3 #include "exec/gdbstub.h"
4 #include "exec/helper-proto.h"
5 #include "qemu/host-utils.h"
6 #include "sysemu/arch_init.h"
7 #include "sysemu/sysemu.h"
8 #include "qemu/bitops.h"
9 #include "qemu/crc32c.h"
10 #include "exec/cpu_ldst.h"
12 #include <zlib.h> /* For crc32 */
13 #include "exec/semihost.h"
15 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
17 #ifndef CONFIG_USER_ONLY
18 static inline bool get_phys_addr(CPUARMState
*env
, target_ulong address
,
19 int access_type
, ARMMMUIdx mmu_idx
,
20 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
21 target_ulong
*page_size
, uint32_t *fsr
);
23 /* Definitions for the PMCCNTR and PMCR registers */
29 static int vfp_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
33 /* VFP data registers are always little-endian. */
34 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
36 stfq_le_p(buf
, env
->vfp
.regs
[reg
]);
39 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
40 /* Aliases for Q regs. */
43 stfq_le_p(buf
, env
->vfp
.regs
[(reg
- 32) * 2]);
44 stfq_le_p(buf
+ 8, env
->vfp
.regs
[(reg
- 32) * 2 + 1]);
48 switch (reg
- nregs
) {
49 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
50 case 1: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSCR
]); return 4;
51 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
56 static int vfp_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
60 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
62 env
->vfp
.regs
[reg
] = ldfq_le_p(buf
);
65 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
68 env
->vfp
.regs
[(reg
- 32) * 2] = ldfq_le_p(buf
);
69 env
->vfp
.regs
[(reg
- 32) * 2 + 1] = ldfq_le_p(buf
+ 8);
73 switch (reg
- nregs
) {
74 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
75 case 1: env
->vfp
.xregs
[ARM_VFP_FPSCR
] = ldl_p(buf
); return 4;
76 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
) & (1 << 30); return 4;
81 static int aarch64_fpu_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
85 /* 128 bit FP register */
86 stfq_le_p(buf
, env
->vfp
.regs
[reg
* 2]);
87 stfq_le_p(buf
+ 8, env
->vfp
.regs
[reg
* 2 + 1]);
91 stl_p(buf
, vfp_get_fpsr(env
));
95 stl_p(buf
, vfp_get_fpcr(env
));
102 static int aarch64_fpu_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
106 /* 128 bit FP register */
107 env
->vfp
.regs
[reg
* 2] = ldfq_le_p(buf
);
108 env
->vfp
.regs
[reg
* 2 + 1] = ldfq_le_p(buf
+ 8);
112 vfp_set_fpsr(env
, ldl_p(buf
));
116 vfp_set_fpcr(env
, ldl_p(buf
));
123 static uint64_t raw_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
125 assert(ri
->fieldoffset
);
126 if (cpreg_field_is_64bit(ri
)) {
127 return CPREG_FIELD64(env
, ri
);
129 return CPREG_FIELD32(env
, ri
);
133 static void raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
136 assert(ri
->fieldoffset
);
137 if (cpreg_field_is_64bit(ri
)) {
138 CPREG_FIELD64(env
, ri
) = value
;
140 CPREG_FIELD32(env
, ri
) = value
;
144 static void *raw_ptr(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
146 return (char *)env
+ ri
->fieldoffset
;
149 uint64_t read_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
151 /* Raw read of a coprocessor register (as needed for migration, etc). */
152 if (ri
->type
& ARM_CP_CONST
) {
153 return ri
->resetvalue
;
154 } else if (ri
->raw_readfn
) {
155 return ri
->raw_readfn(env
, ri
);
156 } else if (ri
->readfn
) {
157 return ri
->readfn(env
, ri
);
159 return raw_read(env
, ri
);
163 static void write_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
166 /* Raw write of a coprocessor register (as needed for migration, etc).
167 * Note that constant registers are treated as write-ignored; the
168 * caller should check for success by whether a readback gives the
171 if (ri
->type
& ARM_CP_CONST
) {
173 } else if (ri
->raw_writefn
) {
174 ri
->raw_writefn(env
, ri
, v
);
175 } else if (ri
->writefn
) {
176 ri
->writefn(env
, ri
, v
);
178 raw_write(env
, ri
, v
);
182 static bool raw_accessors_invalid(const ARMCPRegInfo
*ri
)
184 /* Return true if the regdef would cause an assertion if you called
185 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
186 * program bug for it not to have the NO_RAW flag).
187 * NB that returning false here doesn't necessarily mean that calling
188 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
189 * read/write access functions which are safe for raw use" from "has
190 * read/write access functions which have side effects but has forgotten
191 * to provide raw access functions".
192 * The tests here line up with the conditions in read/write_raw_cp_reg()
193 * and assertions in raw_read()/raw_write().
195 if ((ri
->type
& ARM_CP_CONST
) ||
197 ((ri
->raw_writefn
|| ri
->writefn
) && (ri
->raw_readfn
|| ri
->readfn
))) {
203 bool write_cpustate_to_list(ARMCPU
*cpu
)
205 /* Write the coprocessor state from cpu->env to the (index,value) list. */
209 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
210 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
211 const ARMCPRegInfo
*ri
;
213 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
218 if (ri
->type
& ARM_CP_NO_RAW
) {
221 cpu
->cpreg_values
[i
] = read_raw_cp_reg(&cpu
->env
, ri
);
226 bool write_list_to_cpustate(ARMCPU
*cpu
)
231 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
232 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
233 uint64_t v
= cpu
->cpreg_values
[i
];
234 const ARMCPRegInfo
*ri
;
236 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
241 if (ri
->type
& ARM_CP_NO_RAW
) {
244 /* Write value and confirm it reads back as written
245 * (to catch read-only registers and partially read-only
246 * registers where the incoming migration value doesn't match)
248 write_raw_cp_reg(&cpu
->env
, ri
, v
);
249 if (read_raw_cp_reg(&cpu
->env
, ri
) != v
) {
256 static void add_cpreg_to_list(gpointer key
, gpointer opaque
)
258 ARMCPU
*cpu
= opaque
;
260 const ARMCPRegInfo
*ri
;
262 regidx
= *(uint32_t *)key
;
263 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
265 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
266 cpu
->cpreg_indexes
[cpu
->cpreg_array_len
] = cpreg_to_kvm_id(regidx
);
267 /* The value array need not be initialized at this point */
268 cpu
->cpreg_array_len
++;
272 static void count_cpreg(gpointer key
, gpointer opaque
)
274 ARMCPU
*cpu
= opaque
;
276 const ARMCPRegInfo
*ri
;
278 regidx
= *(uint32_t *)key
;
279 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
281 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
282 cpu
->cpreg_array_len
++;
286 static gint
cpreg_key_compare(gconstpointer a
, gconstpointer b
)
288 uint64_t aidx
= cpreg_to_kvm_id(*(uint32_t *)a
);
289 uint64_t bidx
= cpreg_to_kvm_id(*(uint32_t *)b
);
300 void init_cpreg_list(ARMCPU
*cpu
)
302 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
303 * Note that we require cpreg_tuples[] to be sorted by key ID.
308 keys
= g_hash_table_get_keys(cpu
->cp_regs
);
309 keys
= g_list_sort(keys
, cpreg_key_compare
);
311 cpu
->cpreg_array_len
= 0;
313 g_list_foreach(keys
, count_cpreg
, cpu
);
315 arraylen
= cpu
->cpreg_array_len
;
316 cpu
->cpreg_indexes
= g_new(uint64_t, arraylen
);
317 cpu
->cpreg_values
= g_new(uint64_t, arraylen
);
318 cpu
->cpreg_vmstate_indexes
= g_new(uint64_t, arraylen
);
319 cpu
->cpreg_vmstate_values
= g_new(uint64_t, arraylen
);
320 cpu
->cpreg_vmstate_array_len
= cpu
->cpreg_array_len
;
321 cpu
->cpreg_array_len
= 0;
323 g_list_foreach(keys
, add_cpreg_to_list
, cpu
);
325 assert(cpu
->cpreg_array_len
== arraylen
);
331 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
332 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
334 * access_el3_aa32ns: Used to check AArch32 register views.
