3 #include "exec/gdbstub.h"
5 #include "qemu/host-utils.h"
6 #include "sysemu/arch_init.h"
7 #include "sysemu/sysemu.h"
8 #include "qemu/bitops.h"
9 #include "qemu/crc32c.h"
10 #include <zlib.h> /* For crc32 */
12 #ifndef CONFIG_USER_ONLY
13 #include "exec/softmmu_exec.h"
15 static inline int get_phys_addr(CPUARMState
*env
, target_ulong address
,
16 int access_type
, int is_user
,
17 hwaddr
*phys_ptr
, int *prot
,
18 target_ulong
*page_size
);
20 /* Definitions for the PMCCNTR and PMCR registers */
26 static int vfp_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
30 /* VFP data registers are always little-endian. */
31 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
33 stfq_le_p(buf
, env
->vfp
.regs
[reg
]);
36 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
37 /* Aliases for Q regs. */
40 stfq_le_p(buf
, env
->vfp
.regs
[(reg
- 32) * 2]);
41 stfq_le_p(buf
+ 8, env
->vfp
.regs
[(reg
- 32) * 2 + 1]);
45 switch (reg
- nregs
) {
46 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
47 case 1: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSCR
]); return 4;
48 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
53 static int vfp_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
57 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
59 env
->vfp
.regs
[reg
] = ldfq_le_p(buf
);
62 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
65 env
->vfp
.regs
[(reg
- 32) * 2] = ldfq_le_p(buf
);
66 env
->vfp
.regs
[(reg
- 32) * 2 + 1] = ldfq_le_p(buf
+ 8);
70 switch (reg
- nregs
) {
71 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
72 case 1: env
->vfp
.xregs
[ARM_VFP_FPSCR
] = ldl_p(buf
); return 4;
73 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
) & (1 << 30); return 4;
78 static int aarch64_fpu_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
82 /* 128 bit FP register */
83 stfq_le_p(buf
, env
->vfp
.regs
[reg
* 2]);
84 stfq_le_p(buf
+ 8, env
->vfp
.regs
[reg
* 2 + 1]);
88 stl_p(buf
, vfp_get_fpsr(env
));
92 stl_p(buf
, vfp_get_fpcr(env
));
99 static int aarch64_fpu_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
103 /* 128 bit FP register */
104 env
->vfp
.regs
[reg
* 2] = ldfq_le_p(buf
);
105 env
->vfp
.regs
[reg
* 2 + 1] = ldfq_le_p(buf
+ 8);
109 vfp_set_fpsr(env
, ldl_p(buf
));
113 vfp_set_fpcr(env
, ldl_p(buf
));
120 static uint64_t raw_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
122 if (cpreg_field_is_64bit(ri
)) {
123 return CPREG_FIELD64(env
, ri
);
125 return CPREG_FIELD32(env
, ri
);
129 static void raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
132 if (cpreg_field_is_64bit(ri
)) {
133 CPREG_FIELD64(env
, ri
) = value
;
135 CPREG_FIELD32(env
, ri
) = value
;
139 static uint64_t read_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
141 /* Raw read of a coprocessor register (as needed for migration, etc). */
142 if (ri
->type
& ARM_CP_CONST
) {
143 return ri
->resetvalue
;
144 } else if (ri
->raw_readfn
) {
145 return ri
->raw_readfn(env
, ri
);
146 } else if (ri
->readfn
) {
147 return ri
->readfn(env
, ri
);
149 return raw_read(env
, ri
);
153 static void write_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
156 /* Raw write of a coprocessor register (as needed for migration, etc).
157 * Note that constant registers are treated as write-ignored; the
158 * caller should check for success by whether a readback gives the
161 if (ri
->type
& ARM_CP_CONST
) {
163 } else if (ri
->raw_writefn
) {
164 ri
->raw_writefn(env
, ri
, v
);
165 } else if (ri
->writefn
) {
166 ri
->writefn(env
, ri
, v
);
168 raw_write(env
, ri
, v
);
172 bool write_cpustate_to_list(ARMCPU
*cpu
)
174 /* Write the coprocessor state from cpu->env to the (index,value) list. */
178 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
179 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
180 const ARMCPRegInfo
*ri
;
182 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
187 if (ri
->type
& ARM_CP_NO_MIGRATE
) {
190 cpu
->cpreg_values
[i
] = read_raw_cp_reg(&cpu
->env
, ri
);
195 bool write_list_to_cpustate(ARMCPU
*cpu
)
200 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
201 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
202 uint64_t v
= cpu
->cpreg_values
[i
];
203 const ARMCPRegInfo
*ri
;
205 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
210 if (ri
->type
& ARM_CP_NO_MIGRATE
) {
213 /* Write value and confirm it reads back as written
214 * (to catch read-only registers and partially read-only
215 * registers where the incoming migration value doesn't match)
217 write_raw_cp_reg(&cpu
->env
, ri
, v
);
218 if (read_raw_cp_reg(&cpu
->env
, ri
) != v
) {
225 static void add_cpreg_to_list(gpointer key
, gpointer opaque
)
227 ARMCPU
*cpu
= opaque
;
229 const ARMCPRegInfo
*ri
;
231 regidx
= *(uint32_t *)key
;
232 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
234 if (!(ri
->type
& ARM_CP_NO_MIGRATE
)) {
235 cpu
->cpreg_indexes
[cpu
->cpreg_array_len
] = cpreg_to_kvm_id(regidx
);
236 /* The value array need not be initialized at this point */
237 cpu
->cpreg_array_len
++;
241 static void count_cpreg(gpointer key
, gpointer opaque
)
243 ARMCPU
*cpu
= opaque
;
245 const ARMCPRegInfo
*ri
;
247 regidx
= *(uint32_t *)key
;
248 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
250 if (!(ri
->type
& ARM_CP_NO_MIGRATE
)) {
251 cpu
->cpreg_array_len
++;
255 static gint
cpreg_key_compare(gconstpointer a
, gconstpointer b
)
257 uint64_t aidx
= cpreg_to_kvm_id(*(uint32_t *)a
);
258 uint64_t bidx
= cpreg_to_kvm_id(*(uint32_t *)b
);
269 static void cpreg_make_keylist(gpointer key
, gpointer value
, gpointer udata
)
271 GList
**plist
= udata
;
273 *plist
= g_list_prepend(*plist
, key
);
276 void init_cpreg_list(ARMCPU
*cpu
)
278 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
279 * Note that we require cpreg_tuples[] to be sorted by key ID.
284 g_hash_table_foreach(cpu
->cp_regs
, cpreg_make_keylist
, &keys
);
286 keys
= g_list_sort(keys
, cpreg_key_compare
);
288 cpu
->cpreg_array_len
= 0;
290 g_list_foreach(keys
, count_cpreg
, cpu
);
292 arraylen
= cpu
->cpreg_array_len
;
293 cpu
->cpreg_indexes
= g_new(uint64_t, arraylen
);
294 cpu
->cpreg_values
= g_new(uint64_t, arraylen
);
295 cpu
->cpreg_vmstate_indexes
= g_new(uint64_t, arraylen
);
296 cpu
->cpreg_vmstate_values
= g_new(uint64_t, arraylen
);
297 cpu
->cpreg_vmstate_array_len
= cpu
->cpreg_array_len
;
298 cpu
->cpreg_array_len
= 0;
300 g_list_foreach(keys
, add_cpreg_to_list
, cpu
);
302 assert(cpu
->cpreg_array_len
== arraylen
);
307 /* Return true if extended addresses are enabled.
308 * This is always the case if our translation regime is 64 bit,
309 * but depends on TTBCR.EAE for 32 bit.
311 static inline bool extended_addresses_enabled(CPUARMState
*env
)
313 return arm_el_is_aa64(env
, 1)
314 || ((arm_feature(env
, ARM_FEATURE_LPAE
)
315 && (env
->cp15
.c2_control
& (1U << 31))));
318 static void dacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
320 ARMCPU
*cpu
= arm_env_get_cpu(env
);
322 env
->cp15
.c3
= value
;
323 tlb_flush(CPU(cpu
), 1); /* Flush TLB as domain not tracked in TLB */
326 static void fcse_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
328 ARMCPU
*cpu
= arm_env_get_cpu(env
);
330 if (env
->cp15
.c13_fcse
!= value
) {
331 /* Unlike real hardware the qemu TLB uses virtual addresses,
332 * not modified virtual addresses, so this causes a TLB flush.
334 tlb_flush(CPU(cpu
), 1);
335 env
->cp15
.c13_fcse
= value
;
339 static void contextidr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
342 ARMCPU
*cpu
= arm_env_get_cpu(env
);
344 if (env
->cp15
.contextidr_el1
!= value
&& !arm_feature(env
, ARM_FEATURE_MPU
)
345 && !extended_addresses_enabled(env
)) {
346 /* For VMSA (when not using the LPAE long descriptor page table
347 * format) this register includes the ASID, so do a TLB flush.
348 * For PMSA it is purely a process ID and no action is needed.
350 tlb_flush(CPU(cpu
), 1);
352 env
->cp15
.contextidr_el1
= value
;
355 static void tlbiall_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
358 /* Invalidate all (TLBIALL) */
359 ARMCPU
*cpu
= arm_env_get_cpu(env
);
361 tlb_flush(CPU(cpu
), 1);
364 static void tlbimva_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
367 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
368 ARMCPU
*cpu
= arm_env_get_cpu(env
);
370 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
373 static void tlbiasid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
376 /* Invalidate by ASID (TLBIASID) */
377 ARMCPU
*cpu
= arm_env_get_cpu(env
);
379 tlb_flush(CPU(cpu
), value
== 0);
382 static void tlbimvaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
385 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
386 ARMCPU
*cpu
= arm_env_get_cpu(env
);
388 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
391 static const ARMCPRegInfo cp_reginfo
[] = {
392 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
393 * version" bits will read as a reserved value, which should cause
394 * Linux to not try to use the debug hardware.
396 { .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
397 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
398 { .name
= "FCSEIDR", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 0,
399 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c13_fcse
),
400 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
401 { .name
= "CONTEXTIDR", .state
= ARM_CP_STATE_BOTH
,
402 .opc0
= 3, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
404 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_el1
),
405 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
409 static const ARMCPRegInfo not_v8_cp_reginfo
[] = {
410 /* NB: Some of these registers exist in v8 but with more precise
411 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
413 /* MMU Domain access control / MPU write buffer control */
414 { .name
= "DACR", .cp
= 15,
415 .crn
= 3, .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
416 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c3
),
417 .resetvalue
= 0, .writefn
= dacr_write
, .raw_writefn
= raw_write
, },
418 /* ??? This covers not just the impdef TLB lockdown registers but also
419 * some v7VMSA registers relating to TEX remap, so it is overly broad.
421 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= CP_ANY
,
422 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
423 /* MMU TLB control. Note that the wildcarding means we cover not just
424 * the unified TLB ops but also the dside/iside/inner-shareable variants.
426 { .name
= "TLBIALL", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
427 .opc1
= CP_ANY
, .opc2
= 0, .access
= PL1_W
, .writefn
= tlbiall_write
,
428 .type
= ARM_CP_NO_MIGRATE
},
429 { .name
= "TLBIMVA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
430 .opc1
= CP_ANY
, .opc2
= 1, .access
= PL1_W
, .writefn
= tlbimva_write
,
431 .type
= ARM_CP_NO_MIGRATE
},
432 { .name
= "TLBIASID", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
433 .opc1
= CP_ANY
, .opc2
= 2, .access
= PL1_W
, .writefn
= tlbiasid_write
,
434 .type
= ARM_CP_NO_MIGRATE
},
435 { .name
= "TLBIMVAA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
436 .opc1
= CP_ANY
, .opc2
= 3, .access
= PL1_W
, .writefn
= tlbimvaa_write
,
437 .type
= ARM_CP_NO_MIGRATE
},
438 /* Cache maintenance ops; some of this space may be overridden later. */
439 { .name
= "CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
440 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
441 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
},
445 static const ARMCPRegInfo not_v6_cp_reginfo
[] = {
446 /* Not all pre-v6 cores implemented this WFI, so this is slightly
449 { .name
= "WFI_v5", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= 2,
450 .access
= PL1_W
, .type
= ARM_CP_WFI
},
454 static const ARMCPRegInfo not_v7_cp_reginfo
[] = {
455 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
456 * is UNPREDICTABLE; we choose to NOP as most implementations do).
458 { .name
= "WFI_v6", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
459 .access
= PL1_W
, .type
= ARM_CP_WFI
},
460 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
461 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
462 * OMAPCP will override this space.
464 { .name
= "DLOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 0,
465 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_data
),
467 { .name
= "ILOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 1,
468 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_insn
),
470 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
471 { .name
= "DUMMY", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= CP_ANY
,
472 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
477 static void cpacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
482 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
483 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
484 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
485 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
486 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
488 if (arm_feature(env
, ARM_FEATURE_VFP
)) {
489 /* VFP coprocessor: cp10 & cp11 [23:20] */
490 mask
|= (1 << 31) | (1 << 30) | (0xf << 20);
492 if (!arm_feature(env
, ARM_FEATURE_NEON
)) {
493 /* ASEDIS [31] bit is RAO/WI */
497 /* VFPv3 and upwards with NEON implement 32 double precision
498 * registers (D0-D31).
500 if (!arm_feature(env
, ARM_FEATURE_NEON
) ||
501 !arm_feature(env
, ARM_FEATURE_VFP3
)) {
502 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
508 env
->cp15
.c1_coproc
= value
;
511 static const ARMCPRegInfo v6_cp_reginfo
[] = {
512 /* prefetch by MVA in v6, NOP in v7 */
513 { .name
= "MVA_prefetch",
514 .cp
= 15, .crn
= 7, .crm
= 13, .opc1
= 0, .opc2
= 1,
515 .access
= PL1_W
, .type
= ARM_CP_NOP
},
516 { .name
= "ISB", .cp
= 15, .crn
= 7, .crm
= 5, .opc1
= 0, .opc2
= 4,
517 .access
= PL0_W
, .type
= ARM_CP_NOP
},
518 { .name
= "DSB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 4,
519 .access
= PL0_W
, .type
= ARM_CP_NOP
},
520 { .name
= "DMB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 5,
521 .access
= PL0_W
, .type
= ARM_CP_NOP
},
522 { .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 2,
524 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.far_el1
),
526 /* Watchpoint Fault Address Register : should actually only be present
527 * for 1136, 1176, 11MPCore.
529 { .name
= "WFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
530 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0, },
531 { .name
= "CPACR", .state
= ARM_CP_STATE_BOTH
, .opc0
= 3,
532 .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 2,
533 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_coproc
),
534 .resetvalue
= 0, .writefn
= cpacr_write
},
538 static CPAccessResult
pmreg_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
540 /* Performance monitor registers user accessibility is controlled
543 if (arm_current_pl(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
544 return CP_ACCESS_TRAP
;
549 #ifndef CONFIG_USER_ONLY
550 static void pmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
553 /* Don't computer the number of ticks in user mode */
556 temp_ticks
= qemu_clock_get_us(QEMU_CLOCK_VIRTUAL
) *
557 get_ticks_per_sec() / 1000000;
559 if (env
->cp15
.c9_pmcr
& PMCRE
) {
560 /* If the counter is enabled */
561 if (env
->cp15
.c9_pmcr
& PMCRD
) {
562 /* Increment once every 64 processor clock cycles */
563 env
->cp15
.c15_ccnt
= (temp_ticks
/64) - env
->cp15
.c15_ccnt
;
565 env
->cp15
.c15_ccnt
= temp_ticks
- env
->cp15
.c15_ccnt
;
570 /* The counter has been reset */
571 env
->cp15
.c15_ccnt
= 0;
574 /* only the DP, X, D and E bits are writable */
575 env
->cp15
.c9_pmcr
&= ~0x39;
576 env
->cp15
.c9_pmcr
|= (value
& 0x39);
578 if (env
->cp15
.c9_pmcr
& PMCRE
) {
579 if (env
->cp15
.c9_pmcr
& PMCRD
) {
580 /* Increment once every 64 processor clock cycles */
583 env
->cp15
.c15_ccnt
= temp_ticks
- env
->cp15
.c15_ccnt
;
587 static uint64_t pmccntr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
589 uint32_t total_ticks
;
591 if (!(env
->cp15
.c9_pmcr
& PMCRE
)) {
592 /* Counter is disabled, do not change value */
593 return env
->cp15
.c15_ccnt
;
596 total_ticks
= qemu_clock_get_us(QEMU_CLOCK_VIRTUAL
) *
597 get_ticks_per_sec() / 1000000;
599 if (env
->cp15
.c9_pmcr
& PMCRD
) {
600 /* Increment once every 64 processor clock cycles */
603 return total_ticks
- env
->cp15
.c15_ccnt
;
606 static void pmccntr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
609 uint32_t total_ticks
;
611 if (!(env
->cp15
.c9_pmcr
& PMCRE
)) {
612 /* Counter is disabled, set the absolute value */
613 env
->cp15
.c15_ccnt
= value
;
617 total_ticks
= qemu_clock_get_us(QEMU_CLOCK_VIRTUAL
) *
618 get_ticks_per_sec() / 1000000;
620 if (env
->cp15
.c9_pmcr
& PMCRD
) {
621 /* Increment once every 64 processor clock cycles */
624 env
->cp15
.c15_ccnt
= total_ticks
- value
;
628 static void pmcntenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
632 env
->cp15
.c9_pmcnten
|= value
;
635 static void pmcntenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
639 env
->cp15
.c9_pmcnten
&= ~value
;
642 static void pmovsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
645 env
->cp15
.c9_pmovsr
&= ~value
;
648 static void pmxevtyper_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
651 env
->cp15
.c9_pmxevtyper
= value
& 0xff;
654 static void pmuserenr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
657 env
->cp15
.c9_pmuserenr
= value
& 1;
660 static void pmintenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
663 /* We have no event counters so only the C bit can be changed */
665 env
->cp15
.c9_pminten
|= value
;
668 static void pmintenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
672 env
->cp15
.c9_pminten
&= ~value
;
675 static void vbar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
678 /* Note that even though the AArch64 view of this register has bits
679 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
680 * architectural requirements for bits which are RES0 only in some
681 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
682 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
684 raw_write(env
, ri
, value
& ~0x1FULL
);
687 static uint64_t ccsidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
689 ARMCPU
*cpu
= arm_env_get_cpu(env
);
690 return cpu
->ccsidr
[env
->cp15
.c0_cssel
];
693 static void csselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
696 env
->cp15
.c0_cssel
= value
& 0xf;
699 static uint64_t isr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
701 CPUState
*cs
= ENV_GET_CPU(env
);
704 if (cs
->interrupt_request
& CPU_INTERRUPT_HARD
) {
707 if (cs
->interrupt_request
& CPU_INTERRUPT_FIQ
) {
710 /* External aborts are not possible in QEMU so A bit is always clear */
714 static const ARMCPRegInfo v7_cp_reginfo
[] = {
715 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
718 { .name
= "DBGDRAR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
719 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
720 { .name
= "DBGDSAR", .cp
= 14, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
721 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
722 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
723 { .name
= "NOP", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
724 .access
= PL1_W
, .type
= ARM_CP_NOP
},
725 /* Performance monitors are implementation defined in v7,
726 * but with an ARM recommended set of registers, which we
727 * follow (although we don't actually implement any counters)
729 * Performance registers fall into three categories:
730 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
731 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
732 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
733 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
734 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
736 { .name
= "PMCNTENSET", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 1,
737 .access
= PL0_RW
, .resetvalue
= 0,
738 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
739 .writefn
= pmcntenset_write
,
740 .accessfn
= pmreg_access
,
741 .raw_writefn
= raw_write
},
742 { .name
= "PMCNTENCLR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 2,
743 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
744 .accessfn
= pmreg_access
,
745 .writefn
= pmcntenclr_write
,
746 .type
= ARM_CP_NO_MIGRATE
},
747 { .name
= "PMOVSR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 3,
748 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
749 .accessfn
= pmreg_access
,
750 .writefn
= pmovsr_write
,
751 .raw_writefn
= raw_write
},
752 /* Unimplemented so WI. */
753 { .name
= "PMSWINC", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 4,
754 .access
= PL0_W
, .accessfn
= pmreg_access
, .type
= ARM_CP_NOP
},
755 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
756 * We choose to RAZ/WI.
