virtio-9p: Add P9_TFLUSH support
[qemu/cris-port.git] / target-arm / helper.c
blob99e0394e93c380263cb2e98ba32ca99094932c98
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
5 #include "cpu.h"
6 #include "exec-all.h"
7 #include "gdbstub.h"
8 #include "helpers.h"
9 #include "qemu-common.h"
10 #include "host-utils.h"
11 #if !defined(CONFIG_USER_ONLY)
12 #include "hw/loader.h"
13 #endif
15 static uint32_t cortexa9_cp15_c0_c1[8] =
16 { 0x1031, 0x11, 0x000, 0, 0x00100103, 0x20000000, 0x01230000, 0x00002111 };
18 static uint32_t cortexa9_cp15_c0_c2[8] =
19 { 0x00101111, 0x13112111, 0x21232041, 0x11112131, 0x00111142, 0, 0, 0 };
21 static uint32_t cortexa8_cp15_c0_c1[8] =
22 { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
24 static uint32_t cortexa8_cp15_c0_c2[8] =
25 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
27 static uint32_t mpcore_cp15_c0_c1[8] =
28 { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
30 static uint32_t mpcore_cp15_c0_c2[8] =
31 { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
33 static uint32_t arm1136_cp15_c0_c1[8] =
34 { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
36 static uint32_t arm1136_cp15_c0_c2[8] =
37 { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
39 static uint32_t cpu_arm_find_by_name(const char *name);
41 static inline void set_feature(CPUARMState *env, int feature)
43 env->features |= 1u << feature;
46 static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
48 env->cp15.c0_cpuid = id;
49 switch (id) {
50 case ARM_CPUID_ARM926:
51 set_feature(env, ARM_FEATURE_VFP);
52 env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
53 env->cp15.c0_cachetype = 0x1dd20d2;
54 env->cp15.c1_sys = 0x00090078;
55 break;
56 case ARM_CPUID_ARM946:
57 set_feature(env, ARM_FEATURE_MPU);
58 env->cp15.c0_cachetype = 0x0f004006;
59 env->cp15.c1_sys = 0x00000078;
60 break;
61 case ARM_CPUID_ARM1026:
62 set_feature(env, ARM_FEATURE_VFP);
63 set_feature(env, ARM_FEATURE_AUXCR);
64 env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
65 env->cp15.c0_cachetype = 0x1dd20d2;
66 env->cp15.c1_sys = 0x00090078;
67 break;
68 case ARM_CPUID_ARM1136_R2:
69 case ARM_CPUID_ARM1136:
70 set_feature(env, ARM_FEATURE_V6);
71 set_feature(env, ARM_FEATURE_VFP);
72 set_feature(env, ARM_FEATURE_AUXCR);
73 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
74 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
75 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
76 memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
77 memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
78 env->cp15.c0_cachetype = 0x1dd20d2;
79 break;
80 case ARM_CPUID_ARM11MPCORE:
81 set_feature(env, ARM_FEATURE_V6);
82 set_feature(env, ARM_FEATURE_V6K);
83 set_feature(env, ARM_FEATURE_VFP);
84 set_feature(env, ARM_FEATURE_AUXCR);
85 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
86 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
87 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
88 memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
89 memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
90 env->cp15.c0_cachetype = 0x1dd20d2;
91 break;
92 case ARM_CPUID_CORTEXA8:
93 set_feature(env, ARM_FEATURE_V6);
94 set_feature(env, ARM_FEATURE_V6K);
95 set_feature(env, ARM_FEATURE_V7);
96 set_feature(env, ARM_FEATURE_AUXCR);
97 set_feature(env, ARM_FEATURE_THUMB2);
98 set_feature(env, ARM_FEATURE_VFP);
99 set_feature(env, ARM_FEATURE_VFP3);
100 set_feature(env, ARM_FEATURE_NEON);
101 set_feature(env, ARM_FEATURE_THUMB2EE);
102 env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
103 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
104 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
105 memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
106 memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
107 env->cp15.c0_cachetype = 0x82048004;
108 env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
109 env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
110 env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
111 env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
112 break;
113 case ARM_CPUID_CORTEXA9:
114 set_feature(env, ARM_FEATURE_V6);
115 set_feature(env, ARM_FEATURE_V6K);
116 set_feature(env, ARM_FEATURE_V7);
117 set_feature(env, ARM_FEATURE_AUXCR);
118 set_feature(env, ARM_FEATURE_THUMB2);
119 set_feature(env, ARM_FEATURE_VFP);
120 set_feature(env, ARM_FEATURE_VFP3);
121 set_feature(env, ARM_FEATURE_VFP_FP16);
122 set_feature(env, ARM_FEATURE_NEON);
123 set_feature(env, ARM_FEATURE_THUMB2EE);
124 env->vfp.xregs[ARM_VFP_FPSID] = 0x41034000; /* Guess */
125 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
126 env->vfp.xregs[ARM_VFP_MVFR1] = 0x01111111;
127 memcpy(env->cp15.c0_c1, cortexa9_cp15_c0_c1, 8 * sizeof(uint32_t));
128 memcpy(env->cp15.c0_c2, cortexa9_cp15_c0_c2, 8 * sizeof(uint32_t));
129 env->cp15.c0_cachetype = 0x80038003;
130 env->cp15.c0_clid = (1 << 27) | (1 << 24) | 3;
131 env->cp15.c0_ccsid[0] = 0xe00fe015; /* 16k L1 dcache. */
132 env->cp15.c0_ccsid[1] = 0x200fe015; /* 16k L1 icache. */
133 break;
134 case ARM_CPUID_CORTEXM3:
135 set_feature(env, ARM_FEATURE_V6);
136 set_feature(env, ARM_FEATURE_THUMB2);
137 set_feature(env, ARM_FEATURE_V7);
138 set_feature(env, ARM_FEATURE_M);
139 set_feature(env, ARM_FEATURE_DIV);
140 break;
141 case ARM_CPUID_ANY: /* For userspace emulation. */
142 set_feature(env, ARM_FEATURE_V6);
143 set_feature(env, ARM_FEATURE_V6K);
144 set_feature(env, ARM_FEATURE_V7);
145 set_feature(env, ARM_FEATURE_THUMB2);
146 set_feature(env, ARM_FEATURE_VFP);
147 set_feature(env, ARM_FEATURE_VFP3);
148 set_feature(env, ARM_FEATURE_VFP_FP16);
149 set_feature(env, ARM_FEATURE_NEON);
150 set_feature(env, ARM_FEATURE_THUMB2EE);
151 set_feature(env, ARM_FEATURE_DIV);
152 break;
153 case ARM_CPUID_TI915T:
154 case ARM_CPUID_TI925T:
155 set_feature(env, ARM_FEATURE_OMAPCP);
156 env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring. */
157 env->cp15.c0_cachetype = 0x5109149;
158 env->cp15.c1_sys = 0x00000070;
159 env->cp15.c15_i_max = 0x000;
160 env->cp15.c15_i_min = 0xff0;
161 break;
162 case ARM_CPUID_PXA250:
163 case ARM_CPUID_PXA255:
164 case ARM_CPUID_PXA260:
165 case ARM_CPUID_PXA261:
166 case ARM_CPUID_PXA262:
167 set_feature(env, ARM_FEATURE_XSCALE);
168 /* JTAG_ID is ((id << 28) | 0x09265013) */
169 env->cp15.c0_cachetype = 0xd172172;
170 env->cp15.c1_sys = 0x00000078;
171 break;
172 case ARM_CPUID_PXA270_A0:
173 case ARM_CPUID_PXA270_A1:
174 case ARM_CPUID_PXA270_B0:
175 case ARM_CPUID_PXA270_B1:
176 case ARM_CPUID_PXA270_C0:
177 case ARM_CPUID_PXA270_C5:
178 set_feature(env, ARM_FEATURE_XSCALE);
179 /* JTAG_ID is ((id << 28) | 0x09265013) */
180 set_feature(env, ARM_FEATURE_IWMMXT);
181 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
182 env->cp15.c0_cachetype = 0xd172172;
183 env->cp15.c1_sys = 0x00000078;
184 break;
185 default:
186 cpu_abort(env, "Bad CPU ID: %x\n", id);
187 break;
191 void cpu_reset(CPUARMState *env)
193 uint32_t id;
195 if (qemu_loglevel_mask(CPU_LOG_RESET)) {
196 qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
197 log_cpu_state(env, 0);
200 id = env->cp15.c0_cpuid;
201 memset(env, 0, offsetof(CPUARMState, breakpoints));
202 if (id)
203 cpu_reset_model_id(env, id);
204 #if defined (CONFIG_USER_ONLY)
205 env->uncached_cpsr = ARM_CPU_MODE_USR;
206 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
207 #else
208 /* SVC mode with interrupts disabled. */
209 env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
210 env->regs[15] = 0;
211 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
212 clear at reset. Initial SP and PC are loaded from ROM. */
213 if (IS_M(env)) {
214 uint32_t pc;
215 uint8_t *rom;
216 env->uncached_cpsr &= ~CPSR_I;
217 rom = rom_ptr(0);
218 if (rom) {
219 /* We should really use ldl_phys here, in case the guest