335 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
337 static CPAccessResult
access_el3_aa32ns(CPUARMState
*env
,
338 const ARMCPRegInfo
*ri
)
340 bool secure
= arm_is_secure_below_el3(env
);
342 assert(!arm_el_is_aa64(env
, 3));
344 return CP_ACCESS_TRAP_UNCATEGORIZED
;
349 static CPAccessResult
access_el3_aa32ns_aa64any(CPUARMState
*env
,
350 const ARMCPRegInfo
*ri
)
352 if (!arm_el_is_aa64(env
, 3)) {
353 return access_el3_aa32ns(env
, ri
);
358 static void dacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
360 ARMCPU
*cpu
= arm_env_get_cpu(env
);
362 raw_write(env
, ri
, value
);
363 tlb_flush(CPU(cpu
), 1); /* Flush TLB as domain not tracked in TLB */
366 static void fcse_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
368 ARMCPU
*cpu
= arm_env_get_cpu(env
);
370 if (raw_read(env
, ri
) != value
) {
371 /* Unlike real hardware the qemu TLB uses virtual addresses,
372 * not modified virtual addresses, so this causes a TLB flush.
374 tlb_flush(CPU(cpu
), 1);
375 raw_write(env
, ri
, value
);
379 static void contextidr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
382 ARMCPU
*cpu
= arm_env_get_cpu(env
);
384 if (raw_read(env
, ri
) != value
&& !arm_feature(env
, ARM_FEATURE_MPU
)
385 && !extended_addresses_enabled(env
)) {
386 /* For VMSA (when not using the LPAE long descriptor page table
387 * format) this register includes the ASID, so do a TLB flush.
388 * For PMSA it is purely a process ID and no action is needed.
390 tlb_flush(CPU(cpu
), 1);
392 raw_write(env
, ri
, value
);
395 static void tlbiall_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
398 /* Invalidate all (TLBIALL) */
399 ARMCPU
*cpu
= arm_env_get_cpu(env
);
401 tlb_flush(CPU(cpu
), 1);
404 static void tlbimva_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
407 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
408 ARMCPU
*cpu
= arm_env_get_cpu(env
);
410 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
413 static void tlbiasid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
416 /* Invalidate by ASID (TLBIASID) */
417 ARMCPU
*cpu
= arm_env_get_cpu(env
);
419 tlb_flush(CPU(cpu
), value
== 0);
422 static void tlbimvaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
425 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
426 ARMCPU
*cpu
= arm_env_get_cpu(env
);
428 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
431 /* IS variants of TLB operations must affect all cores */
432 static void tlbiall_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
437 CPU_FOREACH(other_cs
) {
438 tlb_flush(other_cs
, 1);
442 static void tlbiasid_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
447 CPU_FOREACH(other_cs
) {
448 tlb_flush(other_cs
, value
== 0);
452 static void tlbimva_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
457 CPU_FOREACH(other_cs
) {
458 tlb_flush_page(other_cs
, value
& TARGET_PAGE_MASK
);
462 static void tlbimvaa_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
467 CPU_FOREACH(other_cs
) {
468 tlb_flush_page(other_cs
, value
& TARGET_PAGE_MASK
);
472 static const ARMCPRegInfo cp_reginfo
[] = {
473 /* Define the secure and non-secure FCSE identifier CP registers
474 * separately because there is no secure bank in V8 (no _EL3). This allows
475 * the secure register to be properly reset and migrated. There is also no
476 * v8 EL1 version of the register so the non-secure instance stands alone.
478 { .name
= "FCSEIDR(NS)",
479 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
480 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
481 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_ns
),
482 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
483 { .name
= "FCSEIDR(S)",
484 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
485 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
486 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_s
),
487 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
488 /* Define the secure and non-secure context identifier CP registers
489 * separately because there is no secure bank in V8 (no _EL3). This allows
490 * the secure register to be properly reset and migrated. In the
491 * non-secure case, the 32-bit register will have reset and migration
492 * disabled during registration as it is handled by the 64-bit instance.
494 { .name
= "CONTEXTIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
495 .opc0
= 3, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
496 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
497 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_el
[1]),
498 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
499 { .name
= "CONTEXTIDR(S)", .state
= ARM_CP_STATE_AA32
,
500 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
501 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
502 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_s
),
503 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
507 static const ARMCPRegInfo not_v8_cp_reginfo
[] = {
508 /* NB: Some of these registers exist in v8 but with more precise
509 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
511 /* MMU Domain access control / MPU write buffer control */
513 .cp
= 15, .opc1
= CP_ANY
, .crn
= 3, .crm
= CP_ANY
, .opc2
= CP_ANY
,
514 .access
= PL1_RW
, .resetvalue
= 0,
515 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
516 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
517 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
518 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
519 * For v6 and v5, these mappings are overly broad.
521 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 0,
522 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
523 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 1,
524 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
525 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 4,
526 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
527 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 8,
528 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
529 /* Cache maintenance ops; some of this space may be overridden later. */
530 { .name
= "CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
531 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
532 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
},
536 static const ARMCPRegInfo not_v6_cp_reginfo
[] = {
537 /* Not all pre-v6 cores implemented this WFI, so this is slightly
540 { .name
= "WFI_v5", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= 2,
541 .access
= PL1_W
, .type
= ARM_CP_WFI
},
545 static const ARMCPRegInfo not_v7_cp_reginfo
[] = {
546 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
547 * is UNPREDICTABLE; we choose to NOP as most implementations do).
549 { .name
= "WFI_v6", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
550 .access
= PL1_W
, .type
= ARM_CP_WFI
},
551 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
552 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
553 * OMAPCP will override this space.
555 { .name
= "DLOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 0,
556 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_data
),
558 { .name
= "ILOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 1,
559 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_insn
),
561 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
562 { .name
= "DUMMY", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= CP_ANY
,
563 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
565 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
566 * implementing it as RAZ means the "debug architecture version" bits
567 * will read as a reserved value, which should cause Linux to not try
568 * to use the debug hardware.
570 { .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
571 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
572 /* MMU TLB control. Note that the wildcarding means we cover not just
573 * the unified TLB ops but also the dside/iside/inner-shareable variants.
575 { .name
= "TLBIALL", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
576 .opc1
= CP_ANY
, .opc2
= 0, .access
= PL1_W
, .writefn
= tlbiall_write
,
577 .type
= ARM_CP_NO_RAW
},
578 { .name
= "TLBIMVA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
579 .opc1
= CP_ANY
, .opc2
= 1, .access
= PL1_W
, .writefn
= tlbimva_write
,
580 .type
= ARM_CP_NO_RAW
},
581 { .name
= "TLBIASID", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
582 .opc1
= CP_ANY
, .opc2
= 2, .access
= PL1_W
, .writefn
= tlbiasid_write
,
583 .type
= ARM_CP_NO_RAW
},
584 { .name
= "TLBIMVAA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
585 .opc1
= CP_ANY
, .opc2
= 3, .access
= PL1_W
, .writefn
= tlbimvaa_write
,
586 .type
= ARM_CP_NO_RAW
},
587 { .name
= "PRRR", .cp
= 15, .crn
= 10, .crm
= 2,
588 .opc1
= 0, .opc2
= 0, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
589 { .name
= "NMRR", .cp
= 15, .crn
= 10, .crm
= 2,
590 .opc1
= 0, .opc2
= 1, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
594 static void cpacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
599 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
600 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
601 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
602 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
603 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
605 if (arm_feature(env
, ARM_FEATURE_VFP
)) {
606 /* VFP coprocessor: cp10 & cp11 [23:20] */
607 mask
|= (1 << 31) | (1 << 30) | (0xf << 20);
609 if (!arm_feature(env
, ARM_FEATURE_NEON
)) {
610 /* ASEDIS [31] bit is RAO/WI */
614 /* VFPv3 and upwards with NEON implement 32 double precision
615 * registers (D0-D31).