758 { .name
= "PMSELR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 5,
759 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
760 .accessfn
= pmreg_access
},
761 #ifndef CONFIG_USER_ONLY
762 { .name
= "PMCCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 0,
763 .access
= PL0_RW
, .resetvalue
= 0, .type
= ARM_CP_IO
,
764 .readfn
= pmccntr_read
, .writefn
= pmccntr_write
,
765 .accessfn
= pmreg_access
},
767 { .name
= "PMXEVTYPER", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 1,
769 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmxevtyper
),
770 .accessfn
= pmreg_access
, .writefn
= pmxevtyper_write
,
771 .raw_writefn
= raw_write
},
772 /* Unimplemented, RAZ/WI. */
773 { .name
= "PMXEVCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 2,
774 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
775 .accessfn
= pmreg_access
},
776 { .name
= "PMUSERENR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 0,
777 .access
= PL0_R
| PL1_RW
,
778 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
780 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
781 { .name
= "PMINTENSET", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 1,
783 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
785 .writefn
= pmintenset_write
, .raw_writefn
= raw_write
},
786 { .name
= "PMINTENCLR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 2,
787 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
788 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
789 .resetvalue
= 0, .writefn
= pmintenclr_write
, },
790 { .name
= "VBAR", .state
= ARM_CP_STATE_BOTH
,
791 .opc0
= 3, .crn
= 12, .crm
= 0, .opc1
= 0, .opc2
= 0,
792 .access
= PL1_RW
, .writefn
= vbar_write
,
793 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[1]),
795 { .name
= "SCR", .cp
= 15, .crn
= 1, .crm
= 1, .opc1
= 0, .opc2
= 0,
796 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_scr
),
798 { .name
= "CCSIDR", .state
= ARM_CP_STATE_BOTH
,
799 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 0,
800 .access
= PL1_R
, .readfn
= ccsidr_read
, .type
= ARM_CP_NO_MIGRATE
},
801 { .name
= "CSSELR", .state
= ARM_CP_STATE_BOTH
,
802 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 2, .opc2
= 0,
803 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cssel
),
804 .writefn
= csselr_write
, .resetvalue
= 0 },
805 /* Auxiliary ID register: this actually has an IMPDEF value but for now
806 * just RAZ for all cores:
808 { .name
= "AIDR", .state
= ARM_CP_STATE_BOTH
,
809 .opc0
= 3, .opc1
= 1, .crn
= 0, .crm
= 0, .opc2
= 7,
810 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
811 /* Auxiliary fault status registers: these also are IMPDEF, and we
812 * choose to RAZ/WI for all cores.
814 { .name
= "AFSR0_EL1", .state
= ARM_CP_STATE_BOTH
,
815 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 0,
816 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
817 { .name
= "AFSR1_EL1", .state
= ARM_CP_STATE_BOTH
,
818 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 1,
819 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
820 /* MAIR can just read-as-written because we don't implement caches
821 * and so don't need to care about memory attributes.
823 { .name
= "MAIR_EL1", .state
= ARM_CP_STATE_AA64
,
824 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0,
825 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el1
),
827 /* For non-long-descriptor page tables these are PRRR and NMRR;
828 * regardless they still act as reads-as-written for QEMU.
829 * The override is necessary because of the overly-broad TLB_LOCKDOWN
832 { .name
= "MAIR0", .state
= ARM_CP_STATE_AA32
, .type
= ARM_CP_OVERRIDE
,
833 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0, .access
= PL1_RW
,
834 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.mair_el1
),
835 .resetfn
= arm_cp_reset_ignore
},
836 { .name
= "MAIR1", .state
= ARM_CP_STATE_AA32
, .type
= ARM_CP_OVERRIDE
,
837 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 1, .access
= PL1_RW
,
838 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.mair_el1
),
839 .resetfn
= arm_cp_reset_ignore
},
840 { .name
= "ISR_EL1", .state
= ARM_CP_STATE_BOTH
,
841 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 1, .opc2
= 0,
842 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_R
, .readfn
= isr_read
},
846 static void teecr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
853 static CPAccessResult
teehbr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
855 if (arm_current_pl(env
) == 0 && (env
->teecr
& 1)) {
856 return CP_ACCESS_TRAP
;
861 static const ARMCPRegInfo t2ee_cp_reginfo
[] = {
862 { .name
= "TEECR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 6, .opc2
= 0,
863 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, teecr
),
865 .writefn
= teecr_write
},
866 { .name
= "TEEHBR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 6, .opc2
= 0,
867 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, teehbr
),
868 .accessfn
= teehbr_access
, .resetvalue
= 0 },
872 static const ARMCPRegInfo v6k_cp_reginfo
[] = {
873 { .name
= "TPIDR_EL0", .state
= ARM_CP_STATE_AA64
,
874 .opc0
= 3, .opc1
= 3, .opc2
= 2, .crn
= 13, .crm
= 0,
876 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el0
), .resetvalue
= 0 },
877 { .name
= "TPIDRURW", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 2,
879 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.tpidr_el0
),
880 .resetfn
= arm_cp_reset_ignore
},
881 { .name
= "TPIDRRO_EL0", .state
= ARM_CP_STATE_AA64
,
882 .opc0
= 3, .opc1
= 3, .opc2
= 3, .crn
= 13, .crm
= 0,
883 .access
= PL0_R
|PL1_W
,
884 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidrro_el0
), .resetvalue
= 0 },
885 { .name
= "TPIDRURO", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 3,
886 .access
= PL0_R
|PL1_W
,
887 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.tpidrro_el0
),
888 .resetfn
= arm_cp_reset_ignore
},
889 { .name
= "TPIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
890 .opc0
= 3, .opc1
= 0, .opc2
= 4, .crn
= 13, .crm
= 0,
892 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el1
), .resetvalue
= 0 },
896 #ifndef CONFIG_USER_ONLY
898 static CPAccessResult
gt_cntfrq_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
900 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
901 if (arm_current_pl(env
) == 0 && !extract32(env
->cp15
.c14_cntkctl
, 0, 2)) {
902 return CP_ACCESS_TRAP
;
907 static CPAccessResult
gt_counter_access(CPUARMState
*env
, int timeridx
)
909 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
910 if (arm_current_pl(env
) == 0 &&
911 !extract32(env
->cp15
.c14_cntkctl
, timeridx
, 1)) {
912 return CP_ACCESS_TRAP
;
917 static CPAccessResult
gt_timer_access(CPUARMState
*env
, int timeridx
)
919 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
920 * EL0[PV]TEN is zero.
922 if (arm_current_pl(env
) == 0 &&
923 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
924 return CP_ACCESS_TRAP
;
929 static CPAccessResult
gt_pct_access(CPUARMState
*env
,
930 const ARMCPRegInfo
*ri
)
932 return gt_counter_access(env
, GTIMER_PHYS
);
935 static CPAccessResult
gt_vct_access(CPUARMState
*env
,
936 const ARMCPRegInfo
*ri
)
938 return gt_counter_access(env
, GTIMER_VIRT
);
941 static CPAccessResult
gt_ptimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
943 return gt_timer_access(env
, GTIMER_PHYS
);
946 static CPAccessResult
gt_vtimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
948 return gt_timer_access(env
, GTIMER_VIRT
);
951 static uint64_t gt_get_countervalue(CPUARMState
*env
)
953 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) / GTIMER_SCALE
;
956 static void gt_recalc_timer(ARMCPU
*cpu
, int timeridx
)
958 ARMGenericTimer
*gt
= &cpu
->env
.cp15
.c14_timer
[timeridx
];
961 /* Timer enabled: calculate and set current ISTATUS, irq, and
962 * reset timer to when ISTATUS next has to change
964 uint64_t count
= gt_get_countervalue(&cpu
->env
);
965 /* Note that this must be unsigned 64 bit arithmetic: */
966 int istatus
= count
>= gt
->cval
;
969 gt
->ctl
= deposit32(gt
->ctl
, 2, 1, istatus
);
970 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
971 (istatus
&& !(gt
->ctl
& 2)));
973 /* Next transition is when count rolls back over to zero */
974 nexttick
= UINT64_MAX
;
976 /* Next transition is when we hit cval */
979 /* Note that the desired next expiry time might be beyond the
980 * signed-64-bit range of a QEMUTimer -- in this case we just
981 * set the timer for as far in the future as possible. When the
982 * timer expires we will reset the timer for any remaining period.
984 if (nexttick
> INT64_MAX
/ GTIMER_SCALE
) {
985 nexttick
= INT64_MAX
/ GTIMER_SCALE
;
987 timer_mod(cpu
->gt_timer
[timeridx
], nexttick
);
989 /* Timer disabled: ISTATUS and timer output always clear */
991 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], 0);
992 timer_del(cpu
->gt_timer
[timeridx
]);
996 static void gt_cnt_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
998 ARMCPU
*cpu
= arm_env_get_cpu(env
);
999 int timeridx
= ri
->opc1
& 1;
1001 timer_del(cpu
->gt_timer
[timeridx
]);
1004 static uint64_t gt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1006 return gt_get_countervalue(env
);
1009 static void gt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1012 int timeridx
= ri
->opc1
& 1;
1014 env
->cp15
.c14_timer
[timeridx
].cval
= value
;
1015 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1018 static uint64_t gt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1020 int timeridx
= ri
->crm
& 1;
1022 return (uint32_t)(env
->cp15
.c14_timer
[timeridx
].cval
-
1023 gt_get_countervalue(env
));
1026 static void gt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1029 int timeridx
= ri
->crm
& 1;
1031 env
->cp15
.c14_timer
[timeridx
].cval
= gt_get_countervalue(env
) +
1032 + sextract64(value
, 0, 32);
1033 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1036 static void gt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1039 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1040 int timeridx
= ri
->crm
& 1;
1041 uint32_t oldval
= env
->cp15
.c14_timer
[timeridx
].ctl
;
1043 env
->cp15
.c14_timer
[timeridx
].ctl
= value
& 3;
1044 if ((oldval
^ value
) & 1) {
1045 /* Enable toggled */
1046 gt_recalc_timer(cpu
, timeridx
);
1047 } else if ((oldval
& value
) & 2) {
1048 /* IMASK toggled: don't need to recalculate,
1049 * just set the interrupt line based on ISTATUS
1051 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
1052 (oldval
& 4) && (value
& 2));
1056 void arm_gt_ptimer_cb(void *opaque
)
1058 ARMCPU
*cpu
= opaque
;
1060 gt_recalc_timer(cpu
, GTIMER_PHYS
);
1063 void arm_gt_vtimer_cb(void *opaque
)
1065 ARMCPU
*cpu
= opaque
;
1067 gt_recalc_timer(cpu
, GTIMER_VIRT
);
1070 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1071 /* Note that CNTFRQ is purely reads-as-written for the benefit
1072 * of software; writing it doesn't actually change the timer frequency.
1073 * Our reset value matches the fixed frequency we implement the timer at.
1075 { .name
= "CNTFRQ", .cp
= 15, .crn
= 14, .crm
= 0, .opc1
= 0, .opc2
= 0,
1076 .type
= ARM_CP_NO_MIGRATE
,
1077 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1078 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c14_cntfrq
),
1079 .resetfn
= arm_cp_reset_ignore
,
1081 { .name
= "CNTFRQ_EL0", .state
= ARM_CP_STATE_AA64
,
1082 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 0,
1083 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1084 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntfrq
),
1085 .resetvalue
= (1000 * 1000 * 1000) / GTIMER_SCALE
,
1087 /* overall control: mostly access permissions */
1088 { .name
= "CNTKCTL", .state
= ARM_CP_STATE_BOTH
,
1089 .opc0
= 3, .opc1
= 0, .crn
= 14, .crm
= 1, .opc2
= 0,
1091 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntkctl
),
1094 /* per-timer control */
1095 { .name
= "CNTP_CTL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
1096 .type
= ARM_CP_IO
| ARM_CP_NO_MIGRATE
, .access
= PL1_RW
| PL0_R
,
1097 .accessfn
= gt_ptimer_access
,
1098 .fieldoffset
= offsetoflow32(CPUARMState
,
1099 cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1100 .resetfn
= arm_cp_reset_ignore
,
1101 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1103 { .name
= "CNTP_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1104 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 1,
1105 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1106 .accessfn
= gt_ptimer_access
,
1107 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1109 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1111 { .name
= "CNTV_CTL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 1,
1112 .type
= ARM_CP_IO
| ARM_CP_NO_MIGRATE
, .access
= PL1_RW
| PL0_R
,
1113 .accessfn
= gt_vtimer_access
,
1114 .fieldoffset
= offsetoflow32(CPUARMState
,
1115 cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1116 .resetfn
= arm_cp_reset_ignore
,
1117 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1119 { .name
= "CNTV_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1120 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 1,
1121 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1122 .accessfn
= gt_vtimer_access
,
1123 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1125 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1127 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1128 { .name
= "CNTP_TVAL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
1129 .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1130 .accessfn
= gt_ptimer_access
,
1131 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1133 { .name
= "CNTP_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1134 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 0,
1135 .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1136 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1138 { .name
= "CNTV_TVAL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 0,
1139 .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1140 .accessfn
= gt_vtimer_access
,
1141 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1143 { .name
= "CNTV_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1144 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 0,
1145 .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1146 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1148 /* The counter itself */
1149 { .name
= "CNTPCT", .cp
= 15, .crm
= 14, .opc1
= 0,
1150 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_MIGRATE
| ARM_CP_IO
,
1151 .accessfn
= gt_pct_access
,
1152 .readfn
= gt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1154 { .name
= "CNTPCT_EL0", .state
= ARM_CP_STATE_AA64
,
1155 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 1,
1156 .access
= PL0_R
, .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
,
1157 .accessfn
= gt_pct_access
,
1158 .readfn
= gt_cnt_read
, .resetfn
= gt_cnt_reset
,
1160 { .name
= "CNTVCT", .cp
= 15, .crm
= 14, .opc1
= 1,
1161 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_MIGRATE
| ARM_CP_IO
,
1162 .accessfn
= gt_vct_access
,
1163 .readfn
= gt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1165 { .name
= "CNTVCT_EL0", .state
= ARM_CP_STATE_AA64
,
1166 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 2,
1167 .access
= PL0_R
, .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
,
1168 .accessfn
= gt_vct_access
,
1169 .readfn
= gt_cnt_read
, .resetfn
= gt_cnt_reset
,
1171 /* Comparison value, indicating when the timer goes off */
1172 { .name
= "CNTP_CVAL", .cp
= 15, .crm
= 14, .opc1
= 2,
1173 .access
= PL1_RW
| PL0_R
,
1174 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_NO_MIGRATE
,
1175 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1176 .accessfn
= gt_ptimer_access
, .resetfn
= arm_cp_reset_ignore
,
1177 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1179 { .name
= "CNTP_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1180 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 2,
1181 .access
= PL1_RW
| PL0_R
,
1183 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1184 .resetvalue
= 0, .accessfn
= gt_vtimer_access
,
1185 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1187 { .name
= "CNTV_CVAL", .cp
= 15, .crm
= 14, .opc1
= 3,
1188 .access
= PL1_RW
| PL0_R
,
1189 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_NO_MIGRATE
,
1190 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1191 .accessfn
= gt_vtimer_access
, .resetfn
= arm_cp_reset_ignore
,
1192 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1194 { .name
= "CNTV_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1195 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 2,
1196 .access
= PL1_RW
| PL0_R
,
1198 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1199 .resetvalue
= 0, .accessfn
= gt_vtimer_access
,
1200 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1206 /* In user-mode none of the generic timer registers are accessible,
1207 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1208 * so instead just don't register any of them.
1210 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1216 static void par_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1218 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1219 env
->cp15
.par_el1
= value
;
1220 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
1221 env
->cp15
.par_el1
= value
& 0xfffff6ff;
1223 env
->cp15
.par_el1
= value
& 0xfffff1ff;
1227 #ifndef CONFIG_USER_ONLY
1228 /* get_phys_addr() isn't present for user-mode-only targets */
1230 static CPAccessResult
ats_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1233 /* Other states are only available with TrustZone; in
1234 * a non-TZ implementation these registers don't exist
1235 * at all, which is an Uncategorized trap. This underdecoding
1236 * is safe because the reginfo is NO_MIGRATE.
1238 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1240 return CP_ACCESS_OK
;
1243 static void ats_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1246 target_ulong page_size
;
1248 int ret
, is_user
= ri
->opc2
& 2;
1249 int access_type
= ri
->opc2
& 1;
1251 ret
= get_phys_addr(env
, value
, access_type
, is_user
,
1252 &phys_addr
, &prot
, &page_size
);
1253 if (extended_addresses_enabled(env
)) {
1254 /* ret is a DFSR/IFSR value for the long descriptor
1255 * translation table format, but with WnR always clear.
1256 * Convert it to a 64-bit PAR.
1258 uint64_t par64
= (1 << 11); /* LPAE bit always set */
1260 par64
|= phys_addr
& ~0xfffULL
;
1261 /* We don't set the ATTR or SH fields in the PAR. */
1264 par64
|= (ret
& 0x3f) << 1; /* FS */
1265 /* Note that S2WLK and FSTAGE are always zero, because we don't
1266 * implement virtualization and therefore there can't be a stage 2
1270 env
->cp15
.par_el1
= par64
;
1272 /* ret is a DFSR/IFSR value for the short descriptor
1273 * translation table format (with WnR always clear).
1274 * Convert it to a 32-bit PAR.
1277 /* We do not set any attribute bits in the PAR */
1278 if (page_size
== (1 << 24)
1279 && arm_feature(env
, ARM_FEATURE_V7
)) {
1280 env
->cp15
.par_el1
= (phys_addr
& 0xff000000) | 1 << 1;
1282 env
->cp15
.par_el1
= phys_addr
& 0xfffff000;
1285 env
->cp15
.par_el1
= ((ret
& (1 << 10)) >> 5) |
1286 ((ret
& (1 << 12)) >> 6) |
1287 ((ret
& 0xf) << 1) | 1;
1293 static const ARMCPRegInfo vapa_cp_reginfo
[] = {
1294 { .name
= "PAR", .cp
= 15, .crn
= 7, .crm
= 4, .opc1
= 0, .opc2
= 0,
1295 .access
= PL1_RW
, .resetvalue
= 0,
1296 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.par_el1
),
1297 .writefn
= par_write
},
1298 #ifndef CONFIG_USER_ONLY
1299 { .name
= "ATS", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= CP_ANY
,
1300 .access
= PL1_W
, .accessfn
= ats_access
,
1301 .writefn
= ats_write
, .type
= ARM_CP_NO_MIGRATE
},
1306 /* Return basic MPU access permission bits. */
1307 static uint32_t simple_mpu_ap_bits(uint32_t val
)
1314 for (i
= 0; i
< 16; i
+= 2) {
1315 ret
|= (val
>> i
) & mask
;
1321 /* Pad basic MPU access permission bits to extended format. */
1322 static uint32_t extended_mpu_ap_bits(uint32_t val
)
1329 for (i
= 0; i
< 16; i
+= 2) {
1330 ret
|= (val
& mask
) << i
;
1336 static void pmsav5_data_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1339 env
->cp15
.pmsav5_data_ap
= extended_mpu_ap_bits(value
);
1342 static uint64_t pmsav5_data_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1344 return simple_mpu_ap_bits(env
->cp15
.pmsav5_data_ap
);
1347 static void pmsav5_insn_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1350 env
->cp15
.pmsav5_insn_ap
= extended_mpu_ap_bits(value
);
1353 static uint64_t pmsav5_insn_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1355 return simple_mpu_ap_bits(env
->cp15
.pmsav5_insn_ap
);
1358 static const ARMCPRegInfo pmsav5_cp_reginfo
[] = {
1359 { .name
= "DATA_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
1360 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
1361 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
1363 .readfn
= pmsav5_data_ap_read
, .writefn
= pmsav5_data_ap_write
, },
1364 { .name
= "INSN_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
1365 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
1366 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
1368 .readfn
= pmsav5_insn_ap_read
, .writefn
= pmsav5_insn_ap_write
, },
1369 { .name
= "DATA_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 2,
1371 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
1373 { .name
= "INSN_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 3,
1375 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
1377 { .name
= "DCACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
1379 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_data
), .resetvalue
= 0, },
1380 { .name
= "ICACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
1382 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_insn
), .resetvalue
= 0, },
1383 /* Protection region base and size registers */
1384 { .name
= "946_PRBS0", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0,
1385 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1386 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[0]) },
1387 { .name
= "946_PRBS1", .cp
= 15, .crn
= 6, .crm
= 1, .opc1
= 0,
1388 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1389 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[1]) },
1390 { .name
= "946_PRBS2", .cp
= 15, .crn
= 6, .crm
= 2, .opc1
= 0,
1391 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1392 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[2]) },
1393 { .name
= "946_PRBS3", .cp
= 15, .crn
= 6, .crm
= 3, .opc1
= 0,
1394 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1395 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[3]) },
1396 { .name
= "946_PRBS4", .cp
= 15, .crn
= 6, .crm
= 4, .opc1
= 0,
1397 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1398 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[4]) },
1399 { .name
= "946_PRBS5", .cp
= 15, .crn
= 6, .crm
= 5, .opc1
= 0,
1400 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1401 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[5]) },
1402 { .name
= "946_PRBS6", .cp
= 15, .crn
= 6, .crm
= 6, .opc1
= 0,
1403 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1404 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[6]) },
1405 { .name
= "946_PRBS7", .cp
= 15, .crn
= 6, .crm
= 7, .opc1
= 0,
1406 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1407 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[7]) },
1411 static void vmsa_ttbcr_raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1414 int maskshift
= extract32(value
, 0, 3);
1416 if (arm_feature(env
, ARM_FEATURE_LPAE
) && (value
& (1 << 31))) {
1417 value
&= ~((7 << 19) | (3 << 14) | (0xf << 3));
1421 /* Note that we always calculate c2_mask and c2_base_mask, but
1422 * they are only used for short-descriptor tables (ie if EAE is 0);
1423 * for long-descriptor tables the TTBCR fields are used differently
1424 * and the c2_mask and c2_base_mask values are meaningless.
1426 env
->cp15
.c2_control
= value
;
1427 env
->cp15
.c2_mask
= ~(((uint32_t)0xffffffffu
) >> maskshift
);
1428 env
->cp15
.c2_base_mask
= ~((uint32_t)0x3fffu
>> maskshift
);
1431 static void vmsa_ttbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1434 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1436 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1437 /* With LPAE the TTBCR could result in a change of ASID
1438 * via the TTBCR.A1 bit, so do a TLB flush.