220 modified flash and reset itself. However images
221 loaded via -kenrel have not been copied yet, so load the
222 values directly from there. */
223 env->regs[13] = ldl_p(rom);
224 pc = ldl_p(rom + 4);
225 env->thumb = pc & 1;
226 env->regs[15] = pc & ~1;
229 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
230 env->cp15.c2_base_mask = 0xffffc000u;
231 #endif
232 tlb_flush(env, 1);
235 static int vfp_gdb_get_reg(CPUState *env, uint8_t *buf, int reg)
237 int nregs;
239 /* VFP data registers are always little-endian. */
240 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
241 if (reg < nregs) {
242 stfq_le_p(buf, env->vfp.regs[reg]);
243 return 8;
245 if (arm_feature(env, ARM_FEATURE_NEON)) {
246 /* Aliases for Q regs. */
247 nregs += 16;
248 if (reg < nregs) {
249 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
250 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
251 return 16;
254 switch (reg - nregs) {
255 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
256 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
257 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
259 return 0;
262 static int vfp_gdb_set_reg(CPUState *env, uint8_t *buf, int reg)
264 int nregs;
266 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
267 if (reg < nregs) {
268 env->vfp.regs[reg] = ldfq_le_p(buf);
269 return 8;
271 if (arm_feature(env, ARM_FEATURE_NEON)) {
272 nregs += 16;
273 if (reg < nregs) {
274 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
275 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
276 return 16;
279 switch (reg - nregs) {
280 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
281 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
282 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
284 return 0;
287 CPUARMState *cpu_arm_init(const char *cpu_model)
289 CPUARMState *env;
290 uint32_t id;
291 static int inited = 0;
293 id = cpu_arm_find_by_name(cpu_model);
294 if (id == 0)
295 return NULL;
296 env = qemu_mallocz(sizeof(CPUARMState));
297 cpu_exec_init(env);
298 if (!inited) {
299 inited = 1;
300 arm_translate_init();
303 env->cpu_model_str = cpu_model;
304 env->cp15.c0_cpuid = id;
305 cpu_reset(env);
306 if (arm_feature(env, ARM_FEATURE_NEON)) {
307 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
308 51, "arm-neon.xml", 0);
309 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
310 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
311 35, "arm-vfp3.xml", 0);
312 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
313 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
314 19, "arm-vfp.xml", 0);
316 qemu_init_vcpu(env);
317 return env;
320 struct arm_cpu_t {
321 uint32_t id;
322 const char *name;
325 static const struct arm_cpu_t arm_cpu_names[] = {
326 { ARM_CPUID_ARM926, "arm926"},
327 { ARM_CPUID_ARM946, "arm946"},
328 { ARM_CPUID_ARM1026, "arm1026"},
329 { ARM_CPUID_ARM1136, "arm1136"},
330 { ARM_CPUID_ARM1136_R2, "arm1136-r2"},
331 { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
332 { ARM_CPUID_CORTEXM3, "cortex-m3"},
333 { ARM_CPUID_CORTEXA8, "cortex-a8"},
334 { ARM_CPUID_CORTEXA9, "cortex-a9"},
335 { ARM_CPUID_TI925T, "ti925t" },
336 { ARM_CPUID_PXA250, "pxa250" },
337 { ARM_CPUID_PXA255, "pxa255" },
338 { ARM_CPUID_PXA260, "pxa260" },
339 { ARM_CPUID_PXA261, "pxa261" },
340 { ARM_CPUID_PXA262, "pxa262" },
341 { ARM_CPUID_PXA270, "pxa270" },
342 { ARM_CPUID_PXA270_A0, "pxa270-a0" },
343 { ARM_CPUID_PXA270_A1, "pxa270-a1" },
344 { ARM_CPUID_PXA270_B0, "pxa270-b0" },
345 { ARM_CPUID_PXA270_B1, "pxa270-b1" },
346 { ARM_CPUID_PXA270_C0, "pxa270-c0" },
347 { ARM_CPUID_PXA270_C5, "pxa270-c5" },
348 { ARM_CPUID_ANY, "any"},
349 { 0, NULL}
352 void arm_cpu_list(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
354 int i;
356 (*cpu_fprintf)(f, "Available CPUs:\n");
357 for (i = 0; arm_cpu_names[i].name; i++) {
358 (*cpu_fprintf)(f, " %s\n", arm_cpu_names[i].name);
362 /* return 0 if not found */
363 static uint32_t cpu_arm_find_by_name(const char *name)
365 int i;
366 uint32_t id;
368 id = 0;
369 for (i = 0; arm_cpu_names[i].name; i++) {
370 if (strcmp(name, arm_cpu_names[i].name) == 0) {
371 id = arm_cpu_names[i].id;
372 break;
375 return id;
378 void cpu_arm_close(CPUARMState *env)
380 free(env);
383 uint32_t cpsr_read(CPUARMState *env)
385 int ZF;
386 ZF = (env->ZF == 0);
387 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
388 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
389 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
390 | ((env->condexec_bits & 0xfc) << 8)
391 | (env->GE << 16);
394 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
396 if (mask & CPSR_NZCV) {
397 env->ZF = (~val) & CPSR_Z;
398 env->NF = val;
399 env->CF = (val >> 29) & 1;
400 env->VF = (val << 3) & 0x80000000;
402 if (mask & CPSR_Q)
403 env->QF = ((val & CPSR_Q) != 0);
404 if (mask & CPSR_T)
405 env->thumb = ((val & CPSR_T) != 0);
406 if (mask & CPSR_IT_0_1) {
407 env->condexec_bits &= ~3;
408 env->condexec_bits |= (val >> 25) & 3;
410 if (mask & CPSR_IT_2_7) {
411 env->condexec_bits &= 3;
412 env->condexec_bits |= (val >> 8) & 0xfc;
414 if (mask & CPSR_GE) {
415 env->GE = (val >> 16) & 0xf;
418 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
419 switch_mode(env, val & CPSR_M);
421 mask &= ~CACHED_CPSR_BITS;
422 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
425 /* Sign/zero extend */
426 uint32_t HELPER(sxtb16)(uint32_t x)
428 uint32_t res;
429 res = (uint16_t)(int8_t)x;
430 res |= (uint32_t)(int8_t)(x >> 16) << 16;
431 return res;
434 uint32_t HELPER(uxtb16)(uint32_t x)
436 uint32_t res;
437 res = (uint16_t)(uint8_t)x;
438 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
439 return res;
442 uint32_t HELPER(clz)(uint32_t x)
444 return clz32(x);
447 int32_t HELPER(sdiv)(int32_t num, int32_t den)
449 if (den == 0)
450 return 0;
451 if (num == INT_MIN && den == -1)
452 return INT_MIN;
453 return num / den;
456 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
458 if (den == 0)
459 return 0;
460 return num / den;
463 uint32_t HELPER(rbit)(uint32_t x)
465 x = ((x & 0xff000000) >> 24)
466 | ((x & 0x00ff0000) >> 8)
467 | ((x & 0x0000ff00) << 8)
468 | ((x & 0x000000ff) << 24);
469 x = ((x & 0xf0f0f0f0) >> 4)
470 | ((x & 0x0f0f0f0f) << 4);
471 x = ((x & 0x88888888) >> 3)
472 | ((x & 0x44444444) >> 1)
473 | ((x & 0x22222222) << 1)
474 | ((x & 0x11111111) << 3);
475 return x;
478 uint32_t HELPER(abs)(uint32_t x)
480 return ((int32_t)x < 0) ? -x : x;
483 #if defined(CONFIG_USER_ONLY)
485 void do_interrupt (CPUState *env)
487 env->exception_index = -1;
490 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
491 int mmu_idx, int is_softmmu)
493 if (rw == 2) {
494 env->exception_index = EXCP_PREFETCH_ABORT;
495 env->cp15.c6_insn = address;
496 } else {
497 env->exception_index = EXCP_DATA_ABORT;
498 env->cp15.c6_data = address;
500 return 1;
503 /* These should probably raise undefined insn exceptions. */
504 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
506 int op1 = (insn >> 8) & 0xf;
507 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
508 return;
511 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
513 int op1 = (insn >> 8) & 0xf;
514 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
515 return 0;
518 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
520 cpu_abort(env, "cp15 insn %08x\n", insn);
523 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
525 cpu_abort(env, "cp15 insn %08x\n", insn);
528 /* These should probably raise undefined insn exceptions. */
529 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
531 cpu_abort(env, "v7m_mrs %d\n", reg);
534 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
536 cpu_abort(env, "v7m_mrs %d\n", reg);
537 return 0;
540 void switch_mode(CPUState *env, int mode)
542 if (mode != ARM_CPU_MODE_USR)
543 cpu_abort(env, "Tried to switch out of user mode\n");
