target-arm: Fix warn about implicit conversion
[qemu/cris-port.git] / hw / block / m25p80.c
blob9828ee61d592f9af05fd784368c7fd93dddb92a0
1 /*
2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3 * set. Known devices table current as of Jun/2012 and taken from linux.
4 * See drivers/mtd/devices/m25p80.c.
6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8 * Copyright (C) 2012 PetaLogix
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 or
13 * (at your option) a later version of the License.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "sysemu/block-backend.h"
27 #include "sysemu/blockdev.h"
28 #include "hw/ssi/ssi.h"
29 #include "qemu/bitops.h"
30 #include "qemu/log.h"
31 #include "qapi/error.h"
33 #ifndef M25P80_ERR_DEBUG
34 #define M25P80_ERR_DEBUG 0
35 #endif
37 #define DB_PRINT_L(level, ...) do { \
38 if (M25P80_ERR_DEBUG > (level)) { \
39 fprintf(stderr, ": %s: ", __func__); \
40 fprintf(stderr, ## __VA_ARGS__); \
41 } \
42 } while (0);
44 /* Fields for FlashPartInfo->flags */
46 /* erase capabilities */
47 #define ER_4K 1
48 #define ER_32K 2
49 /* set to allow the page program command to write 0s back to 1. Useful for
50 * modelling EEPROM with SPI flash command set
52 #define EEPROM 0x100
54 /* 16 MiB max in 3 byte address mode */
55 #define MAX_3BYTES_SIZE 0x1000000
57 #define SPI_NOR_MAX_ID_LEN 6
59 typedef struct FlashPartInfo {
60 const char *part_name;
62 * This array stores the ID bytes.
63 * The first three bytes are the JEDIC ID.
64 * JEDEC ID zero means "no ID" (mostly older chips).
66 uint8_t id[SPI_NOR_MAX_ID_LEN];
67 uint8_t id_len;
68 /* there is confusion between manufacturers as to what a sector is. In this
69 * device model, a "sector" is the size that is erased by the ERASE_SECTOR
70 * command (opcode 0xd8).
72 uint32_t sector_size;
73 uint32_t n_sectors;
74 uint32_t page_size;
75 uint16_t flags;
76 } FlashPartInfo;
78 /* adapted from linux */
79 /* Used when the "_ext_id" is two bytes at most */
80 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
81 .part_name = _part_name,\
82 .id = {\
83 ((_jedec_id) >> 16) & 0xff,\
84 ((_jedec_id) >> 8) & 0xff,\
85 (_jedec_id) & 0xff,\
86 ((_ext_id) >> 8) & 0xff,\
87 (_ext_id) & 0xff,\
88 },\
89 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
90 .sector_size = (_sector_size),\
91 .n_sectors = (_n_sectors),\
92 .page_size = 256,\
93 .flags = (_flags),
95 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
96 .part_name = _part_name,\
97 .id = {\
98 ((_jedec_id) >> 16) & 0xff,\
99 ((_jedec_id) >> 8) & 0xff,\
100 (_jedec_id) & 0xff,\
101 ((_ext_id) >> 16) & 0xff,\
102 ((_ext_id) >> 8) & 0xff,\
103 (_ext_id) & 0xff,\
105 .id_len = 6,\
106 .sector_size = (_sector_size),\
107 .n_sectors = (_n_sectors),\
108 .page_size = 256,\
109 .flags = (_flags),\
111 #define JEDEC_NUMONYX 0x20
112 #define JEDEC_WINBOND 0xEF
113 #define JEDEC_SPANSION 0x01
115 /* Numonyx (Micron) Configuration register macros */
116 #define VCFG_DUMMY 0x1
117 #define VCFG_WRAP_SEQUENTIAL 0x2
118 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
119 #define NVCFG_XIP_MODE_MASK (7 << 9)
120 #define VCFG_XIP_MODE_ENABLED (1 << 3)
121 #define CFG_DUMMY_CLK_LEN 4
122 #define NVCFG_DUMMY_CLK_POS 12
123 #define VCFG_DUMMY_CLK_POS 4
124 #define EVCFG_OUT_DRIVER_STRENGHT_DEF 7
125 #define EVCFG_VPP_ACCELERATOR (1 << 3)
126 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
127 #define NVCFG_DUAL_IO_MASK (1 << 2)
128 #define EVCFG_DUAL_IO_ENABLED (1 << 6)
129 #define NVCFG_QUAD_IO_MASK (1 << 3)
130 #define EVCFG_QUAD_IO_ENABLED (1 << 7)
131 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
132 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
134 /* Numonyx (Micron) Flag Status Register macros */
135 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
136 #define FSR_FLASH_READY (1 << 7)
138 /* Spansion configuration registers macros. */
139 #define SPANSION_QUAD_CFG_POS 0
140 #define SPANSION_QUAD_CFG_LEN 1
141 #define SPANSION_DUMMY_CLK_POS 0
142 #define SPANSION_DUMMY_CLK_LEN 4
143 #define SPANSION_ADDR_LEN_POS 7
144 #define SPANSION_ADDR_LEN_LEN 1
147 * Spansion read mode command length in bytes,
148 * the mode is currently not supported.