1440 tlb_flush(CPU(cpu
), 1);
1442 vmsa_ttbcr_raw_write(env
, ri
, value
);
1445 static void vmsa_ttbcr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1447 env
->cp15
.c2_base_mask
= 0xffffc000u
;
1448 env
->cp15
.c2_control
= 0;
1449 env
->cp15
.c2_mask
= 0;
1452 static void vmsa_tcr_el1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1455 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1457 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
1458 tlb_flush(CPU(cpu
), 1);
1459 env
->cp15
.c2_control
= value
;
1462 static void vmsa_ttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1465 /* 64 bit accesses to the TTBRs can change the ASID and so we
1466 * must flush the TLB.
1468 if (cpreg_field_is_64bit(ri
)) {
1469 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1471 tlb_flush(CPU(cpu
), 1);
1473 raw_write(env
, ri
, value
);
1476 static const ARMCPRegInfo vmsa_cp_reginfo
[] = {
1477 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
1478 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
1479 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.esr_el
[1]),
1480 .resetfn
= arm_cp_reset_ignore
, },
1481 { .name
= "IFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
1483 .fieldoffset
= offsetof(CPUARMState
, cp15
.ifsr_el2
), .resetvalue
= 0, },
1484 { .name
= "ESR_EL1", .state
= ARM_CP_STATE_AA64
,
1485 .opc0
= 3, .crn
= 5, .crm
= 2, .opc1
= 0, .opc2
= 0,
1487 .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[1]), .resetvalue
= 0, },
1488 { .name
= "TTBR0_EL1", .state
= ARM_CP_STATE_BOTH
,
1489 .opc0
= 3, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
1490 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el1
),
1491 .writefn
= vmsa_ttbr_write
, .resetvalue
= 0 },
1492 { .name
= "TTBR1_EL1", .state
= ARM_CP_STATE_BOTH
,
1493 .opc0
= 3, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
1494 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr1_el1
),
1495 .writefn
= vmsa_ttbr_write
, .resetvalue
= 0 },
1496 { .name
= "TCR_EL1", .state
= ARM_CP_STATE_AA64
,
1497 .opc0
= 3, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
1498 .access
= PL1_RW
, .writefn
= vmsa_tcr_el1_write
,
1499 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
1500 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_control
) },
1501 { .name
= "TTBCR", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
1502 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
, .writefn
= vmsa_ttbcr_write
,
1503 .resetfn
= arm_cp_reset_ignore
, .raw_writefn
= vmsa_ttbcr_raw_write
,
1504 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c2_control
) },
1505 /* 64-bit FAR; this entry also gives us the AArch32 DFAR */
1506 { .name
= "FAR_EL1", .state
= ARM_CP_STATE_BOTH
,
1507 .opc0
= 3, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 0,
1508 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el1
),
1513 static void omap_ticonfig_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1516 env
->cp15
.c15_ticonfig
= value
& 0xe7;
1517 /* The OS_TYPE bit in this register changes the reported CPUID! */
1518 env
->cp15
.c0_cpuid
= (value
& (1 << 5)) ?
1519 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
1522 static void omap_threadid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1525 env
->cp15
.c15_threadid
= value
& 0xffff;
1528 static void omap_wfi_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1531 /* Wait-for-interrupt (deprecated) */
1532 cpu_interrupt(CPU(arm_env_get_cpu(env
)), CPU_INTERRUPT_HALT
);
1535 static void omap_cachemaint_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1538 /* On OMAP there are registers indicating the max/min index of dcache lines
1539 * containing a dirty line; cache flush operations have to reset these.
1541 env
->cp15
.c15_i_max
= 0x000;
1542 env
->cp15
.c15_i_min
= 0xff0;
1545 static const ARMCPRegInfo omap_cp_reginfo
[] = {
1546 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= CP_ANY
,
1547 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_OVERRIDE
,
1548 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.esr_el
[1]),
1550 { .name
= "", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
1551 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
1552 { .name
= "TICONFIG", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
1554 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_ticonfig
), .resetvalue
= 0,
1555 .writefn
= omap_ticonfig_write
},
1556 { .name
= "IMAX", .cp
= 15, .crn
= 15, .crm
= 2, .opc1
= 0, .opc2
= 0,
1558 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_max
), .resetvalue
= 0, },
1559 { .name
= "IMIN", .cp
= 15, .crn
= 15, .crm
= 3, .opc1
= 0, .opc2
= 0,
1560 .access
= PL1_RW
, .resetvalue
= 0xff0,
1561 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_min
) },
1562 { .name
= "THREADID", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 0, .opc2
= 0,
1564 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_threadid
), .resetvalue
= 0,
1565 .writefn
= omap_threadid_write
},
1566 { .name
= "TI925T_STATUS", .cp
= 15, .crn
= 15,
1567 .crm
= 8, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
1568 .type
= ARM_CP_NO_MIGRATE
,
1569 .readfn
= arm_cp_read_zero
, .writefn
= omap_wfi_write
, },
1570 /* TODO: Peripheral port remap register:
1571 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1572 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1575 { .name
= "OMAP_CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
1576 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
1577 .type
= ARM_CP_OVERRIDE
| ARM_CP_NO_MIGRATE
,
1578 .writefn
= omap_cachemaint_write
},
1579 { .name
= "C9", .cp
= 15, .crn
= 9,
1580 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
,
1581 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
, .resetvalue
= 0 },
1585 static void xscale_cpar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1589 if (env
->cp15
.c15_cpar
!= value
) {
1590 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1592 env
->cp15
.c15_cpar
= value
;
1596 static const ARMCPRegInfo xscale_cp_reginfo
[] = {
1597 { .name
= "XSCALE_CPAR",
1598 .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
1599 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_cpar
), .resetvalue
= 0,
1600 .writefn
= xscale_cpar_write
, },
1601 { .name
= "XSCALE_AUXCR",
1602 .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 1, .access
= PL1_RW
,
1603 .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_xscaleauxcr
),
1605 /* XScale specific cache-lockdown: since we have no cache we NOP these
1606 * and hope the guest does not really rely on cache behaviour.
1608 { .name
= "XSCALE_LOCK_ICACHE_LINE",
1609 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 0,
1610 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1611 { .name
= "XSCALE_UNLOCK_ICACHE",
1612 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 1,
1613 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1614 { .name
= "XSCALE_DCACHE_LOCK",
1615 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 0,
1616 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
1617 { .name
= "XSCALE_UNLOCK_DCACHE",
1618 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 1,
1619 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1623 static const ARMCPRegInfo dummy_c15_cp_reginfo
[] = {
1624 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1625 * implementation of this implementation-defined space.
1626 * Ideally this should eventually disappear in favour of actually
1627 * implementing the correct behaviour for all cores.
1629 { .name
= "C15_IMPDEF", .cp
= 15, .crn
= 15,
1630 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
1632 .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
| ARM_CP_OVERRIDE
,
1637 static const ARMCPRegInfo cache_dirty_status_cp_reginfo
[] = {
1638 /* Cache status: RAZ because we have no cache so it's always clean */
1639 { .name
= "CDSR", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 6,
1640 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1645 static const ARMCPRegInfo cache_block_ops_cp_reginfo
[] = {
1646 /* We never have a a block transfer operation in progress */
1647 { .name
= "BXSR", .cp
= 15, .crn
= 7, .crm
= 12, .opc1
= 0, .opc2
= 4,
1648 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1650 /* The cache ops themselves: these all NOP for QEMU */
1651 { .name
= "IICR", .cp
= 15, .crm
= 5, .opc1
= 0,
1652 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1653 { .name
= "IDCR", .cp
= 15, .crm
= 6, .opc1
= 0,
1654 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1655 { .name
= "CDCR", .cp
= 15, .crm
= 12, .opc1
= 0,
1656 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1657 { .name
= "PIR", .cp
= 15, .crm
= 12, .opc1
= 1,
1658 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1659 { .name
= "PDR", .cp
= 15, .crm
= 12, .opc1
= 2,
1660 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1661 { .name
= "CIDCR", .cp
= 15, .crm
= 14, .opc1
= 0,
1662 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1666 static const ARMCPRegInfo cache_test_clean_cp_reginfo
[] = {
1667 /* The cache test-and-clean instructions always return (1 << 30)
1668 * to indicate that there are no dirty cache lines.
1670 { .name
= "TC_DCACHE", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 3,
1671 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1672 .resetvalue
= (1 << 30) },
1673 { .name
= "TCI_DCACHE", .cp
= 15, .crn
= 7, .crm
= 14, .opc1
= 0, .opc2
= 3,
1674 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1675 .resetvalue
= (1 << 30) },
1679 static const ARMCPRegInfo strongarm_cp_reginfo
[] = {
1680 /* Ignore ReadBuffer accesses */
1681 { .name
= "C9_READBUFFER", .cp
= 15, .crn
= 9,
1682 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
1683 .access
= PL1_RW
, .resetvalue
= 0,
1684 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
| ARM_CP_NO_MIGRATE
},
1688 static uint64_t mpidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1690 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
1691 uint32_t mpidr
= cs
->cpu_index
;
1692 /* We don't support setting cluster ID ([8..11]) (known as Aff1
1693 * in later ARM ARM versions), or any of the higher affinity level fields,
1694 * so these bits always RAZ.
1696 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
1697 mpidr
|= (1U << 31);
1698 /* Cores which are uniprocessor (non-coherent)
1699 * but still implement the MP extensions set
1700 * bit 30. (For instance, A9UP.) However we do
1701 * not currently model any of those cores.
1707 static const ARMCPRegInfo mpidr_cp_reginfo
[] = {
1708 { .name
= "MPIDR", .state
= ARM_CP_STATE_BOTH
,
1709 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 5,
1710 .access
= PL1_R
, .readfn
= mpidr_read
, .type
= ARM_CP_NO_MIGRATE
},
1714 static const ARMCPRegInfo lpae_cp_reginfo
[] = {
1715 /* NOP AMAIR0/1: the override is because these clash with the rather
1716 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
1718 { .name
= "AMAIR0", .state
= ARM_CP_STATE_BOTH
,
1719 .opc0
= 3, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 0,
1720 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
,
1722 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
1723 { .name
= "AMAIR1", .cp
= 15, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 1,
1724 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
,
1726 /* 64 bit access versions of the (dummy) debug registers */
1727 { .name
= "DBGDRAR", .cp
= 14, .crm
= 1, .opc1
= 0,
1728 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
1729 { .name
= "DBGDSAR", .cp
= 14, .crm
= 2, .opc1
= 0,
1730 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
1731 { .name
= "PAR", .cp
= 15, .crm
= 7, .opc1
= 0,
1732 .access
= PL1_RW
, .type
= ARM_CP_64BIT
,
1733 .fieldoffset
= offsetof(CPUARMState
, cp15
.par_el1
), .resetvalue
= 0 },
1734 { .name
= "TTBR0", .cp
= 15, .crm
= 2, .opc1
= 0,
1735 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_NO_MIGRATE
,
1736 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el1
),
1737 .writefn
= vmsa_ttbr_write
, .resetfn
= arm_cp_reset_ignore
},
1738 { .name
= "TTBR1", .cp
= 15, .crm
= 2, .opc1
= 1,
1739 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_NO_MIGRATE
,
1740 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr1_el1
),
1741 .writefn
= vmsa_ttbr_write
, .resetfn
= arm_cp_reset_ignore
},
1745 static uint64_t aa64_fpcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1747 return vfp_get_fpcr(env
);
1750 static void aa64_fpcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1753 vfp_set_fpcr(env
, value
);
1756 static uint64_t aa64_fpsr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1758 return vfp_get_fpsr(env
);
1761 static void aa64_fpsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1764 vfp_set_fpsr(env
, value
);
1767 static CPAccessResult
aa64_daif_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1769 if (arm_current_pl(env
) == 0 && !(env
->cp15
.c1_sys
& SCTLR_UMA
)) {
1770 return CP_ACCESS_TRAP
;
1772 return CP_ACCESS_OK
;
1775 static void aa64_daif_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1778 env
->daif
= value
& PSTATE_DAIF
;
1781 static CPAccessResult
aa64_cacheop_access(CPUARMState
*env
,
1782 const ARMCPRegInfo
*ri
)
1784 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
1785 * SCTLR_EL1.UCI is set.
1787 if (arm_current_pl(env
) == 0 && !(env
->cp15
.c1_sys
& SCTLR_UCI
)) {
1788 return CP_ACCESS_TRAP
;
1790 return CP_ACCESS_OK
;
1793 static void tlbi_aa64_va_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1796 /* Invalidate by VA (AArch64 version) */
1797 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1798 uint64_t pageaddr
= value
<< 12;
1799 tlb_flush_page(CPU(cpu
), pageaddr
);
1802 static void tlbi_aa64_vaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1805 /* Invalidate by VA, all ASIDs (AArch64 version) */
1806 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1807 uint64_t pageaddr
= value
<< 12;
1808 tlb_flush_page(CPU(cpu
), pageaddr
);
1811 static void tlbi_aa64_asid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1814 /* Invalidate by ASID (AArch64 version) */
1815 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1816 int asid
= extract64(value
, 48, 16);
1817 tlb_flush(CPU(cpu
), asid
== 0);
1820 static CPAccessResult
aa64_zva_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1822 /* We don't implement EL2, so the only control on DC ZVA is the
1823 * bit in the SCTLR which can prohibit access for EL0.
1825 if (arm_current_pl(env
) == 0 && !(env
->cp15
.c1_sys
& SCTLR_DZE
)) {
1826 return CP_ACCESS_TRAP
;
1828 return CP_ACCESS_OK
;
1831 static uint64_t aa64_dczid_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1833 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1834 int dzp_bit
= 1 << 4;
1836 /* DZP indicates whether DC ZVA access is allowed */
1837 if (aa64_zva_access(env
, NULL
) != CP_ACCESS_OK
) {
1840 return cpu
->dcz_blocksize
| dzp_bit
;
1843 static CPAccessResult
sp_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1845 if (!env
->pstate
& PSTATE_SP
) {
1846 /* Access to SP_EL0 is undefined if it's being used as
1847 * the stack pointer.
1849 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1851 return CP_ACCESS_OK
;
1854 static uint64_t spsel_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1856 return env
->pstate
& PSTATE_SP
;
1859 static void spsel_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t val
)
1861 update_spsel(env
, val
);
1864 static const ARMCPRegInfo v8_cp_reginfo
[] = {
1865 /* Minimal set of EL0-visible registers. This will need to be expanded
1866 * significantly for system emulation of AArch64 CPUs.
1868 { .name
= "NZCV", .state
= ARM_CP_STATE_AA64
,
1869 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 2,
1870 .access
= PL0_RW
, .type
= ARM_CP_NZCV
},
1871 { .name
= "DAIF", .state
= ARM_CP_STATE_AA64
,
1872 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 2,
1873 .type
= ARM_CP_NO_MIGRATE
,
1874 .access
= PL0_RW
, .accessfn
= aa64_daif_access
,
1875 .fieldoffset
= offsetof(CPUARMState
, daif
),
1876 .writefn
= aa64_daif_write
, .resetfn
= arm_cp_reset_ignore
},
1877 { .name
= "FPCR", .state
= ARM_CP_STATE_AA64
,
1878 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 4,
1879 .access
= PL0_RW
, .readfn
= aa64_fpcr_read
, .writefn
= aa64_fpcr_write
},
1880 { .name
= "FPSR", .state
= ARM_CP_STATE_AA64
,
1881 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 4,
1882 .access
= PL0_RW
, .readfn
= aa64_fpsr_read
, .writefn
= aa64_fpsr_write
},
1883 { .name
= "DCZID_EL0", .state
= ARM_CP_STATE_AA64
,
1884 .opc0
= 3, .opc1
= 3, .opc2
= 7, .crn
= 0, .crm
= 0,
1885 .access
= PL0_R
, .type
= ARM_CP_NO_MIGRATE
,
1886 .readfn
= aa64_dczid_read
},
1887 { .name
= "DC_ZVA", .state
= ARM_CP_STATE_AA64
,
1888 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 4, .opc2
= 1,
1889 .access
= PL0_W
, .type
= ARM_CP_DC_ZVA
,
1890 #ifndef CONFIG_USER_ONLY
1891 /* Avoid overhead of an access check that always passes in user-mode */
1892 .accessfn
= aa64_zva_access
,
1895 { .name
= "CURRENTEL", .state
= ARM_CP_STATE_AA64
,
1896 .opc0
= 3, .opc1
= 0, .opc2
= 2, .crn
= 4, .crm
= 2,
1897 .access
= PL1_R
, .type
= ARM_CP_CURRENTEL
},
1898 /* Cache ops: all NOPs since we don't emulate caches */
1899 { .name
= "IC_IALLUIS", .state
= ARM_CP_STATE_AA64
,
1900 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
1901 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1902 { .name
= "IC_IALLU", .state
= ARM_CP_STATE_AA64
,
1903 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
1904 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1905 { .name
= "IC_IVAU", .state
= ARM_CP_STATE_AA64
,
1906 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 5, .opc2
= 1,
1907 .access
= PL0_W
, .type
= ARM_CP_NOP
,
1908 .accessfn
= aa64_cacheop_access
},
1909 { .name
= "DC_IVAC", .state
= ARM_CP_STATE_AA64
,
1910 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
1911 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1912 { .name
= "DC_ISW", .state
= ARM_CP_STATE_AA64
,
1913 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
1914 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1915 { .name
= "DC_CVAC", .state
= ARM_CP_STATE_AA64
,
1916 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 10, .opc2
= 1,
1917 .access
= PL0_W
, .type
= ARM_CP_NOP
,
1918 .accessfn
= aa64_cacheop_access
},
1919 { .name
= "DC_CSW", .state
= ARM_CP_STATE_AA64
,
1920 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
1921 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1922 { .name
= "DC_CVAU", .state
= ARM_CP_STATE_AA64
,
1923 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 11, .opc2
= 1,
1924 .access
= PL0_W
, .type
= ARM_CP_NOP
,
1925 .accessfn
= aa64_cacheop_access
},
1926 { .name
= "DC_CIVAC", .state
= ARM_CP_STATE_AA64
,
1927 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 14, .opc2
= 1,
1928 .access
= PL0_W
, .type
= ARM_CP_NOP
,
1929 .accessfn
= aa64_cacheop_access
},
1930 { .name
= "DC_CISW", .state
= ARM_CP_STATE_AA64
,
1931 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
1932 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1933 /* TLBI operations */
1934 { .name
= "TLBI_VMALLE1IS", .state
= ARM_CP_STATE_AA64
,
1935 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
1936 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1937 .writefn
= tlbiall_write
},
1938 { .name
= "TLBI_VAE1IS", .state
= ARM_CP_STATE_AA64
,
1939 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
1940 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1941 .writefn
= tlbi_aa64_va_write
},
1942 { .name
= "TLBI_ASIDE1IS", .state
= ARM_CP_STATE_AA64
,
1943 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
1944 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1945 .writefn
= tlbi_aa64_asid_write
},
1946 { .name
= "TLBI_VAAE1IS", .state
= ARM_CP_STATE_AA64
,
1947 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
1948 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1949 .writefn
= tlbi_aa64_vaa_write
},
1950 { .name
= "TLBI_VALE1IS", .state
= ARM_CP_STATE_AA64
,
1951 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
1952 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1953 .writefn
= tlbi_aa64_va_write
},
1954 { .name
= "TLBI_VAALE1IS", .state
= ARM_CP_STATE_AA64
,
1955 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
1956 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1957 .writefn
= tlbi_aa64_vaa_write
},
1958 { .name
= "TLBI_VMALLE1", .state
= ARM_CP_STATE_AA64
,
1959 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
1960 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1961 .writefn
= tlbiall_write
},
1962 { .name
= "TLBI_VAE1", .state
= ARM_CP_STATE_AA64
,
1963 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
1964 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1965 .writefn
= tlbi_aa64_va_write
},
1966 { .name
= "TLBI_ASIDE1", .state
= ARM_CP_STATE_AA64
,
1967 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
1968 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1969 .writefn
= tlbi_aa64_asid_write
},
1970 { .name
= "TLBI_VAAE1", .state
= ARM_CP_STATE_AA64
,
1971 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
1972 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1973 .writefn
= tlbi_aa64_vaa_write
},
1974 { .name
= "TLBI_VALE1", .state
= ARM_CP_STATE_AA64
,
1975 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
1976 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1977 .writefn
= tlbi_aa64_va_write
},
1978 { .name
= "TLBI_VAALE1", .state
= ARM_CP_STATE_AA64
,
1979 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
1980 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
1981 .writefn
= tlbi_aa64_vaa_write
},
1982 #ifndef CONFIG_USER_ONLY
1983 /* 64 bit address translation operations */
1984 { .name
= "AT_S1E1R", .state
= ARM_CP_STATE_AA64
,
1985 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 0,
1986 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
, .writefn
= ats_write
},
1987 { .name
= "AT_S1E1W", .state
= ARM_CP_STATE_AA64
,
1988 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 1,
1989 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
, .writefn
= ats_write
},
1990 { .name
= "AT_S1E0R", .state
= ARM_CP_STATE_AA64
,
1991 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 2,
1992 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
, .writefn
= ats_write
},
1993 { .name
= "AT_S1E0W", .state
= ARM_CP_STATE_AA64
,
1994 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 3,
1995 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
, .writefn
= ats_write
},
1997 /* 32 bit TLB invalidates, Inner Shareable */
1998 { .name
= "TLBIALLIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
1999 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiall_write
},
2000 { .name
= "TLBIMVAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
2001 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_write
},
2002 { .name
= "TLBIASIDIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
2003 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
2004 { .name
= "TLBIMVAAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
2005 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
2006 { .name
= "TLBIMVALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
2007 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_write
},
2008 { .name
= "TLBIMVAALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
2009 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
2010 /* 32 bit ITLB invalidates */
2011 { .name
= "ITLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 0,
2012 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiall_write
},
2013 { .name
= "ITLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 1,
2014 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_write
},
2015 { .name
= "ITLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 2,
2016 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
2017 /* 32 bit DTLB invalidates */
2018 { .name
= "DTLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 0,
2019 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiall_write
},
2020 { .name
= "DTLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 1,
2021 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_write
},
2022 { .name
= "DTLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 2,
2023 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
2024 /* 32 bit TLB invalidates */
2025 { .name
= "TLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
2026 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiall_write
},
2027 { .name
= "TLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
2028 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_write
},
2029 { .name
= "TLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
2030 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
2031 { .name
= "TLBIMVAA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
2032 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
2033 { .name
= "TLBIMVAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
2034 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_write
},
2035 { .name
= "TLBIMVAAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
2036 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
2037 /* 32 bit cache operations */
2038 { .name
= "ICIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
2039 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2040 { .name
= "BPIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 6,
2041 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2042 { .name
= "ICIALLU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
2043 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2044 { .name
= "ICIMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 1,
2045 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2046 { .name
= "BPIALL", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 6,
2047 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2048 { .name
= "BPIMVA", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 7,
2049 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2050 { .name
= "DCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
2051 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2052 { .name
= "DCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
2053 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2054 { .name
= "DCCMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 1,
2055 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2056 { .name
= "DCCSW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
2057 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2058 { .name
= "DCCMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 11, .opc2
= 1,
2059 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2060 { .name
= "DCCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 1,
2061 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2062 { .name
= "DCCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
2063 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2064 /* MMU Domain access control / MPU write buffer control */
2065 { .name
= "DACR", .cp
= 15,
2066 .opc1
= 0, .crn
= 3, .crm
= 0, .opc2
= 0,
2067 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c3
),
2068 .resetvalue
= 0, .writefn
= dacr_write
, .raw_writefn
= raw_write
, },
2069 /* Dummy implementation of monitor debug system control register:
2070 * we don't support debug.