546 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
548 cpu_abort(env, "banked r13 write\n");
551 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
553 cpu_abort(env, "banked r13 read\n");
554 return 0;
557 #else
559 extern int semihosting_enabled;
561 /* Map CPU modes onto saved register banks. */
562 static inline int bank_number (int mode)
564 switch (mode) {
565 case ARM_CPU_MODE_USR:
566 case ARM_CPU_MODE_SYS:
567 return 0;
568 case ARM_CPU_MODE_SVC:
569 return 1;
570 case ARM_CPU_MODE_ABT:
571 return 2;
572 case ARM_CPU_MODE_UND:
573 return 3;
574 case ARM_CPU_MODE_IRQ:
575 return 4;
576 case ARM_CPU_MODE_FIQ:
577 return 5;
579 cpu_abort(cpu_single_env, "Bad mode %x\n", mode);
580 return -1;
583 void switch_mode(CPUState *env, int mode)
585 int old_mode;
586 int i;
588 old_mode = env->uncached_cpsr & CPSR_M;
589 if (mode == old_mode)
590 return;
592 if (old_mode == ARM_CPU_MODE_FIQ) {
593 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
594 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
595 } else if (mode == ARM_CPU_MODE_FIQ) {
596 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
597 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
600 i = bank_number(old_mode);
601 env->banked_r13[i] = env->regs[13];
602 env->banked_r14[i] = env->regs[14];
603 env->banked_spsr[i] = env->spsr;
605 i = bank_number(mode);
606 env->regs[13] = env->banked_r13[i];
607 env->regs[14] = env->banked_r14[i];
608 env->spsr = env->banked_spsr[i];
611 static void v7m_push(CPUARMState *env, uint32_t val)
613 env->regs[13] -= 4;
614 stl_phys(env->regs[13], val);
617 static uint32_t v7m_pop(CPUARMState *env)
619 uint32_t val;
620 val = ldl_phys(env->regs[13]);
621 env->regs[13] += 4;
622 return val;
625 /* Switch to V7M main or process stack pointer. */
626 static void switch_v7m_sp(CPUARMState *env, int process)
628 uint32_t tmp;
629 if (env->v7m.current_sp != process) {
630 tmp = env->v7m.other_sp;
631 env->v7m.other_sp = env->regs[13];
632 env->regs[13] = tmp;
633 env->v7m.current_sp = process;
637 static void do_v7m_exception_exit(CPUARMState *env)
639 uint32_t type;
640 uint32_t xpsr;
642 type = env->regs[15];
643 if (env->v7m.exception != 0)
644 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
646 /* Switch to the target stack. */
647 switch_v7m_sp(env, (type & 4) != 0);
648 /* Pop registers. */
649 env->regs[0] = v7m_pop(env);
650 env->regs[1] = v7m_pop(env);
651 env->regs[2] = v7m_pop(env);
652 env->regs[3] = v7m_pop(env);
653 env->regs[12] = v7m_pop(env);
654 env->regs[14] = v7m_pop(env);
655 env->regs[15] = v7m_pop(env);
656 xpsr = v7m_pop(env);
657 xpsr_write(env, xpsr, 0xfffffdff);
658 /* Undo stack alignment. */
659 if (xpsr & 0x200)
660 env->regs[13] |= 4;
661 /* ??? The exception return type specifies Thread/Handler mode. However
662 this is also implied by the xPSR value. Not sure what to do
663 if there is a mismatch. */
664 /* ??? Likewise for mismatches between the CONTROL register and the stack
665 pointer. */
668 static void do_interrupt_v7m(CPUARMState *env)
670 uint32_t xpsr = xpsr_read(env);
671 uint32_t lr;
672 uint32_t addr;
674 lr = 0xfffffff1;
675 if (env->v7m.current_sp)
676 lr |= 4;
677 if (env->v7m.exception == 0)
678 lr |= 8;
680 /* For exceptions we just mark as pending on the NVIC, and let that
681 handle it. */
682 /* TODO: Need to escalate if the current priority is higher than the
683 one we're raising. */
684 switch (env->exception_index) {
685 case EXCP_UDEF:
686 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
687 return;
688 case EXCP_SWI:
689 env->regs[15] += 2;
690 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
691 return;
692 case EXCP_PREFETCH_ABORT:
693 case EXCP_DATA_ABORT:
694 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
695 return;
696 case EXCP_BKPT:
697 if (semihosting_enabled) {
698 int nr;
699 nr = lduw_code(env->regs[15]) & 0xff;
700 if (nr == 0xab) {
701 env->regs[15] += 2;
702 env->regs[0] = do_arm_semihosting(env);
703 return;
706 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
707 return;
708 case EXCP_IRQ:
709 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
710 break;
711 case EXCP_EXCEPTION_EXIT:
712 do_v7m_exception_exit(env);
713 return;
714 default:
715 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
716 return; /* Never happens. Keep compiler happy. */
719 /* Align stack pointer. */
720 /* ??? Should only do this if Configuration Control Register
721 STACKALIGN bit is set. */
722 if (env->regs[13] & 4) {
723 env->regs[13] -= 4;
724 xpsr |= 0x200;
726 /* Switch to the handler mode. */
727 v7m_push(env, xpsr);
728 v7m_push(env, env->regs[15]);
729 v7m_push(env, env->regs[14]);
730 v7m_push(env, env->regs[12]);
731 v7m_push(env, env->regs[3]);
732 v7m_push(env, env->regs[2]);
733 v7m_push(env, env->regs[1]);
734 v7m_push(env, env->regs[0]);
735 switch_v7m_sp(env, 0);
736 env->uncached_cpsr &= ~CPSR_IT;
737 env->regs[14] = lr;
738 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
739 env->regs[15] = addr & 0xfffffffe;
740 env->thumb = addr & 1;
743 /* Handle a CPU exception. */
744 void do_interrupt(CPUARMState *env)
746 uint32_t addr;
747 uint32_t mask;
748 int new_mode;
749 uint32_t offset;
751 if (IS_M(env)) {
752 do_interrupt_v7m(env);
753 return;
755 /* TODO: Vectored interrupt controller. */
756 switch (env->exception_index) {
757 case EXCP_UDEF:
758 new_mode = ARM_CPU_MODE_UND;
759 addr = 0x04;
760 mask = CPSR_I;
761 if (env->thumb)
762 offset = 2;
763 else
764 offset = 4;
765 break;
766 case EXCP_SWI:
767 if (semihosting_enabled) {
768 /* Check for semihosting interrupt. */
769 if (env->thumb) {
770 mask = lduw_code(env->regs[15] - 2) & 0xff;
771 } else {
772 mask = ldl_code(env->regs[15] - 4) & 0xffffff;
774 /* Only intercept calls from privileged modes, to provide some
775 semblance of security. */
776 if (((mask == 0x123456 && !env->thumb)
777 || (mask == 0xab && env->thumb))
778 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
779 env->regs[0] = do_arm_semihosting(env);
780 return;
783 new_mode = ARM_CPU_MODE_SVC;
784 addr = 0x08;
785 mask = CPSR_I;
786 /* The PC already points to the next instruction. */
787 offset = 0;
788 break;
789 case EXCP_BKPT:
790 /* See if this is a semihosting syscall. */
791 if (env->thumb && semihosting_enabled) {
792 mask = lduw_code(env->regs[15]) & 0xff;
793 if (mask == 0xab
794 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
795 env->regs[15] += 2;
796 env->regs[0] = do_arm_semihosting(env);
797 return;
800 /* Fall through to prefetch abort. */
801 case EXCP_PREFETCH_ABORT:
802 new_mode = ARM_CPU_MODE_ABT;
803 addr = 0x0c;
804 mask = CPSR_A | CPSR_I;
805 offset = 4;
806 break;
807 case EXCP_DATA_ABORT:
808 new_mode = ARM_CPU_MODE_ABT;
809 addr = 0x10;
810 mask = CPSR_A | CPSR_I;
811 offset = 8;
812 break;
813 case EXCP_IRQ:
814 new_mode = ARM_CPU_MODE_IRQ;
815 addr = 0x18;
816 /* Disable IRQ and imprecise data aborts. */
817 mask = CPSR_A | CPSR_I;
818 offset = 4;
819 break;
820 case EXCP_FIQ:
821 new_mode = ARM_CPU_MODE_FIQ;
822 addr = 0x1c;
823 /* Disable FIQ, IRQ and imprecise data aborts. */
824 mask = CPSR_A | CPSR_I | CPSR_F;
825 offset = 4;
826 break;
827 default:
828 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
829 return; /* Never happens. Keep compiler happy. */
831 /* High vectors. */
832 if (env->cp15.c1_sys & (1 << 13)) {
833 addr += 0xffff0000;
835 switch_mode (env, new_mode);
836 env->spsr = cpsr_read(env);
837 /* Clear IT bits. */
838 env->condexec_bits = 0;
839 /* Switch to the new mode, and to the correct instruction set. */
840 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
841 env->uncached_cpsr |= mask;
842 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
843 env->regs[14] = env->regs[15] + offset;
844 env->regs[15] = addr;
845 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
848 /* Check section/page access permissions.