617 if (!arm_feature(env
, ARM_FEATURE_NEON
) ||
618 !arm_feature(env
, ARM_FEATURE_VFP3
)) {
619 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
625 env
->cp15
.cpacr_el1
= value
;
628 static CPAccessResult
cpacr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
630 if (arm_feature(env
, ARM_FEATURE_V8
)) {
631 /* Check if CPACR accesses are to be trapped to EL2 */
632 if (arm_current_el(env
) == 1 &&
633 (env
->cp15
.cptr_el
[2] & CPTR_TCPAC
) && !arm_is_secure(env
)) {
634 return CP_ACCESS_TRAP_EL2
;
635 /* Check if CPACR accesses are to be trapped to EL3 */
636 } else if (arm_current_el(env
) < 3 &&
637 (env
->cp15
.cptr_el
[3] & CPTR_TCPAC
)) {
638 return CP_ACCESS_TRAP_EL3
;
645 static CPAccessResult
cptr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
647 /* Check if CPTR accesses are set to trap to EL3 */
648 if (arm_current_el(env
) == 2 && (env
->cp15
.cptr_el
[3] & CPTR_TCPAC
)) {
649 return CP_ACCESS_TRAP_EL3
;
655 static const ARMCPRegInfo v6_cp_reginfo
[] = {
656 /* prefetch by MVA in v6, NOP in v7 */
657 { .name
= "MVA_prefetch",
658 .cp
= 15, .crn
= 7, .crm
= 13, .opc1
= 0, .opc2
= 1,
659 .access
= PL1_W
, .type
= ARM_CP_NOP
},
660 { .name
= "ISB", .cp
= 15, .crn
= 7, .crm
= 5, .opc1
= 0, .opc2
= 4,
661 .access
= PL0_W
, .type
= ARM_CP_NOP
},
662 { .name
= "DSB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 4,
663 .access
= PL0_W
, .type
= ARM_CP_NOP
},
664 { .name
= "DMB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 5,
665 .access
= PL0_W
, .type
= ARM_CP_NOP
},
666 { .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 2,
668 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ifar_s
),
669 offsetof(CPUARMState
, cp15
.ifar_ns
) },
671 /* Watchpoint Fault Address Register : should actually only be present
672 * for 1136, 1176, 11MPCore.
674 { .name
= "WFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
675 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0, },
676 { .name
= "CPACR", .state
= ARM_CP_STATE_BOTH
, .opc0
= 3,
677 .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 2, .accessfn
= cpacr_access
,
678 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.cpacr_el1
),
679 .resetvalue
= 0, .writefn
= cpacr_write
},
683 static CPAccessResult
pmreg_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
685 /* Performance monitor registers user accessibility is controlled
688 if (arm_current_el(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
689 return CP_ACCESS_TRAP
;
694 #ifndef CONFIG_USER_ONLY
696 static inline bool arm_ccnt_enabled(CPUARMState
*env
)
698 /* This does not support checking PMCCFILTR_EL0 register */
700 if (!(env
->cp15
.c9_pmcr
& PMCRE
)) {
707 void pmccntr_sync(CPUARMState
*env
)
711 temp_ticks
= muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
712 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
714 if (env
->cp15
.c9_pmcr
& PMCRD
) {
715 /* Increment once every 64 processor clock cycles */
719 if (arm_ccnt_enabled(env
)) {
720 env
->cp15
.c15_ccnt
= temp_ticks
- env
->cp15
.c15_ccnt
;
724 static void pmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
730 /* The counter has been reset */
731 env
->cp15
.c15_ccnt
= 0;
734 /* only the DP, X, D and E bits are writable */
735 env
->cp15
.c9_pmcr
&= ~0x39;
736 env
->cp15
.c9_pmcr
|= (value
& 0x39);
741 static uint64_t pmccntr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
743 uint64_t total_ticks
;
745 if (!arm_ccnt_enabled(env
)) {
746 /* Counter is disabled, do not change value */
747 return env
->cp15
.c15_ccnt
;
750 total_ticks
= muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
751 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
753 if (env
->cp15
.c9_pmcr
& PMCRD
) {
754 /* Increment once every 64 processor clock cycles */
757 return total_ticks
- env
->cp15
.c15_ccnt
;
760 static void pmccntr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
763 uint64_t total_ticks
;
765 if (!arm_ccnt_enabled(env
)) {
766 /* Counter is disabled, set the absolute value */
767 env
->cp15
.c15_ccnt
= value
;
771 total_ticks
= muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
772 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
774 if (env
->cp15
.c9_pmcr
& PMCRD
) {
775 /* Increment once every 64 processor clock cycles */
778 env
->cp15
.c15_ccnt
= total_ticks
- value
;
781 static void pmccntr_write32(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
784 uint64_t cur_val
= pmccntr_read(env
, NULL
);
786 pmccntr_write(env
, ri
, deposit64(cur_val
, 0, 32, value
));
789 #else /* CONFIG_USER_ONLY */
791 void pmccntr_sync(CPUARMState
*env
)
797 static void pmccfiltr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
801 env
->cp15
.pmccfiltr_el0
= value
& 0x7E000000;
805 static void pmcntenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
809 env
->cp15
.c9_pmcnten
|= value
;
812 static void pmcntenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
816 env
->cp15
.c9_pmcnten
&= ~value
;
819 static void pmovsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
822 env
->cp15
.c9_pmovsr
&= ~value
;
825 static void pmxevtyper_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
828 env
->cp15
.c9_pmxevtyper
= value
& 0xff;
831 static void pmuserenr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
834 env
->cp15
.c9_pmuserenr
= value
& 1;
837 static void pmintenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
840 /* We have no event counters so only the C bit can be changed */
842 env
->cp15
.c9_pminten
|= value
;
845 static void pmintenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
849 env
->cp15
.c9_pminten
&= ~value
;
852 static void vbar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
855 /* Note that even though the AArch64 view of this register has bits
856 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
857 * architectural requirements for bits which are RES0 only in some
858 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
859 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
861 raw_write(env
, ri
, value
& ~0x1FULL
);
864 static void scr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
866 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
867 * For bits that vary between AArch32/64, code needs to check the
868 * current execution mode before directly using the feature bit.
870 uint32_t valid_mask
= SCR_AARCH64_MASK
| SCR_AARCH32_MASK
;
872 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
873 valid_mask
&= ~SCR_HCE
;
875 /* On ARMv7, SMD (or SCD as it is called in v7) is only
876 * supported if EL2 exists. The bit is UNK/SBZP when
877 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
878 * when EL2 is unavailable.
879 * On ARMv8, this bit is always available.
881 if (arm_feature(env
, ARM_FEATURE_V7
) &&
882 !arm_feature(env
, ARM_FEATURE_V8
)) {
883 valid_mask
&= ~SCR_SMD
;
887 /* Clear all-context RES0 bits. */
889 raw_write(env
, ri
, value
);
892 static uint64_t ccsidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
894 ARMCPU
*cpu
= arm_env_get_cpu(env
);
896 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
899 uint32_t index
= A32_BANKED_REG_GET(env
, csselr
,
900 ri
->secure
& ARM_CP_SECSTATE_S
);
902 return cpu
->ccsidr
[index
];
905 static void csselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
908 raw_write(env
, ri
, value
& 0xf);
911 static uint64_t isr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
913 CPUState
*cs
= ENV_GET_CPU(env
);
916 if (cs
->interrupt_request
& CPU_INTERRUPT_HARD
) {
919 if (cs
->interrupt_request
& CPU_INTERRUPT_FIQ
) {
922 /* External aborts are not possible in QEMU so A bit is always clear */
926 static const ARMCPRegInfo v7_cp_reginfo
[] = {
927 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
928 { .name
= "NOP", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
929 .access
= PL1_W
, .type
= ARM_CP_NOP
},
930 /* Performance monitors are implementation defined in v7,
931 * but with an ARM recommended set of registers, which we
932 * follow (although we don't actually implement any counters)
934 * Performance registers fall into three categories:
935 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
936 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
937 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
938 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
939 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
941 { .name
= "PMCNTENSET", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 1,
942 .access
= PL0_RW
, .type
= ARM_CP_ALIAS
,
943 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
944 .writefn
= pmcntenset_write
,
945 .accessfn
= pmreg_access
,
946 .raw_writefn
= raw_write
},
947 { .name
= "PMCNTENSET_EL0", .state
= ARM_CP_STATE_AA64
,
948 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 1,
949 .access
= PL0_RW
, .accessfn
= pmreg_access
,
950 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
), .resetvalue
= 0,
951 .writefn
= pmcntenset_write
, .raw_writefn
= raw_write
},
952 { .name
= "PMCNTENCLR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 2,
954 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
955 .accessfn
= pmreg_access
,
956 .writefn
= pmcntenclr_write
,
957 .type
= ARM_CP_ALIAS
},
958 { .name
= "PMCNTENCLR_EL0", .state
= ARM_CP_STATE_AA64
,
959 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 2,
960 .access
= PL0_RW
, .accessfn
= pmreg_access
,
961 .type
= ARM_CP_ALIAS
,
962 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
963 .writefn
= pmcntenclr_write
},
964 { .name
= "PMOVSR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 3,
965 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
966 .accessfn
= pmreg_access
,
967 .writefn
= pmovsr_write
,
968 .raw_writefn
= raw_write
},
969 /* Unimplemented so WI. */
970 { .name
= "PMSWINC", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 4,
971 .access
= PL0_W
, .accessfn
= pmreg_access
, .type
= ARM_CP_NOP
},
972 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
973 * We choose to RAZ/WI.
