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
2744 val
= cpu_to_le64(val
);
2745 address_space_rw(as
, addr
, (void *) &val
, 8, 1);
2748 void stq_be_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
2750 val
= cpu_to_be64(val
);
2751 address_space_rw(as
, addr
, (void *) &val
, 8, 1);
2754 /* virtual memory access for debug (includes writing to ROM) */
2755 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2756 uint8_t *buf
, int len
, int is_write
)
2763 page
= addr
& TARGET_PAGE_MASK
;
2764 phys_addr
= cpu_get_phys_page_debug(cpu
, page
);
2765 /* if no physical page mapped, return an error */
2766 if (phys_addr
== -1)
2768 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2771 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
2773 cpu_physical_memory_write_rom(cpu
->as
, phys_addr
, buf
, l
);
2775 address_space_rw(cpu
->as
, phys_addr
, buf
, l
, 0);
2786 * A helper function for the _utterly broken_ virtio device model to find out if
2787 * it's running on a big endian machine. Don't do this at home kids!
2789 bool target_words_bigendian(void);
2790 bool target_words_bigendian(void)
2792 #if defined(TARGET_WORDS_BIGENDIAN)
2799 #ifndef CONFIG_USER_ONLY
2800 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
2805 mr
= address_space_translate(&address_space_memory
,
2806 phys_addr
, &phys_addr
, &l
, false);
2808 return !(memory_region_is_ram(mr
) ||
2809 memory_region_is_romd(mr
));
2812 void qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
2816 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
2817 func(block
->host
, block
->offset
, block
->length
, opaque
);