849 Returns the page protection flags, or zero if the access is not
850 permitted. */
851 static inline int check_ap(CPUState *env, int ap, int domain, int access_type,
852 int is_user)
854 int prot_ro;
856 if (domain == 3)
857 return PAGE_READ | PAGE_WRITE;
859 if (access_type == 1)
860 prot_ro = 0;
861 else
862 prot_ro = PAGE_READ;
864 switch (ap) {
865 case 0:
866 if (access_type == 1)
867 return 0;
868 switch ((env->cp15.c1_sys >> 8) & 3) {
869 case 1:
870 return is_user ? 0 : PAGE_READ;
871 case 2:
872 return PAGE_READ;
873 default:
874 return 0;
876 case 1:
877 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
878 case 2:
879 if (is_user)
880 return prot_ro;
881 else
882 return PAGE_READ | PAGE_WRITE;
883 case 3:
884 return PAGE_READ | PAGE_WRITE;
885 case 4: /* Reserved. */
886 return 0;
887 case 5:
888 return is_user ? 0 : prot_ro;
889 case 6:
890 return prot_ro;
891 case 7:
892 if (!arm_feature (env, ARM_FEATURE_V7))
893 return 0;
894 return prot_ro;
895 default:
896 abort();
900 static uint32_t get_level1_table_address(CPUState *env, uint32_t address)
902 uint32_t table;
904 if (address & env->cp15.c2_mask)
905 table = env->cp15.c2_base1 & 0xffffc000;
906 else
907 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
909 table |= (address >> 18) & 0x3ffc;
910 return table;
913 static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
914 int is_user, uint32_t *phys_ptr, int *prot,
915 target_ulong *page_size)
917 int code;
918 uint32_t table;
919 uint32_t desc;
920 int type;
921 int ap;
922 int domain;
923 uint32_t phys_addr;
925 /* Pagetable walk. */
926 /* Lookup l1 descriptor. */
927 table = get_level1_table_address(env, address);
928 desc = ldl_phys(table);
929 type = (desc & 3);
930 domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3;
931 if (type == 0) {
932 /* Section translation fault. */
933 code = 5;
934 goto do_fault;
936 if (domain == 0 || domain == 2) {
937 if (type == 2)
938 code = 9; /* Section domain fault. */
939 else
940 code = 11; /* Page domain fault. */
941 goto do_fault;
943 if (type == 2) {
944 /* 1Mb section. */
945 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
946 ap = (desc >> 10) & 3;
947 code = 13;
948 *page_size = 1024 * 1024;
949 } else {
950 /* Lookup l2 entry. */
951 if (type == 1) {
952 /* Coarse pagetable. */
953 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
954 } else {
955 /* Fine pagetable. */
956 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
958 desc = ldl_phys(table);
959 switch (desc & 3) {
960 case 0: /* Page translation fault. */
961 code = 7;
962 goto do_fault;
963 case 1: /* 64k page. */
964 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
965 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
966 *page_size = 0x10000;
967 break;
968 case 2: /* 4k page. */
969 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
970 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
971 *page_size = 0x1000;
972 break;
973 case 3: /* 1k page. */
974 if (type == 1) {
975 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
976 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
977 } else {
978 /* Page translation fault. */
979 code = 7;
980 goto do_fault;
982 } else {
983 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
985 ap = (desc >> 4) & 3;
986 *page_size = 0x400;
987 break;
988 default:
989 /* Never happens, but compiler isn't smart enough to tell. */
990 abort();
992 code = 15;
994 *prot = check_ap(env, ap, domain, access_type, is_user);
995 if (!*prot) {
996 /* Access permission fault. */
997 goto do_fault;
999 *prot |= PAGE_EXEC;
1000 *phys_ptr = phys_addr;
1001 return 0;
1002 do_fault:
1003 return code | (domain << 4);
1006 static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
1007 int is_user, uint32_t *phys_ptr, int *prot,
1008 target_ulong *page_size)
1010 int code;
1011 uint32_t table;
1012 uint32_t desc;
1013 uint32_t xn;
1014 int type;
1015 int ap;
1016 int domain;
1017 uint32_t phys_addr;
1019 /* Pagetable walk. */
1020 /* Lookup l1 descriptor. */
1021 table = get_level1_table_address(env, address);
1022 desc = ldl_phys(table);
1023 type = (desc & 3);
1024 if (type == 0) {
1025 /* Section translation fault. */
1026 code = 5;
1027 domain = 0;
1028 goto do_fault;
1029 } else if (type == 2 && (desc & (1 << 18))) {
1030 /* Supersection. */
1031 domain = 0;
1032 } else {
1033 /* Section or page. */
1034 domain = (desc >> 4) & 0x1e;
1036 domain = (env->cp15.c3 >> domain) & 3;
1037 if (domain == 0 || domain == 2) {
1038 if (type == 2)
1039 code = 9; /* Section domain fault. */
1040 else
1041 code = 11; /* Page domain fault. */
1042 goto do_fault;
1044 if (type == 2) {
1045 if (desc & (1 << 18)) {
1046 /* Supersection. */
1047 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1048 *page_size = 0x1000000;
1049 } else {
1050 /* Section. */
1051 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1052 *page_size = 0x100000;
1054 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1055 xn = desc & (1 << 4);
1056 code = 13;
1057 } else {
1058 /* Lookup l2 entry. */
1059 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1060 desc = ldl_phys(table);
1061 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1062 switch (desc & 3) {
1063 case 0: /* Page translation fault. */
1064 code = 7;
1065 goto do_fault;
1066 case 1: /* 64k page. */
1067 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1068 xn = desc & (1 << 15);
1069 *page_size = 0x10000;
1070 break;
1071 case 2: case 3: /* 4k page. */
1072 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1073 xn = desc & 1;
1074 *page_size = 0x1000;
1075 break;
1076 default:
1077 /* Never happens, but compiler isn't smart enough to tell. */
1078 abort();
1080 code = 15;
1082 if (xn && access_type == 2)
1083 goto do_fault;
1085 /* The simplified model uses AP[0] as an access control bit. */
1086 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1087 /* Access flag fault. */
1088 code = (code == 15) ? 6 : 3;
1089 goto do_fault;
1091 *prot = check_ap(env, ap, domain, access_type, is_user);
1092 if (!*prot) {
1093 /* Access permission fault. */
1094 goto do_fault;
1096 if (!xn) {
1097 *prot |= PAGE_EXEC;
1099 *phys_ptr = phys_addr;
1100 return 0;
1101 do_fault:
1102 return code | (domain << 4);
1105 static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
1106 int is_user, uint32_t *phys_ptr, int *prot)
1108 int n;
1109 uint32_t mask;
1110 uint32_t base;
1112 *phys_ptr = address;
1113 for (n = 7; n >= 0; n--) {
1114 base = env->cp15.c6_region[n];
1115 if ((base & 1) == 0)
1116 continue;
1117 mask = 1 << ((base >> 1) & 0x1f);
1118 /* Keep this shift separate from the above to avoid an
1119 (undefined) << 32. */
1120 mask = (mask << 1) - 1;
1121 if (((base ^ address) & ~mask) == 0)
1122 break;
1124 if (n < 0)
1125 return 2;
1127 if (access_type == 2) {
1128 mask = env->cp15.c5_insn;
1129 } else {
1130 mask = env->cp15.c5_data;
1132 mask = (mask >> (n * 4)) & 0xf;
1133 switch (mask) {
1134 case 0:
1135 return 1;
1136 case 1:
1137 if (is_user)
1138 return 1;
1139 *prot = PAGE_READ | PAGE_WRITE;
1140 break;
1141 case 2:
1142 *prot = PAGE_READ;
1143 if (!is_user)
1144 *prot |= PAGE_WRITE;
1145 break;
1146 case 3:
1147 *prot = PAGE_READ | PAGE_WRITE;
1148 break;
1149 case 5:
1150 if (is_user)
1151 return 1;
1152 *prot = PAGE_READ;
1153 break;
1154 case 6:
1155 *prot = PAGE_READ;
1156 break;
1157 default:
1158 /* Bad permission. */
1159 return 1;
1161 *prot |= PAGE_EXEC;
1162 return 0;
1165 static inline int get_phys_addr(CPUState *env, uint32_t address,
1166 int access_type, int is_user,
1167 uint32_t *phys_ptr, int *prot,
1168 target_ulong *page_size)
1170 /* Fast Context Switch Extension. */
1171 if (address < 0x02000000)
1172 address += env->cp15.c13_fcse;
1174 if ((env->cp15.c1_sys & 1) == 0) {
1175 /* MMU/MPU disabled. */
1176 *phys_ptr = address;
1177 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1178 *page_size = TARGET_PAGE_SIZE;
1179 return 0;