975 { .name
= "PMSELR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 5,
976 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
977 .accessfn
= pmreg_access
},
978 #ifndef CONFIG_USER_ONLY
979 { .name
= "PMCCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 0,
980 .access
= PL0_RW
, .resetvalue
= 0, .type
= ARM_CP_IO
,
981 .readfn
= pmccntr_read
, .writefn
= pmccntr_write32
,
982 .accessfn
= pmreg_access
},
983 { .name
= "PMCCNTR_EL0", .state
= ARM_CP_STATE_AA64
,
984 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 13, .opc2
= 0,
985 .access
= PL0_RW
, .accessfn
= pmreg_access
,
987 .readfn
= pmccntr_read
, .writefn
= pmccntr_write
, },
989 { .name
= "PMCCFILTR_EL0", .state
= ARM_CP_STATE_AA64
,
990 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 15, .opc2
= 7,
991 .writefn
= pmccfiltr_write
,
992 .access
= PL0_RW
, .accessfn
= pmreg_access
,
994 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmccfiltr_el0
),
996 { .name
= "PMXEVTYPER", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 1,
998 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmxevtyper
),
999 .accessfn
= pmreg_access
, .writefn
= pmxevtyper_write
,
1000 .raw_writefn
= raw_write
},
1001 /* Unimplemented, RAZ/WI. */
1002 { .name
= "PMXEVCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 2,
1003 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
1004 .accessfn
= pmreg_access
},
1005 { .name
= "PMUSERENR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 0,
1006 .access
= PL0_R
| PL1_RW
,
1007 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
1009 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
1010 { .name
= "PMINTENSET", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 1,
1012 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
1014 .writefn
= pmintenset_write
, .raw_writefn
= raw_write
},
1015 { .name
= "PMINTENCLR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 2,
1016 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
1017 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
1018 .writefn
= pmintenclr_write
, },
1019 { .name
= "VBAR", .state
= ARM_CP_STATE_BOTH
,
1020 .opc0
= 3, .crn
= 12, .crm
= 0, .opc1
= 0, .opc2
= 0,
1021 .access
= PL1_RW
, .writefn
= vbar_write
,
1022 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.vbar_s
),
1023 offsetof(CPUARMState
, cp15
.vbar_ns
) },
1025 { .name
= "CCSIDR", .state
= ARM_CP_STATE_BOTH
,
1026 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 0,
1027 .access
= PL1_R
, .readfn
= ccsidr_read
, .type
= ARM_CP_NO_RAW
},
1028 { .name
= "CSSELR", .state
= ARM_CP_STATE_BOTH
,
1029 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 2, .opc2
= 0,
1030 .access
= PL1_RW
, .writefn
= csselr_write
, .resetvalue
= 0,
1031 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.csselr_s
),
1032 offsetof(CPUARMState
, cp15
.csselr_ns
) } },
1033 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1034 * just RAZ for all cores:
1036 { .name
= "AIDR", .state
= ARM_CP_STATE_BOTH
,
1037 .opc0
= 3, .opc1
= 1, .crn
= 0, .crm
= 0, .opc2
= 7,
1038 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1039 /* Auxiliary fault status registers: these also are IMPDEF, and we
1040 * choose to RAZ/WI for all cores.
1042 { .name
= "AFSR0_EL1", .state
= ARM_CP_STATE_BOTH
,
1043 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 0,
1044 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1045 { .name
= "AFSR1_EL1", .state
= ARM_CP_STATE_BOTH
,
1046 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 1,
1047 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1048 /* MAIR can just read-as-written because we don't implement caches
1049 * and so don't need to care about memory attributes.
1051 { .name
= "MAIR_EL1", .state
= ARM_CP_STATE_AA64
,
1052 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0,
1053 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[1]),
1055 { .name
= "MAIR_EL3", .state
= ARM_CP_STATE_AA64
,
1056 .opc0
= 3, .opc1
= 6, .crn
= 10, .crm
= 2, .opc2
= 0,
1057 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[3]),
1059 /* For non-long-descriptor page tables these are PRRR and NMRR;
1060 * regardless they still act as reads-as-written for QEMU.
1062 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1063 * allows them to assign the correct fieldoffset based on the endianness
1064 * handled in the field definitions.
1066 { .name
= "MAIR0", .state
= ARM_CP_STATE_AA32
,
1067 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0, .access
= PL1_RW
,
1068 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair0_s
),
1069 offsetof(CPUARMState
, cp15
.mair0_ns
) },
1070 .resetfn
= arm_cp_reset_ignore
},
1071 { .name
= "MAIR1", .state
= ARM_CP_STATE_AA32
,
1072 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 1, .access
= PL1_RW
,
1073 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair1_s
),
1074 offsetof(CPUARMState
, cp15
.mair1_ns
) },
1075 .resetfn
= arm_cp_reset_ignore
},
1076 { .name
= "ISR_EL1", .state
= ARM_CP_STATE_BOTH
,
1077 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 1, .opc2
= 0,
1078 .type
= ARM_CP_NO_RAW
, .access
= PL1_R
, .readfn
= isr_read
},
1079 /* 32 bit ITLB invalidates */
1080 { .name
= "ITLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 0,
1081 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1082 { .name
= "ITLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 1,
1083 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1084 { .name
= "ITLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 2,
1085 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1086 /* 32 bit DTLB invalidates */
1087 { .name
= "DTLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 0,
1088 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1089 { .name
= "DTLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 1,
1090 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1091 { .name
= "DTLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 2,
1092 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1093 /* 32 bit TLB invalidates */
1094 { .name
= "TLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
1095 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1096 { .name
= "TLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
1097 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1098 { .name
= "TLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
1099 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1100 { .name
= "TLBIMVAA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
1101 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
