4 * Generate helpers used by TCG for qemu_ld/st ops and code load
7 * Included from target op helpers and exec.c.
9 * Copyright (c) 2003 Fabrice Bellard
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2 of the License, or (at your option) any later version.
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/timer.h"
25 #include "exec/address-spaces.h"
26 #include "exec/memory.h"
28 #define DATA_SIZE (1 << SHIFT)
33 #define SDATA_TYPE int64_t
34 #define DATA_TYPE uint64_t
38 #define SDATA_TYPE int32_t
39 #define DATA_TYPE uint32_t
43 #define SDATA_TYPE int16_t
44 #define DATA_TYPE uint16_t
48 #define SDATA_TYPE int8_t
49 #define DATA_TYPE uint8_t
51 #error unsupported data size
55 /* For the benefit of TCG generated code, we want to avoid the complication
56 of ABI-specific return type promotion and always return a value extended
57 to the register size of the host. This is tcg_target_long, except in the
58 case of a 32-bit host and 64-bit data, and for that we always have
59 uint64_t. Don't bother with this widened value for SOFTMMU_CODE_ACCESS. */
60 #if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8
61 # define WORD_TYPE DATA_TYPE
62 # define USUFFIX SUFFIX
64 # define WORD_TYPE tcg_target_ulong
65 # define USUFFIX glue(u, SUFFIX)
66 # define SSUFFIX glue(s, SUFFIX)
69 #ifdef SOFTMMU_CODE_ACCESS
70 #define READ_ACCESS_TYPE MMU_INST_FETCH
71 #define ADDR_READ addr_code
73 #define READ_ACCESS_TYPE MMU_DATA_LOAD
74 #define ADDR_READ addr_read
78 # define BSWAP(X) bswap64(X)
80 # define BSWAP(X) bswap32(X)
82 # define BSWAP(X) bswap16(X)
87 #ifdef TARGET_WORDS_BIGENDIAN
88 # define TGT_BE(X) (X)
89 # define TGT_LE(X) BSWAP(X)
91 # define TGT_BE(X) BSWAP(X)
92 # define TGT_LE(X) (X)
96 # define helper_le_ld_name glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX)
97 # define helper_be_ld_name helper_le_ld_name
98 # define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX)
99 # define helper_be_lds_name helper_le_lds_name
100 # define helper_le_st_name glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX)
101 # define helper_be_st_name helper_le_st_name
103 # define helper_le_ld_name glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX)
104 # define helper_be_ld_name glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX)
105 # define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX)
106 # define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX)
107 # define helper_le_st_name glue(glue(helper_le_st, SUFFIX), MMUSUFFIX)
108 # define helper_be_st_name glue(glue(helper_be_st, SUFFIX), MMUSUFFIX)
111 #ifdef TARGET_WORDS_BIGENDIAN
112 # define helper_te_ld_name helper_be_ld_name
113 # define helper_te_st_name helper_be_st_name
115 # define helper_te_ld_name helper_le_ld_name
116 # define helper_te_st_name helper_le_st_name
119 /* macro to check the victim tlb */
120 #define VICTIM_TLB_HIT(ty) \
122 /* we are about to do a page table walk. our last hope is the \