1180 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1181 *page_size = TARGET_PAGE_SIZE;
1182 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1183 prot);
1184 } else if (env->cp15.c1_sys & (1 << 23)) {
1185 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1186 prot, page_size);
1187 } else {
1188 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1189 prot, page_size);
1193 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
1194 int access_type, int mmu_idx, int is_softmmu)
1196 uint32_t phys_addr;
1197 target_ulong page_size;
1198 int prot;
1199 int ret, is_user;
1201 is_user = mmu_idx == MMU_USER_IDX;
1202 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
1203 &page_size);
1204 if (ret == 0) {
1205 /* Map a single [sub]page. */
1206 phys_addr &= ~(uint32_t)0x3ff;
1207 address &= ~(uint32_t)0x3ff;
1208 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
1209 return 0;
1212 if (access_type == 2) {
1213 env->cp15.c5_insn = ret;
1214 env->cp15.c6_insn = address;
1215 env->exception_index = EXCP_PREFETCH_ABORT;
1216 } else {
1217 env->cp15.c5_data = ret;
1218 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1219 env->cp15.c5_data |= (1 << 11);
1220 env->cp15.c6_data = address;
1221 env->exception_index = EXCP_DATA_ABORT;
1223 return 1;
1226 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
1228 uint32_t phys_addr;
1229 target_ulong page_size;
1230 int prot;
1231 int ret;
1233 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
1235 if (ret != 0)
1236 return -1;
1238 return phys_addr;
1241 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
1243 int cp_num = (insn >> 8) & 0xf;
1244 int cp_info = (insn >> 5) & 7;
1245 int src = (insn >> 16) & 0xf;
1246 int operand = insn & 0xf;
1248 if (env->cp[cp_num].cp_write)
1249 env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1250 cp_info, src, operand, val);
1253 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
1255 int cp_num = (insn >> 8) & 0xf;
1256 int cp_info = (insn >> 5) & 7;
1257 int dest = (insn >> 16) & 0xf;
1258 int operand = insn & 0xf;
1260 if (env->cp[cp_num].cp_read)
1261 return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1262 cp_info, dest, operand);
1263 return 0;
1266 /* Return basic MPU access permission bits. */
1267 static uint32_t simple_mpu_ap_bits(uint32_t val)
1269 uint32_t ret;
1270 uint32_t mask;
1271 int i;
1272 ret = 0;
1273 mask = 3;
1274 for (i = 0; i < 16; i += 2) {
1275 ret |= (val >> i) & mask;
1276 mask <<= 2;
1278 return ret;
1281 /* Pad basic MPU access permission bits to extended format. */
1282 static uint32_t extended_mpu_ap_bits(uint32_t val)
1284 uint32_t ret;
1285 uint32_t mask;
1286 int i;
1287 ret = 0;
1288 mask = 3;
1289 for (i = 0; i < 16; i += 2) {
1290 ret |= (val & mask) << i;
1291 mask <<= 2;
1293 return ret;
1296 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
1298 int op1;
1299 int op2;
1300 int crm;
1302 op1 = (insn >> 21) & 7;
1303 op2 = (insn >> 5) & 7;
1304 crm = insn & 0xf;
1305 switch ((insn >> 16) & 0xf) {
1306 case 0:
1307 /* ID codes. */
1308 if (arm_feature(env, ARM_FEATURE_XSCALE))
1309 break;
1310 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1311 break;
1312 if (arm_feature(env, ARM_FEATURE_V7)
1313 && op1 == 2 && crm == 0 && op2 == 0) {
1314 env->cp15.c0_cssel = val & 0xf;
1315 break;
1317 goto bad_reg;
1318 case 1: /* System configuration. */
1319 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1320 op2 = 0;
1321 switch (op2) {
1322 case 0:
1323 if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
1324 env->cp15.c1_sys = val;
1325 /* ??? Lots of these bits are not implemented. */
1326 /* This may enable/disable the MMU, so do a TLB flush. */
1327 tlb_flush(env, 1);
1328 break;
1329 case 1: /* Auxiliary cotrol register. */
1330 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1331 env->cp15.c1_xscaleauxcr = val;
1332 break;
1334 /* Not implemented. */
1335 break;
1336 case 2:
1337 if (arm_feature(env, ARM_FEATURE_XSCALE))
1338 goto bad_reg;
1339 if (env->cp15.c1_coproc != val) {
1340 env->cp15.c1_coproc = val;
1341 /* ??? Is this safe when called from within a TB? */
1342 tb_flush(env);
1344 break;
1345 default:
1346 goto bad_reg;
1348 break;
1349 case 2: /* MMU Page table control / MPU cache control. */
1350 if (arm_feature(env, ARM_FEATURE_MPU)) {
1351 switch (op2) {
1352 case 0:
1353 env->cp15.c2_data = val;
1354 break;
1355 case 1:
1356 env->cp15.c2_insn = val;
1357 break;
1358 default:
1359 goto bad_reg;
1361 } else {
1362 switch (op2) {
1363 case 0:
1364 env->cp15.c2_base0 = val;
1365 break;
1366 case 1:
1367 env->cp15.c2_base1 = val;
1368 break;
1369 case 2:
1370 val &= 7;
1371 env->cp15.c2_control = val;
1372 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1373 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
1374 break;
1375 default:
1376 goto bad_reg;
1379 break;
1380 case 3: /* MMU Domain access control / MPU write buffer control. */
1381 env->cp15.c3 = val;
1382 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
1383 break;
1384 case 4: /* Reserved. */
1385 goto bad_reg;
1386 case 5: /* MMU Fault status / MPU access permission. */
1387 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1388 op2 = 0;
1389 switch (op2) {
1390 case 0:
1391 if (arm_feature(env, ARM_FEATURE_MPU))
1392 val = extended_mpu_ap_bits(val);
1393 env->cp15.c5_data = val;
1394 break;
1395 case 1:
1396 if (arm_feature(env, ARM_FEATURE_MPU))
1397 val = extended_mpu_ap_bits(val);
1398 env->cp15.c5_insn = val;
1399 break;
1400 case 2:
1401 if (!arm_feature(env, ARM_FEATURE_MPU))
1402 goto bad_reg;
1403 env->cp15.c5_data = val;
1404 break;
1405 case 3:
1406 if (!arm_feature(env, ARM_FEATURE_MPU))
1407 goto bad_reg;
1408 env->cp15.c5_insn = val;
1409 break;
1410 default:
1411 goto bad_reg;
1413 break;
1414 case 6: /* MMU Fault address / MPU base/size. */
1415 if (arm_feature(env, ARM_FEATURE_MPU)) {
1416 if (crm >= 8)
1417 goto bad_reg;
1418 env->cp15.c6_region[crm] = val;
1419 } else {
1420 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1421 op2 = 0;
1422 switch (op2) {
1423 case 0:
1424 env->cp15.c6_data = val;
1425 break;
1426 case 1: /* ??? This is WFAR on armv6 */
1427 case 2:
1428 env->cp15.c6_insn = val;
1429 break;
1430 default:
1431 goto bad_reg;
1434 break;
1435 case 7: /* Cache control. */
1436 env->cp15.c15_i_max = 0x000;
1437 env->cp15.c15_i_min = 0xff0;
1438 /* No cache, so nothing to do. */
1439 /* ??? MPCore has VA to PA translation functions. */
1440 break;
1441 case 8: /* MMU TLB control. */
1442 switch (op2) {
1443 case 0: /* Invalidate all. */
1444 tlb_flush(env, 0);
1445 break;
1446 case 1: /* Invalidate single TLB entry. */
1447 tlb_flush_page(env, val & TARGET_PAGE_MASK);
1448 break;
1449 case 2: /* Invalidate on ASID. */
1450 tlb_flush(env, val == 0);
1451 break;
1452 case 3: /* Invalidate single entry on MVA. */
1453 /* ??? This is like case 1, but ignores ASID. */
1454 tlb_flush(env, 1);
1455 break;
1456 default:
1457 goto bad_reg;
1459 break;
1460 case 9:
1461 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1462 break;
1463 switch (crm) {
1464 case 0: /* Cache lockdown. */
1465 switch (op1) {
1466 case 0: /* L1 cache. */
1467 switch (op2) {
1468 case 0:
1469 env->cp15.c9_data = val;
1470 break;
1471 case 1:
1472 env->cp15.c9_insn = val;
1473 break;
1474 default:
1475 goto bad_reg;
1477 break;
1478 case 1: /* L2 cache. */
1479 /* Ignore writes to L2 lockdown/auxiliary registers. */
1480 break;
1481 default:
1482 goto bad_reg;
1484 break;
1485 case 1: /* TCM memory region registers. */
1486 /* Not implemented. */
1487 goto bad_reg;
1488 default:
1489 goto bad_reg;
1491 break;
1492 case 10: /* MMU TLB lockdown. */
1493 /* ??? TLB lockdown not implemented. */
1494 break;
1495 case 12: /* Reserved. */
1496 goto bad_reg;
1497 case 13: /* Process ID. */
1498 switch (op2) {
1499 case 0:
1500 /* Unlike real hardware the qemu TLB uses virtual addresses,
1501 not modified virtual addresses, so this causes a TLB flush.