1105 static const ARMCPRegInfo v7mp_cp_reginfo
[] = {
1106 /* 32 bit TLB invalidates, Inner Shareable */
1107 { .name
= "TLBIALLIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
1108 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_is_write
},
1109 { .name
= "TLBIMVAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
1110 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
1111 { .name
= "TLBIASIDIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
1112 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
1113 .writefn
= tlbiasid_is_write
},
1114 { .name
= "TLBIMVAAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
1115 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
1116 .writefn
= tlbimvaa_is_write
},
1120 static void teecr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1127 static CPAccessResult
teehbr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1129 if (arm_current_el(env
) == 0 && (env
->teecr
& 1)) {
1130 return CP_ACCESS_TRAP
;
1132 return CP_ACCESS_OK
;
1135 static const ARMCPRegInfo t2ee_cp_reginfo
[] = {
1136 { .name
= "TEECR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 6, .opc2
= 0,
1137 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, teecr
),
1139 .writefn
= teecr_write
},
1140 { .name
= "TEEHBR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 6, .opc2
= 0,
1141 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, teehbr
),
1142 .accessfn
= teehbr_access
, .resetvalue
= 0 },
1146 static const ARMCPRegInfo v6k_cp_reginfo
[] = {
1147 { .name
= "TPIDR_EL0", .state
= ARM_CP_STATE_AA64
,
1148 .opc0
= 3, .opc1
= 3, .opc2
= 2, .crn
= 13, .crm
= 0,
1150 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[0]), .resetvalue
= 0 },
1151 { .name
= "TPIDRURW", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 2,
1153 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrurw_s
),
1154 offsetoflow32(CPUARMState
, cp15
.tpidrurw_ns
) },
1155 .resetfn
= arm_cp_reset_ignore
},
1156 { .name
= "TPIDRRO_EL0", .state
= ARM_CP_STATE_AA64
,
1157 .opc0
= 3, .opc1
= 3, .opc2
= 3, .crn
= 13, .crm
= 0,
1158 .access
= PL0_R
|PL1_W
,
1159 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidrro_el
[0]),
1161 { .name
= "TPIDRURO", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 3,
1162 .access
= PL0_R
|PL1_W
,
1163 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidruro_s
),
1164 offsetoflow32(CPUARMState
, cp15
.tpidruro_ns
) },
1165 .resetfn
= arm_cp_reset_ignore
},
1166 { .name
= "TPIDR_EL1", .state
= ARM_CP_STATE_AA64
,
1167 .opc0
= 3, .opc1
= 0, .opc2
= 4, .crn
= 13, .crm
= 0,
1169 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[1]), .resetvalue
= 0 },
1170 { .name
= "TPIDRPRW", .opc1
= 0, .cp
= 15, .crn
= 13, .crm
= 0, .opc2
= 4,
1172 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrprw_s
),
1173 offsetoflow32(CPUARMState
, cp15
.tpidrprw_ns
) },
1178 #ifndef CONFIG_USER_ONLY
1180 static CPAccessResult
gt_cntfrq_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1182 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
1183 if (arm_current_el(env
) == 0 && !extract32(env
->cp15
.c14_cntkctl
, 0, 2)) {
1184 return CP_ACCESS_TRAP
;
1186 return CP_ACCESS_OK
;
1189 static CPAccessResult
gt_counter_access(CPUARMState
*env
, int timeridx
)
1191 unsigned int cur_el
= arm_current_el(env
);
1192 bool secure
= arm_is_secure(env
);
1194 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1196 !extract32(env
->cp15
.c14_cntkctl
, timeridx
, 1)) {
1197 return CP_ACCESS_TRAP
;
1200 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
1201 timeridx
== GTIMER_PHYS
&& !secure
&& cur_el
< 2 &&
1202 !extract32(env
->cp15
.cnthctl_el2
, 0, 1)) {
1203 return CP_ACCESS_TRAP_EL2
;
1205 return CP_ACCESS_OK
;
1208 static CPAccessResult
gt_timer_access(CPUARMState
*env
, int timeridx
)
1210 unsigned int cur_el
= arm_current_el(env
);
1211 bool secure
= arm_is_secure(env
);
1213 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1214 * EL0[PV]TEN is zero.
1217 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
1218 return CP_ACCESS_TRAP
;
1221 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
1222 timeridx
== GTIMER_PHYS
&& !secure
&& cur_el
< 2 &&
1223 !extract32(env
->cp15
.cnthctl_el2
, 1, 1)) {
1224 return CP_ACCESS_TRAP_EL2
;
1226 return CP_ACCESS_OK
;
1229 static CPAccessResult
gt_pct_access(CPUARMState
*env
,
1230 const ARMCPRegInfo
*ri
)
1232 return gt_counter_access(env
, GTIMER_PHYS
);
1235 static CPAccessResult
gt_vct_access(CPUARMState
*env
,
1236 const ARMCPRegInfo
*ri
)
1238 return gt_counter_access(env
, GTIMER_VIRT
);
1241 static CPAccessResult
gt_ptimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1243 return gt_timer_access(env
, GTIMER_PHYS
);
1246 static CPAccessResult
gt_vtimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1248 return gt_timer_access(env
, GTIMER_VIRT
);
1251 static CPAccessResult
gt_stimer_access(CPUARMState
*env
,
1252 const ARMCPRegInfo
*ri
)
1254 /* The AArch64 register view of the secure physical timer is
1255 * always accessible from EL3, and configurably accessible from
1258 switch (arm_current_el(env
)) {
1260 if (!arm_is_secure(env
)) {
1261 return CP_ACCESS_TRAP
;
1263 if (!(env
->cp15
.scr_el3
& SCR_ST
)) {
1264 return CP_ACCESS_TRAP_EL3
;
1266 return CP_ACCESS_OK
;
1269 return CP_ACCESS_TRAP
;
1271 return CP_ACCESS_OK
;
1273 g_assert_not_reached();
1277 static uint64_t gt_get_countervalue(CPUARMState
*env
)
1279 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) / GTIMER_SCALE
;
1282 static void gt_recalc_timer(ARMCPU
*cpu
, int timeridx
)
1284 ARMGenericTimer
*gt
= &cpu
->env
.cp15
.c14_timer
[timeridx
];
1287 /* Timer enabled: calculate and set current ISTATUS, irq, and
1288 * reset timer to when ISTATUS next has to change
1290 uint64_t offset
= timeridx
== GTIMER_VIRT
?
1291 cpu
->env
.cp15
.cntvoff_el2
: 0;
1292 uint64_t count
= gt_get_countervalue(&cpu
->env
);
1293 /* Note that this must be unsigned 64 bit arithmetic: */
1294 int istatus
= count
- offset
>= gt
->cval
;
1297 gt
->ctl
= deposit32(gt
->ctl
, 2, 1, istatus
);
1298 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
1299 (istatus
&& !(gt
->ctl
& 2)));
1301 /* Next transition is when count rolls back over to zero */
1302 nexttick
= UINT64_MAX
;
1304 /* Next transition is when we hit cval */
1305 nexttick
= gt
->cval
+ offset
;
1307 /* Note that the desired next expiry time might be beyond the
1308 * signed-64-bit range of a QEMUTimer -- in this case we just
1309 * set the timer for as far in the future as possible. When the
1310 * timer expires we will reset the timer for any remaining period.