2072 { .name
= "MDSCR_EL1", .state
= ARM_CP_STATE_AA64
,
2073 .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
2074 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2075 /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
2076 { .name
= "OSLAR_EL1", .state
= ARM_CP_STATE_AA64
,
2077 .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 4,
2078 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2079 { .name
= "ELR_EL1", .state
= ARM_CP_STATE_AA64
,
2080 .type
= ARM_CP_NO_MIGRATE
,
2081 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 1,
2083 .fieldoffset
= offsetof(CPUARMState
, elr_el
[1]) },
2084 { .name
= "SPSR_EL1", .state
= ARM_CP_STATE_AA64
,
2085 .type
= ARM_CP_NO_MIGRATE
,
2086 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 0,
2087 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[0]) },
2088 /* We rely on the access checks not allowing the guest to write to the
2089 * state field when SPSel indicates that it's being used as the stack
2092 { .name
= "SP_EL0", .state
= ARM_CP_STATE_AA64
,
2093 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 1, .opc2
= 0,
2094 .access
= PL1_RW
, .accessfn
= sp_el0_access
,
2095 .type
= ARM_CP_NO_MIGRATE
,
2096 .fieldoffset
= offsetof(CPUARMState
, sp_el
[0]) },
2097 { .name
= "SPSel", .state
= ARM_CP_STATE_AA64
,
2098 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 2, .opc2
= 0,
2099 .type
= ARM_CP_NO_MIGRATE
,
2100 .access
= PL1_RW
, .readfn
= spsel_read
, .writefn
= spsel_write
},
2104 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
2105 static const ARMCPRegInfo v8_el3_no_el2_cp_reginfo
[] = {
2106 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
2107 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
2109 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
2113 static const ARMCPRegInfo v8_el2_cp_reginfo
[] = {
2114 { .name
= "ELR_EL2", .state
= ARM_CP_STATE_AA64
,
2115 .type
= ARM_CP_NO_MIGRATE
,
2116 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 1,
2118 .fieldoffset
= offsetof(CPUARMState
, elr_el
[2]) },
2119 { .name
= "SPSR_EL2", .state
= ARM_CP_STATE_AA64
,
2120 .type
= ARM_CP_NO_MIGRATE
,
2121 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 0,
2122 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[6]) },
2123 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
2124 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
2125 .access
= PL2_RW
, .writefn
= vbar_write
,
2126 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[2]),
2131 static const ARMCPRegInfo v8_el3_cp_reginfo
[] = {
2132 { .name
= "ELR_EL3", .state
= ARM_CP_STATE_AA64
,
2133 .type
= ARM_CP_NO_MIGRATE
,
2134 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 1,
2136 .fieldoffset
= offsetof(CPUARMState
, elr_el
[3]) },
2137 { .name
= "SPSR_EL3", .state
= ARM_CP_STATE_AA64
,
2138 .type
= ARM_CP_NO_MIGRATE
,
2139 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 0,
2140 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[7]) },
2141 { .name
= "VBAR_EL3", .state
= ARM_CP_STATE_AA64
,
2142 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 0,
2143 .access
= PL3_RW
, .writefn
= vbar_write
,
2144 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[3]),
2149 static void sctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2152 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2154 if (env
->cp15
.c1_sys
== value
) {
2155 /* Skip the TLB flush if nothing actually changed; Linux likes
2156 * to do a lot of pointless SCTLR writes.
2161 env
->cp15
.c1_sys
= value
;
2162 /* ??? Lots of these bits are not implemented. */
2163 /* This may enable/disable the MMU, so do a TLB flush. */
2164 tlb_flush(CPU(cpu
), 1);
2167 static CPAccessResult
ctr_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2169 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
2170 * but the AArch32 CTR has its own reginfo struct)
2172 if (arm_current_pl(env
) == 0 && !(env
->cp15
.c1_sys
& SCTLR_UCT
)) {
2173 return CP_ACCESS_TRAP
;
2175 return CP_ACCESS_OK
;
2178 static void define_aarch64_debug_regs(ARMCPU
*cpu
)
2180 /* Define breakpoint and watchpoint registers. These do nothing
2181 * but read as written, for now.
2185 for (i
= 0; i
< 16; i
++) {
2186 ARMCPRegInfo dbgregs
[] = {
2187 { .name
= "DBGBVR", .state
= ARM_CP_STATE_AA64
,
2188 .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 4,
2190 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbvr
[i
]) },
2191 { .name
= "DBGBCR", .state
= ARM_CP_STATE_AA64
,
2192 .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 5,
2194 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbcr
[i
]) },
2195 { .name
= "DBGWVR", .state
= ARM_CP_STATE_AA64
,
2196 .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 6,
2198 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwvr
[i
]) },
2199 { .name
= "DBGWCR", .state
= ARM_CP_STATE_AA64
,
2200 .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 7,
2202 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwcr
[i
]) },
2205 define_arm_cp_regs(cpu
, dbgregs
);
2209 void register_cp_regs_for_features(ARMCPU
*cpu
)
2211 /* Register all the coprocessor registers based on feature bits */
2212 CPUARMState
*env
= &cpu
->env
;
2213 if (arm_feature(env
, ARM_FEATURE_M
)) {
2214 /* M profile has no coprocessor registers */
2218 define_arm_cp_regs(cpu
, cp_reginfo
);
2219 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
2220 /* Must go early as it is full of wildcards that may be
2221 * overridden by later definitions.
2223 define_arm_cp_regs(cpu
, not_v8_cp_reginfo
);
2226 if (arm_feature(env
, ARM_FEATURE_V6
)) {
2227 /* The ID registers all have impdef reset values */
2228 ARMCPRegInfo v6_idregs
[] = {
2229 { .name
= "ID_PFR0", .state
= ARM_CP_STATE_BOTH
,
2230 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
2231 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2232 .resetvalue
= cpu
->id_pfr0
},
2233 { .name
= "ID_PFR1", .state
= ARM_CP_STATE_BOTH
,
2234 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 1,
2235 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2236 .resetvalue
= cpu
->id_pfr1
},
2237 { .name
= "ID_DFR0", .state
= ARM_CP_STATE_BOTH
,
2238 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 2,
2239 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2240 .resetvalue
= cpu
->id_dfr0
},
2241 { .name
= "ID_AFR0", .state
= ARM_CP_STATE_BOTH
,
2242 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 3,
2243 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2244 .resetvalue
= cpu
->id_afr0
},
2245 { .name
= "ID_MMFR0", .state
= ARM_CP_STATE_BOTH
,
2246 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 4,
2247 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2248 .resetvalue
= cpu
->id_mmfr0
},
2249 { .name
= "ID_MMFR1", .state
= ARM_CP_STATE_BOTH
,
2250 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 5,
2251 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2252 .resetvalue
= cpu
->id_mmfr1
},
2253 { .name
= "ID_MMFR2", .state
= ARM_CP_STATE_BOTH
,
2254 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 6,
2255 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2256 .resetvalue
= cpu
->id_mmfr2
},
2257 { .name
= "ID_MMFR3", .state
= ARM_CP_STATE_BOTH
,
2258 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 7,
2259 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2260 .resetvalue
= cpu
->id_mmfr3
},
2261 { .name
= "ID_ISAR0", .state
= ARM_CP_STATE_BOTH
,
2262 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 0,
2263 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2264 .resetvalue
= cpu
->id_isar0
},
2265 { .name
= "ID_ISAR1", .state
= ARM_CP_STATE_BOTH
,
2266 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 1,
2267 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2268 .resetvalue
= cpu
->id_isar1
},
2269 { .name
= "ID_ISAR2", .state
= ARM_CP_STATE_BOTH
,
2270 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
2271 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2272 .resetvalue
= cpu
->id_isar2
},
2273 { .name
= "ID_ISAR3", .state
= ARM_CP_STATE_BOTH
,
2274 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 3,
2275 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2276 .resetvalue
= cpu
->id_isar3
},
2277 { .name
= "ID_ISAR4", .state
= ARM_CP_STATE_BOTH
,
2278 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 4,
2279 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2280 .resetvalue
= cpu
->id_isar4
},
2281 { .name
= "ID_ISAR5", .state
= ARM_CP_STATE_BOTH
,
2282 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 5,
2283 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2284 .resetvalue
= cpu
->id_isar5
},
2285 /* 6..7 are as yet unallocated and must RAZ */
2286 { .name
= "ID_ISAR6", .cp
= 15, .crn
= 0, .crm
= 2,
2287 .opc1
= 0, .opc2
= 6, .access
= PL1_R
, .type
= ARM_CP_CONST
,
2289 { .name
= "ID_ISAR7", .cp
= 15, .crn
= 0, .crm
= 2,
2290 .opc1
= 0, .opc2
= 7, .access
= PL1_R
, .type
= ARM_CP_CONST
,
2294 define_arm_cp_regs(cpu
, v6_idregs
);
2295 define_arm_cp_regs(cpu
, v6_cp_reginfo
);
2297 define_arm_cp_regs(cpu
, not_v6_cp_reginfo
);
2299 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
2300 define_arm_cp_regs(cpu
, v6k_cp_reginfo
);
2302 if (arm_feature(env
, ARM_FEATURE_V7
)) {
2303 /* v7 performance monitor control register: same implementor
2304 * field as main ID register, and we implement only the cycle
2307 #ifndef CONFIG_USER_ONLY
2308 ARMCPRegInfo pmcr
= {
2309 .name
= "PMCR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 0,
2310 .access
= PL0_RW
, .resetvalue
= cpu
->midr
& 0xff000000,
2312 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcr
),
2313 .accessfn
= pmreg_access
, .writefn
= pmcr_write
,
2314 .raw_writefn
= raw_write
,
2316 define_one_arm_cp_reg(cpu
, &pmcr
);
2318 ARMCPRegInfo clidr
= {
2319 .name
= "CLIDR", .state
= ARM_CP_STATE_BOTH
,
2320 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 1,
2321 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->clidr
2323 define_one_arm_cp_reg(cpu
, &clidr
);
2324 define_arm_cp_regs(cpu
, v7_cp_reginfo
);
2326 define_arm_cp_regs(cpu
, not_v7_cp_reginfo
);
2328 if (arm_feature(env
, ARM_FEATURE_V8
)) {
2329 /* AArch64 ID registers, which all have impdef reset values */
2330 ARMCPRegInfo v8_idregs
[] = {
2331 { .name
= "ID_AA64PFR0_EL1", .state
= ARM_CP_STATE_AA64
,
2332 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 0,
2333 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2334 .resetvalue
= cpu
->id_aa64pfr0
},
2335 { .name
= "ID_AA64PFR1_EL1", .state
= ARM_CP_STATE_AA64
,
2336 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 1,
2337 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2338 .resetvalue
= cpu
->id_aa64pfr1
},
2339 { .name
= "ID_AA64DFR0_EL1", .state
= ARM_CP_STATE_AA64
,
2340 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 0,
2341 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2342 /* We mask out the PMUVer field, beacuse we don't currently
2343 * implement the PMU. Not advertising it prevents the guest
2344 * from trying to use it and getting UNDEFs on registers we
2347 .resetvalue
= cpu
->id_aa64dfr0
& ~0xf00 },
2348 { .name
= "ID_AA64DFR1_EL1", .state
= ARM_CP_STATE_AA64
,
2349 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 1,
2350 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2351 .resetvalue
= cpu
->id_aa64dfr1
},
2352 { .name
= "ID_AA64AFR0_EL1", .state
= ARM_CP_STATE_AA64
,
2353 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 4,
2354 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2355 .resetvalue
= cpu
->id_aa64afr0
},
2356 { .name
= "ID_AA64AFR1_EL1", .state
= ARM_CP_STATE_AA64
,
2357 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 5,
2358 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2359 .resetvalue
= cpu
->id_aa64afr1
},
2360 { .name
= "ID_AA64ISAR0_EL1", .state
= ARM_CP_STATE_AA64
,
2361 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 0,
2362 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2363 .resetvalue
= cpu
->id_aa64isar0
},
2364 { .name
= "ID_AA64ISAR1_EL1", .state
= ARM_CP_STATE_AA64
,
2365 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 1,
2366 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2367 .resetvalue
= cpu
->id_aa64isar1
},
2368 { .name
= "ID_AA64MMFR0_EL1", .state
= ARM_CP_STATE_AA64
,
2369 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
2370 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2371 .resetvalue
= cpu
->id_aa64mmfr0
},
2372 { .name
= "ID_AA64MMFR1_EL1", .state
= ARM_CP_STATE_AA64
,
2373 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 1,
2374 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2375 .resetvalue
= cpu
->id_aa64mmfr1
},
2376 { .name
= "MVFR0_EL1", .state
= ARM_CP_STATE_AA64
,
2377 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 0,
2378 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2379 .resetvalue
= cpu
->mvfr0
},
2380 { .name
= "MVFR1_EL1", .state
= ARM_CP_STATE_AA64
,
2381 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 1,
2382 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2383 .resetvalue
= cpu
->mvfr1
},
2384 { .name
= "MVFR2_EL1", .state
= ARM_CP_STATE_AA64
,
2385 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 2,
2386 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2387 .resetvalue
= cpu
->mvfr2
},
2390 ARMCPRegInfo rvbar
= {
2391 .name
= "RVBAR_EL1", .state
= ARM_CP_STATE_AA64
,
2392 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 2,
2393 .type
= ARM_CP_CONST
, .access
= PL1_R
, .resetvalue
= cpu
->rvbar
2395 define_one_arm_cp_reg(cpu
, &rvbar
);
2396 define_arm_cp_regs(cpu
, v8_idregs
);
2397 define_arm_cp_regs(cpu
, v8_cp_reginfo
);
2398 define_aarch64_debug_regs(cpu
);
2400 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
2401 define_arm_cp_regs(cpu
, v8_el2_cp_reginfo
);
2403 /* If EL2 is missing but higher ELs are enabled, we need to
2404 * register the no_el2 reginfos.
2406 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
2407 define_arm_cp_regs(cpu
, v8_el3_no_el2_cp_reginfo
);
2410 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
2411 define_arm_cp_regs(cpu
, v8_el3_cp_reginfo
);
2413 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
2414 /* These are the MPU registers prior to PMSAv6. Any new
2415 * PMSA core later than the ARM946 will require that we
2416 * implement the PMSAv6 or PMSAv7 registers, which are
2417 * completely different.
2419 assert(!arm_feature(env
, ARM_FEATURE_V6
));
2420 define_arm_cp_regs(cpu
, pmsav5_cp_reginfo
);
2422 define_arm_cp_regs(cpu
, vmsa_cp_reginfo
);
2424 if (arm_feature(env
, ARM_FEATURE_THUMB2EE
)) {
2425 define_arm_cp_regs(cpu
, t2ee_cp_reginfo
);
2427 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
2428 define_arm_cp_regs(cpu
, generic_timer_cp_reginfo
);
2430 if (arm_feature(env
, ARM_FEATURE_VAPA
)) {
2431 define_arm_cp_regs(cpu
, vapa_cp_reginfo
);
2433 if (arm_feature(env
, ARM_FEATURE_CACHE_TEST_CLEAN
)) {
2434 define_arm_cp_regs(cpu
, cache_test_clean_cp_reginfo
);
2436 if (arm_feature(env
, ARM_FEATURE_CACHE_DIRTY_REG
)) {
2437 define_arm_cp_regs(cpu
, cache_dirty_status_cp_reginfo
);
2439 if (arm_feature(env
, ARM_FEATURE_CACHE_BLOCK_OPS
)) {
2440 define_arm_cp_regs(cpu
, cache_block_ops_cp_reginfo
);
2442 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
2443 define_arm_cp_regs(cpu
, omap_cp_reginfo
);
2445 if (arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
2446 define_arm_cp_regs(cpu
, strongarm_cp_reginfo
);
2448 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
2449 define_arm_cp_regs(cpu
, xscale_cp_reginfo
);
2451 if (arm_feature(env
, ARM_FEATURE_DUMMY_C15_REGS
)) {
2452 define_arm_cp_regs(cpu
, dummy_c15_cp_reginfo
);
2454 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
2455 define_arm_cp_regs(cpu
, lpae_cp_reginfo
);
2457 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
2458 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
2459 * be read-only (ie write causes UNDEF exception).
2462 ARMCPRegInfo id_pre_v8_midr_cp_reginfo
[] = {
2463 /* Pre-v8 MIDR space.
2464 * Note that the MIDR isn't a simple constant register because
2465 * of the TI925 behaviour where writes to another register can
2466 * cause the MIDR value to change.
2468 * Unimplemented registers in the c15 0 0 0 space default to
2469 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
2470 * and friends override accordingly.
2473 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= CP_ANY
,
2474 .access
= PL1_R
, .resetvalue
= cpu
->midr
,
2475 .writefn
= arm_cp_write_ignore
, .raw_writefn
= raw_write
,
2476 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
2477 .type
= ARM_CP_OVERRIDE
},
2478 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
2480 .cp
= 15, .crn
= 0, .crm
= 3, .opc1
= 0, .opc2
= CP_ANY
,
2481 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2483 .cp
= 15, .crn
= 0, .crm
= 4, .opc1
= 0, .opc2
= CP_ANY
,
2484 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2486 .cp
= 15, .crn
= 0, .crm
= 5, .opc1
= 0, .opc2
= CP_ANY
,
2487 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2489 .cp
= 15, .crn
= 0, .crm
= 6, .opc1
= 0, .opc2
= CP_ANY
,
2490 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2492 .cp
= 15, .crn
= 0, .crm
= 7, .opc1
= 0, .opc2
= CP_ANY
,
2493 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2496 ARMCPRegInfo id_v8_midr_cp_reginfo
[] = {
2497 /* v8 MIDR -- the wildcard isn't necessary, and nor is the
2498 * variable-MIDR TI925 behaviour. Instead we have a single
2499 * (strictly speaking IMPDEF) alias of the MIDR, REVIDR.