1503 if (env->cp15.c13_fcse != val)
1504 tlb_flush(env, 1);
1505 env->cp15.c13_fcse = val;
1506 break;
1507 case 1:
1508 /* This changes the ASID, so do a TLB flush. */
1509 if (env->cp15.c13_context != val
1510 && !arm_feature(env, ARM_FEATURE_MPU))
1511 tlb_flush(env, 0);
1512 env->cp15.c13_context = val;
1513 break;
1514 default:
1515 goto bad_reg;
1517 break;
1518 case 14: /* Reserved. */
1519 goto bad_reg;
1520 case 15: /* Implementation specific. */
1521 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1522 if (op2 == 0 && crm == 1) {
1523 if (env->cp15.c15_cpar != (val & 0x3fff)) {
1524 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1525 tb_flush(env);
1526 env->cp15.c15_cpar = val & 0x3fff;
1528 break;
1530 goto bad_reg;
1532 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1533 switch (crm) {
1534 case 0:
1535 break;
1536 case 1: /* Set TI925T configuration. */
1537 env->cp15.c15_ticonfig = val & 0xe7;
1538 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1539 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1540 break;
1541 case 2: /* Set I_max. */
1542 env->cp15.c15_i_max = val;
1543 break;
1544 case 3: /* Set I_min. */
1545 env->cp15.c15_i_min = val;
1546 break;
1547 case 4: /* Set thread-ID. */
1548 env->cp15.c15_threadid = val & 0xffff;
1549 break;
1550 case 8: /* Wait-for-interrupt (deprecated). */
1551 cpu_interrupt(env, CPU_INTERRUPT_HALT);
1552 break;
1553 default:
1554 goto bad_reg;
1557 break;
1559 return;
1560 bad_reg:
1561 /* ??? For debugging only. Should raise illegal instruction exception. */
1562 cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1563 (insn >> 16) & 0xf, crm, op1, op2);
1566 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
1568 int op1;
1569 int op2;
1570 int crm;
1572 op1 = (insn >> 21) & 7;
1573 op2 = (insn >> 5) & 7;
1574 crm = insn & 0xf;
1575 switch ((insn >> 16) & 0xf) {
1576 case 0: /* ID codes. */
1577 switch (op1) {
1578 case 0:
1579 switch (crm) {
1580 case 0:
1581 switch (op2) {
1582 case 0: /* Device ID. */
1583 return env->cp15.c0_cpuid;
1584 case 1: /* Cache Type. */
1585 return env->cp15.c0_cachetype;
1586 case 2: /* TCM status. */
1587 return 0;
1588 case 3: /* TLB type register. */
1589 return 0; /* No lockable TLB entries. */
1590 case 5: /* CPU ID */
1591 if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
1592 return env->cpu_index | 0x80000900;
1593 } else {
1594 return env->cpu_index;
1596 default:
1597 goto bad_reg;
1599 case 1:
1600 if (!arm_feature(env, ARM_FEATURE_V6))
1601 goto bad_reg;
1602 return env->cp15.c0_c1[op2];
1603 case 2:
1604 if (!arm_feature(env, ARM_FEATURE_V6))
1605 goto bad_reg;
1606 return env->cp15.c0_c2[op2];
1607 case 3: case 4: case 5: case 6: case 7:
1608 return 0;
1609 default:
1610 goto bad_reg;
1612 case 1:
1613 /* These registers aren't documented on arm11 cores. However
1614 Linux looks at them anyway. */
1615 if (!arm_feature(env, ARM_FEATURE_V6))
1616 goto bad_reg;
1617 if (crm != 0)
1618 goto bad_reg;
1619 if (!arm_feature(env, ARM_FEATURE_V7))
1620 return 0;
1622 switch (op2) {
1623 case 0:
1624 return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1625 case 1:
1626 return env->cp15.c0_clid;
1627 case 7:
1628 return 0;
1630 goto bad_reg;
1631 case 2:
1632 if (op2 != 0 || crm != 0)
1633 goto bad_reg;
1634 return env->cp15.c0_cssel;
1635 default:
1636 goto bad_reg;
1638 case 1: /* System configuration. */
1639 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1640 op2 = 0;
1641 switch (op2) {
1642 case 0: /* Control register. */
1643 return env->cp15.c1_sys;
1644 case 1: /* Auxiliary control register. */
1645 if (arm_feature(env, ARM_FEATURE_XSCALE))
1646 return env->cp15.c1_xscaleauxcr;
1647 if (!arm_feature(env, ARM_FEATURE_AUXCR))
1648 goto bad_reg;
1649 switch (ARM_CPUID(env)) {
1650 case ARM_CPUID_ARM1026:
1651 return 1;
1652 case ARM_CPUID_ARM1136:
1653 case ARM_CPUID_ARM1136_R2:
1654 return 7;
1655 case ARM_CPUID_ARM11MPCORE:
1656 return 1;
1657 case ARM_CPUID_CORTEXA8:
1658 return 2;
1659 case ARM_CPUID_CORTEXA9:
1660 return 0;
1661 default:
1662 goto bad_reg;
1664 case 2: /* Coprocessor access register. */
1665 if (arm_feature(env, ARM_FEATURE_XSCALE))
1666 goto bad_reg;
1667 return env->cp15.c1_coproc;
1668 default:
1669 goto bad_reg;
1671 case 2: /* MMU Page table control / MPU cache control. */
1672 if (arm_feature(env, ARM_FEATURE_MPU)) {
1673 switch (op2) {
1674 case 0:
1675 return env->cp15.c2_data;
1676 break;
1677 case 1:
1678 return env->cp15.c2_insn;
1679 break;
1680 default:
1681 goto bad_reg;
1683 } else {
1684 switch (op2) {
1685 case 0:
1686 return env->cp15.c2_base0;
1687 case 1:
1688 return env->cp15.c2_base1;
1689 case 2:
1690 return env->cp15.c2_control;
1691 default:
1692 goto bad_reg;
1695 case 3: /* MMU Domain access control / MPU write buffer control. */
1696 return env->cp15.c3;
1697 case 4: /* Reserved. */
1698 goto bad_reg;
1699 case 5: /* MMU Fault status / MPU access permission. */
1700 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1701 op2 = 0;
1702 switch (op2) {
1703 case 0:
1704 if (arm_feature(env, ARM_FEATURE_MPU))
1705 return simple_mpu_ap_bits(env->cp15.c5_data);
1706 return env->cp15.c5_data;
1707 case 1:
1708 if (arm_feature(env, ARM_FEATURE_MPU))
1709 return simple_mpu_ap_bits(env->cp15.c5_data);
1710 return env->cp15.c5_insn;
1711 case 2:
1712 if (!arm_feature(env, ARM_FEATURE_MPU))
1713 goto bad_reg;
1714 return env->cp15.c5_data;
1715 case 3:
1716 if (!arm_feature(env, ARM_FEATURE_MPU))
1717 goto bad_reg;
1718 return env->cp15.c5_insn;
1719 default:
1720 goto bad_reg;
1722 case 6: /* MMU Fault address. */
1723 if (arm_feature(env, ARM_FEATURE_MPU)) {
1724 if (crm >= 8)
1725 goto bad_reg;
1726 return env->cp15.c6_region[crm];
1727 } else {
1728 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1729 op2 = 0;
1730 switch (op2) {
1731 case 0:
1732 return env->cp15.c6_data;
1733 case 1:
1734 if (arm_feature(env, ARM_FEATURE_V6)) {
1735 /* Watchpoint Fault Adrress. */
1736 return 0; /* Not implemented. */
1737 } else {
1738 /* Instruction Fault Adrress. */
1739 /* Arm9 doesn't have an IFAR, but implementing it anyway
1740 shouldn't do any harm. */
1741 return env->cp15.c6_insn;
1743 case 2:
1744 if (arm_feature(env, ARM_FEATURE_V6)) {
1745 /* Instruction Fault Adrress. */
1746 return env->cp15.c6_insn;
1747 } else {
1748 goto bad_reg;
1750 default:
1751 goto bad_reg;
1754 case 7: /* Cache control. */
1755 /* FIXME: Should only clear Z flag if destination is r15. */
1756 env->ZF = 0;
1757 return 0;
1758 case 8: /* MMU TLB control. */
1759 goto bad_reg;
1760 case 9: /* Cache lockdown. */
1761 switch (op1) {
1762 case 0: /* L1 cache. */
1763 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1764 return 0;
1765 switch (op2) {
1766 case 0:
1767 return env->cp15.c9_data;
1768 case 1:
1769 return env->cp15.c9_insn;
1770 default:
1771 goto bad_reg;
1773 case 1: /* L2 cache */
1774 if (crm != 0)
1775 goto bad_reg;
1776 /* L2 Lockdown and Auxiliary control. */
1777 return 0;
1778 default:
1779 goto bad_reg;
1781 case 10: /* MMU TLB lockdown. */
1782 /* ??? TLB lockdown not implemented. */
1783 return 0;
1784 case 11: /* TCM DMA control. */
1785 case 12: /* Reserved. */
1786 goto bad_reg;
1787 case 13: /* Process ID. */
1788 switch (op2) {
1789 case 0:
1790 return env->cp15.c13_fcse;
1791 case 1:
1792 return env->cp15.c13_context;
1793 default:
1794 goto bad_reg;
1796 case 14: /* Reserved. */
1797 goto bad_reg;
1798 case 15: /* Implementation specific. */
1799 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1800 if (op2 == 0 && crm == 1)
1801 return env->cp15.c15_cpar;
1803 goto bad_reg;
1805 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1806 switch (crm) {
1807 case 0:
1808 return 0;
1809 case 1: /* Read TI925T configuration. */
1810 return env->cp15.c15_ticonfig;
1811 case 2: /* Read I_max. */
1812 return env->cp15.c15_i_max;
1813 case 3: /* Read I_min. */
1814 return env->cp15.c15_i_min;
1815 case 4: /* Read thread-ID. */
1816 return env->cp15.c15_threadid;
1817 case 8: /* TI925T_status */
1818 return 0;
1820 /* TODO: Peripheral port remap register:
1821 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
1822 * controller base address at $rn & ~0xfff and map size of
1823 * 0x200 << ($rn & 0xfff), when MMU is off. */
1824 goto bad_reg;
1826 return 0;
1828 bad_reg:
1829 /* ??? For debugging only. Should raise illegal instruction exception. */
1830 cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
1831 (insn >> 16) & 0xf, crm, op1, op2);
1832 return 0;
1835 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
1837 env->banked_r13[bank_number(mode)] = val;
1840 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
1842 return env->banked_r13[bank_number(mode)];
1845 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
1847 switch (reg) {
1848 case 0: /* APSR */
1849 return xpsr_read(env) & 0xf8000000;
1850 case 1: /* IAPSR */
1851 return xpsr_read(env) & 0xf80001ff;
1852 case 2: /* EAPSR */
1853 return xpsr_read(env) & 0xff00fc00;
1854 case 3: /* xPSR */
1855 return xpsr_read(env) & 0xff00fdff;
1856 case 5: /* IPSR */
1857 return xpsr_read(env) & 0x000001ff;
1858 case 6: /* EPSR */
1859 return xpsr_read(env) & 0x0700fc00;
1860 case 7: /* IEPSR */
1861 return xpsr_read(env) & 0x0700edff;
1862 case 8: /* MSP */
1863 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
1864 case 9: /* PSP */
1865 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
1866 case 16: /* PRIMASK */
1867 return (env->uncached_cpsr & CPSR_I) != 0;
1868 case 17: /* FAULTMASK */
1869 return (env->uncached_cpsr & CPSR_F) != 0;
1870 case 18: /* BASEPRI */
1871 case 19: /* BASEPRI_MAX */
1872 return env->v7m.basepri;
1873 case 20: /* CONTROL */
1874 return env->v7m.control;
1875 default:
1876 /* ??? For debugging only. */
1877 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
1878 return 0;
1882 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
1884 switch (reg) {
1885 case 0: /* APSR */
1886 xpsr_write(env, val, 0xf8000000);
1887 break;
1888 case 1: /* IAPSR */
1889 xpsr_write(env, val, 0xf8000000);
1890 break;
1891 case 2: /* EAPSR */
1892 xpsr_write(env, val, 0xfe00fc00);
1893 break;
1894 case 3: /* xPSR */
1895 xpsr_write(env, val, 0xfe00fc00);
1896 break;
1897 case 5: /* IPSR */
1898 /* IPSR bits are readonly. */
1899 break;
1900 case 6: /* EPSR */
1901 xpsr_write(env, val, 0x0600fc00);
1902 break;
1903 case 7: /* IEPSR */
1904 xpsr_write(env, val, 0x0600fc00);
1905 break;
1906 case 8: /* MSP */
1907 if (env->v7m.current_sp)
1908 env->v7m.other_sp = val;
1909 else
1910 env->regs[13] = val;
1911 break;
1912 case 9: /* PSP */
1913 if (env->v7m.current_sp)
1914 env->regs[13] = val;
1915 else
1916 env->v7m.other_sp = val;
1917 break;
1918 case 16: /* PRIMASK */
1919 if (val & 1)
1920 env->uncached_cpsr |= CPSR_I;
1921 else
1922 env->uncached_cpsr &= ~CPSR_I;
1923 break;
1924 case 17: /* FAULTMASK */
1925 if (val & 1)
1926 env->uncached_cpsr |= CPSR_F;
1927 else
1928 env->uncached_cpsr &= ~CPSR_F;
1929 break;
1930 case 18: /* BASEPRI */
1931 env->v7m.basepri = val & 0xff;
1932 break;
1933 case 19: /* BASEPRI_MAX */
1934 val &= 0xff;
1935 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
1936 env->v7m.basepri = val;
1937 break;
1938 case 20: /* CONTROL */
1939 env->v7m.control = val & 3;
1940 switch_v7m_sp(env, (val & 2) != 0);
1941 break;
1942 default:
1943 /* ??? For debugging only. */
1944 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
1945 return;
1949 void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
1950 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
1951 void *opaque)
1953 if (cpnum < 0 || cpnum > 14) {
1954 cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
1955 return;
1958 env->cp[cpnum].cp_read = cp_read;
1959 env->cp[cpnum].cp_write = cp_write;
1960 env->cp[cpnum].opaque = opaque;
1963 #endif
1965 /* Note that signed overflow is undefined in C. The following routines are
1966 careful to use unsigned types where modulo arithmetic is required.