123 * victim tlb. try to refill from the victim tlb before walking the \
126 CPUIOTLBEntry tmpiotlb; \
127 CPUTLBEntry tmptlb; \
128 for (vidx = CPU_VTLB_SIZE-1; vidx >= 0; --vidx) { \
129 if (env->tlb_v_table[mmu_idx][vidx].ty == (addr & TARGET_PAGE_MASK)) {\
130 /* found entry in victim tlb, swap tlb and iotlb */ \
131 tmptlb = env->tlb_table[mmu_idx][index]; \
132 env->tlb_table[mmu_idx][index] = env->tlb_v_table[mmu_idx][vidx]; \
133 env->tlb_v_table[mmu_idx][vidx] = tmptlb; \
134 tmpiotlb = env->iotlb[mmu_idx][index]; \
135 env->iotlb[mmu_idx][index] = env->iotlb_v[mmu_idx][vidx]; \
136 env->iotlb_v[mmu_idx][vidx] = tmpiotlb; \
140 /* return true when there is a vtlb hit, i.e. vidx >=0 */ \
144 #ifndef SOFTMMU_CODE_ACCESS
145 static inline DATA_TYPE
glue(io_read
, SUFFIX
)(CPUArchState
*env
,
146 CPUIOTLBEntry
*iotlbentry
,
151 CPUState
*cpu
= ENV_GET_CPU(env
);
152 hwaddr physaddr
= iotlbentry
->addr
;
153 MemoryRegion
*mr
= iotlb_to_region(cpu
, physaddr
);
155 physaddr
= (physaddr
& TARGET_PAGE_MASK
) + addr
;
156 cpu
->mem_io_pc
= retaddr
;
157 if (mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !cpu_can_do_io(cpu
)) {
158 cpu_io_recompile(cpu
, retaddr
);
161 cpu
->mem_io_vaddr
= addr
;
162 memory_region_dispatch_read(mr
, physaddr
, &val
, 1 << SHIFT
,
168 #ifdef SOFTMMU_CODE_ACCESS
169 static __attribute__((unused
))
171 WORD_TYPE
helper_le_ld_name(CPUArchState
*env
, target_ulong addr
, int mmu_idx
,
174 int index
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
175 target_ulong tlb_addr
= env
->tlb_table
[mmu_idx
][index
].ADDR_READ
;
179 /* Adjust the given return address. */
180 retaddr
-= GETPC_ADJ
;
182 /* If the TLB entry is for a different page, reload and try again. */
183 if ((addr
& TARGET_PAGE_MASK
)
184 != (tlb_addr
& (TARGET_PAGE_MASK
| TLB_INVALID_MASK
))) {
186 if ((addr
& (DATA_SIZE
- 1)) != 0) {
187 cpu_unaligned_access(ENV_GET_CPU(env
), addr
, READ_ACCESS_TYPE
,
191 if (!VICTIM_TLB_HIT(ADDR_READ
)) {
192 tlb_fill(ENV_GET_CPU(env
), addr
, READ_ACCESS_TYPE
,
195 tlb_addr
= env
->tlb_table
[mmu_idx
][index
].ADDR_READ
;
198 /* Handle an IO access. */
199 if (unlikely(tlb_addr
& ~TARGET_PAGE_MASK
)) {
200 CPUIOTLBEntry
*iotlbentry
;
201 if ((addr
& (DATA_SIZE
- 1)) != 0) {
202 goto do_unaligned_access
;
204 iotlbentry
= &env
->iotlb
[mmu_idx
][index
];
206 /* ??? Note that the io helpers always read data in the target
207 byte ordering. We should push the LE/BE request down into io. */
208 res
= glue(io_read
, SUFFIX
)(env
, iotlbentry
, addr
, retaddr
);
213 /* Handle slow unaligned access (it spans two pages or IO). */
215 && unlikely((addr
& ~TARGET_PAGE_MASK
) + DATA_SIZE
- 1
216 >= TARGET_PAGE_SIZE
)) {
217 target_ulong addr1
, addr2
;
218 DATA_TYPE res1
, res2
;
222 cpu_unaligned_access(ENV_GET_CPU(env
), addr
, READ_ACCESS_TYPE
,
225 addr1
= addr
& ~(DATA_SIZE
- 1);
226 addr2
= addr1
+ DATA_SIZE
;
227 /* Note the adjustment at the beginning of the function.