2501 { .name
= "MIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
2502 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 0,
2503 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->midr
},
2504 { .name
= "REVIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
2505 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 6,
2506 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->midr
},
2509 ARMCPRegInfo id_cp_reginfo
[] = {
2510 /* These are common to v8 and pre-v8 */
2512 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 1,
2513 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
2514 { .name
= "CTR_EL0", .state
= ARM_CP_STATE_AA64
,
2515 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 0, .crm
= 0,
2516 .access
= PL0_R
, .accessfn
= ctr_el0_access
,
2517 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
2518 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
2520 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 2,
2521 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2523 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 3,
2524 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2527 ARMCPRegInfo crn0_wi_reginfo
= {
2528 .name
= "CRN0_WI", .cp
= 15, .crn
= 0, .crm
= CP_ANY
,
2529 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_W
,
2530 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
2532 if (arm_feature(env
, ARM_FEATURE_OMAPCP
) ||
2533 arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
2535 /* Register the blanket "writes ignored" value first to cover the
2536 * whole space. Then update the specific ID registers to allow write
2537 * access, so that they ignore writes rather than causing them to
2540 define_one_arm_cp_reg(cpu
, &crn0_wi_reginfo
);
2541 for (r
= id_pre_v8_midr_cp_reginfo
;
2542 r
->type
!= ARM_CP_SENTINEL
; r
++) {
2545 for (r
= id_cp_reginfo
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
2549 if (arm_feature(env
, ARM_FEATURE_V8
)) {
2550 define_arm_cp_regs(cpu
, id_v8_midr_cp_reginfo
);
2552 define_arm_cp_regs(cpu
, id_pre_v8_midr_cp_reginfo
);
2554 define_arm_cp_regs(cpu
, id_cp_reginfo
);
2557 if (arm_feature(env
, ARM_FEATURE_MPIDR
)) {
2558 define_arm_cp_regs(cpu
, mpidr_cp_reginfo
);
2561 if (arm_feature(env
, ARM_FEATURE_AUXCR
)) {
2562 ARMCPRegInfo auxcr
= {
2563 .name
= "ACTLR_EL1", .state
= ARM_CP_STATE_BOTH
,
2564 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 1,
2565 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
2566 .resetvalue
= cpu
->reset_auxcr
2568 define_one_arm_cp_reg(cpu
, &auxcr
);
2571 if (arm_feature(env
, ARM_FEATURE_CBAR
)) {
2572 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
2573 /* 32 bit view is [31:18] 0...0 [43:32]. */
2574 uint32_t cbar32
= (extract64(cpu
->reset_cbar
, 18, 14) << 18)
2575 | extract64(cpu
->reset_cbar
, 32, 12);
2576 ARMCPRegInfo cbar_reginfo
[] = {
2578 .type
= ARM_CP_CONST
,
2579 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
2580 .access
= PL1_R
, .resetvalue
= cpu
->reset_cbar
},
2581 { .name
= "CBAR_EL1", .state
= ARM_CP_STATE_AA64
,
2582 .type
= ARM_CP_CONST
,
2583 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 3, .opc2
= 0,
2584 .access
= PL1_R
, .resetvalue
= cbar32
},
2587 /* We don't implement a r/w 64 bit CBAR currently */
2588 assert(arm_feature(env
, ARM_FEATURE_CBAR_RO
));
2589 define_arm_cp_regs(cpu
, cbar_reginfo
);
2591 ARMCPRegInfo cbar
= {
2593 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
2594 .access
= PL1_R
|PL3_W
, .resetvalue
= cpu
->reset_cbar
,
2595 .fieldoffset
= offsetof(CPUARMState
,
2596 cp15
.c15_config_base_address
)
2598 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
2599 cbar
.access
= PL1_R
;
2600 cbar
.fieldoffset
= 0;
2601 cbar
.type
= ARM_CP_CONST
;
2603 define_one_arm_cp_reg(cpu
, &cbar
);
2607 /* Generic registers whose values depend on the implementation */
2609 ARMCPRegInfo sctlr
= {
2610 .name
= "SCTLR", .state
= ARM_CP_STATE_BOTH
,
2611 .opc0
= 3, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
2612 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_sys
),
2613 .writefn
= sctlr_write
, .resetvalue
= cpu
->reset_sctlr
,
2614 .raw_writefn
= raw_write
,
2616 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
2617 /* Normally we would always end the TB on an SCTLR write, but Linux
2618 * arch/arm/mach-pxa/sleep.S expects two instructions following
2619 * an MMU enable to execute from cache. Imitate this behaviour.
2621 sctlr
.type
|= ARM_CP_SUPPRESS_TB_END
;
2623 define_one_arm_cp_reg(cpu
, &sctlr
);
2627 ARMCPU
*cpu_arm_init(const char *cpu_model
)
2629 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU
, cpu_model
));
2632 void arm_cpu_register_gdb_regs_for_features(ARMCPU
*cpu
)
2634 CPUState
*cs
= CPU(cpu
);
2635 CPUARMState
*env
= &cpu
->env
;
2637 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
2638 gdb_register_coprocessor(cs
, aarch64_fpu_gdb_get_reg
,
2639 aarch64_fpu_gdb_set_reg
,
2640 34, "aarch64-fpu.xml", 0);
2641 } else if (arm_feature(env
, ARM_FEATURE_NEON
)) {
2642 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
2643 51, "arm-neon.xml", 0);
2644 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
2645 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
2646 35, "arm-vfp3.xml", 0);
2647 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
2648 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
2649 19, "arm-vfp.xml", 0);
2653 /* Sort alphabetically by type name, except for "any". */
2654 static gint
arm_cpu_list_compare(gconstpointer a
, gconstpointer b
)
2656 ObjectClass
*class_a
= (ObjectClass
*)a
;
2657 ObjectClass
*class_b
= (ObjectClass
*)b
;
2658 const char *name_a
, *name_b
;
2660 name_a
= object_class_get_name(class_a
);
2661 name_b
= object_class_get_name(class_b
);
2662 if (strcmp(name_a
, "any-" TYPE_ARM_CPU
) == 0) {
2664 } else if (strcmp(name_b
, "any-" TYPE_ARM_CPU
) == 0) {
2667 return strcmp(name_a
, name_b
);
2671 static void arm_cpu_list_entry(gpointer data
, gpointer user_data
)
2673 ObjectClass
*oc
= data
;
2674 CPUListState
*s
= user_data
;
2675 const char *typename
;
2678 typename
= object_class_get_name(oc
);
2679 name
= g_strndup(typename
, strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
2680 (*s
->cpu_fprintf
)(s
->file
, " %s\n",
2685 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
)
2689 .cpu_fprintf
= cpu_fprintf
,
2693 list
= object_class_get_list(TYPE_ARM_CPU
, false);
2694 list
= g_slist_sort(list
, arm_cpu_list_compare
);
2695 (*cpu_fprintf
)(f
, "Available CPUs:\n");
2696 g_slist_foreach(list
, arm_cpu_list_entry
, &s
);
2699 /* The 'host' CPU type is dynamically registered only if KVM is
2700 * enabled, so we have to special-case it here:
2702 (*cpu_fprintf
)(f
, " host (only available in KVM mode)\n");
2706 static void arm_cpu_add_definition(gpointer data
, gpointer user_data
)
2708 ObjectClass
*oc
= data
;
2709 CpuDefinitionInfoList
**cpu_list
= user_data
;
2710 CpuDefinitionInfoList
*entry
;
2711 CpuDefinitionInfo
*info
;
2712 const char *typename
;
2714 typename
= object_class_get_name(oc
);
2715 info
= g_malloc0(sizeof(*info
));
2716 info
->name
= g_strndup(typename
,
2717 strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
2719 entry
= g_malloc0(sizeof(*entry
));
2720 entry
->value
= info
;
2721 entry
->next
= *cpu_list
;
2725 CpuDefinitionInfoList
*arch_query_cpu_definitions(Error
**errp
)
2727 CpuDefinitionInfoList
*cpu_list
= NULL
;
2730 list
= object_class_get_list(TYPE_ARM_CPU
, false);
2731 g_slist_foreach(list
, arm_cpu_add_definition
, &cpu_list
);
2737 static void add_cpreg_to_hashtable(ARMCPU
*cpu
, const ARMCPRegInfo
*r
,
2738 void *opaque
, int state
,
2739 int crm
, int opc1
, int opc2
)
2741 /* Private utility function for define_one_arm_cp_reg_with_opaque():
2742 * add a single reginfo struct to the hash table.
2744 uint32_t *key
= g_new(uint32_t, 1);
2745 ARMCPRegInfo
*r2
= g_memdup(r
, sizeof(ARMCPRegInfo
));
2746 int is64
= (r
->type
& ARM_CP_64BIT
) ? 1 : 0;
2747 if (r
->state
== ARM_CP_STATE_BOTH
&& state
== ARM_CP_STATE_AA32
) {
2748 /* The AArch32 view of a shared register sees the lower 32 bits
2749 * of a 64 bit backing field. It is not migratable as the AArch64
2750 * view handles that. AArch64 also handles reset.
2751 * We assume it is a cp15 register.
2754 r2
->type
|= ARM_CP_NO_MIGRATE
;
2755 r2
->resetfn
= arm_cp_reset_ignore
;
2756 #ifdef HOST_WORDS_BIGENDIAN
2757 if (r2
->fieldoffset
) {
2758 r2
->fieldoffset
+= sizeof(uint32_t);
2762 if (state
== ARM_CP_STATE_AA64
) {
2763 /* To allow abbreviation of ARMCPRegInfo
2764 * definitions, we treat cp == 0 as equivalent to
2765 * the value for "standard guest-visible sysreg".
2768 r2
->cp
= CP_REG_ARM64_SYSREG_CP
;
2770 *key
= ENCODE_AA64_CP_REG(r2
->cp
, r2
->crn
, crm
,
2771 r2
->opc0
, opc1
, opc2
);
2773 *key
= ENCODE_CP_REG(r2
->cp
, is64
, r2
->crn
, crm
, opc1
, opc2
);
2776 r2
->opaque
= opaque
;
2778 /* reginfo passed to helpers is correct for the actual access,
2779 * and is never ARM_CP_STATE_BOTH:
2782 /* Make sure reginfo passed to helpers for wildcarded regs
2783 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
2788 /* By convention, for wildcarded registers only the first
2789 * entry is used for migration; the others are marked as
2790 * NO_MIGRATE so we don't try to transfer the register
2791 * multiple times. Special registers (ie NOP/WFI) are
2794 if ((r
->type
& ARM_CP_SPECIAL
) ||
2795 ((r
->crm
== CP_ANY
) && crm
!= 0) ||
2796 ((r
->opc1
== CP_ANY
) && opc1
!= 0) ||
2797 ((r
->opc2
== CP_ANY
) && opc2
!= 0)) {
2798 r2
->type
|= ARM_CP_NO_MIGRATE
;
2801 /* Overriding of an existing definition must be explicitly
2804 if (!(r
->type
& ARM_CP_OVERRIDE
)) {
2805 ARMCPRegInfo
*oldreg
;
2806 oldreg
= g_hash_table_lookup(cpu
->cp_regs
, key
);
2807 if (oldreg
&& !(oldreg
->type
& ARM_CP_OVERRIDE
)) {
2808 fprintf(stderr
, "Register redefined: cp=%d %d bit "
2809 "crn=%d crm=%d opc1=%d opc2=%d, "
2810 "was %s, now %s\n", r2
->cp
, 32 + 32 * is64
,
2811 r2
->crn
, r2
->crm
, r2
->opc1
, r2
->opc2
,
2812 oldreg
->name
, r2
->name
);
2813 g_assert_not_reached();
2816 g_hash_table_insert(cpu
->cp_regs
, key
, r2
);
2820 void define_one_arm_cp_reg_with_opaque(ARMCPU
*cpu
,
2821 const ARMCPRegInfo
*r
, void *opaque
)
2823 /* Define implementations of coprocessor registers.
2824 * We store these in a hashtable because typically
2825 * there are less than 150 registers in a space which
2826 * is 16*16*16*8*8 = 262144 in size.
2827 * Wildcarding is supported for the crm, opc1 and opc2 fields.
2828 * If a register is defined twice then the second definition is
2829 * used, so this can be used to define some generic registers and
2830 * then override them with implementation specific variations.
2831 * At least one of the original and the second definition should
2832 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
2833 * against accidental use.
2835 * The state field defines whether the register is to be
2836 * visible in the AArch32 or AArch64 execution state. If the
2837 * state is set to ARM_CP_STATE_BOTH then we synthesise a
2838 * reginfo structure for the AArch32 view, which sees the lower
2839 * 32 bits of the 64 bit register.
2841 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
2842 * be wildcarded. AArch64 registers are always considered to be 64
2843 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
2844 * the register, if any.
2846 int crm
, opc1
, opc2
, state
;
2847 int crmmin
= (r
->crm
== CP_ANY
) ? 0 : r
->crm
;
2848 int crmmax
= (r
->crm
== CP_ANY
) ? 15 : r
->crm
;
2849 int opc1min
= (r
->opc1
== CP_ANY
) ? 0 : r
->opc1
;
2850 int opc1max
= (r
->opc1
== CP_ANY
) ? 7 : r
->opc1
;
2851 int opc2min
= (r
->opc2
== CP_ANY
) ? 0 : r
->opc2
;
2852 int opc2max
= (r
->opc2
== CP_ANY
) ? 7 : r
->opc2
;
2853 /* 64 bit registers have only CRm and Opc1 fields */
2854 assert(!((r
->type
& ARM_CP_64BIT
) && (r
->opc2
|| r
->crn
)));
2855 /* op0 only exists in the AArch64 encodings */
2856 assert((r
->state
!= ARM_CP_STATE_AA32
) || (r
->opc0
== 0));
2857 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
2858 assert((r
->state
!= ARM_CP_STATE_AA64
) || !(r
->type
& ARM_CP_64BIT
));
2859 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
2860 * encodes a minimum access level for the register. We roll this
2861 * runtime check into our general permission check code, so check
2862 * here that the reginfo's specified permissions are strict enough
2863 * to encompass the generic architectural permission check.
2865 if (r
->state
!= ARM_CP_STATE_AA32
) {
2868 case 0: case 1: case 2:
2881 /* unallocated encoding, so not possible */
2889 /* min_EL EL1, secure mode only (we don't check the latter) */
2893 /* broken reginfo with out-of-range opc1 */
2897 /* assert our permissions are not too lax (stricter is fine) */
2898 assert((r
->access
& ~mask
) == 0);
2901 /* Check that the register definition has enough info to handle
2902 * reads and writes if they are permitted.
2904 if (!(r
->type
& (ARM_CP_SPECIAL
|ARM_CP_CONST
))) {
2905 if (r
->access
& PL3_R
) {
2906 assert(r
->fieldoffset
|| r
->readfn
);
2908 if (r
->access
& PL3_W
) {
2909 assert(r
->fieldoffset
|| r
->writefn
);
2912 /* Bad type field probably means missing sentinel at end of reg list */
2913 assert(cptype_valid(r
->type
));
2914 for (crm
= crmmin
; crm
<= crmmax
; crm
++) {
2915 for (opc1
= opc1min
; opc1
<= opc1max
; opc1
++) {
2916 for (opc2
= opc2min
; opc2
<= opc2max
; opc2
++) {
2917 for (state
= ARM_CP_STATE_AA32
;
2918 state
<= ARM_CP_STATE_AA64
; state
++) {
2919 if (r
->state
!= state
&& r
->state
!= ARM_CP_STATE_BOTH
) {
2922 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
2930 void define_arm_cp_regs_with_opaque(ARMCPU
*cpu
,
2931 const ARMCPRegInfo
*regs
, void *opaque
)
2933 /* Define a whole list of registers */
2934 const ARMCPRegInfo
*r
;
2935 for (r
= regs
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
2936 define_one_arm_cp_reg_with_opaque(cpu
, r
, opaque
);
2940 const ARMCPRegInfo
*get_arm_cp_reginfo(GHashTable
*cpregs
, uint32_t encoded_cp
)
2942 return g_hash_table_lookup(cpregs
, &encoded_cp
);
2945 void arm_cp_write_ignore(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2948 /* Helper coprocessor write function for write-ignore registers */
2951 uint64_t arm_cp_read_zero(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2953 /* Helper coprocessor write function for read-as-zero registers */
2957 void arm_cp_reset_ignore(CPUARMState
*env
, const ARMCPRegInfo
*opaque
)
2959 /* Helper coprocessor reset function for do-nothing-on-reset registers */
2962 static int bad_mode_switch(CPUARMState
*env
, int mode
)
2964 /* Return true if it is not valid for us to switch to
2965 * this CPU mode (ie all the UNPREDICTABLE cases in
2966 * the ARM ARM CPSRWriteByInstr pseudocode).
2969 case ARM_CPU_MODE_USR
:
2970 case ARM_CPU_MODE_SYS
:
2971 case ARM_CPU_MODE_SVC
:
2972 case ARM_CPU_MODE_ABT
:
2973 case ARM_CPU_MODE_UND
:
2974 case ARM_CPU_MODE_IRQ
:
2975 case ARM_CPU_MODE_FIQ
:
2982 uint32_t cpsr_read(CPUARMState
*env
)
2985 ZF
= (env
->ZF
== 0);
2986 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
2987 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
2988 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
2989 | ((env
->condexec_bits
& 0xfc) << 8)
2990 | (env
->GE
<< 16) | (env
->daif
& CPSR_AIF
);
2993 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
2995 if (mask
& CPSR_NZCV
) {
2996 env
->ZF
= (~val
) & CPSR_Z
;
2998 env
->CF
= (val
>> 29) & 1;
2999 env
->VF
= (val
<< 3) & 0x80000000;
3002 env
->QF
= ((val
& CPSR_Q
) != 0);
3004 env
->thumb
= ((val
& CPSR_T
) != 0);
3005 if (mask
& CPSR_IT_0_1
) {
3006 env
->condexec_bits
&= ~3;
3007 env
->condexec_bits
|= (val
>> 25) & 3;
3009 if (mask
& CPSR_IT_2_7
) {
3010 env
->condexec_bits
&= 3;
3011 env
->condexec_bits
|= (val
>> 8) & 0xfc;
3013 if (mask
& CPSR_GE
) {
3014 env
->GE
= (val
>> 16) & 0xf;
3017 env
->daif
&= ~(CPSR_AIF
& mask
);
3018 env
->daif
|= val
& CPSR_AIF
& mask
;
3020 if ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
) {
3021 if (bad_mode_switch(env
, val
& CPSR_M
)) {
3022 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
3023 * We choose to ignore the attempt and leave the CPSR M field
3028 switch_mode(env
, val
& CPSR_M
);
3031 mask
&= ~CACHED_CPSR_BITS
;
3032 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
3035 /* Sign/zero extend */
3036 uint32_t HELPER(sxtb16
)(uint32_t x
)
3039 res
= (uint16_t)(int8_t)x
;
3040 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
3044 uint32_t HELPER(uxtb16
)(uint32_t x
)
3047 res
= (uint16_t)(uint8_t)x
;
3048 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
3052 uint32_t HELPER(clz
)(uint32_t x
)
3057 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
3061 if (num
== INT_MIN
&& den
== -1)
3066 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
3073 uint32_t HELPER(rbit
)(uint32_t x
)
3075 x
= ((x
& 0xff000000) >> 24)
3076 | ((x
& 0x00ff0000) >> 8)
3077 | ((x
& 0x0000ff00) << 8)
3078 | ((x
& 0x000000ff) << 24);
3079 x
= ((x
& 0xf0f0f0f0) >> 4)
3080 | ((x
& 0x0f0f0f0f) << 4);
3081 x
= ((x
& 0x88888888) >> 3)
3082 | ((x
& 0x44444444) >> 1)
3083 | ((x
& 0x22222222) << 1)
3084 | ((x
& 0x11111111) << 3);
3088 #if defined(CONFIG_USER_ONLY)
3090 void arm_cpu_do_interrupt(CPUState
*cs
)
3092 cs
->exception_index
= -1;
3095 int arm_cpu_handle_mmu_fault(CPUState
*cs
, vaddr address
, int rw
,
3098 ARMCPU
*cpu
= ARM_CPU(cs
);
3099 CPUARMState
*env
= &cpu
->env
;
3101 env
->exception
.vaddress
= address
;
3103 cs
->exception_index
= EXCP_PREFETCH_ABORT
;
3105 cs
->exception_index
= EXCP_DATA_ABORT
;
3110 /* These should probably raise undefined insn exceptions. */
3111 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
3113 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3115 cpu_abort(CPU(cpu
), "v7m_msr %d\n", reg
);
3118 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
3120 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3122 cpu_abort(CPU(cpu
), "v7m_mrs %d\n", reg
);
3126 void switch_mode(CPUARMState
*env
, int mode
)
3128 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3130 if (mode
!= ARM_CPU_MODE_USR
) {
3131 cpu_abort(CPU(cpu
), "Tried to switch out of user mode\n");
3135 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
3137 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3139 cpu_abort(CPU(cpu
), "banked r13 write\n");
3142 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
3144 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3146 cpu_abort(CPU(cpu
), "banked r13 read\n");
3152 /* Map CPU modes onto saved register banks. */
3153 int bank_number(int mode
)
3156 case ARM_CPU_MODE_USR
:
3157 case ARM_CPU_MODE_SYS
:
3159 case ARM_CPU_MODE_SVC
:
3161 case ARM_CPU_MODE_ABT
:
3163 case ARM_CPU_MODE_UND
:
3165 case ARM_CPU_MODE_IRQ
:
3167 case ARM_CPU_MODE_FIQ
:
3169 case ARM_CPU_MODE_HYP
:
3171 case ARM_CPU_MODE_MON
:
3174 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode
);
3177 void switch_mode(CPUARMState
*env
, int mode
)
3182 old_mode
= env
->uncached_cpsr
& CPSR_M
;
3183 if (mode
== old_mode
)
3186 if (old_mode
== ARM_CPU_MODE_FIQ
) {
3187 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
3188 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
3189 } else if (mode
== ARM_CPU_MODE_FIQ
) {
3190 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
3191 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
3194 i
= bank_number(old_mode
);
3195 env
->banked_r13
[i
] = env
->regs
[13];
3196 env
->banked_r14
[i
] = env
->regs
[14];
3197 env
->banked_spsr
[i
] = env
->spsr
;
3199 i
= bank_number(mode
);
3200 env
->regs
[13] = env
->banked_r13
[i
];
3201 env
->regs