1312 if (nexttick
> INT64_MAX
/ GTIMER_SCALE
) {
1313 nexttick
= INT64_MAX
/ GTIMER_SCALE
;
1315 timer_mod(cpu
->gt_timer
[timeridx
], nexttick
);
1317 /* Timer disabled: ISTATUS and timer output always clear */
1319 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], 0);
1320 timer_del(cpu
->gt_timer
[timeridx
]);
1324 static void gt_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1327 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1329 timer_del(cpu
->gt_timer
[timeridx
]);
1332 static uint64_t gt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1334 return gt_get_countervalue(env
);
1337 static uint64_t gt_virt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1339 return gt_get_countervalue(env
) - env
->cp15
.cntvoff_el2
;
1342 static void gt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1346 env
->cp15
.c14_timer
[timeridx
].cval
= value
;
1347 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1350 static uint64_t gt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1353 uint64_t offset
= timeridx
== GTIMER_VIRT
? env
->cp15
.cntvoff_el2
: 0;
1355 return (uint32_t)(env
->cp15
.c14_timer
[timeridx
].cval
-
1356 (gt_get_countervalue(env
) - offset
));
1359 static void gt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1363 uint64_t offset
= timeridx
== GTIMER_VIRT
? env
->cp15
.cntvoff_el2
: 0;
1365 env
->cp15
.c14_timer
[timeridx
].cval
= gt_get_countervalue(env
) - offset
+
1366 sextract64(value
, 0, 32);
1367 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1370 static void gt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1374 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1375 uint32_t oldval
= env
->cp15
.c14_timer
[timeridx
].ctl
;
1377 env
->cp15
.c14_timer
[timeridx
].ctl
= deposit64(oldval
, 0, 2, value
);
1378 if ((oldval
^ value
) & 1) {
1379 /* Enable toggled */
1380 gt_recalc_timer(cpu
, timeridx
);
1381 } else if ((oldval
^ value
) & 2) {
1382 /* IMASK toggled: don't need to recalculate,
1383 * just set the interrupt line based on ISTATUS
1385 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
1386 (oldval
& 4) && !(value
& 2));
1390 static void gt_phys_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1392 gt_timer_reset(env
, ri
, GTIMER_PHYS
);
1395 static void gt_phys_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1398 gt_cval_write(env
, ri
, GTIMER_PHYS
, value
);
1401 static uint64_t gt_phys_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1403 return gt_tval_read(env
, ri
, GTIMER_PHYS
);
1406 static void gt_phys_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1409 gt_tval_write(env
, ri
, GTIMER_PHYS
, value
);
1412 static void gt_phys_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1415 gt_ctl_write(env
, ri
, GTIMER_PHYS
, value
);
1418 static void gt_virt_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1420 gt_timer_reset(env
, ri
, GTIMER_VIRT
);
1423 static void gt_virt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1426 gt_cval_write(env
, ri
, GTIMER_VIRT
, value
);
1429 static uint64_t gt_virt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1431 return gt_tval_read(env
, ri
, GTIMER_VIRT
);
1434 static void gt_virt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1437 gt_tval_write(env
, ri
, GTIMER_VIRT
, value
);
1440 static void gt_virt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1443 gt_ctl_write(env
, ri
, GTIMER_VIRT
, value
);
1446 static void gt_cntvoff_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1449 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1451 raw_write(env
, ri
, value
);
1452 gt_recalc_timer(cpu
, GTIMER_VIRT
);
1455 static void gt_hyp_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1457 gt_timer_reset(env
, ri
, GTIMER_HYP
);
1460 static void gt_hyp_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1463 gt_cval_write(env
, ri
, GTIMER_HYP
, value
);
1466 static uint64_t gt_hyp_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1468 return gt_tval_read(env
, ri
, GTIMER_HYP
);
1471 static void gt_hyp_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1474 gt_tval_write(env
, ri
, GTIMER_HYP
, value
);
1477 static void gt_hyp_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1480 gt_ctl_write(env
, ri
, GTIMER_HYP
, value
);
1483 static void gt_sec_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1485 gt_timer_reset(env
, ri
, GTIMER_SEC
);
1488 static void gt_sec_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1491 gt_cval_write(env
, ri
, GTIMER_SEC
, value
);
1494 static uint64_t gt_sec_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1496 return gt_tval_read(env
, ri
, GTIMER_SEC
);
1499 static void gt_sec_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1502 gt_tval_write(env
, ri
, GTIMER_SEC
, value
);
1505 static void gt_sec_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1508 gt_ctl_write(env
, ri
, GTIMER_SEC
, value
);
1511 void arm_gt_ptimer_cb(void *opaque
)
1513 ARMCPU
*cpu
= opaque
;
1515 gt_recalc_timer(cpu
, GTIMER_PHYS
);
1518 void arm_gt_vtimer_cb(void *opaque
)
1520 ARMCPU
*cpu
= opaque
;
1522 gt_recalc_timer(cpu
, GTIMER_VIRT
);
1525 void arm_gt_htimer_cb(void *opaque
)
1527 ARMCPU
*cpu
= opaque
;
1529 gt_recalc_timer(cpu
, GTIMER_HYP
);
1532 void arm_gt_stimer_cb(void *opaque
)
1534 ARMCPU
*cpu
= opaque
;
1536 gt_recalc_timer(cpu
, GTIMER_SEC
);
1539 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1540 /* Note that CNTFRQ is purely reads-as-written for the benefit
1541 * of software; writing it doesn't actually change the timer frequency.
1542 * Our reset value matches the fixed frequency we implement the timer at.
1544 { .name
= "CNTFRQ", .cp
= 15, .crn
= 14, .crm
= 0, .opc1
= 0, .opc2
= 0,
1545 .type
= ARM_CP_ALIAS
,
1546 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1547 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c14_cntfrq
),
1549 { .name
= "CNTFRQ_EL0", .state
= ARM_CP_STATE_AA64
,
1550 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 0,
1551 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1552 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntfrq
),
1553 .resetvalue
= (1000 * 1000 * 1000) / GTIMER_SCALE
,
1555 /* overall control: mostly access permissions */
1556 { .name
= "CNTKCTL", .state
= ARM_CP_STATE_BOTH
,
1557 .opc0
= 3, .opc1
= 0, .crn
= 14, .crm
= 1, .opc2
= 0,
1559 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntkctl
),
1562 /* per-timer control */
1563 { .name
= "CNTP_CTL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
1564 .secure
= ARM_CP_SECSTATE_NS
,
1565 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1566 .accessfn
= gt_ptimer_access
,
1567 .fieldoffset
= offsetoflow32(CPUARMState
,
1568 cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1569 .writefn
= gt_phys_ctl_write
, .raw_writefn
= raw_write
,
1571 { .name
= "CNTP_CTL(S)",
1572 .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
1573 .secure
= ARM_CP_SECSTATE_S
,
1574 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1575 .accessfn
= gt_ptimer_access
,
1576 .fieldoffset
= offsetoflow32(CPUARMState
,
1577 cp15
.c14_timer
[GTIMER_SEC
].ctl
),
1578 .writefn
= gt_sec_ctl_write
, .raw_writefn
= raw_write
,
1580 { .name
= "CNTP_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1581 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 1,
1582 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1583 .accessfn
= gt_ptimer_access
,
1584 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1586 .writefn
= gt_phys_ctl_write
, .raw_writefn
= raw_write
,
1588 { .name
= "CNTV_CTL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 1,
1589 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1590 .accessfn
= gt_vtimer_access
,
1591 .fieldoffset
= offsetoflow32(CPUARMState
,
1592 cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1593 .writefn
= gt_virt_ctl_write
, .raw_writefn
= raw_write
,
1595 { .name
= "CNTV_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1596 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 1,
1597 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1598 .accessfn
= gt_vtimer_access
,
1599 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1601 .writefn
= gt_virt_ctl_write
, .raw_writefn
= raw_write
,
1603 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1604 { .name
= "CNTP_TVAL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
1605 .secure
= ARM_CP_SECSTATE_NS
,
1606 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1607 .accessfn
= gt_ptimer_access
,
1608 .readfn
= gt_phys_tval_read
, .writefn
= gt_phys_tval_write
,
1610 { .name
= "CNTP_TVAL(S)",
1611 .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
1612 .secure
= ARM_CP_SECSTATE_S
,
1613 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1614 .accessfn
= gt_ptimer_access
,
1615 .readfn
= gt_sec_tval_read
, .writefn
= gt_sec_tval_write
,
1617 { .name
= "CNTP_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1618 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 0,
1619 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1620 .accessfn
= gt_ptimer_access
, .resetfn
= gt_phys_timer_reset
,
1621 .readfn
= gt_phys_tval_read
, .writefn
= gt_phys_tval_write
,
1623 { .name
= "CNTV_TVAL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 0,
1624 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1625 .accessfn
= gt_vtimer_access
,
1626 .readfn
= gt_virt_tval_read
, .writefn
= gt_virt_tval_write
,
1628 { .name
= "CNTV_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1629 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 0,
1630 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1631 .accessfn
= gt_vtimer_access
, .resetfn
= gt_virt_timer_reset
,
1632 .readfn
= gt_virt_tval_read
, .writefn
= gt_virt_tval_write
,
1634 /* The counter itself */
1635 { .name
= "CNTPCT", .cp
= 15, .crm
= 14, .opc1
= 0,
1636 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
1637 .accessfn
= gt_pct_access
,
1638 .readfn
= gt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1640 { .name
= "CNTPCT_EL0", .state
= ARM_CP_STATE_AA64
,
1641 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 1,
1642 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
1643 .accessfn
= gt_pct_access
, .readfn
= gt_cnt_read
,
1645 { .name
= "CNTVCT", .cp
= 15, .crm
= 14, .opc1
= 1,
1646 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
1647 .accessfn
= gt_vct_access
,
1648 .readfn
= gt_virt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1650 { .name
= "CNTVCT_EL0", .state
= ARM_CP_STATE_AA64
,
1651 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 2,
1652 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
1653 .accessfn
= gt_vct_access
, .readfn
= gt_virt_cnt_read
,
1655 /* Comparison value, indicating when the timer goes off */
1656 { .name
= "CNTP_CVAL", .cp
= 15, .crm
= 14, .opc1
= 2,
1657 .secure
= ARM_CP_SECSTATE_NS
,
1658 .access
= PL1_RW
| PL0_R
,
1659 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1660 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1661 .accessfn
= gt_ptimer_access
,
1662 .writefn
= gt_phys_cval_write
, .raw_writefn
= raw_write
,
1664 { .name
= "CNTP_CVAL(S)", .cp
= 15, .crm
= 14, .opc1
= 2,
1665 .secure
= ARM_CP_SECSTATE_S
,
1666 .access
= PL1_RW
| PL0_R
,
1667 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1668 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].cval
),
1669 .accessfn
= gt_ptimer_access
,
1670 .writefn
= gt_sec_cval_write
, .raw_writefn
= raw_write
,
1672 { .name
= "CNTP_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1673 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 2,
1674 .access
= PL1_RW
| PL0_R
,
1676 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1677 .resetvalue
= 0, .accessfn
= gt_ptimer_access
,
1678 .writefn
= gt_phys_cval_write
, .raw_writefn
= raw_write
,
1680 { .name
= "CNTV_CVAL", .cp
= 15, .crm
= 14, .opc1
= 3,
1681 .access
= PL1_RW
| PL0_R
,
1682 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1683 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1684 .accessfn
= gt_vtimer_access
,
1685 .writefn
= gt_virt_cval_write
, .raw_writefn
= raw_write
,
1687 { .name
= "CNTV_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1688 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 2,
1689 .access
= PL1_RW
| PL0_R
,
1691 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1692 .resetvalue
= 0, .accessfn
= gt_vtimer_access
,
1693 .writefn
= gt_virt_cval_write
, .raw_writefn
= raw_write
,
1695 /* Secure timer -- this is actually restricted to only EL3
1696 * and configurably Secure-EL1 via the accessfn.