151 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
152 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
154 static const FlashPartInfo known_devices[] = {
155 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
156 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K) },
157 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K) },
159 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K) },
160 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K) },
161 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K) },
163 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K) },
164 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K) },
165 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K) },
166 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K) },
168 { INFO("at45db081d", 0x1f2500, 0, 64 << 10, 16, ER_4K) },
170 /* Atmel EEPROMS - it is assumed, that don't care bit in command
171 * is set to 0. Block protection is not supported.
173 { INFO("at25128a-nonjedec", 0x0, 0, 1, 131072, EEPROM) },
174 { INFO("at25256a-nonjedec", 0x0, 0, 1, 262144, EEPROM) },
176 /* EON -- en25xxx */
177 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K) },
178 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
179 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
180 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
181 { INFO("en25q64", 0x1c3017, 0, 64 << 10, 128, ER_4K) },
183 /* GigaDevice */
184 { INFO("gd25q32", 0xc84016, 0, 64 << 10, 64, ER_4K) },
185 { INFO("gd25q64", 0xc84017, 0, 64 << 10, 128, ER_4K) },
187 /* Intel/Numonyx -- xxxs33b */
188 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
189 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
190 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
191 { INFO("n25q064", 0x20ba17, 0, 64 << 10, 128, 0) },
193 /* Macronix */
194 { INFO("mx25l2005a", 0xc22012, 0, 64 << 10, 4, ER_4K) },
195 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K) },
196 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
197 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K) },
198 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
199 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
200 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
201 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
202 { INFO("mx25l25635e", 0xc22019, 0, 64 << 10, 512, 0) },
203 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
204 { INFO("mx66u51235f", 0xc2253a, 0, 64 << 10, 1024, ER_4K | ER_32K) },
205 { INFO("mx66u1g45g", 0xc2253b, 0, 64 << 10, 2048, ER_4K | ER_32K) },
207 /* Micron */
208 { INFO("n25q032a11", 0x20bb16, 0, 64 << 10, 64, ER_4K) },
209 { INFO("n25q032a13", 0x20ba16, 0, 64 << 10, 64, ER_4K) },
210 { INFO("n25q064a11", 0x20bb17, 0, 64 << 10, 128, ER_4K) },
211 { INFO("n25q064a13", 0x20ba17, 0, 64 << 10, 128, ER_4K) },
212 { INFO("n25q128a11", 0x20bb18, 0, 64 << 10, 256, ER_4K) },
213 { INFO("n25q128a13", 0x20ba18, 0, 64 << 10, 256, ER_4K) },
214 { INFO("n25q256a11", 0x20bb19, 0, 64 << 10, 512, ER_4K) },
215 { INFO("n25q256a13", 0x20ba19, 0, 64 << 10, 512, ER_4K) },
216 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
217 { INFO("n25q256a", 0x20ba19, 0, 64 << 10, 512, ER_4K) },
218 { INFO("n25q512a", 0x20ba20, 0, 64 << 10, 1024, ER_4K) },
219 { INFO("mt25ql01g", 0x20ba21, 0, 64 << 10, 2048, ER_4K) },
220 { INFO("mt25qu01g", 0x20bb21, 0, 64 << 10, 2048, ER_4K) },
222 /* Spansion -- single (large) sector size only, at least
223 * for the chips listed here (without boot sectors).