1967 Failure to do so _will_ break on newer gcc. */
1969 /* Signed saturating arithmetic. */
1971 /* Perform 16-bit signed saturating addition. */
1972 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
1974 uint16_t res;
1976 res = a + b;
1977 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
1978 if (a & 0x8000)
1979 res = 0x8000;
1980 else
1981 res = 0x7fff;
1983 return res;
1986 /* Perform 8-bit signed saturating addition. */
1987 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
1989 uint8_t res;
1991 res = a + b;
1992 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
1993 if (a & 0x80)
1994 res = 0x80;
1995 else
1996 res = 0x7f;
1998 return res;
2001 /* Perform 16-bit signed saturating subtraction. */
2002 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2004 uint16_t res;
2006 res = a - b;
2007 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2008 if (a & 0x8000)
2009 res = 0x8000;
2010 else
2011 res = 0x7fff;
2013 return res;
2016 /* Perform 8-bit signed saturating subtraction. */
2017 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2019 uint8_t res;
2021 res = a - b;
2022 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2023 if (a & 0x80)
2024 res = 0x80;
2025 else
2026 res = 0x7f;
2028 return res;
2031 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2032 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2033 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2034 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2035 #define PFX q
2037 #include "op_addsub.h"
2039 /* Unsigned saturating arithmetic. */
2040 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2042 uint16_t res;
2043 res = a + b;
2044 if (res < a)
2045 res = 0xffff;
2046 return res;
2049 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2051 if (a < b)
2052 return a - b;
2053 else
2054 return 0;
2057 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2059 uint8_t res;
2060 res = a + b;
2061 if (res < a)
2062 res = 0xff;
2063 return res;
2066 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2068 if (a < b)
2069 return a - b;
2070 else
2071 return 0;
2074 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2075 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2076 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2077 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2078 #define PFX uq
2080 #include "op_addsub.h"
2082 /* Signed modulo arithmetic. */
2083 #define SARITH16(a, b, n, op) do { \
2084 int32_t sum; \
2085 sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \
2086 RESULT(sum, n, 16); \
2087 if (sum >= 0) \
2088 ge |= 3 << (n * 2); \
2089 } while(0)
2091 #define SARITH8(a, b, n, op) do { \
2092 int32_t sum; \
2093 sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \
2094 RESULT(sum, n, 8); \
2095 if (sum >= 0) \
2096 ge |= 1 << n; \
2097 } while(0)
2100 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2101 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2102 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2103 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2104 #define PFX s
2105 #define ARITH_GE
2107 #include "op_addsub.h"
2109 /* Unsigned modulo arithmetic. */
2110 #define ADD16(a, b, n) do { \
2111 uint32_t sum; \
2112 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2113 RESULT(sum, n, 16); \
2114 if ((sum >> 16) == 1) \
2115 ge |= 3 << (n * 2); \
2116 } while(0)
2118 #define ADD8(a, b, n) do { \
2119 uint32_t sum; \
2120 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2121 RESULT(sum, n, 8); \
2122 if ((sum >> 8) == 1) \
2123 ge |= 1 << n; \
2124 } while(0)
2126 #define SUB16(a, b, n) do { \
2127 uint32_t sum; \
2128 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2129 RESULT(sum, n, 16); \
2130 if ((sum >> 16) == 0) \
2131 ge |= 3 << (n * 2); \
2132 } while(0)
2134 #define SUB8(a, b, n) do { \
2135 uint32_t sum; \
2136 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2137 RESULT(sum, n, 8); \
2138 if ((sum >> 8) == 0) \
2139 ge |= 1 << n; \
2140 } while(0)
2142 #define PFX u
2143 #define ARITH_GE
2145 #include "op_addsub.h"
2147 /* Halved signed arithmetic. */
2148 #define ADD16(a, b, n) \
2149 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2150 #define SUB16(a, b, n) \
2151 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2152 #define ADD8(a, b, n) \
2153 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2154 #define SUB8(a, b, n) \
2155 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2156 #define PFX sh
2158 #include "op_addsub.h"
2160 /* Halved unsigned arithmetic. */
2161 #define ADD16(a, b, n) \
2162 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2163 #define SUB16(a, b, n) \
2164 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2165 #define ADD8(a, b, n) \
2166 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2167 #define SUB8(a, b, n) \
2168 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2169 #define PFX uh
2171 #include "op_addsub.h"
2173 static inline uint8_t do_usad(uint8_t a, uint8_t b)
2175 if (a > b)
2176 return a - b;
2177 else
2178 return b - a;
2181 /* Unsigned sum of absolute byte differences. */
2182 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2184 uint32_t sum;
2185 sum = do_usad(a, b);
2186 sum += do_usad(a >> 8, b >> 8);
2187 sum += do_usad(a >> 16, b >>16);
2188 sum += do_usad(a >> 24, b >> 24);
2189 return sum;
2192 /* For ARMv6 SEL instruction. */
2193 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2195 uint32_t mask;
2197 mask = 0;
2198 if (flags & 1)
2199 mask |= 0xff;
2200 if (flags & 2)
2201 mask |= 0xff00;
2202 if (flags & 4)
2203 mask |= 0xff0000;
2204 if (flags & 8)
2205 mask |= 0xff000000;
2206 return (a & mask) | (b & ~mask);
2209 uint32_t HELPER(logicq_cc)(uint64_t val)
2211 return (val >> 32) | (val != 0);
2214 /* VFP support. We follow the convention used for VFP instrunctions:
2215 Single precition routines have a "s" suffix, double precision a
2216 "d" suffix. */
2218 /* Convert host exception flags to vfp form. */
2219 static inline int vfp_exceptbits_from_host(int host_bits)
2221 int target_bits = 0;
2223 if (host_bits & float_flag_invalid)
2224 target_bits |= 1;
2225 if (host_bits & float_flag_divbyzero)
2226 target_bits |= 2;
2227 if (host_bits & float_flag_overflow)
2228 target_bits |= 4;
2229 if (host_bits & float_flag_underflow)
2230 target_bits |= 8;
2231 if (host_bits & float_flag_inexact)
2232 target_bits |= 0x10;
2233 return target_bits;
2236 uint32_t HELPER(vfp_get_fpscr)(CPUState *env)
2238 int i;
2239 uint32_t fpscr;
2241 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2242 | (env->vfp.vec_len << 16)
2243 | (env->vfp.vec_stride << 20);
2244 i = get_float_exception_flags(&env->vfp.fp_status);
2245 fpscr |= vfp_exceptbits_from_host(i);
2246 return fpscr;
2249 /* Convert vfp exception flags to target form. */
2250 static inline int vfp_exceptbits_to_host(int target_bits)
2252 int host_bits = 0;
2254 if (target_bits & 1)
2255 host_bits |= float_flag_invalid;
2256 if (target_bits & 2)
2257 host_bits |= float_flag_divbyzero;
2258 if (target_bits & 4)
2259 host_bits |= float_flag_overflow;
2260 if (target_bits & 8)
2261 host_bits |= float_flag_underflow;
2262 if (target_bits & 0x10)
2263 host_bits |= float_flag_inexact;
2264 return host_bits;
2267 void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val)
2269 int i;
2270 uint32_t changed;
2272 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2273 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2274 env->vfp.vec_len = (val >> 16) & 7;
2275 env->vfp.vec_stride = (val >> 20) & 3;
2277 changed ^= val;
2278 if (changed & (3 << 22)) {
2279 i = (val >> 22) & 3;
2280 switch (i) {
2281 case 0:
2282 i = float_round_nearest_even;
2283 break;
2284 case 1:
2285 i = float_round_up;
2286 break;
2287 case 2:
2288 i = float_round_down;
2289 break;
2290 case 3:
2291 i = float_round_to_zero;
2292 break;
2294 set_float_rounding_mode(i, &env->vfp.fp_status);
2296 if (changed & (1 << 24))