228 Undo that for the recursion. */
229 res1
= helper_le_ld_name(env
, addr1
, mmu_idx
, retaddr
+ GETPC_ADJ
);
230 res2
= helper_le_ld_name(env
, addr2
, mmu_idx
, retaddr
+ GETPC_ADJ
);
231 shift
= (addr
& (DATA_SIZE
- 1)) * 8;
233 /* Little-endian combine. */
234 res
= (res1
>> shift
) | (res2
<< ((DATA_SIZE
* 8) - shift
));
238 /* Handle aligned access or unaligned access in the same page. */
240 if ((addr
& (DATA_SIZE
- 1)) != 0) {
241 cpu_unaligned_access(ENV_GET_CPU(env
), addr
, READ_ACCESS_TYPE
,
246 haddr
= addr
+ env
->tlb_table
[mmu_idx
][index
].addend
;
248 res
= glue(glue(ld
, LSUFFIX
), _p
)((uint8_t *)haddr
);
250 res
= glue(glue(ld
, LSUFFIX
), _le_p
)((uint8_t *)haddr
);
256 #ifdef SOFTMMU_CODE_ACCESS
257 static __attribute__((unused
))
259 WORD_TYPE
helper_be_ld_name(CPUArchState
*env
, target_ulong addr
, int mmu_idx
,
262 int index
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
263 target_ulong tlb_addr
= env
->tlb_table
[mmu_idx
][index
].ADDR_READ
;
267 /* Adjust the given return address. */
268 retaddr
-= GETPC_ADJ
;
270 /* If the TLB entry is for a different page, reload and try again. */
271 if ((addr
& TARGET_PAGE_MASK
)
272 != (tlb_addr
& (TARGET_PAGE_MASK
| TLB_INVALID_MASK
))) {
274 if ((addr
& (DATA_SIZE
- 1)) != 0) {
275 cpu_unaligned_access(ENV_GET_CPU(env
), addr
, READ_ACCESS_TYPE
,
279 if (!VICTIM_TLB_HIT(ADDR_READ
)) {
280 tlb_fill(ENV_GET_CPU(env
), addr
, READ_ACCESS_TYPE
,
283 tlb_addr
= env
->tlb_table
[mmu_idx
][index
].ADDR_READ
;
286 /* Handle an IO access. */
287 if (unlikely(tlb_addr
& ~TARGET_PAGE_MASK
)) {
288 CPUIOTLBEntry
*iotlbentry
;
289 if ((addr
& (DATA_SIZE
- 1)) != 0) {
290 goto do_unaligned_access
;
292 iotlbentry
= &env
->iotlb
[mmu_idx
][index
];
294 /* ??? Note that the io helpers always read data in the target
295 byte ordering. We should push the LE/BE request down into io. */
296 res
= glue(io_read
, SUFFIX
)(env
, iotlbentry
, addr
, retaddr
);
301 /* Handle slow unaligned access (it spans two pages or IO). */
303 && unlikely((addr
& ~TARGET_PAGE_MASK
) + DATA_SIZE
- 1
304 >= TARGET_PAGE_SIZE
)) {
305 target_ulong addr1
, addr2
;
306 DATA_TYPE res1
, res2
;
310 cpu_unaligned_access(ENV_GET_CPU(env
), addr
, READ_ACCESS_TYPE
,
313 addr1
= addr
& ~(DATA_SIZE
- 1);
314 addr2
= addr1
+ DATA_SIZE
;
315 /* Note the adjustment at the beginning of the function.
316 Undo that for the recursion. */
317 res1
= helper_be_ld_name(env
, addr1
, mmu_idx
, retaddr
+ GETPC_ADJ
);
318 res2
= helper_be_ld_name(env
, addr2
, mmu_idx
, retaddr
+ GETPC_ADJ
);
319 shift
= (addr
& (DATA_SIZE
- 1)) * 8;
321 /* Big-endian combine. */
322 res
= (res1
<< shift
) | (res2
>> ((DATA_SIZE
* 8) - shift
));
326 /* Handle aligned access or unaligned access in the same page. */
328 if ((addr
& (DATA_SIZE
- 1)) != 0) {
329 cpu_unaligned_access(ENV_GET_CPU(env
), addr
, READ_ACCESS_TYPE
,
334 haddr
= addr
+ env
->tlb_table
[mmu_idx
][index
].addend
;
335 res
= glue(glue(ld
, LSUFFIX
), _be_p
)((uint8_t *)haddr
);
338 #endif /* DATA_SIZE > 1 */
341 glue(glue(helper_ld