225 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K) },
226 { INFO("s25sl064p", 0x010216, 0x4d00, 64 << 10, 128, ER_4K) },
227 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
228 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
229 { INFO6("s25fl512s", 0x010220, 0x4d0080, 256 << 10, 256, 0) },
230 { INFO6("s70fl01gs", 0x010221, 0x4d0080, 256 << 10, 512, 0) },
231 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
232 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
233 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
234 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
235 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
236 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
237 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
238 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
239 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
240 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K | ER_32K) },
241 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K | ER_32K) },
243 /* Spansion -- boot sectors support */
244 { INFO6("s25fs512s", 0x010220, 0x4d0081, 256 << 10, 256, 0) },
245 { INFO6("s70fs01gs", 0x010221, 0x4d0081, 256 << 10, 512, 0) },
247 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
248 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K) },
249 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K) },
250 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K) },
251 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K) },
252 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K) },
253 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K) },
254 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K) },
255 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K) },
256 { INFO("sst25wf080", 0xbf2505, 0, 64 << 10, 16, ER_4K) },
258 /* ST Microelectronics -- newer production may have feature updates */
259 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
260 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
261 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
262 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
263 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
264 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
265 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
266 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
267 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
268 { INFO("n25q032", 0x20ba16, 0, 64 << 10, 64, 0) },
270 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
271 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
272 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
274 { INFO("m25pe20", 0x208012, 0, 64 << 10, 4, 0) },
275 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
276 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K) },
278 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K) },
279 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K) },
280 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K) },
281 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
283 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
284 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K) },
285 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K) },
286 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K) },
287 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K) },
288 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K) },
289 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K) },
290 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K) },
291 { INFO("w25q32dw", 0xef6016, 0, 64 << 10, 64, ER_4K) },
292 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K) },
293 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K) },
294 { INFO("w25q80", 0xef5014, 0, 64 << 10, 16, ER_4K) },
295 { INFO("w25q80bl", 0xef4014, 0, 64 << 10, 16, ER_4K) },
296 { INFO("w25q256", 0xef4019, 0, 64 << 10, 512, ER_4K) },
299 typedef enum {
300 NOP = 0,
301 WRSR = 0x1,
302 WRDI = 0x4,
303 RDSR = 0x5,
304 WREN = 0x6,
305 JEDEC_READ = 0x9f,
306 BULK_ERASE = 0xc7,
307 READ_FSR = 0x70,
308 RDCR = 0x15,
310 READ = 0x03,
311 READ4 = 0x13,
312 FAST_READ = 0x0b,
313 FAST_READ4 = 0x0c,
314 DOR = 0x3b,
315 DOR4 = 0x3c,
316 QOR = 0x6b,
317 QOR4 = 0x6c,
318 DIOR = 0xbb,
319 DIOR4 = 0xbc,
320 QIOR = 0xeb,
321 QIOR4 = 0xec,
323 PP = 0x02,
324 PP4 = 0x12,
325 PP4_4 = 0x3e,
326 DPP = 0xa2,
327 QPP = 0x32,
329 ERASE_4K = 0x20,
330 ERASE4_4K = 0x21,
331 ERASE_32K = 0x52,
332 ERASE4_32K = 0x5c,
333 ERASE_SECTOR = 0xd8,
334 ERASE4_SECTOR = 0xdc,
336 EN_4BYTE_ADDR = 0xB7,
337 EX_4BYTE_ADDR = 0xE9,
339 EXTEND_ADDR_READ = 0xC8,
340 EXTEND_ADDR_WRITE = 0xC5,
342 RESET_ENABLE = 0x66,
343 RESET_MEMORY = 0x99,
346 * Micron: 0x35 - enable QPI
347 * Spansion: 0x35 - read control register
349 RDCR_EQIO = 0x35,
350 RSTQIO = 0xf5,
352 RNVCR = 0xB5,
353 WNVCR = 0xB1,
355 RVCR = 0x85,
356 WVCR = 0x81,
358 REVCR = 0x65,
359 WEVCR = 0x61,
360 } FlashCMD;
362 typedef enum {
363 STATE_IDLE,
364 STATE_PAGE_PROGRAM,
365 STATE_READ,
366 STATE_COLLECTING_DATA,
367 STATE_COLLECTING_VAR_LEN_DATA,
368 STATE_READING_DATA,
369 } CMDState;
371 typedef enum {
372 MAN_SPANSION,
373 MAN_MACRONIX,
374 MAN_NUMONYX,
375 MAN_WINBOND,
376 MAN_GENERIC,
377 } Manufacturer;
379 typedef struct Flash {
380 SSISlave parent_obj;
382 BlockBackend *blk;
384 uint8_t *storage;
385 uint32_t size;
386 int page_size;
388 uint8_t state;
389 uint8_t data[16];
390 uint32_t len;
391 uint32_t pos;
392 uint8_t needed_bytes;
393 uint8_t cmd_in_progress;
394 uint32_t cur_addr;
395 uint32_t nonvolatile_cfg;
396 /* Configuration register for Macronix */
397 uint32_t volatile_cfg;
398 uint32_t enh_volatile_cfg;
399 /* Spansion cfg registers. */
400 uint8_t spansion_cr1nv;
401 uint8_t spansion_cr2nv;
402 uint8_t spansion_cr3nv;
403 uint8_t spansion_cr4nv;
404 uint8_t spansion_cr1v;
405 uint8_t spansion_cr2v;
406 uint8_t spansion_cr3v;
407 uint8_t spansion_cr4v;
408 bool write_enable;
409 bool four_bytes_address_mode;
410 bool reset_enable;
411 bool quad_enable;
412 uint8_t ear;
414 int64_t dirty_page;
416 const FlashPartInfo *pi;
418 } Flash;
420 typedef struct M25P80Class {
421 SSISlaveClass parent_class;
422 FlashPartInfo *pi;
423 } M25P80Class;
425 #define TYPE_M25P80 "m25p80-generic"
426 #define M25P80(obj) \
427 OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
428 #define M25P80_CLASS(klass) \
429 OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
430 #define M25P80_GET_CLASS(obj) \
431 OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
433 static inline Manufacturer get_man(Flash *s)
435 switch (s->pi->id[0]) {
436 case 0x20:
437 return MAN_NUMONYX;
438 case 0xEF:
439 return MAN_WINBOND;
440 case 0x01:
441 return MAN_SPANSION;
442 case 0xC2:
443 return MAN_MACRONIX;
444 default:
445 return MAN_GENERIC;
449 static void blk_sync_complete(void *opaque, int ret)
451 QEMUIOVector *iov = opaque;
453 qemu_iovec_destroy(iov);
454 g_free(iov);
456 /* do nothing. Masters do not directly interact with the backing store,
457 * only the working copy so no mutexing required.