[14] = env
->banked_r14
[i
];
3202 env
->spsr
= env
->banked_spsr
[i
];
3205 static void v7m_push(CPUARMState
*env
, uint32_t val
)
3207 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
3210 stl_phys(cs
->as
, env
->regs
[13], val
);
3213 static uint32_t v7m_pop(CPUARMState
*env
)
3215 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
3218 val
= ldl_phys(cs
->as
, env
->regs
[13]);
3223 /* Switch to V7M main or process stack pointer. */
3224 static void switch_v7m_sp(CPUARMState
*env
, int process
)
3227 if (env
->v7m
.current_sp
!= process
) {
3228 tmp
= env
->v7m
.other_sp
;
3229 env
->v7m
.other_sp
= env
->regs
[13];
3230 env
->regs
[13] = tmp
;
3231 env
->v7m
.current_sp
= process
;
3235 static void do_v7m_exception_exit(CPUARMState
*env
)
3240 type
= env
->regs
[15];
3241 if (env
->v7m
.exception
!= 0)
3242 armv7m_nvic_complete_irq(env
->nvic
, env
->v7m
.exception
);
3244 /* Switch to the target stack. */
3245 switch_v7m_sp(env
, (type
& 4) != 0);
3246 /* Pop registers. */
3247 env
->regs
[0] = v7m_pop(env
);
3248 env
->regs
[1] = v7m_pop(env
);
3249 env
->regs
[2] = v7m_pop(env
);
3250 env
->regs
[3] = v7m_pop(env
);
3251 env
->regs
[12] = v7m_pop(env
);
3252 env
->regs
[14] = v7m_pop(env
);
3253 env
->regs
[15] = v7m_pop(env
);
3254 xpsr
= v7m_pop(env
);
3255 xpsr_write(env
, xpsr
, 0xfffffdff);
3256 /* Undo stack alignment. */
3259 /* ??? The exception return type specifies Thread/Handler mode. However
3260 this is also implied by the xPSR value. Not sure what to do
3261 if there is a mismatch. */
3262 /* ??? Likewise for mismatches between the CONTROL register and the stack
3266 void arm_v7m_cpu_do_interrupt(CPUState
*cs
)
3268 ARMCPU
*cpu
= ARM_CPU(cs
);
3269 CPUARMState
*env
= &cpu
->env
;
3270 uint32_t xpsr
= xpsr_read(env
);
3274 arm_log_exception(cs
->exception_index
);
3277 if (env
->v7m
.current_sp
)
3279 if (env
->v7m
.exception
== 0)
3282 /* For exceptions we just mark as pending on the NVIC, and let that
3284 /* TODO: Need to escalate if the current priority is higher than the
3285 one we're raising. */
3286 switch (cs
->exception_index
) {
3288 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
);
3291 /* The PC already points to the next instruction. */
3292 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SVC
);
3294 case EXCP_PREFETCH_ABORT
:
3295 case EXCP_DATA_ABORT
:
3296 /* TODO: if we implemented the MPU registers, this is where we
3297 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
3299 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
);
3302 if (semihosting_enabled
) {
3304 nr
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
3307 env
->regs
[0] = do_arm_semihosting(env
);
3308 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
3312 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_DEBUG
);
3315 env
->v7m
.exception
= armv7m_nvic_acknowledge_irq(env
->nvic
);
3317 case EXCP_EXCEPTION_EXIT
:
3318 do_v7m_exception_exit(env
);
3321 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
3322 return; /* Never happens. Keep compiler happy. */
3325 /* Align stack pointer. */
3326 /* ??? Should only do this if Configuration Control Register
3327 STACKALIGN bit is set. */
3328 if (env
->regs
[13] & 4) {
3332 /* Switch to the handler mode. */
3333 v7m_push(env
, xpsr
);
3334 v7m_push(env
, env
->regs
[15]);
3335 v7m_push(env
, env
->regs
[14]);
3336 v7m_push(env
, env
->regs
[12]);
3337 v7m_push(env
, env
->regs
[3]);
3338 v7m_push(env
, env
->regs
[2]);
3339 v7m_push(env
, env
->regs
[1]);
3340 v7m_push(env
, env
->regs
[0]);
3341 switch_v7m_sp(env
, 0);
3343 env
->condexec_bits
= 0;
3345 addr
= ldl_phys(cs
->as
, env
->v7m
.vecbase
+ env
->v7m
.exception
* 4);
3346 env
->regs
[15] = addr
& 0xfffffffe;
3347 env
->thumb
= addr
& 1;
3350 /* Handle a CPU exception. */
3351 void arm_cpu_do_interrupt(CPUState
*cs
)
3353 ARMCPU
*cpu
= ARM_CPU(cs
);
3354 CPUARMState
*env
= &cpu
->env
;
3362 arm_log_exception(cs
->exception_index
);
3364 /* TODO: Vectored interrupt controller. */
3365 switch (cs
->exception_index
) {
3367 new_mode
= ARM_CPU_MODE_UND
;
3376 if (semihosting_enabled
) {
3377 /* Check for semihosting interrupt. */
3379 mask
= arm_lduw_code(env
, env
->regs
[15] - 2, env
->bswap_code
)
3382 mask
= arm_ldl_code(env
, env
->regs
[15] - 4, env
->bswap_code
)
3385 /* Only intercept calls from privileged modes, to provide some
3386 semblance of security. */
3387 if (((mask
== 0x123456 && !env
->thumb
)
3388 || (mask
== 0xab && env
->thumb
))
3389 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
3390 env
->regs
[0] = do_arm_semihosting(env
);
3391 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
3395 new_mode
= ARM_CPU_MODE_SVC
;
3398 /* The PC already points to the next instruction. */
3402 /* See if this is a semihosting syscall. */
3403 if (env
->thumb
&& semihosting_enabled
) {
3404 mask
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
3406 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
3408 env
->regs
[0] = do_arm_semihosting(env
);
3409 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
3413 env
->exception
.fsr
= 2;
3414 /* Fall through to prefetch abort. */
3415 case EXCP_PREFETCH_ABORT
:
3416 env
->cp15
.ifsr_el2
= env
->exception
.fsr
;
3417 env
->cp15
.far_el1
= deposit64(env
->cp15
.far_el1
, 32, 32,
3418 env
->exception
.vaddress
);
3419 qemu_log_mask(CPU_LOG_INT
, "...with IFSR 0x%x IFAR 0x%x\n",
3420 env
->cp15
.ifsr_el2
, (uint32_t)env
->exception
.vaddress
);
3421 new_mode
= ARM_CPU_MODE_ABT
;
3423 mask
= CPSR_A
| CPSR_I
;
3426 case EXCP_DATA_ABORT
:
3427 env
->cp15
.esr_el
[1] = env
->exception
.fsr
;
3428 env
->cp15
.far_el1
= deposit64(env
->cp15
.far_el1
, 0, 32,
3429 env
->exception
.vaddress
);
3430 qemu_log_mask(CPU_LOG_INT
, "...with DFSR 0x%x DFAR 0x%x\n",
3431 (uint32_t)env
->cp15
.esr_el
[1],
3432 (uint32_t)env
->exception
.vaddress
);
3433 new_mode
= ARM_CPU_MODE_ABT
;
3435 mask
= CPSR_A
| CPSR_I
;
3439 new_mode
= ARM_CPU_MODE_IRQ
;
3441 /* Disable IRQ and imprecise data aborts. */
3442 mask
= CPSR_A
| CPSR_I
;
3446 new_mode
= ARM_CPU_MODE_FIQ
;
3448 /* Disable FIQ, IRQ and imprecise data aborts. */
3449 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
3453 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
3454 return; /* Never happens. Keep compiler happy. */
3457 if (env
->cp15
.c1_sys
& SCTLR_V
) {
3458 /* when enabled, base address cannot be remapped. */
3461 /* ARM v7 architectures provide a vector base address register to remap
3462 * the interrupt vector table.
3463 * This register is only followed in non-monitor mode, and has a secure
3464 * and un-secure copy. Since the cpu is always in a un-secure operation
3465 * and is never in monitor mode this feature is always active.
3466 * Note: only bits 31:5 are valid.
3468 addr
+= env
->cp15
.vbar_el
[1];
3470 switch_mode (env
, new_mode
);
3471 env
->spsr
= cpsr_read(env
);
3472 /* Clear IT bits. */
3473 env
->condexec_bits
= 0;
3474 /* Switch to the new mode, and to the correct instruction set. */
3475 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
3477 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
3478 * and we should just guard the thumb mode on V4 */
3479 if (arm_feature(env
, ARM_FEATURE_V4T
)) {
3480 env
->thumb
= (env
->cp15
.c1_sys
& SCTLR_TE
) != 0;
3482 env
->regs
[14] = env
->regs
[15] + offset
;
3483 env
->regs
[15] = addr
;
3484 cs
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
3487 /* Check section/page access permissions.
3488 Returns the page protection flags, or zero if the access is not
3490 static inline int check_ap(CPUARMState
*env
, int ap
, int domain_prot
,
3491 int access_type
, int is_user
)
3495 if (domain_prot
== 3) {
3496 return PAGE_READ
| PAGE_WRITE
;
3499 if (access_type
== 1)
3502 prot_ro
= PAGE_READ
;
3506 if (arm_feature(env
, ARM_FEATURE_V7
)) {
3509 if (access_type
== 1)
3511 switch (env
->cp15
.c1_sys
& (SCTLR_S
| SCTLR_R
)) {
3513 return is_user
? 0 : PAGE_READ
;
3520 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
3525 return PAGE_READ
| PAGE_WRITE
;
3527 return PAGE_READ
| PAGE_WRITE
;
3528 case 4: /* Reserved. */
3531 return is_user
? 0 : prot_ro
;
3535 if (!arm_feature (env
, ARM_FEATURE_V6K
))
3543 static uint32_t get_level1_table_address(CPUARMState
*env
, uint32_t address
)
3547 if (address
& env
->cp15
.c2_mask
)
3548 table
= env
->cp15
.ttbr1_el1
& 0xffffc000;
3550 table
= env
->cp15
.ttbr0_el1
& env
->cp15
.c2_base_mask
;
3552 table
|= (address
>> 18) & 0x3ffc;
3556 static int get_phys_addr_v5(CPUARMState
*env
, uint32_t address
, int access_type
,
3557 int is_user
, hwaddr
*phys_ptr
,
3558 int *prot
, target_ulong
*page_size
)
3560 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
3570 /* Pagetable walk. */
3571 /* Lookup l1 descriptor. */
3572 table
= get_level1_table_address(env
, address
);
3573 desc
= ldl_phys(cs
->as
, table
);
3575 domain
= (desc
>> 5) & 0x0f;
3576 domain_prot
= (env
->cp15
.c3
>> (domain
* 2)) & 3;
3578 /* Section translation fault. */
3582 if (domain_prot
== 0 || domain_prot
== 2) {
3584 code
= 9; /* Section domain fault. */
3586 code
= 11; /* Page domain fault. */
3591 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
3592 ap
= (desc
>> 10) & 3;
3594 *page_size
= 1024 * 1024;
3596 /* Lookup l2 entry. */
3598 /* Coarse pagetable. */
3599 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
3601 /* Fine pagetable. */
3602 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
3604 desc
= ldl_phys(cs
->as
, table
);
3606 case 0: /* Page translation fault. */
3609 case 1: /* 64k page. */
3610 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
3611 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
3612 *page_size
= 0x10000;
3614 case 2: /* 4k page. */
3615 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
3616 ap
= (desc
>> (4 + ((address
>> 9) & 6))) & 3;
3617 *page_size
= 0x1000;
3619 case 3: /* 1k page. */
3621 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
3622 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
3624 /* Page translation fault. */
3629 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
3631 ap
= (desc
>> 4) & 3;
3635 /* Never happens, but compiler isn't smart enough to tell. */
3640 *prot
= check_ap(env
, ap
, domain_prot
, access_type
, is_user
);
3642 /* Access permission fault. */
3646 *phys_ptr
= phys_addr
;
3649 return code
| (domain
<< 4);
3652 static int get_phys_addr_v6(CPUARMState
*env
, uint32_t address
, int access_type
,
3653 int is_user
, hwaddr
*phys_ptr
,
3654 int *prot
, target_ulong
*page_size
)
3656 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
3668 /* Pagetable walk. */
3669 /* Lookup l1 descriptor. */
3670 table
= get_level1_table_address(env
, address
);
3671 desc
= ldl_phys(cs
->as
, table
);
3673 if (type
== 0 || (type
== 3 && !arm_feature(env
, ARM_FEATURE_PXN
))) {
3674 /* Section translation fault, or attempt to use the encoding
3675 * which is Reserved on implementations without PXN.
3680 if ((type
== 1) || !(desc
& (1 << 18))) {
3681 /* Page or Section. */
3682 domain
= (desc
>> 5) & 0x0f;
3684 domain_prot
= (env
->cp15
.c3
>> (domain
* 2)) & 3;
3685 if (domain_prot
== 0 || domain_prot
== 2) {
3687 code
= 9; /* Section domain fault. */
3689 code
= 11; /* Page domain fault. */
3694 if (desc
& (1 << 18)) {
3696 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
3697 *page_size
= 0x1000000;
3700 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
3701 *page_size
= 0x100000;
3703 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
3704 xn
= desc
& (1 << 4);
3708 if (arm_feature(env
, ARM_FEATURE_PXN
)) {
3709 pxn
= (desc
>> 2) & 1;
3711 /* Lookup l2 entry. */
3712 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
3713 desc
= ldl_phys(cs
->as
, table
);
3714 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
3716 case 0: /* Page translation fault. */
3719 case 1: /* 64k page. */
3720 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
3721 xn
= desc
& (1 << 15);
3722 *page_size
= 0x10000;
3724 case 2: case 3: /* 4k page. */
3725 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
3727 *page_size
= 0x1000;
3730 /* Never happens, but compiler isn't smart enough to tell. */
3735 if (domain_prot
== 3) {
3736 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
3738 if (pxn
&& !is_user
) {
3741 if (xn
&& access_type
== 2)
3744 /* The simplified model uses AP[0] as an access control bit. */
3745 if ((env
->cp15
.c1_sys
& SCTLR_AFE
) && (ap
& 1) == 0) {
3746 /* Access flag fault. */
3747 code
= (code
== 15) ? 6 : 3;
3750 *prot
= check_ap(env
, ap
, domain_prot
, access_type
, is_user
);
3752 /* Access permission fault. */
3759 *phys_ptr
= phys_addr
;
3762 return code
| (domain
<< 4);
3765 /* Fault type for long-descriptor MMU fault reporting; this corresponds
3766 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
3769 translation_fault
= 1,
3771 permission_fault
= 3,
3774 static int get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
3775 int access_type
, int is_user
,
3776 hwaddr
*phys_ptr
, int *prot
,
3777 target_ulong
*page_size_ptr
)
3779 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
3780 /* Read an LPAE long-descriptor translation table. */
3781 MMUFaultType fault_type
= translation_fault
;
3788 hwaddr descaddr
, descmask
;
3789 uint32_t tableattrs
;
3790 target_ulong page_size
;
3792 int32_t granule_sz
= 9;
3793 int32_t va_size
= 32;
3796 if (arm_el_is_aa64(env
, 1)) {
3798 if (extract64(address
, 55, 1))
3799 tbi
= extract64(env
->cp15
.c2_control
, 38, 1);
3801 tbi
= extract64(env
->cp15
.c2_control
, 37, 1);
3805 /* Determine whether this address is in the region controlled by
3806 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
3807 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
3808 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
3810 uint32_t t0sz
= extract32(env
->cp15
.c2_control
, 0, 6);
3811 if (arm_el_is_aa64(env
, 1)) {
3812 t0sz
= MIN(t0sz
, 39);
3813 t0sz
= MAX(t0sz
, 16);
3815 uint32_t t1sz
= extract32(env
->cp15
.c2_control
, 16, 6);
3816 if (arm_el_is_aa64(env
, 1)) {
3817 t1sz
= MIN(t1sz
, 39);
3818 t1sz
= MAX(t1sz
, 16);
3820 if (t0sz
&& !extract64(address
, va_size
- t0sz
, t0sz
- tbi
)) {
3821 /* there is a ttbr0 region and we are in it (high bits all zero) */
3823 } else if (t1sz
&& !extract64(~address
, va_size
- t1sz
, t1sz
- tbi
)) {
3824 /* there is a ttbr1 region and we are in it (high bits all one) */
3827 /* ttbr0 region is "everything not in the ttbr1 region" */
3830 /* ttbr1 region is "everything not in the ttbr0 region" */
3833 /* in the gap between the two regions, this is a Translation fault */
3834 fault_type
= translation_fault
;
3838 /* Note that QEMU ignores shareability and cacheability attributes,
3839 * so we don't need to do anything with the SH, ORGN, IRGN fields
3840 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
3841 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
3842 * implement any ASID-like capability so we can ignore it (instead
3843 * we will always flush the TLB any time the ASID is changed).
3845 if (ttbr_select
== 0) {
3846 ttbr
= env
->cp15
.ttbr0_el1
;
3847 epd
= extract32(env
->cp15
.c2_control
, 7, 1);
3850 tg
= extract32(env
->cp15
.c2_control
, 14, 2);
3851 if (tg
== 1) { /* 64KB pages */
3854 if (tg
== 2) { /* 16KB pages */
3858 ttbr
= env
->cp15
.ttbr1_el1
;
3859 epd
= extract32(env
->cp15
.c2_control
, 23, 1);
3862 tg
= extract32(env
->cp15
.c2_control
, 30, 2);
3863 if (tg
== 3) { /* 64KB pages */
3866 if (tg
== 1) { /* 16KB pages */
3872 /* Translation table walk disabled => Translation fault on TLB miss */
3876 /* The starting level depends on the virtual address size which can be
3877 * up to 48-bits and the translation granule size.
3879 if ((va_size
- tsz
) > (granule_sz
* 4 + 3)) {
3881 } else if ((va_size
- tsz
) > (granule_sz
* 3 + 3)) {
3887 /* Clear the vaddr bits which aren't part of the within-region address,
3888 * so that we don't have to special case things when calculating the
3889 * first descriptor address.
3892 address
&= (1ULL << (va_size
- tsz
)) - 1;
3895 descmask
= (1ULL << (granule_sz
+ 3)) - 1;
3897 /* Now we can extract the actual base address from the TTBR */
3898 descaddr
= extract64(ttbr
, 0, 48);
3899 descaddr
&= ~((1ULL << (va_size
- tsz
- (granule_sz
* (4 - level
)))) - 1);
3903 uint64_t descriptor
;
3905 descaddr
|= (address
>> (granule_sz
* (4 - level
))) & descmask
;
3907 descriptor
= ldq_phys(cs
->as
, descaddr
);
3908 if (!(descriptor
& 1) ||
3909 (!(descriptor
& 2) && (level
== 3))) {
3910 /* Invalid, or the Reserved level 3 encoding */
3913 descaddr
= descriptor
& 0xfffffff000ULL
;
3915 if ((descriptor
& 2) && (level
< 3)) {
3916 /* Table entry. The top five bits are attributes which may
3917 * propagate down through lower levels of the table (and
3918 * which are all arranged so that 0 means "no effect", so
3919 * we can gather them up by ORing in the bits at each level).
3921 tableattrs
|= extract64(descriptor
, 59, 5);
3925 /* Block entry at level 1 or 2, or page entry at level 3.
3926 * These are basically the same thing, although the number
3927 * of bits we pull in from the vaddr varies.
3929 page_size
= (1 << ((granule_sz
* (4 - level
)) + 3));
3930 descaddr
|= (address
& (page_size
- 1));
3931 /* Extract attributes from the descriptor and merge with table attrs */
3932 if (arm_feature(env
, ARM_FEATURE_V8
)) {
3933 attrs
= extract64(descriptor
, 2, 10)
3934 | (extract64(descriptor
, 53, 11) << 10);
3936 attrs
= extract64(descriptor
, 2, 10)
3937 | (extract64(descriptor
, 52, 12) << 10);
3939 attrs
|= extract32(tableattrs
, 0, 2) << 11; /* XN, PXN */
3940 attrs
|= extract32(tableattrs
, 3, 1) << 5; /* APTable[1] => AP[2] */
3941 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
3942 * means "force PL1 access only", which means forcing AP[1] to 0.
3944 if (extract32(tableattrs
, 2, 1)) {
3947 /* Since we're always in the Non-secure state, NSTable is ignored. */
3950 /* Here descaddr is the final physical address, and attributes
3953 fault_type
= access_fault
;
3954 if ((attrs
& (1 << 8)) == 0) {
3958 fault_type
= permission_fault
;
3959 if (is_user
&& !(attrs
& (1 << 4))) {
3960 /* Unprivileged access not enabled */
3963 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
3964 if (attrs
& (1 << 12) || (!is_user
&& (attrs
& (1 << 11)))) {
3966 if (access_type
== 2) {
3969 *prot
&= ~PAGE_EXEC
;
3971 if (attrs
& (1 << 5)) {
3972 /* Write access forbidden */
3973 if (access_type
== 1) {
3976 *prot
&= ~PAGE_WRITE
;
3979 *phys_ptr
= descaddr
;
3980 *page_size_ptr
= page_size
;
3984 /* Long-descriptor format IFSR/DFSR value */
3985 return (1 << 9) | (fault_type
<< 2) | level
;
3988 static int get_phys_addr_mpu(CPUARMState
*env
, uint32_t address
,
3989 int access_type
, int is_user
,
3990 hwaddr
*phys_ptr
, int *prot
)
3996 *phys_ptr
= address
;
3997 for (n
= 7; n
>= 0; n
--) {
3998 base
= env
->cp15
.c6_region
[n
];
3999 if ((base
& 1) == 0)
4001 mask
= 1 << ((base
>> 1) & 0x1f);
4002 /* Keep this shift separate from the above to avoid an
4003 (undefined) << 32. */
4004 mask
= (mask
<< 1) - 1;
4005 if (((base
^ address
) & ~mask
) == 0)
4011 if (access_type
== 2) {
4012 mask
= env
->cp15
.pmsav5_insn_ap
;
4014 mask
= env
->cp15
.pmsav5_data_ap
;
4016 mask
= (mask
>> (n
* 4)) & 0xf;
4023 *prot
= PAGE_READ
| PAGE_WRITE
;
4028 *prot
|= PAGE_WRITE
;
4031 *prot
= PAGE_READ
| PAGE_WRITE
;
4042 /* Bad permission. */
4049 /* get_phys_addr - get the physical address for this virtual address
4051 * Find the physical address corresponding to the given virtual address,
4052 * by doing a translation table walk on MMU based systems or using the
4053 * MPU state on MPU based systems.