, SUFFIX
), MMUSUFFIX
)(CPUArchState
*env
, target_ulong addr
,
344 return helper_te_ld_name (env
, addr
, mmu_idx
, GETRA());
347 #ifndef SOFTMMU_CODE_ACCESS
349 /* Provide signed versions of the load routines as well. We can of course
350 avoid this for 64-bit data, or for 32-bit data on 32-bit host. */
351 #if DATA_SIZE * 8 < TCG_TARGET_REG_BITS
352 WORD_TYPE
helper_le_lds_name(CPUArchState
*env
, target_ulong addr
,
353 int mmu_idx
, uintptr_t retaddr
)
355 return (SDATA_TYPE
)helper_le_ld_name(env
, addr
, mmu_idx
, retaddr
);
359 WORD_TYPE
helper_be_lds_name(CPUArchState
*env
, target_ulong addr
,
360 int mmu_idx
, uintptr_t retaddr
)
362 return (SDATA_TYPE
)helper_be_ld_name(env
, addr
, mmu_idx
, retaddr
);
367 static inline void glue(io_write
, SUFFIX
)(CPUArchState
*env
,
368 CPUIOTLBEntry
*iotlbentry
,
373 CPUState
*cpu
= ENV_GET_CPU(env
);
374 hwaddr physaddr
= iotlbentry
->addr
;
375 MemoryRegion
*mr
= iotlb_to_region(cpu
, physaddr
);
377 physaddr
= (physaddr
& TARGET_PAGE_MASK
) + addr
;
378 if (mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !cpu_can_do_io(cpu
)) {
379 cpu_io_recompile(cpu
, retaddr
);
382 cpu
->mem_io_vaddr
= addr
;
383 cpu
->mem_io_pc
= retaddr
;
384 memory_region_dispatch_write(mr
, physaddr
, val
, 1 << SHIFT
,
388 void helper_le_st_name(CPUArchState
*env
, target_ulong addr
, DATA_TYPE val
,
389 int mmu_idx
, uintptr_t retaddr
)
391 int index
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
392 target_ulong tlb_addr
= env
->tlb_table
[mmu_idx
][index
].addr_write
;
395 /* Adjust the given return address. */
396 retaddr
-= GETPC_ADJ
;
398 /* If the TLB entry is for a different page, reload and try again. */
399 if ((addr
& TARGET_PAGE_MASK
)
400 != (tlb_addr
& (TARGET_PAGE_MASK
| TLB_INVALID_MASK
))) {
402 if ((addr
& (DATA_SIZE
- 1)) != 0) {
403 cpu_unaligned_access(ENV_GET_CPU(env
), addr
, MMU_DATA_STORE
,
407 if (!VICTIM_TLB_HIT(addr_write
)) {
408 tlb_fill(ENV_GET_CPU(env
), addr
, MMU_DATA_STORE
, mmu_idx
, retaddr
);
410 tlb_addr
= env
->tlb_table
[mmu_idx
][index
].addr_write
;
413 /* Handle an IO access. */
414 if (unlikely(tlb_addr
& ~TARGET_PAGE_MASK
)) {
415 CPUIOTLBEntry
*iotlbentry
;
416 if ((addr
& (DATA_SIZE
- 1)) != 0) {
417 goto do_unaligned_access
;
419 iotlbentry
= &env
->iotlb
[mmu_idx
][index
];
421 /* ??? Note that the io helpers always read data in the target
422 byte ordering. We should push the LE/BE request down into io. */
424 glue(io_write
, SUFFIX
)(env
, iotlbentry
, val
, addr
, retaddr
);
428 /* Handle slow unaligned access (it spans two pages or IO). */
430 && unlikely((addr
& ~TARGET_PAGE_MASK
) + DATA_SIZE
- 1
431 >= TARGET_PAGE_SIZE
)) {
435 cpu_unaligned_access(ENV_GET_CPU(env
), addr
, MMU_DATA_STORE
,
438 /* XXX: not efficient, but simple */
439 /* Note: relies on the fact that tlb_fill() does not remove the
440 * previous page from the TLB cache. */
441 for (i
= DATA_SIZE
- 1; i
>= 0; i
--) {
442 /* Little-endian extract. */
443 uint8_t val8
= val
>> (i
* 8);
444 /* Note the adjustment at the beginning of the function.