461 static void flash_sync_page(Flash *s, int page)
463 QEMUIOVector *iov;
465 if (!s->blk || blk_is_read_only(s->blk)) {
466 return;
469 iov = g_new(QEMUIOVector, 1);
470 qemu_iovec_init(iov, 1);
471 qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
472 s->pi->page_size);
473 blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
474 blk_sync_complete, iov);
477 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
479 QEMUIOVector *iov;
481 if (!s->blk || blk_is_read_only(s->blk)) {
482 return;
485 assert(!(len % BDRV_SECTOR_SIZE));
486 iov = g_new(QEMUIOVector, 1);
487 qemu_iovec_init(iov, 1);
488 qemu_iovec_add(iov, s->storage + off, len);
489 blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
492 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
494 uint32_t len;
495 uint8_t capa_to_assert = 0;
497 switch (cmd) {
498 case ERASE_4K:
499 case ERASE4_4K:
500 len = 4 << 10;
501 capa_to_assert = ER_4K;
502 break;
503 case ERASE_32K:
504 case ERASE4_32K:
505 len = 32 << 10;
506 capa_to_assert = ER_32K;
507 break;
508 case ERASE_SECTOR:
509 case ERASE4_SECTOR:
510 len = s->pi->sector_size;
511 break;
512 case BULK_ERASE:
513 len = s->size;
514 break;
515 default:
516 abort();
519 DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len);
520 if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
521 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
522 " device\n", len);
525 if (!s->write_enable) {
526 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
527 return;
529 memset(s->storage + offset, 0xff, len);
530 flash_sync_area(s, offset, len);
533 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
535 if (s->dirty_page >= 0 && s->dirty_page != newpage) {
536 flash_sync_page(s, s->dirty_page);
537 s->dirty_page = newpage;
541 static inline
542 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
544 uint32_t page = addr / s->pi->page_size;
545 uint8_t prev = s->storage[s->cur_addr];
547 if (!s->write_enable) {
548 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
551 if ((prev ^ data) & data) {
552 DB_PRINT_L(1, "programming zero to one! addr=%" PRIx32 " %" PRIx8
553 " -> %" PRIx8 "\n", addr, prev, data);
556 if (s->pi->flags & EEPROM) {
557 s->storage[s->cur_addr] = data;
558 } else {
559 s->storage[s->cur_addr] &= data;
562 flash_sync_dirty(s, page);
563 s->dirty_page = page;
566 static inline int get_addr_length(Flash *s)
568 /* check if eeprom is in use */
569 if (s->pi->flags == EEPROM) {
570 return 2;
573 switch (s->cmd_in_progress) {
574 case PP4:
575 case PP4_4:
576 case READ4:
577 case QIOR4:
578 case ERASE4_4K:
579 case ERASE4_32K:
580 case ERASE4_SECTOR:
581 case FAST_READ4:
582 case DOR4:
583 case QOR4:
584 case DIOR4:
585 return 4;
586 default:
587 return s->four_bytes_address_mode ? 4 : 3;
591 static void complete_collecting_data(Flash *s)
593 int i, n;
595 n = get_addr_length(s);
596 s->cur_addr = (n == 3 ? s->ear : 0);
597 for (i = 0; i < n; ++i) {
598 s->cur_addr <<= 8;
599 s->cur_addr |= s->data[i];
602 s->cur_addr &= s->size - 1;
604 s->state = STATE_IDLE;
606 switch (s->cmd_in_progress) {
607 case DPP:
608 case QPP:
609 case PP:
610 case PP4:
611 case PP4_4:
612 s->state = STATE_PAGE_PROGRAM;
613 break;
614 case READ:
615 case READ4:
616 case FAST_READ:
617 case FAST_READ4:
618 case DOR:
619 case DOR4:
620 case QOR:
621 case QOR4:
622 case DIOR:
623 case DIOR4:
624 case QIOR:
625 case QIOR4:
626 s->state = STATE_READ;
627 break;
628 case ERASE_4K:
629 case ERASE4_4K:
630 case ERASE_32K:
631 case ERASE4_32K:
632 case ERASE_SECTOR:
633 case ERASE4_SECTOR:
634 flash_erase(s, s->cur_addr, s->cmd_in_progress);
635 break;