2297 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2298 if (changed & (1 << 25))
2299 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2301 i = vfp_exceptbits_to_host((val >> 8) & 0x1f);
2302 set_float_exception_flags(i, &env->vfp.fp_status);
2305 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2307 #define VFP_BINOP(name) \
2308 float32 VFP_HELPER(name, s)(float32 a, float32 b, CPUState *env) \
2310 return float32_ ## name (a, b, &env->vfp.fp_status); \
2312 float64 VFP_HELPER(name, d)(float64 a, float64 b, CPUState *env) \
2314 return float64_ ## name (a, b, &env->vfp.fp_status); \
2316 VFP_BINOP(add)
2317 VFP_BINOP(sub)
2318 VFP_BINOP(mul)
2319 VFP_BINOP(div)
2320 #undef VFP_BINOP
2322 float32 VFP_HELPER(neg, s)(float32 a)
2324 return float32_chs(a);
2327 float64 VFP_HELPER(neg, d)(float64 a)
2329 return float64_chs(a);
2332 float32 VFP_HELPER(abs, s)(float32 a)
2334 return float32_abs(a);
2337 float64 VFP_HELPER(abs, d)(float64 a)
2339 return float64_abs(a);
2342 float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env)
2344 return float32_sqrt(a, &env->vfp.fp_status);
2347 float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env)
2349 return float64_sqrt(a, &env->vfp.fp_status);
2352 /* XXX: check quiet/signaling case */
2353 #define DO_VFP_cmp(p, type) \
2354 void VFP_HELPER(cmp, p)(type a, type b, CPUState *env) \
2356 uint32_t flags; \
2357 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2358 case 0: flags = 0x6; break; \
2359 case -1: flags = 0x8; break; \
2360 case 1: flags = 0x2; break; \
2361 default: case 2: flags = 0x3; break; \
2363 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2364 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2366 void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2368 uint32_t flags; \
2369 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2370 case 0: flags = 0x6; break; \
2371 case -1: flags = 0x8; break; \
2372 case 1: flags = 0x2; break; \
2373 default: case 2: flags = 0x3; break; \
2375 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2376 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2378 DO_VFP_cmp(s, float32)
2379 DO_VFP_cmp(d, float64)
2380 #undef DO_VFP_cmp
2382 /* Helper routines to perform bitwise copies between float and int. */
2383 static inline float32 vfp_itos(uint32_t i)
2385 union {
2386 uint32_t i;
2387 float32 s;
2388 } v;
2390 v.i = i;
2391 return v.s;
2394 static inline uint32_t vfp_stoi(float32 s)
2396 union {
2397 uint32_t i;
2398 float32 s;
2399 } v;
2401 v.s = s;
2402 return v.i;
2405 static inline float64 vfp_itod(uint64_t i)
2407 union {
2408 uint64_t i;
2409 float64 d;
2410 } v;
2412 v.i = i;
2413 return v.d;
2416 static inline uint64_t vfp_dtoi(float64 d)
2418 union {
2419 uint64_t i;
2420 float64 d;
2421 } v;
2423 v.d = d;
2424 return v.i;
2427 /* Integer to float conversion. */
2428 float32 VFP_HELPER(uito, s)(float32 x, CPUState *env)
2430 return uint32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2433 float64 VFP_HELPER(uito, d)(float32 x, CPUState *env)
2435 return uint32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2438 float32 VFP_HELPER(sito, s)(float32 x, CPUState *env)
2440 return int32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2443 float64 VFP_HELPER(sito, d)(float32 x, CPUState *env)
2445 return int32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2448 /* Float to integer conversion. */
2449 float32 VFP_HELPER(toui, s)(float32 x, CPUState *env)
2451 return vfp_itos(float32_to_uint32(x, &env->vfp.fp_status));
2454 float32 VFP_HELPER(toui, d)(float64 x, CPUState *env)
2456 return vfp_itos(float64_to_uint32(x, &env->vfp.fp_status));
2459 float32 VFP_HELPER(tosi, s)(float32 x, CPUState *env)
2461 return vfp_itos(float32_to_int32(x, &env->vfp.fp_status));
2464 float32 VFP_HELPER(tosi, d)(float64 x, CPUState *env)
2466 return vfp_itos(float64_to_int32(x, &env->vfp.fp_status));
2469 float32 VFP_HELPER(touiz, s)(float32 x, CPUState *env)
2471 return vfp_itos(float32_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2474 float32 VFP_HELPER(touiz, d)(float64 x, CPUState *env)
2476 return vfp_itos(float64_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2479 float32 VFP_HELPER(tosiz, s)(float32 x, CPUState *env)
2481 return vfp_itos(float32_to_int32_round_to_zero(x, &env->vfp.fp_status));
2484 float32 VFP_HELPER(tosiz, d)(float64 x, CPUState *env)
2486 return vfp_itos(float64_to_int32_round_to_zero(x, &env->vfp.fp_status));
2489 /* floating point conversion */
2490 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env)
2492 return float32_to_float64(x, &env->vfp.fp_status);
2495 float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
2497 return float64_to_float32(x, &env->vfp.fp_status);
2500 /* VFP3 fixed point conversion. */
2501 #define VFP_CONV_FIX(name, p, ftype, itype, sign) \
2502 ftype VFP_HELPER(name##to, p)(ftype x, uint32_t shift, CPUState *env) \
2504 ftype tmp; \
2505 tmp = sign##int32_to_##ftype ((itype)vfp_##p##toi(x), \
2506 &env->vfp.fp_status); \
2507 return ftype##_scalbn(tmp, -(int)shift, &env->vfp.fp_status); \
2509 ftype VFP_HELPER(to##name, p)(ftype x, uint32_t shift, CPUState *env) \
2511 ftype tmp; \
2512 tmp = ftype##_scalbn(x, shift, &env->vfp.fp_status); \
2513 return vfp_ito##p((itype)ftype##_to_##sign##int32_round_to_zero(tmp, \
2514 &env->vfp.fp_status)); \
2517 VFP_CONV_FIX(sh, d, float64, int16, )
2518 VFP_CONV_FIX(sl, d, float64, int32, )
2519 VFP_CONV_FIX(uh, d, float64, uint16, u)
2520 VFP_CONV_FIX(ul, d, float64, uint32, u)
2521 VFP_CONV_FIX(sh, s, float32, int16, )
2522 VFP_CONV_FIX(sl, s, float32, int32, )
2523 VFP_CONV_FIX(uh, s, float32, uint16, u)
2524 VFP_CONV_FIX(ul, s, float32, uint32, u)
2525 #undef VFP_CONV_FIX
2527 /* Half precision conversions. */
2528 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUState *env)
2530 float_status *s = &env->vfp.fp_status;
2531 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2532 return float16_to_float32(a, ieee, s);
2535 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUState *env)
2537 float_status *s = &env->vfp.fp_status;
2538 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2539 return float32_to_float16(a, ieee, s);
2542 float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env)
2544 float_status *s = &env->vfp.fp_status;
2545 float32 two = int32_to_float32(2, s);
2546 return float32_sub(two, float32_mul(a, b, s), s);
2549 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env)
2551 float_status *s = &env->vfp.fp_status;
2552 float32 three = int32_to_float32(3, s);
2553 return float32_sub(three, float32_mul(a, b, s), s);
2556 /* NEON helpers. */
2558 /* TODO: The architecture specifies the value that the estimate functions
2559 should return. We return the exact reciprocal/root instead. */
2560 float32 HELPER(recpe_f32)(float32 a, CPUState *env)
2562 float_status *s = &env->vfp.fp_status;
2563 float32 one = int32_to_float32(1, s);
2564 return float32_div(one, a, s);
2567 float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
2569 float_status *s = &env->vfp.fp_status;
2570 float32 one = int32_to_float32(1, s);
2571 return float32_div(one, float32_sqrt(a, s), s);
2574 uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
2576 float_status *s = &env->vfp.fp_status;
2577 float32 tmp;
2578 tmp = int32_to_float32(a, s);
2579 tmp = float32_scalbn(tmp, -32, s);
2580 tmp = helper_recpe_f32(tmp, env);
2581 tmp = float32_scalbn(tmp, 31, s);
2582 return float32_to_int32(tmp, s);
2585 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
2587 float_status *s = &env->vfp.fp_status;
2588 float32 tmp;
2589 tmp = int32_to_float32(a, s);
2590 tmp = float32_scalbn(tmp, -32, s);
2591 tmp = helper_rsqrte_f32(tmp, env);
2592 tmp = float32_scalbn(tmp, 31, s);
2593 return float32_to_int32(tmp, s);
2596 void HELPER(set_teecr)(CPUState *env, uint32_t val)
2598 val &= 1;
2599 if (env->teecr != val) {
2600 env->teecr = val;
2601 tb_flush(env);