4055 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
4056 * prot and page_size are not filled in, and the return value provides
4057 * information on why the translation aborted, in the format of a
4058 * DFSR/IFSR fault register, with the following caveats:
4059 * * we honour the short vs long DFSR format differences.
4060 * * the WnR bit is never set (the caller must do this).
4061 * * for MPU based systems we don't bother to return a full FSR format
4065 * @address: virtual address to get physical address for
4066 * @access_type: 0 for read, 1 for write, 2 for execute
4067 * @is_user: 0 for privileged access, 1 for user
4068 * @phys_ptr: set to the physical address corresponding to the virtual address
4069 * @prot: set to the permissions for the page containing phys_ptr
4070 * @page_size: set to the size of the page containing phys_ptr
4072 static inline int get_phys_addr(CPUARMState
*env
, target_ulong address
,
4073 int access_type
, int is_user
,
4074 hwaddr
*phys_ptr
, int *prot
,
4075 target_ulong
*page_size
)
4077 /* Fast Context Switch Extension. */
4078 if (address
< 0x02000000)
4079 address
+= env
->cp15
.c13_fcse
;
4081 if ((env
->cp15
.c1_sys
& SCTLR_M
) == 0) {
4082 /* MMU/MPU disabled. */
4083 *phys_ptr
= address
;
4084 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
4085 *page_size
= TARGET_PAGE_SIZE
;
4087 } else if (arm_feature(env
, ARM_FEATURE_MPU
)) {
4088 *page_size
= TARGET_PAGE_SIZE
;
4089 return get_phys_addr_mpu(env
, address
, access_type
, is_user
, phys_ptr
,
4091 } else if (extended_addresses_enabled(env
)) {
4092 return get_phys_addr_lpae(env
, address
, access_type
, is_user
, phys_ptr
,
4094 } else if (env
->cp15
.c1_sys
& SCTLR_XP
) {
4095 return get_phys_addr_v6(env
, address
, access_type
, is_user
, phys_ptr
,
4098 return get_phys_addr_v5(env
, address
, access_type
, is_user
, phys_ptr
,
4103 int arm_cpu_handle_mmu_fault(CPUState
*cs
, vaddr address
,
4104 int access_type
, int mmu_idx
)
4106 ARMCPU
*cpu
= ARM_CPU(cs
);
4107 CPUARMState
*env
= &cpu
->env
;
4109 target_ulong page_size
;
4113 bool same_el
= (arm_current_pl(env
) != 0);
4115 is_user
= mmu_idx
== MMU_USER_IDX
;
4116 ret
= get_phys_addr(env
, address
, access_type
, is_user
, &phys_addr
, &prot
,
4119 /* Map a single [sub]page. */
4120 phys_addr
&= ~(hwaddr
)0x3ff;
4121 address
&= ~(target_ulong
)0x3ff;
4122 tlb_set_page(cs
, address
, phys_addr
, prot
, mmu_idx
, page_size
);
4126 /* AArch64 syndrome does not have an LPAE bit */
4127 syn
= ret
& ~(1 << 9);
4129 /* For insn and data aborts we assume there is no instruction syndrome
4130 * information; this is always true for exceptions reported to EL1.
4132 if (access_type
== 2) {
4133 syn
= syn_insn_abort(same_el
, 0, 0, syn
);
4134 cs
->exception_index
= EXCP_PREFETCH_ABORT
;
4136 syn
= syn_data_abort(same_el
, 0, 0, 0, access_type
== 1, syn
);
4137 if (access_type
== 1 && arm_feature(env
, ARM_FEATURE_V6
)) {
4140 cs
->exception_index
= EXCP_DATA_ABORT
;
4143 env
->exception
.syndrome
= syn
;
4144 env
->exception
.vaddress
= address
;
4145 env
->exception
.fsr
= ret
;
4149 hwaddr
arm_cpu_get_phys_page_debug(CPUState
*cs
, vaddr addr
)
4151 ARMCPU
*cpu
= ARM_CPU(cs
);
4153 target_ulong page_size
;
4157 ret
= get_phys_addr(&cpu
->env
, addr
, 0, 0, &phys_addr
, &prot
, &page_size
);
4166 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
4168 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
4169 env
->regs
[13] = val
;
4171 env
->banked_r13
[bank_number(mode
)] = val
;
4175 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
4177 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
4178 return env
->regs
[13];
4180 return env
->banked_r13
[bank_number(mode
)];
4184 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
4186 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4190 return xpsr_read(env
) & 0xf8000000;
4192 return xpsr_read(env
) & 0xf80001ff;
4194 return xpsr_read(env
) & 0xff00fc00;
4196 return xpsr_read(env
) & 0xff00fdff;
4198 return xpsr_read(env
) & 0x000001ff;
4200 return xpsr_read(env
) & 0x0700fc00;
4202 return xpsr_read(env
) & 0x0700edff;
4204 return env
->v7m
.current_sp
? env
->v7m
.other_sp
: env
->regs
[13];
4206 return env
->v7m
.current_sp
? env
->regs
[13] : env
->v7m
.other_sp
;
4207 case 16: /* PRIMASK */
4208 return (env
->daif
& PSTATE_I
) != 0;
4209 case 17: /* BASEPRI */
4210 case 18: /* BASEPRI_MAX */
4211 return env
->v7m
.basepri
;
4212 case 19: /* FAULTMASK */
4213 return (env
->daif
& PSTATE_F
) != 0;
4214 case 20: /* CONTROL */
4215 return env
->v7m
.control
;
4217 /* ??? For debugging only. */
4218 cpu_abort(CPU(cpu
), "Unimplemented system register read (%d)\n", reg
);
4223 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
4225 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4229 xpsr_write(env
, val
, 0xf8000000);
4232 xpsr_write(env
, val
, 0xf8000000);
4235 xpsr_write(env
, val
, 0xfe00fc00);
4238 xpsr_write(env
, val
, 0xfe00fc00);
4241 /* IPSR bits are readonly. */
4244 xpsr_write(env
, val
, 0x0600fc00);
4247 xpsr_write(env
, val
, 0x0600fc00);
4250 if (env
->v7m
.current_sp
)
4251 env
->v7m
.other_sp
= val
;
4253 env
->regs
[13] = val
;
4256 if (env
->v7m
.current_sp
)
4257 env
->regs
[13] = val
;
4259 env
->v7m
.other_sp
= val
;
4261 case 16: /* PRIMASK */
4263 env
->daif
|= PSTATE_I
;
4265 env
->daif
&= ~PSTATE_I
;
4268 case 17: /* BASEPRI */
4269 env
->v7m
.basepri
= val
& 0xff;
4271 case 18: /* BASEPRI_MAX */
4273 if (val
!= 0 && (val
< env
->v7m
.basepri
|| env
->v7m
.basepri
== 0))
4274 env
->v7m
.basepri
= val
;
4276 case 19: /* FAULTMASK */
4278 env
->daif
|= PSTATE_F
;
4280 env
->daif
&= ~PSTATE_F
;
4283 case 20: /* CONTROL */
4284 env
->v7m
.control
= val
& 3;
4285 switch_v7m_sp(env
, (val
& 2) != 0);
4288 /* ??? For debugging only. */
4289 cpu_abort(CPU(cpu
), "Unimplemented system register write (%d)\n", reg
);
4296 void HELPER(dc_zva
)(CPUARMState
*env
, uint64_t vaddr_in
)
4298 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
4299 * Note that we do not implement the (architecturally mandated)
4300 * alignment fault for attempts to use this on Device memory
4301 * (which matches the usual QEMU behaviour of not implementing either
4302 * alignment faults or any memory attribute handling).
4305 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4306 uint64_t blocklen
= 4 << cpu
->dcz_blocksize
;
4307 uint64_t vaddr
= vaddr_in
& ~(blocklen
- 1);
4309 #ifndef CONFIG_USER_ONLY
4311 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
4312 * the block size so we might have to do more than one TLB lookup.
4313 * We know that in fact for any v8 CPU the page size is at least 4K
4314 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
4315 * 1K as an artefact of legacy v5 subpage support being present in the
4316 * same QEMU executable.
4318 int maxidx
= DIV_ROUND_UP(blocklen
, TARGET_PAGE_SIZE
);
4319 void *hostaddr
[maxidx
];
4322 for (try = 0; try < 2; try++) {
4324 for (i
= 0; i
< maxidx
; i
++) {
4325 hostaddr
[i
] = tlb_vaddr_to_host(env
,
4326 vaddr
+ TARGET_PAGE_SIZE
* i
,
4327 1, cpu_mmu_index(env
));
4333 /* If it's all in the TLB it's fair game for just writing to;
4334 * we know we don't need to update dirty status, etc.
4336 for (i
= 0; i
< maxidx
- 1; i
++) {
4337 memset(hostaddr
[i
], 0, TARGET_PAGE_SIZE
);
4339 memset(hostaddr
[i
], 0, blocklen
- (i
* TARGET_PAGE_SIZE
));
4342 /* OK, try a store and see if we can populate the tlb. This
4343 * might cause an exception if the memory isn't writable,
4344 * in which case we will longjmp out of here. We must for
4345 * this purpose use the actual register value passed to us
4346 * so that we get the fault address right.
4348 helper_ret_stb_mmu(env
, vaddr_in
, 0, cpu_mmu_index(env
), GETRA());
4349 /* Now we can populate the other TLB entries, if any */
4350 for (i
= 0; i
< maxidx
; i
++) {
4351 uint64_t va
= vaddr
+ TARGET_PAGE_SIZE
* i
;
4352 if (va
!= (vaddr_in
& TARGET_PAGE_MASK
)) {
4353 helper_ret_stb_mmu(env
, va
, 0, cpu_mmu_index(env
), GETRA());
4358 /* Slow path (probably attempt to do this to an I/O device or
4359 * similar, or clearing of a block of code we have translations
4360 * cached for). Just do a series of byte writes as the architecture
4361 * demands. It's not worth trying to use a cpu_physical_memory_map(),
4362 * memset(), unmap() sequence here because:
4363 * + we'd need to account for the blocksize being larger than a page
4364 * + the direct-RAM access case is almost always going to be dealt
4365 * with in the fastpath code above, so there's no speed benefit
4366 * + we would have to deal with the map returning NULL because the
4367 * bounce buffer was in use
4369 for (i
= 0; i
< blocklen
; i
++) {
4370 helper_ret_stb_mmu(env
, vaddr
+ i
, 0, cpu_mmu_index(env
), GETRA());
4374 memset(g2h(vaddr
), 0, blocklen
);
4378 /* Note that signed overflow is undefined in C. The following routines are
4379 careful to use unsigned types where modulo arithmetic is required.
4380 Failure to do so _will_ break on newer gcc. */
4382 /* Signed saturating arithmetic. */
4384 /* Perform 16-bit signed saturating addition. */
4385 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
4390 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
4399 /* Perform 8-bit signed saturating addition. */
4400 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
4405 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
4414 /* Perform 16-bit signed saturating subtraction. */
4415 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
4420 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
4429 /* Perform 8-bit signed saturating subtraction. */
4430 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
4435 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
4444 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
4445 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
4446 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
4447 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
4450 #include "op_addsub.h"
4452 /* Unsigned saturating arithmetic. */
4453 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
4462 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
4470 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
4479 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
4487 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
4488 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
4489 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
4490 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
4493 #include "op_addsub.h"
4495 /* Signed modulo arithmetic. */
4496 #define SARITH16(a, b, n, op) do { \
4498 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
4499 RESULT(sum, n, 16); \
4501 ge |= 3 << (n * 2); \
4504 #define SARITH8(a, b, n, op) do { \
4506 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
4507 RESULT(sum, n, 8); \
4513 #define ADD16(a, b, n) SARITH16(a, b, n, +)
4514 #define SUB16(a, b, n) SARITH16(a, b, n, -)
4515 #define ADD8(a, b, n) SARITH8(a, b, n, +)
4516 #define SUB8(a, b, n) SARITH8(a, b, n, -)
4520 #include "op_addsub.h"
4522 /* Unsigned modulo arithmetic. */
4523 #define ADD16(a, b, n) do { \
4525 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
4526 RESULT(sum, n, 16); \
4527 if ((sum >> 16) == 1) \
4528 ge |= 3 << (n * 2); \
4531 #define ADD8(a, b, n) do { \
4533 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
4534 RESULT(sum, n, 8); \
4535 if ((sum >> 8) == 1) \
4539 #define SUB16(a, b, n) do { \
4541 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
4542 RESULT(sum, n, 16); \
4543 if ((sum >> 16) == 0) \
4544 ge |= 3 << (n * 2); \
4547 #define SUB8(a, b, n) do { \
4549 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
4550 RESULT(sum, n, 8); \
4551 if ((sum >> 8) == 0) \
4558 #include "op_addsub.h"
4560 /* Halved signed arithmetic. */
4561 #define ADD16(a, b, n) \
4562 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
4563 #define SUB16(a, b, n) \
4564 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
4565 #define ADD8(a, b, n) \
4566 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
4567 #define SUB8(a, b, n) \
4568 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
4571 #include "op_addsub.h"
4573 /* Halved unsigned arithmetic. */
4574 #define ADD16(a, b, n) \
4575 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
4576 #define SUB16(a, b, n) \
4577 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
4578 #define ADD8(a, b, n) \
4579 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
4580 #define SUB8(a, b, n) \
4581 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
4584 #include "op_addsub.h"
4586 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
4594 /* Unsigned sum of absolute byte differences. */
4595 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
4598 sum
= do_usad(a
, b
);
4599 sum
+= do_usad(a
>> 8, b
>> 8);
4600 sum
+= do_usad(a
>> 16, b
>>16);
4601 sum
+= do_usad(a
>> 24, b
>> 24);
4605 /* For ARMv6 SEL instruction. */
4606 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
4619 return (a
& mask
) | (b
& ~mask
);
4622 /* VFP support. We follow the convention used for VFP instructions:
4623 Single precision routines have a "s" suffix, double precision a
4626 /* Convert host exception flags to vfp form. */
4627 static inline int vfp_exceptbits_from_host(int host_bits
)
4629 int target_bits
= 0;
4631 if (host_bits
& float_flag_invalid
)
4633 if (host_bits
& float_flag_divbyzero
)
4635 if (host_bits
& float_flag_overflow
)
4637 if (host_bits
& (float_flag_underflow
| float_flag_output_denormal
))
4639 if (host_bits
& float_flag_inexact
)
4640 target_bits
|= 0x10;
4641 if (host_bits
& float_flag_input_denormal
)
4642 target_bits
|= 0x80;
4646 uint32_t HELPER(vfp_get_fpscr
)(CPUARMState
*env
)
4651 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
4652 | (env
->vfp
.vec_len
<< 16)
4653 | (env
->vfp
.vec_stride
<< 20);
4654 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
4655 i
|= get_float_exception_flags(&env
->vfp
.standard_fp_status
);
4656 fpscr
|= vfp_exceptbits_from_host(i
);
4660 uint32_t vfp_get_fpscr(CPUARMState
*env
)
4662 return HELPER(vfp_get_fpscr
)(env
);
4665 /* Convert vfp exception flags to target form. */
4666 static inline int vfp_exceptbits_to_host(int target_bits
)
4670 if (target_bits
& 1)
4671 host_bits
|= float_flag_invalid
;
4672 if (target_bits
& 2)
4673 host_bits
|= float_flag_divbyzero
;
4674 if (target_bits
& 4)
4675 host_bits
|= float_flag_overflow
;
4676 if (target_bits
& 8)
4677 host_bits
|= float_flag_underflow
;
4678 if (target_bits
& 0x10)
4679 host_bits
|= float_flag_inexact
;
4680 if (target_bits
& 0x80)
4681 host_bits
|= float_flag_input_denormal
;
4685 void HELPER(vfp_set_fpscr
)(CPUARMState
*env
, uint32_t val
)
4690 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
4691 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
4692 env
->vfp
.vec_len
= (val
>> 16) & 7;
4693 env
->vfp
.vec_stride
= (val
>> 20) & 3;
4696 if (changed
& (3 << 22)) {
4697 i
= (val
>> 22) & 3;
4699 case FPROUNDING_TIEEVEN
:
4700 i
= float_round_nearest_even
;
4702 case FPROUNDING_POSINF
:
4705 case FPROUNDING_NEGINF
:
4706 i
= float_round_down
;
4708 case FPROUNDING_ZERO
:
4709 i
= float_round_to_zero
;
4712 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
4714 if (changed
& (1 << 24)) {
4715 set_flush_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
4716 set_flush_inputs_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
4718 if (changed
& (1 << 25))
4719 set_default_nan_mode((val
& (1 << 25)) != 0, &env
->vfp
.fp_status
);
4721 i
= vfp_exceptbits_to_host(val
);
4722 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
4723 set_float_exception_flags(0, &env
->vfp
.standard_fp_status
);
4726 void vfp_set_fpscr(CPUARMState
*env
, uint32_t val
)
4728 HELPER(vfp_set_fpscr
)(env
, val
);
4731 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
4733 #define VFP_BINOP(name) \
4734 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
4736 float_status *fpst = fpstp; \
4737 return float32_ ## name(a, b, fpst); \
4739 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
4741 float_status *fpst = fpstp; \
4742 return float64_ ## name(a, b, fpst); \
4754 float32
VFP_HELPER(neg
, s
)(float32 a
)
4756 return float32_chs(a
);
4759 float64
VFP_HELPER(neg
, d
)(float64 a
)
4761 return float64_chs(a
);
4764 float32
VFP_HELPER(abs
, s
)(float32 a
)
4766 return float32_abs(a
);
4769 float64
VFP_HELPER(abs
, d
)(float64 a
)
4771 return float64_abs(a
);
4774 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUARMState
*env
)
4776 return float32_sqrt(a
, &env
->vfp
.fp_status
);
4779 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUARMState
*env
)
4781 return float64_sqrt(a
, &env
->vfp
.fp_status
);
4784 /* XXX: check quiet/signaling case */
4785 #define DO_VFP_cmp(p, type) \
4786 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
4789 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
4790 case 0: flags = 0x6; break; \
4791 case -1: flags = 0x8; break; \
4792 case 1: flags = 0x2; break; \
4793 default: case 2: flags = 0x3; break; \
4795 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
4796 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
4798 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
4801 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
4802 case 0: flags = 0x6; break; \
4803 case -1: flags = 0x8; break; \
4804 case 1: flags = 0x2; break; \
4805 default: case 2: flags = 0x3; break; \
4807 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
4808 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
4810 DO_VFP_cmp(s
, float32
)
4811 DO_VFP_cmp(d
, float64
)
4814 /* Integer to float and float to integer conversions */
4816 #define CONV_ITOF(name, fsz, sign) \
4817 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
4819 float_status *fpst = fpstp; \
4820 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
4823 #define CONV_FTOI(name, fsz, sign, round) \
4824 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
4826 float_status *fpst = fpstp; \
4827 if (float##fsz##_is_any_nan(x)) { \
4828 float_raise(float_flag_invalid, fpst); \
4831 return float##fsz##_to_##sign##int32##round(x, fpst); \
4834 #define FLOAT_CONVS(name, p, fsz, sign) \
4835 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
4836 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
4837 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
4839 FLOAT_CONVS(si
, s
, 32, )
4840 FLOAT_CONVS(si
, d
, 64, )
4841 FLOAT_CONVS(ui
, s
, 32, u
)
4842 FLOAT_CONVS(ui
, d
, 64, u
)
4848 /* floating point conversion */
4849 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUARMState
*env
)
4851 float64 r
= float32_to_float64(x
, &env
->vfp
.fp_status
);
4852 /* ARM requires that S<->D conversion of any kind of NaN generates
4853 * a quiet NaN by forcing the most significant frac bit to 1.
4855 return float64_maybe_silence_nan(r
);
4858 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUARMState
*env
)
4860 float32 r
= float64_to_float32(x
, &env
->vfp
.fp_status
);
4861 /* ARM requires that S<->D conversion of any kind of NaN generates
4862 * a quiet NaN by forcing the most significant frac bit to 1.
4864 return float32_maybe_silence_nan(r
);
4867 /* VFP3 fixed point conversion. */
4868 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4869 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
4872 float_status *fpst = fpstp; \
4874 tmp = itype##_to_##float##fsz(x, fpst); \
4875 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
4878 /* Notice that we want only input-denormal exception flags from the
4879 * scalbn operation: the other possible flags (overflow+inexact if
4880 * we overflow to infinity, output-denormal) aren't correct for the
4881 * complete scale-and-convert operation.