636 case WRSR:
637 switch (get_man(s)) {
638 case MAN_SPANSION:
639 s->quad_enable = !!(s->data[1] & 0x02);
640 break;
641 case MAN_MACRONIX:
642 s->quad_enable = extract32(s->data[0], 6, 1);
643 if (s->len > 1) {
644 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
646 break;
647 default:
648 break;
650 if (s->write_enable) {
651 s->write_enable = false;
653 break;
654 case EXTEND_ADDR_WRITE:
655 s->ear = s->data[0];
656 break;
657 case WNVCR:
658 s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
659 break;
660 case WVCR:
661 s->volatile_cfg = s->data[0];
662 break;
663 case WEVCR:
664 s->enh_volatile_cfg = s->data[0];
665 break;
666 default:
667 break;
671 static void reset_memory(Flash *s)
673 s->cmd_in_progress = NOP;
674 s->cur_addr = 0;
675 s->ear = 0;
676 s->four_bytes_address_mode = false;
677 s->len = 0;
678 s->needed_bytes = 0;
679 s->pos = 0;
680 s->state = STATE_IDLE;
681 s->write_enable = false;
682 s->reset_enable = false;
683 s->quad_enable = false;
685 switch (get_man(s)) {
686 case MAN_NUMONYX:
687 s->volatile_cfg = 0;
688 s->volatile_cfg |= VCFG_DUMMY;
689 s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
690 if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
691 != NVCFG_XIP_MODE_DISABLED) {
692 s->volatile_cfg |= VCFG_XIP_MODE_ENABLED;
694 s->volatile_cfg |= deposit32(s->volatile_cfg,
695 VCFG_DUMMY_CLK_POS,
696 CFG_DUMMY_CLK_LEN,
697 extract32(s->nonvolatile_cfg,
698 NVCFG_DUMMY_CLK_POS,
699 CFG_DUMMY_CLK_LEN)
702 s->enh_volatile_cfg = 0;
703 s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGHT_DEF;
704 s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
705 s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
706 if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
707 s->enh_volatile_cfg |= EVCFG_DUAL_IO_ENABLED;
709 if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
710 s->enh_volatile_cfg |= EVCFG_QUAD_IO_ENABLED;
712 if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
713 s->four_bytes_address_mode = true;
715 if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
716 s->ear = s->size / MAX_3BYTES_SIZE - 1;
718 break;
719 case MAN_MACRONIX:
720 s->volatile_cfg = 0x7;
721 break;
722 case MAN_SPANSION:
723 s->spansion_cr1v = s->spansion_cr1nv;
724 s->spansion_cr2v = s->spansion_cr2nv;
725 s->spansion_cr3v = s->spansion_cr3nv;
726 s->spansion_cr4v = s->spansion_cr4nv;
727 s->quad_enable = extract32(s->spansion_cr1v,
728 SPANSION_QUAD_CFG_POS,
729 SPANSION_QUAD_CFG_LEN
731 s->four_bytes_address_mode = extract32(s->spansion_cr2v,
732 SPANSION_ADDR_LEN_POS,
733 SPANSION_ADDR_LEN_LEN
735 break;
736 default:
737 break;
740 DB_PRINT_L(0, "Reset done.\n");
743 static void decode_fast_read_cmd(Flash *s)
745 s->needed_bytes = get_addr_length(s);
746 switch (get_man(s)) {
747 /* Dummy cycles - modeled with bytes writes instead of bits */
748 case MAN_WINBOND:
749 s->needed_bytes += 8;
750 break;
751 case MAN_NUMONYX:
752 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
753 break;
754 case MAN_MACRONIX:
755 if (extract32(s->volatile_cfg, 6, 2) == 1) {
756 s->needed_bytes += 6;
757 } else {
758 s->needed_bytes += 8;
760 break;
761 case MAN_SPANSION:
762 s->needed_bytes += extract32(s->spansion_cr2v,
763 SPANSION_DUMMY_CLK_POS,
764 SPANSION_DUMMY_CLK_LEN
766 break;
767 default:
768 break;
770 s->pos = 0;
771 s->len = 0;
772 s->state = STATE_COLLECTING_DATA;
775 static void decode_dio_read_cmd(Flash *s)
777 s->needed_bytes = get_addr_length(s);
778 /* Dummy cycles modeled with bytes writes instead of bits */
779 switch (get_man(s)) {
780 case MAN_WINBOND:
781 s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