445 Undo that for the recursion. */
446 glue(helper_ret_stb
, MMUSUFFIX
)(env
, addr
+ i
, val8
,
447 mmu_idx
, retaddr
+ GETPC_ADJ
);
452 /* Handle aligned access or unaligned access in the same page. */
454 if ((addr
& (DATA_SIZE
- 1)) != 0) {
455 cpu_unaligned_access(ENV_GET_CPU(env
), addr
, MMU_DATA_STORE
,
460 haddr
= addr
+ env
->tlb_table
[mmu_idx
][index
].addend
;
462 glue(glue(st
, SUFFIX
), _p
)((uint8_t *)haddr
, val
);
464 glue(glue(st
, SUFFIX
), _le_p
)((uint8_t *)haddr
, val
);
469 void helper_be_st_name(CPUArchState
*env
, target_ulong addr
, DATA_TYPE val
,
470 int mmu_idx
, uintptr_t retaddr
)
472 int index
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
473 target_ulong tlb_addr
= env
->tlb_table
[mmu_idx
][index
].addr_write
;
476 /* Adjust the given return address. */
477 retaddr
-= GETPC_ADJ
;
479 /* If the TLB entry is for a different page, reload and try again. */
480 if ((addr
& TARGET_PAGE_MASK
)
481 != (tlb_addr
& (TARGET_PAGE_MASK
| TLB_INVALID_MASK
))) {
483 if ((addr
& (DATA_SIZE
- 1)) != 0) {
484 cpu_unaligned_access(ENV_GET_CPU(env
), addr
, MMU_DATA_STORE
,
488 if (!VICTIM_TLB_HIT(addr_write
)) {
489 tlb_fill(ENV_GET_CPU(env
), addr
, MMU_DATA_STORE
, mmu_idx
, retaddr
);
491 tlb_addr
= env
->tlb_table
[mmu_idx
][index
].addr_write
;
494 /* Handle an IO access. */
495 if (unlikely(tlb_addr
& ~TARGET_PAGE_MASK
)) {
496 CPUIOTLBEntry
*iotlbentry
;
497 if ((addr
& (DATA_SIZE
- 1)) != 0) {
498 goto do_unaligned_access
;
500 iotlbentry
= &env
->iotlb
[mmu_idx
][index
];
502 /* ??? Note that the io helpers always read data in the target
503 byte ordering. We should push the LE/BE request down into io. */
505 glue(io_write
, SUFFIX
)(env
, iotlbentry
, val
, addr
, retaddr
);
509 /* Handle slow unaligned access (it spans two pages or IO). */
511 && unlikely((addr
& ~TARGET_PAGE_MASK
) + DATA_SIZE
- 1
512 >= TARGET_PAGE_SIZE
)) {
516 cpu_unaligned_access(ENV_GET_CPU(env
), addr
, MMU_DATA_STORE
,
519 /* XXX: not efficient, but simple */
520 /* Note: relies on the fact that tlb_fill() does not remove the
521 * previous page from the TLB cache. */
522 for (i
= DATA_SIZE
- 1; i
>= 0; i
--) {
523 /* Big-endian extract. */
524 uint8_t val8
= val
>> (((DATA_SIZE
- 1) * 8) - (i
* 8));
525 /* Note the adjustment at the beginning of the function.
526 Undo that for the recursion. */
527 glue(helper_ret_stb
, MMUSUFFIX
)(env
, addr
+ i
, val8
,
528 mmu_idx
, retaddr
+ GETPC_ADJ
);
533 /* Handle aligned access or unaligned access in the same page. */
535 if ((addr
& (DATA_SIZE
- 1)) != 0) {
536 cpu_unaligned_access(ENV_GET_CPU(env
), addr
, MMU_DATA_STORE
,
541 haddr
= addr
+ env
->tlb_table
[mmu_idx
][index
].addend
;
542 glue(glue(st
, SUFFIX
), _be_p
)((uint8_t *)haddr
, val
);
544 #endif /* DATA_SIZE > 1 */
547 glue(glue(helper_st
, SUFFIX
), MMUSUFFIX
)(CPUArchState
*env
, target_ulong addr
,
548 DATA_TYPE val
, int mmu_idx
)
550 helper_te_st_name(env
, addr
, val
, mmu_idx
, GETRA());
553 #endif /* !defined(SOFTMMU_CODE_ACCESS) */
555 #undef READ_ACCESS_TYPE
571 #undef helper_le_ld_name
572 #undef helper_be_ld_name
573 #undef helper_le_lds_name
574 #undef helper_be_lds_name
575 #undef helper_le_st_name
576 #undef helper_be_st_name
577 #undef helper_te_ld_name
578 #undef helper_te_st_name