4883 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
4884 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
4888 float_status *fpst = fpstp; \
4889 int old_exc_flags = get_float_exception_flags(fpst); \
4891 if (float##fsz##_is_any_nan(x)) { \
4892 float_raise(float_flag_invalid, fpst); \
4895 tmp = float##fsz##_scalbn(x, shift, fpst); \
4896 old_exc_flags |= get_float_exception_flags(fpst) \
4897 & float_flag_input_denormal; \
4898 set_float_exception_flags(old_exc_flags, fpst); \
4899 return float##fsz##_to_##itype##round(tmp, fpst); \
4902 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
4903 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4904 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
4905 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
4907 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
4908 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4909 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
4911 VFP_CONV_FIX(sh
, d
, 64, 64, int16
)
4912 VFP_CONV_FIX(sl
, d
, 64, 64, int32
)
4913 VFP_CONV_FIX_A64(sq
, d
, 64, 64, int64
)
4914 VFP_CONV_FIX(uh
, d
, 64, 64, uint16
)
4915 VFP_CONV_FIX(ul
, d
, 64, 64, uint32
)
4916 VFP_CONV_FIX_A64(uq
, d
, 64, 64, uint64
)
4917 VFP_CONV_FIX(sh
, s
, 32, 32, int16
)
4918 VFP_CONV_FIX(sl
, s
, 32, 32, int32
)
4919 VFP_CONV_FIX_A64(sq
, s
, 32, 64, int64
)
4920 VFP_CONV_FIX(uh
, s
, 32, 32, uint16
)
4921 VFP_CONV_FIX(ul
, s
, 32, 32, uint32
)
4922 VFP_CONV_FIX_A64(uq
, s
, 32, 64, uint64
)
4924 #undef VFP_CONV_FIX_FLOAT
4925 #undef VFP_CONV_FLOAT_FIX_ROUND
4927 /* Set the current fp rounding mode and return the old one.
4928 * The argument is a softfloat float_round_ value.
4930 uint32_t HELPER(set_rmode
)(uint32_t rmode
, CPUARMState
*env
)
4932 float_status
*fp_status
= &env
->vfp
.fp_status
;
4934 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
4935 set_float_rounding_mode(rmode
, fp_status
);
4940 /* Set the current fp rounding mode in the standard fp status and return
4941 * the old one. This is for NEON instructions that need to change the
4942 * rounding mode but wish to use the standard FPSCR values for everything
4943 * else. Always set the rounding mode back to the correct value after
4945 * The argument is a softfloat float_round_ value.
4947 uint32_t HELPER(set_neon_rmode
)(uint32_t rmode
, CPUARMState
*env
)
4949 float_status
*fp_status
= &env
->vfp
.standard_fp_status
;
4951 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
4952 set_float_rounding_mode(rmode
, fp_status
);
4957 /* Half precision conversions. */
4958 static float32
do_fcvt_f16_to_f32(uint32_t a
, CPUARMState
*env
, float_status
*s
)
4960 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
4961 float32 r
= float16_to_float32(make_float16(a
), ieee
, s
);
4963 return float32_maybe_silence_nan(r
);
4968 static uint32_t do_fcvt_f32_to_f16(float32 a
, CPUARMState
*env
, float_status
*s
)
4970 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
4971 float16 r
= float32_to_float16(a
, ieee
, s
);
4973 r
= float16_maybe_silence_nan(r
);
4975 return float16_val(r
);
4978 float32
HELPER(neon_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
4980 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.standard_fp_status
);
4983 uint32_t HELPER(neon_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
4985 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.standard_fp_status
);
4988 float32
HELPER(vfp_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
4990 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.fp_status
);
4993 uint32_t HELPER(vfp_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
4995 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.fp_status
);
4998 float64
HELPER(vfp_fcvt_f16_to_f64
)(uint32_t a
, CPUARMState
*env
)
5000 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
5001 float64 r
= float16_to_float64(make_float16(a
), ieee
, &env
->vfp
.fp_status
);
5003 return float64_maybe_silence_nan(r
);
5008 uint32_t HELPER(vfp_fcvt_f64_to_f16
)(float64 a
, CPUARMState
*env
)
5010 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
5011 float16 r
= float64_to_float16(a
, ieee
, &env
->vfp
.fp_status
);
5013 r
= float16_maybe_silence_nan(r
);
5015 return float16_val(r
);
5018 #define float32_two make_float32(0x40000000)
5019 #define float32_three make_float32(0x40400000)
5020 #define float32_one_point_five make_float32(0x3fc00000)
5022 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
5024 float_status
*s
= &env
->vfp
.standard_fp_status
;
5025 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
5026 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
5027 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
5028 float_raise(float_flag_input_denormal
, s
);
5032 return float32_sub(float32_two
, float32_mul(a
, b
, s
), s
);
5035 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
5037 float_status
*s
= &env
->vfp
.standard_fp_status
;
5039 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
5040 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
5041 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
5042 float_raise(float_flag_input_denormal
, s
);
5044 return float32_one_point_five
;
5046 product
= float32_mul(a
, b
, s
);
5047 return float32_div(float32_sub(float32_three
, product
, s
), float32_two
, s
);
5052 /* Constants 256 and 512 are used in some helpers; we avoid relying on
5053 * int->float conversions at run-time. */
5054 #define float64_256 make_float64(0x4070000000000000LL)
5055 #define float64_512 make_float64(0x4080000000000000LL)
5056 #define float32_maxnorm make_float32(0x7f7fffff)
5057 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
5059 /* Reciprocal functions
5061 * The algorithm that must be used to calculate the estimate
5062 * is specified by the ARM ARM, see FPRecipEstimate()
5065 static float64
recip_estimate(float64 a
, float_status
*real_fp_status
)
5067 /* These calculations mustn't set any fp exception flags,
5068 * so we use a local copy of the fp_status.
5070 float_status dummy_status
= *real_fp_status
;
5071 float_status
*s
= &dummy_status
;
5072 /* q = (int)(a * 512.0) */
5073 float64 q
= float64_mul(float64_512
, a
, s
);
5074 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
5076 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
5077 q
= int64_to_float64(q_int
, s
);
5078 q
= float64_add(q
, float64_half
, s
);
5079 q
= float64_div(q
, float64_512
, s
);
5080 q
= float64_div(float64_one
, q
, s
);
5082 /* s = (int)(256.0 * r + 0.5) */
5083 q
= float64_mul(q
, float64_256
, s
);
5084 q
= float64_add(q
, float64_half
, s
);
5085 q_int
= float64_to_int64_round_to_zero(q
, s
);
5087 /* return (double)s / 256.0 */
5088 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
5091 /* Common wrapper to call recip_estimate */
5092 static float64
call_recip_estimate(float64 num
, int off
, float_status
*fpst
)
5094 uint64_t val64
= float64_val(num
);
5095 uint64_t frac
= extract64(val64
, 0, 52);
5096 int64_t exp
= extract64(val64
, 52, 11);
5098 float64 scaled
, estimate
;
5100 /* Generate the scaled number for the estimate function */
5102 if (extract64(frac
, 51, 1) == 0) {
5104 frac
= extract64(frac
, 0, 50) << 2;
5106 frac
= extract64(frac
, 0, 51) << 1;
5110 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
5111 scaled
= make_float64((0x3feULL
<< 52)
5112 | extract64(frac
, 44, 8) << 44);
5114 estimate
= recip_estimate(scaled
, fpst
);
5116 /* Build new result */
5117 val64
= float64_val(estimate
);
5118 sbit
= 0x8000000000000000ULL
& val64
;
5120 frac
= extract64(val64
, 0, 52);
5123 frac
= 1ULL << 51 | extract64(frac
, 1, 51);
5124 } else if (exp
== -1) {
5125 frac
= 1ULL << 50 | extract64(frac
, 2, 50);
5129 return make_float64(sbit
| (exp
<< 52) | frac
);
5132 static bool round_to_inf(float_status
*fpst
, bool sign_bit
)
5134 switch (fpst
->float_rounding_mode
) {
5135 case float_round_nearest_even
: /* Round to Nearest */
5137 case float_round_up
: /* Round to +Inf */
5139 case float_round_down
: /* Round to -Inf */
5141 case float_round_to_zero
: /* Round to Zero */
5145 g_assert_not_reached();
5148 float32
HELPER(recpe_f32
)(float32 input
, void *fpstp
)
5150 float_status
*fpst
= fpstp
;
5151 float32 f32
= float32_squash_input_denormal(input
, fpst
);
5152 uint32_t f32_val
= float32_val(f32
);
5153 uint32_t f32_sbit
= 0x80000000ULL
& f32_val
;
5154 int32_t f32_exp
= extract32(f32_val
, 23, 8);
5155 uint32_t f32_frac
= extract32(f32_val
, 0, 23);
5161 if (float32_is_any_nan(f32
)) {
5163 if (float32_is_signaling_nan(f32
)) {
5164 float_raise(float_flag_invalid
, fpst
);
5165 nan
= float32_maybe_silence_nan(f32
);
5167 if (fpst
->default_nan_mode
) {
5168 nan
= float32_default_nan
;
5171 } else if (float32_is_infinity(f32
)) {
5172 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
5173 } else if (float32_is_zero(f32
)) {
5174 float_raise(float_flag_divbyzero
, fpst
);
5175 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
5176 } else if ((f32_val
& ~(1ULL << 31)) < (1ULL << 21)) {
5177 /* Abs(value) < 2.0^-128 */
5178 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
5179 if (round_to_inf(fpst
, f32_sbit
)) {
5180 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
5182 return float32_set_sign(float32_maxnorm
, float32_is_neg(f32
));
5184 } else if (f32_exp
>= 253 && fpst
->flush_to_zero
) {
5185 float_raise(float_flag_underflow
, fpst
);
5186 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
5190 f64
= make_float64(((int64_t)(f32_exp
) << 52) | (int64_t)(f32_frac
) << 29);
5191 r64
= call_recip_estimate(f64
, 253, fpst
);
5192 r64_val
= float64_val(r64
);
5193 r64_exp
= extract64(r64_val
, 52, 11);
5194 r64_frac
= extract64(r64_val
, 0, 52);
5196 /* result = sign : result_exp<7:0> : fraction<51:29>; */
5197 return make_float32(f32_sbit
|
5198 (r64_exp
& 0xff) << 23 |
5199 extract64(r64_frac
, 29, 24));
5202 float64
HELPER(recpe_f64
)(float64 input
, void *fpstp
)
5204 float_status
*fpst
= fpstp
;
5205 float64 f64
= float64_squash_input_denormal(input
, fpst
);
5206 uint64_t f64_val
= float64_val(f64
);
5207 uint64_t f64_sbit
= 0x8000000000000000ULL
& f64_val
;
5208 int64_t f64_exp
= extract64(f64_val
, 52, 11);
5214 /* Deal with any special cases */
5215 if (float64_is_any_nan(f64
)) {
5217 if (float64_is_signaling_nan(f64
)) {
5218 float_raise(float_flag_invalid
, fpst
);
5219 nan
= float64_maybe_silence_nan(f64
);
5221 if (fpst
->default_nan_mode
) {
5222 nan
= float64_default_nan
;
5225 } else if (float64_is_infinity(f64
)) {
5226 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
5227 } else if (float64_is_zero(f64
)) {
5228 float_raise(float_flag_divbyzero
, fpst
);
5229 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
5230 } else if ((f64_val
& ~(1ULL << 63)) < (1ULL << 50)) {
5231 /* Abs(value) < 2.0^-1024 */
5232 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
5233 if (round_to_inf(fpst
, f64_sbit
)) {
5234 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
5236 return float64_set_sign(float64_maxnorm
, float64_is_neg(f64
));
5238 } else if (f64_exp
>= 1023 && fpst
->flush_to_zero
) {
5239 float_raise(float_flag_underflow
, fpst
);
5240 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
5243 r64
= call_recip_estimate(f64
, 2045, fpst
);
5244 r64_val
= float64_val(r64
);
5245 r64_exp
= extract64(r64_val
, 52, 11);
5246 r64_frac
= extract64(r64_val
, 0, 52);
5248 /* result = sign : result_exp<10:0> : fraction<51:0> */
5249 return make_float64(f64_sbit
|
5250 ((r64_exp
& 0x7ff) << 52) |
5254 /* The algorithm that must be used to calculate the estimate
5255 * is specified by the ARM ARM.
5257 static float64
recip_sqrt_estimate(float64 a
, float_status
*real_fp_status
)
5259 /* These calculations mustn't set any fp exception flags,
5260 * so we use a local copy of the fp_status.
5262 float_status dummy_status
= *real_fp_status
;
5263 float_status
*s
= &dummy_status
;
5267 if (float64_lt(a
, float64_half
, s
)) {
5268 /* range 0.25 <= a < 0.5 */
5270 /* a in units of 1/512 rounded down */
5271 /* q0 = (int)(a * 512.0); */
5272 q
= float64_mul(float64_512
, a
, s
);
5273 q_int
= float64_to_int64_round_to_zero(q
, s
);
5275 /* reciprocal root r */
5276 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
5277 q
= int64_to_float64(q_int
, s
);
5278 q
= float64_add(q
, float64_half
, s
);
5279 q
= float64_div(q
, float64_512
, s
);
5280 q
= float64_sqrt(q
, s
);
5281 q
= float64_div(float64_one
, q
, s
);
5283 /* range 0.5 <= a < 1.0 */
5285 /* a in units of 1/256 rounded down */
5286 /* q1 = (int)(a * 256.0); */
5287 q
= float64_mul(float64_256
, a
, s
);
5288 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
5290 /* reciprocal root r */
5291 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
5292 q
= int64_to_float64(q_int
, s
);
5293 q
= float64_add(q
, float64_half
, s
);
5294 q
= float64_div(q
, float64_256
, s
);
5295 q
= float64_sqrt(q
, s
);
5296 q
= float64_div(float64_one
, q
, s
);
5298 /* r in units of 1/256 rounded to nearest */
5299 /* s = (int)(256.0 * r + 0.5); */
5301 q
= float64_mul(q
, float64_256
,s
);
5302 q
= float64_add(q
, float64_half
, s
);
5303 q_int
= float64_to_int64_round_to_zero(q
, s
);
5305 /* return (double)s / 256.0;*/
5306 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
5309 float32
HELPER(rsqrte_f32
)(float32 input
, void *fpstp
)
5311 float_status
*s
= fpstp
;
5312 float32 f32
= float32_squash_input_denormal(input
, s
);
5313 uint32_t val
= float32_val(f32
);
5314 uint32_t f32_sbit
= 0x80000000 & val
;
5315 int32_t f32_exp
= extract32(val
, 23, 8);
5316 uint32_t f32_frac
= extract32(val
, 0, 23);
5322 if (float32_is_any_nan(f32
)) {
5324 if (float32_is_signaling_nan(f32
)) {
5325 float_raise(float_flag_invalid
, s
);
5326 nan
= float32_maybe_silence_nan(f32
);
5328 if (s
->default_nan_mode
) {
5329 nan
= float32_default_nan
;
5332 } else if (float32_is_zero(f32
)) {
5333 float_raise(float_flag_divbyzero
, s
);
5334 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
5335 } else if (float32_is_neg(f32
)) {
5336 float_raise(float_flag_invalid
, s
);
5337 return float32_default_nan
;
5338 } else if (float32_is_infinity(f32
)) {
5339 return float32_zero
;
5342 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
5343 * preserving the parity of the exponent. */
5345 f64_frac
= ((uint64_t) f32_frac
) << 29;
5347 while (extract64(f64_frac
, 51, 1) == 0) {
5348 f64_frac
= f64_frac
<< 1;
5349 f32_exp
= f32_exp
-1;
5351 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
5354 if (extract64(f32_exp
, 0, 1) == 0) {
5355 f64
= make_float64(((uint64_t) f32_sbit
) << 32
5359 f64
= make_float64(((uint64_t) f32_sbit
) << 32
5364 result_exp
= (380 - f32_exp
) / 2;
5366 f64
= recip_sqrt_estimate(f64
, s
);
5368 val64
= float64_val(f64
);
5370 val
= ((result_exp
& 0xff) << 23)
5371 | ((val64
>> 29) & 0x7fffff);
5372 return make_float32(val
);
5375 float64
HELPER(rsqrte_f64
)(float64 input
, void *fpstp
)
5377 float_status
*s
= fpstp
;
5378 float64 f64
= float64_squash_input_denormal(input
, s
);
5379 uint64_t val
= float64_val(f64
);
5380 uint64_t f64_sbit
= 0x8000000000000000ULL
& val
;
5381 int64_t f64_exp
= extract64(val
, 52, 11);
5382 uint64_t f64_frac
= extract64(val
, 0, 52);
5384 uint64_t result_frac
;
5386 if (float64_is_any_nan(f64
)) {
5388 if (float64_is_signaling_nan(f64
)) {
5389 float_raise(float_flag_invalid
, s
);
5390 nan
= float64_maybe_silence_nan(f64
);
5392 if (s
->default_nan_mode
) {
5393 nan
= float64_default_nan
;
5396 } else if (float64_is_zero(f64
)) {
5397 float_raise(float_flag_divbyzero
, s
);
5398 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
5399 } else if (float64_is_neg(f64
)) {
5400 float_raise(float_flag_invalid
, s
);
5401 return float64_default_nan
;
5402 } else if (float64_is_infinity(f64
)) {
5403 return float64_zero
;
5406 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
5407 * preserving the parity of the exponent. */
5410 while (extract64(f64_frac
, 51, 1) == 0) {
5411 f64_frac
= f64_frac
<< 1;
5412 f64_exp
= f64_exp
- 1;
5414 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
5417 if (extract64(f64_exp
, 0, 1) == 0) {
5418 f64
= make_float64(f64_sbit
5422 f64
= make_float64(f64_sbit
5427 result_exp
= (3068 - f64_exp
) / 2;
5429 f64
= recip_sqrt_estimate(f64
, s
);
5431 result_frac
= extract64(float64_val(f64
), 0, 52);
5433 return make_float64(f64_sbit
|
5434 ((result_exp
& 0x7ff) << 52) |
5438 uint32_t HELPER(recpe_u32
)(uint32_t a
, void *fpstp
)
5440 float_status
*s
= fpstp
;
5443 if ((a
& 0x80000000) == 0) {
5447 f64
= make_float64((0x3feULL
<< 52)
5448 | ((int64_t)(a
& 0x7fffffff) << 21));
5450 f64
= recip_estimate(f64
, s
);
5452 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
5455 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, void *fpstp
)
5457 float_status
*fpst
= fpstp
;
5460 if ((a
& 0xc0000000) == 0) {
5464 if (a
& 0x80000000) {
5465 f64
= make_float64((0x3feULL
<< 52)
5466 | ((uint64_t)(a
& 0x7fffffff) << 21));
5467 } else { /* bits 31-30 == '01' */
5468 f64
= make_float64((0x3fdULL
<< 52)
5469 | ((uint64_t)(a
& 0x3fffffff) << 22));
5472 f64
= recip_sqrt_estimate(f64
, fpst
);
5474 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
5477 /* VFPv4 fused multiply-accumulate */
5478 float32
VFP_HELPER(muladd
, s
)(float32 a
, float32 b
, float32 c
, void *fpstp
)
5480 float_status
*fpst
= fpstp
;
5481 return float32_muladd(a
, b
, c
, 0, fpst
);
5484 float64
VFP_HELPER(muladd
, d
)(float64 a
, float64 b
, float64 c
, void *fpstp
)
5486 float_status
*fpst
= fpstp
;
5487 return float64_muladd(a
, b
, c
, 0, fpst
);
5490 /* ARMv8 round to integral */
5491 float32
HELPER(rints_exact
)(float32 x
, void *fp_status
)
5493 return float32_round_to_int(x
, fp_status
);
5496 float64
HELPER(rintd_exact
)(float64 x
, void *fp_status
)
5498 return float64_round_to_int(x
, fp_status
);
5501 float32
HELPER(rints
)(float32 x
, void *fp_status
)
5503 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
5506 ret
= float32_round_to_int(x
, fp_status
);
5508 /* Suppress any inexact exceptions the conversion produced */
5509 if (!(old_flags
& float_flag_inexact
)) {
5510 new_flags
= get_float_exception_flags(fp_status
);
5511 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
5517 float64
HELPER(rintd
)(float64 x
, void *fp_status
)
5519 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
5522 ret
= float64_round_to_int(x
, fp_status
);
5524 new_flags
= get_float_exception_flags(fp_status
);
5526 /* Suppress any inexact exceptions the conversion produced */
5527 if (!(old_flags
& float_flag_inexact
)) {
5528 new_flags
= get_float_exception_flags(fp_status
);
5529 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
5535 /* Convert ARM rounding mode to softfloat */
5536 int arm_rmode_to_sf(int rmode
)
5539 case FPROUNDING_TIEAWAY
:
5540 rmode
= float_round_ties_away
;
5542 case FPROUNDING_ODD
:
5543 /* FIXME: add support for TIEAWAY and ODD */
5544 qemu_log_mask(LOG_UNIMP
, "arm: unimplemented rounding mode: %d\n",
5546 case FPROUNDING_TIEEVEN
:
5548 rmode
= float_round_nearest_even
;
5550 case FPROUNDING_POSINF
:
5551 rmode
= float_round_up
;
5553 case FPROUNDING_NEGINF
:
5554 rmode
= float_round_down
;
5556 case FPROUNDING_ZERO
:
5557 rmode
= float_round_to_zero
;
5563 static void crc_init_buffer(uint8_t *buf
, uint32_t val
, uint32_t bytes
)
5568 buf
[0] = val
& 0xff;
5569 } else if (bytes
== 2) {
5570 buf
[0] = val
& 0xff;
5571 buf
[1] = (val
>> 8) & 0xff;
5573 buf
[0] = val
& 0xff;
5574 buf
[1] = (val
>> 8) & 0xff;
5575 buf
[2] = (val
>> 16) & 0xff;
5576 buf
[3] = (val
>> 24) & 0xff;
5580 uint32_t HELPER(crc32
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
5584 crc_init_buffer(buf
, val
, bytes
);
5586 /* zlib crc32 converts the accumulator and output to one's complement. */
5587 return crc32(acc
^ 0xffffffff, buf
, bytes
) ^ 0xffffffff;
5590 uint32_t HELPER(crc32c
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
5594 crc_init_buffer(buf
, val
, bytes
);
5596 /* Linux crc32c converts the output to one's complement. */
5597 return crc32c(acc
, buf
, bytes
) ^ 0xffffffff;