1698 { .name
= "CNTPS_TVAL_EL1", .state
= ARM_CP_STATE_AA64
,
1699 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 0,
1700 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
,
1701 .accessfn
= gt_stimer_access
,
1702 .readfn
= gt_sec_tval_read
,
1703 .writefn
= gt_sec_tval_write
,
1704 .resetfn
= gt_sec_timer_reset
,
1706 { .name
= "CNTPS_CTL_EL1", .state
= ARM_CP_STATE_AA64
,
1707 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 1,
1708 .type
= ARM_CP_IO
, .access
= PL1_RW
,
1709 .accessfn
= gt_stimer_access
,
1710 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].ctl
),
1712 .writefn
= gt_sec_ctl_write
, .raw_writefn
= raw_write
,
1714 { .name
= "CNTPS_CVAL_EL1", .state
= ARM_CP_STATE_AA64
,
1715 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 2,
1716 .type
= ARM_CP_IO
, .access
= PL1_RW
,
1717 .accessfn
= gt_stimer_access
,
1718 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].cval
),
1719 .writefn
= gt_sec_cval_write
, .raw_writefn
= raw_write
,
1725 /* In user-mode none of the generic timer registers are accessible,
1726 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1727 * so instead just don't register any of them.
1729 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1735 static void par_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1737 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1738 raw_write(env
, ri
, value
);
1739 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
1740 raw_write(env
, ri
, value
& 0xfffff6ff);
1742 raw_write(env
, ri
, value
& 0xfffff1ff);
1746 #ifndef CONFIG_USER_ONLY
1747 /* get_phys_addr() isn't present for user-mode-only targets */
1749 static CPAccessResult
ats_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1752 /* The ATS12NSO* operations must trap to EL3 if executed in
1753 * Secure EL1 (which can only happen if EL3 is AArch64).
1754 * They are simply UNDEF if executed from NS EL1.
1755 * They function normally from EL2 or EL3.
1757 if (arm_current_el(env
) == 1) {
1758 if (arm_is_secure_below_el3(env
)) {
1759 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3
;
1761 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1764 return CP_ACCESS_OK
;
1767 static uint64_t do_ats_write(CPUARMState
*env
, uint64_t value
,
1768 int access_type
, ARMMMUIdx mmu_idx
)
1771 target_ulong page_size
;
1776 MemTxAttrs attrs
= {};
1778 ret
= get_phys_addr(env
, value
, access_type
, mmu_idx
,
1779 &phys_addr
, &attrs
, &prot
, &page_size
, &fsr
);
1780 if (extended_addresses_enabled(env
)) {
1781 /* fsr is a DFSR/IFSR value for the long descriptor
1782 * translation table format, but with WnR always clear.
1783 * Convert it to a 64-bit PAR.
1785 par64
= (1 << 11); /* LPAE bit always set */
1787 par64
|= phys_addr
& ~0xfffULL
;
1788 if (!attrs
.secure
) {
1789 par64
|= (1 << 9); /* NS */
1791 /* We don't set the ATTR or SH fields in the PAR. */
1794 par64
|= (fsr
& 0x3f) << 1; /* FS */
1795 /* Note that S2WLK and FSTAGE are always zero, because we don't
1796 * implement virtualization and therefore there can't be a stage 2
1801 /* fsr is a DFSR/IFSR value for the short descriptor
1802 * translation table format (with WnR always clear).
1803 * Convert it to a 32-bit PAR.
1806 /* We do not set any attribute bits in the PAR */
1807 if (page_size
== (1 << 24)
1808 && arm_feature(env
, ARM_FEATURE_V7
)) {
1809 par64
= (phys_addr
& 0xff000000) | (1 << 1);
1811 par64
= phys_addr
& 0xfffff000;
1813 if (!attrs
.secure
) {
1814 par64
|= (1 << 9); /* NS */
1817 par64
= ((fsr
& (1 << 10)) >> 5) | ((fsr
& (1 << 12)) >> 6) |
1818 ((fsr
& 0xf) << 1) | 1;
1824 static void ats_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1826 int access_type
= ri
->opc2
& 1;
1829 int el
= arm_current_el(env
);
1830 bool secure
= arm_is_secure_below_el3(env
);
1832 switch (ri
->opc2
& 6) {
1834 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
1837 mmu_idx
= ARMMMUIdx_S1E3
;
1840 mmu_idx
= ARMMMUIdx_S1NSE1
;
1843 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
1846 g_assert_not_reached();
1850 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
1853 mmu_idx
= ARMMMUIdx_S1SE0
;
1856 mmu_idx
= ARMMMUIdx_S1NSE0
;
1859 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
1862 g_assert_not_reached();
1866 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
1867 mmu_idx
= ARMMMUIdx_S12NSE1
;
1870 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
1871 mmu_idx
= ARMMMUIdx_S12NSE0
;
1874 g_assert_not_reached();
1877 par64
= do_ats_write(env
, value
, access_type
, mmu_idx
);
1879 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
1882 static void ats1h_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1885 int access_type
= ri
->opc2
& 1;
1888 par64
= do_ats_write(env
, value
, access_type
, ARMMMUIdx_S2NS
);
1890 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
1893 static CPAccessResult
at_s1e2_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1895 if (arm_current_el(env
) == 3 && !(env
->cp15
.scr_el3
& SCR_NS
)) {
1896 return CP_ACCESS_TRAP
;
1898 return CP_ACCESS_OK
;
1901 static void ats_write64(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1904 int access_type
= ri
->opc2
& 1;
1906 int secure
= arm_is_secure_below_el3(env
);
1908 switch (ri
->opc2
& 6) {
1911 case 0: /* AT S1E1R, AT S1E1W */
1912 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
1914 case 4: /* AT S1E2R, AT S1E2W */
1915 mmu_idx
= ARMMMUIdx_S1E2
;
1917 case 6: /* AT S1E3R, AT S1E3W */
1918 mmu_idx
= ARMMMUIdx_S1E3
;
1921 g_assert_not_reached();
1924 case 2: /* AT S1E0R, AT S1E0W */
1925 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
1927 case 4: /* AT S12E1R, AT S12E1W */
1928 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S12NSE1
;
1930 case 6: /* AT S12E0R, AT S12E0W */
1931 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S12NSE0
;
1934 g_assert_not_reached();
1937 env
->cp15
.par_el
[1] = do_ats_write(env
, value
, access_type
, mmu_idx
);
1941 static const ARMCPRegInfo vapa_cp_reginfo
[] = {
1942 { .name
= "PAR", .cp
= 15, .crn
= 7, .crm
= 4, .opc1
= 0, .opc2
= 0,
1943 .access
= PL1_RW
, .resetvalue
= 0,
1944 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.par_s
),
1945 offsetoflow32(CPUARMState
, cp15
.par_ns
) },
1946 .writefn
= par_write
},
1947 #ifndef CONFIG_USER_ONLY
1948 /* This underdecoding is safe because the reginfo is NO_RAW. */
1949 { .name
= "ATS", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= CP_ANY
,
1950 .access
= PL1_W
, .accessfn
= ats_access
,
1951 .writefn
= ats_write
, .type
= ARM_CP_NO_RAW
},
1956 /* Return basic MPU access permission bits. */
1957 static uint32_t simple_mpu_ap_bits(uint32_t val
)
1964 for (i
= 0; i
< 16; i
+= 2) {
1965 ret
|= (val
>> i
) & mask
;
1971 /* Pad basic MPU access permission bits to extended format. */
1972 static uint32_t extended_mpu_ap_bits(uint32_t val
)
1979 for (i
= 0; i
< 16; i
+= 2) {
1980 ret
|= (val
& mask
) << i
;
1986 static void pmsav5_data_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1989 env
->cp15
.pmsav5_data_ap
= extended_mpu_ap_bits(value
);
1992 static uint64_t pmsav5_data_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1994 return simple_mpu_ap_bits(env
->cp15
.pmsav5_data_ap
);
1997 static void pmsav5_insn_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2000 env
->cp15
.pmsav5_insn_ap
= extended_mpu_ap_bits(value
);
2003 static uint64_t pmsav5_insn_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2005 return simple_mpu_ap_bits(env
->cp15
.pmsav5_insn_ap
);
2008 static uint64_t pmsav7_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2010 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
2016 u32p
+= env
->cp15
.c6_rgnr
;
2020 static void pmsav7_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2023 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2024 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
2030 u32p
+= env
->cp15
.c6_rgnr
;
2031 tlb_flush(CPU(cpu
), 1); /* Mappings may have changed - purge! */