782 break;
783 case MAN_SPANSION:
784 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
785 s->needed_bytes += extract32(s->spansion_cr2v,
786 SPANSION_DUMMY_CLK_POS,
787 SPANSION_DUMMY_CLK_LEN
789 break;
790 case MAN_NUMONYX:
791 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
792 break;
793 case MAN_MACRONIX:
794 switch (extract32(s->volatile_cfg, 6, 2)) {
795 case 1:
796 s->needed_bytes += 6;
797 break;
798 case 2:
799 s->needed_bytes += 8;
800 break;
801 default:
802 s->needed_bytes += 4;
803 break;
805 break;
806 default:
807 break;
809 s->pos = 0;
810 s->len = 0;
811 s->state = STATE_COLLECTING_DATA;
814 static void decode_qio_read_cmd(Flash *s)
816 s->needed_bytes = get_addr_length(s);
817 /* Dummy cycles modeled with bytes writes instead of bits */
818 switch (get_man(s)) {
819 case MAN_WINBOND:
820 s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
821 s->needed_bytes += 4;
822 break;
823 case MAN_SPANSION:
824 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
825 s->needed_bytes += extract32(s->spansion_cr2v,
826 SPANSION_DUMMY_CLK_POS,
827 SPANSION_DUMMY_CLK_LEN
829 break;
830 case MAN_NUMONYX:
831 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
832 break;
833 case MAN_MACRONIX:
834 switch (extract32(s->volatile_cfg, 6, 2)) {
835 case 1:
836 s->needed_bytes += 4;
837 break;
838 case 2:
839 s->needed_bytes += 8;
840 break;
841 default:
842 s->needed_bytes += 6;
843 break;
845 break;
846 default:
847 break;
849 s->pos = 0;
850 s->len = 0;
851 s->state = STATE_COLLECTING_DATA;
854 static void decode_new_cmd(Flash *s, uint32_t value)
856 s->cmd_in_progress = value;
857 int i;
858 DB_PRINT_L(0, "decoded new command:%x\n", value);
860 if (value != RESET_MEMORY) {
861 s->reset_enable = false;
864 switch (value) {
866 case ERASE_4K:
867 case ERASE4_4K:
868 case ERASE_32K:
869 case ERASE4_32K:
870 case ERASE_SECTOR:
871 case ERASE4_SECTOR:
872 case READ:
873 case READ4:
874 case DPP:
875 case QPP:
876 case PP:
877 case PP4:
878 case PP4_4:
879 s->needed_bytes = get_addr_length(s);
880 s->pos = 0;
881 s->len = 0;
882 s->state = STATE_COLLECTING_DATA;
883 break;
885 case FAST_READ:
886 case FAST_READ4:
887 case DOR:
888 case DOR4:
889 case QOR:
890 case QOR4:
891 decode_fast_read_cmd(s);
892 break;
894 case DIOR:
895 case DIOR4:
896 decode_dio_read_cmd(s);
897 break;
899 case QIOR:
900 case QIOR4:
901 decode_qio_read_cmd(s);
902 break;
904 case WRSR:
905 if (s->write_enable) {
906 switch (get_man(s)) {
907 case MAN_SPANSION:
908 s->needed_bytes = 2;
909 s->state = STATE_COLLECTING_DATA;
910 break;
911 case MAN_MACRONIX:
912 s->needed_bytes = 2;
913 s->state = STATE_COLLECTING_VAR_LEN_DATA;
914 break;
915 default:
916 s->needed_bytes = 1;
917 s->state = STATE_COLLECTING_DATA;
919 s->pos = 0;
921 break;
923 case WRDI:
924 s->write_enable = false;
925 break;
926 case WREN:
927 s->write_enable = true;
928 break;
930 case RDSR:
931 s->data[0] = (!!s->write_enable) << 1;
932 if (get_man(s) == MAN_MACRONIX) {
933 s->data[0] |= (!!s->quad_enable) << 6;
935 s->pos = 0;
936 s->len = 1;
937 s->state = STATE_READING_DATA;
938 break;
940 case READ_FSR:
941 s->data[0] = FSR_FLASH_READY;
942 if (s->four_bytes_address_mode) {
943 s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
945 s->pos = 0;
946 s->len = 1;
947 s->state = STATE_READING_DATA;
948 break;
950 case JEDEC_READ:
951 DB_PRINT_L(0, "populated jedec code\n");
952 for (i = 0; i < s->pi->id_len; i++) {
953 s->data[i] = s->pi->id[i];
956 s->len = s->pi->id_len;
957 s->pos = 0;
958 s->state = STATE_READING_DATA;
959 break;
961 case RDCR:
962 s->data[0] = s->volatile_cfg & 0xFF;
963 s->data[0] |= (!!s->four_bytes_address_mode) << 5;
964 s->pos = 0;
965 s->len = 1;
966 s->state = STATE_READING_DATA;
967 break;
969 case BULK_ERASE:
970 if (s->write_enable) {
971 DB_PRINT_L(0, "chip erase\n");
972 flash_erase(s, 0, BULK_ERASE);
973 } else {
974 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
975 "protect!\n");
977 break;
978 case NOP:
979 break;
980 case EN_4BYTE_ADDR:
981 s->four_bytes_address_mode = true;
982 break;
983 case EX_4BYTE_ADDR:
984 s->four_bytes_address_mode = false;
985 break;
986 case EXTEND_ADDR_READ:
987 s->data[0] = s->ear;
988 s->pos = 0;
989 s->len = 1;
990 s->state = STATE_READING_DATA;
991 break;
992 case EXTEND_ADDR_WRITE:
993 if (s->write_enable) {
994 s->needed_bytes = 1;
995 s->pos = 0;
996 s->len = 0;
997 s->state = STATE_COLLECTING_DATA;
999 break;
1000 case RNVCR:
1001 s->data[0] = s->nonvolatile_cfg & 0xFF;
1002 s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1003 s->pos = 0;
1004 s->len = 2;
1005 s->state = STATE_READING_DATA;
1006 break;
1007 case WNVCR:
1008 if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1009 s->needed_bytes = 2;
1010 s->pos = 0;
1011 s->len = 0;
1012 s->state = STATE_COLLECTING_DATA;
1014 break;
1015 case RVCR:
1016 s->data[0] = s->volatile_cfg & 0xFF;
1017 s->pos = 0;
1018 s->len = 1;
1019 s->state = STATE_READING_DATA;
1020 break;
1021 case WVCR:
1022 if (s->write_enable) {
1023 s->needed_bytes = 1;
1024 s->pos = 0;
1025 s->len = 0;
1026 s->state = STATE_COLLECTING_DATA;
1028 break;
1029 case REVCR:
1030 s->data[0] = s->enh_volatile_cfg & 0xFF;
1031 s->pos = 0;
1032 s->len = 1;
1033 s->state = STATE_READING_DATA;
1034 break;
1035 case WEVCR:
1036 if (s->write_enable) {
1037 s->needed_bytes = 1;
1038 s->pos = 0;
1039 s->len = 0;
1040 s->state = STATE_COLLECTING_DATA;
1042 break;
1043 case RESET_ENABLE:
1044 s->reset_enable = true;
1045 break;
1046 case RESET_MEMORY:
1047 if (s->reset_enable) {
1048 reset_memory(s);
1050 break;
1051 case RDCR_EQIO:
1052 switch (get_man(s)) {
1053 case MAN_SPANSION:
1054 s->data[0] = (!!s->quad_enable) << 1;
1055 s->pos = 0;
1056 s->len = 1;
1057 s->state = STATE_READING_DATA;
1058 break;
1059 case MAN_MACRONIX:
1060 s->quad_enable = true;
1061 break;
1062 default:
1063 break;
1065 break;
1066 case RSTQIO:
1067 s->quad_enable = false;
1068 break;
1069 default:
1070 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1071 break;
1075 static int m25p80_cs(SSISlave *ss, bool select)
1077 Flash *s = M25P80(ss);
1079 if (select) {
1080 if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1081 complete_collecting_data(s);
1083 s->len = 0;
1084 s->pos = 0;
1085 s->state = STATE_IDLE;
1086 flash_sync_dirty(s, -1);
1089 DB_PRINT_L(0, "%sselect\n", select ? "de" : "");
1091 return 0;
1094 static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
1096 Flash *s = M25P80(ss);
1097 uint32_t r = 0;
1099 switch (s->state) {
1101 case STATE_PAGE_PROGRAM:
1102 DB_PRINT_L(1, "page program cur_addr=%#" PRIx32 " data=%" PRIx8 "\n",
1103 s->cur_addr, (uint8_t)tx);
1104 flash_write8(s, s->cur_addr, (uint8_t)tx);
1105 s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1106 break;
1108 case STATE_READ:
1109 r = s->storage[s->cur_addr];
1110 DB_PRINT_L(1, "READ 0x%" PRIx32 "=%" PRIx8 "\n", s->cur_addr,
1111 (uint8_t)r);
1112 s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1113 break;
1115 case STATE_COLLECTING_DATA:
1116 case STATE_COLLECTING_VAR_LEN_DATA:
1117 s->data[s->len] = (uint8_t)tx;
1118 s->len++;
1120 if (s->len == s->needed_bytes) {
1121 complete_collecting_data(s);
1123 break;
1125 case STATE_READING_DATA:
1126 r = s->data[s->pos];
1127 s->pos++;
1128 if (s->pos == s->len) {
1129 s->pos = 0;
1130 s->state = STATE_IDLE;
1132 break;
1134 default:
1135 case STATE_IDLE:
1136 decode_new_cmd(s, (uint8_t)tx);
1137 break;
1140 return r;
1143 static void m25p80_realize(SSISlave *ss, Error **errp)
1145 Flash *s = M25P80(ss);
1146 M25P80Class *mc = M25P80_GET_CLASS(s);
1148 s->pi = mc->pi;
1150 s->size = s->pi->sector_size * s->pi->n_sectors;
1151 s->dirty_page = -1;
1153 if (s->blk) {
1154 DB_PRINT_L(0, "Binding to IF_MTD drive\n");
1155 s->storage = blk_blockalign(s->blk, s->size);
1157 if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1158 error_setg(errp, "failed to read the initial flash content");
1159 return;
1161 } else {
1162 DB_PRINT_L(0, "No BDRV - binding to RAM\n");
1163 s->storage = blk_blockalign(NULL, s->size);
1164 memset(s->storage, 0xFF, s->size);
1168 static void m25p80_reset(DeviceState *d)
1170 Flash *s = M25P80(d);
1172 reset_memory(s);
1175 static void m25p80_pre_save(void *opaque)
1177 flash_sync_dirty((Flash *)opaque, -1);
1180 static Property m25p80_properties[] = {
1181 /* This is default value for Micron flash */
1182 DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1183 DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1184 DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1185 DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1186 DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1187 DEFINE_PROP_DRIVE("drive", Flash, blk),
1188 DEFINE_PROP_END_OF_LIST(),
1191 static const VMStateDescription vmstate_m25p80 = {
1192 .name = "xilinx_spi",
1193 .version_id = 3,
1194 .minimum_version_id = 1,
1195 .pre_save = m25p80_pre_save,
1196 .fields = (VMStateField[]) {
1197 VMSTATE_UINT8(state, Flash),
1198 VMSTATE_UINT8_ARRAY(data, Flash, 16),
1199 VMSTATE_UINT32(len, Flash),
1200 VMSTATE_UINT32(pos, Flash),
1201 VMSTATE_UINT8(needed_bytes, Flash),
1202 VMSTATE_UINT8(cmd_in_progress, Flash),
1203 VMSTATE_UNUSED(4),
1204 VMSTATE_UINT32(cur_addr, Flash),
1205 VMSTATE_BOOL(write_enable, Flash),
1206 VMSTATE_BOOL_V(reset_enable, Flash, 2),
1207 VMSTATE_UINT8_V(ear, Flash, 2),
1208 VMSTATE_BOOL_V(four_bytes_address_mode, Flash, 2),
1209 VMSTATE_UINT32_V(nonvolatile_cfg, Flash, 2),
1210 VMSTATE_UINT32_V(volatile_cfg, Flash, 2),
1211 VMSTATE_UINT32_V(enh_volatile_cfg, Flash, 2),
1212 VMSTATE_BOOL_V(quad_enable, Flash, 3),
1213 VMSTATE_UINT8_V(spansion_cr1nv, Flash, 3),
1214 VMSTATE_UINT8_V(spansion_cr2nv, Flash, 3),
1215 VMSTATE_UINT8_V(spansion_cr3nv, Flash, 3),
1216 VMSTATE_UINT8_V(spansion_cr4nv, Flash, 3),
1217 VMSTATE_END_OF_LIST()
1221 static void m25p80_class_init(ObjectClass *klass, void *data)
1223 DeviceClass *dc = DEVICE_CLASS(klass);
1224 SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
1225 M25P80Class *mc = M25P80_CLASS(klass);
1227 k->realize = m25p80_realize;
1228 k->transfer = m25p80_transfer8;
1229 k->set_cs = m25p80_cs;
1230 k->cs_polarity = SSI_CS_LOW;
1231 dc->vmsd = &vmstate_m25p80;
1232 dc->props = m25p80_properties;
1233 dc->reset = m25p80_reset;
1234 mc->pi = data;
1237 static const TypeInfo m25p80_info = {
1238 .name = TYPE_M25P80,
1239 .parent = TYPE_SSI_SLAVE,
1240 .instance_size = sizeof(Flash),
1241 .class_size = sizeof(M25P80Class),
1242 .abstract = true,
1245 static void m25p80_register_types(void)
1247 int i;
1249 type_register_static(&m25p80_info);
1250 for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1251 TypeInfo ti = {
1252 .name = known_devices[i].part_name,
1253 .parent = TYPE_M25P80,
1254 .class_init = m25p80_class_init,
1255 .class_data = (void *)&known_devices[i],
1257 type_register(&ti);
1261 type_init(m25p80_register_types)