2035 static void pmsav7_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2037 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2038 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
2044 memset(u32p
, 0, sizeof(*u32p
) * cpu
->pmsav7_dregion
);
2047 static void pmsav7_rgnr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2050 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2051 uint32_t nrgs
= cpu
->pmsav7_dregion
;
2053 if (value
>= nrgs
) {
2054 qemu_log_mask(LOG_GUEST_ERROR
,
2055 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2056 " > %" PRIu32
"\n", (uint32_t)value
, nrgs
);
2060 raw_write(env
, ri
, value
);
2063 static const ARMCPRegInfo pmsav7_cp_reginfo
[] = {
2064 { .name
= "DRBAR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 0,
2065 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2066 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.drbar
),
2067 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
, .resetfn
= pmsav7_reset
},
2068 { .name
= "DRSR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 2,
2069 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2070 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.drsr
),
2071 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
, .resetfn
= pmsav7_reset
},
2072 { .name
= "DRACR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 4,
2073 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2074 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.dracr
),
2075 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
, .resetfn
= pmsav7_reset
},
2076 { .name
= "RGNR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 2, .opc2
= 0,
2078 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_rgnr
),
2079 .writefn
= pmsav7_rgnr_write
},
2083 static const ARMCPRegInfo pmsav5_cp_reginfo
[] = {
2084 { .name
= "DATA_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
2085 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2086 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
2087 .readfn
= pmsav5_data_ap_read
, .writefn
= pmsav5_data_ap_write
, },
2088 { .name
= "INSN_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
2089 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2090 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
2091 .readfn
= pmsav5_insn_ap_read
, .writefn
= pmsav5_insn_ap_write
, },
2092 { .name
= "DATA_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 2,
2094 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
2096 { .name
= "INSN_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 3,
2098 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
2100 { .name
= "DCACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
2102 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_data
), .resetvalue
= 0, },
2103 { .name
= "ICACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
2105 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_insn
), .resetvalue
= 0, },
2106 /* Protection region base and size registers */
2107 { .name
= "946_PRBS0", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0,
2108 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2109 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[0]) },
2110 { .name
= "946_PRBS1", .cp
= 15, .crn
= 6, .crm
= 1, .opc1
= 0,
2111 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2112 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[1]) },
2113 { .name
= "946_PRBS2", .cp
= 15, .crn
= 6, .crm
= 2, .opc1
= 0,
2114 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2115 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[2]) },
2116 { .name
= "946_PRBS3", .cp
= 15, .crn
= 6, .crm
= 3, .opc1
= 0,
2117 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2118 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[3]) },
2119 { .name
= "946_PRBS4", .cp
= 15, .crn
= 6, .crm
= 4, .opc1
= 0,
2120 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2121 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[4]) },
2122 { .name
= "946_PRBS5", .cp
= 15, .crn
= 6, .crm
= 5, .opc1
= 0,
2123 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2124 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[5]) },
2125 { .name
= "946_PRBS6", .cp
= 15, .crn
= 6, .crm
= 6, .opc1
= 0,
2126 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2127 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[6]) },
2128 { .name
= "946_PRBS7", .cp
= 15, .crn
= 6, .crm
= 7, .opc1
= 0,
2129 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2130 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[7]) },
2134 static void vmsa_ttbcr_raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2137 TCR
*tcr
= raw_ptr(env
, ri
);
2138 int maskshift
= extract32(value
, 0, 3);
2140 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
2141 if (arm_feature(env
, ARM_FEATURE_LPAE
) && (value
& TTBCR_EAE
)) {
2142 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2143 * using Long-desciptor translation table format */
2144 value
&= ~((7 << 19) | (3 << 14) | (0xf << 3));
2145 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
2146 /* In an implementation that includes the Security Extensions
2147 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2148 * Short-descriptor translation table format.
2150 value
&= TTBCR_PD1
| TTBCR_PD0
| TTBCR_N
;
2156 /* Update the masks corresponding to the TCR bank being written
2157 * Note that we always calculate mask and base_mask, but
2158 * they are only used for short-descriptor tables (ie if EAE is 0);
2159 * for long-descriptor tables the TCR fields are used differently
2160 * and the mask and base_mask values are meaningless.
2162 tcr
->raw_tcr
= value
;
2163 tcr
->mask
= ~(((uint32_t)0xffffffffu
) >> maskshift
);
2164 tcr
->base_mask
= ~((uint32_t)0x3fffu
>> maskshift
);
2167 static void vmsa_ttbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2170 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2172 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
2173 /* With LPAE the TTBCR could result in a change of ASID
2174 * via the TTBCR.A1 bit, so do a TLB flush.
2176 tlb_flush(CPU(cpu
), 1);
2178 vmsa_ttbcr_raw_write(env
, ri
, value
);
2181 static void vmsa_ttbcr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2183 TCR
*tcr
= raw_ptr(env
, ri
);
2185 /* Reset both the TCR as well as the masks corresponding to the bank of
2186 * the TCR being reset.
2190 tcr
->base_mask
= 0xffffc000u
;
2193 static void vmsa_tcr_el1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2196 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2197 TCR
*tcr
= raw_ptr(env
, ri
);
2199 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2200 tlb_flush(CPU(cpu
), 1);
2201 tcr
->raw_tcr
= value
;
2204 static void vmsa_ttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2207 /* 64 bit accesses to the TTBRs can change the ASID and so we
2208 * must flush the TLB.
2210 if (cpreg_field_is_64bit(ri
)) {
2211 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2213 tlb_flush(CPU(cpu
), 1);
2215 raw_write(env
, ri
, value
);
2218 static void vttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2221 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2222 CPUState
*cs
= CPU(cpu
);
2224 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2225 if (raw_read(env
, ri
) != value
) {
2226 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
,
2227 ARMMMUIdx_S2NS
, -1);
2228 raw_write(env
, ri
, value
);
2232 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo
[] = {
2233 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
2234 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2235 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dfsr_s
),
2236 offsetoflow32(CPUARMState
, cp15
.dfsr_ns
) }, },
2237 { .name
= "IFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
2238 .access
= PL1_RW
, .resetvalue
= 0,
2239 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.ifsr_s
),
2240 offsetoflow32(CPUARMState
, cp15
.ifsr_ns
) } },
2241 { .name
= "DFAR", .cp
= 15, .opc1
= 0, .crn
= 6, .crm
= 0, .opc2
= 0,
2242 .access
= PL1_RW
, .resetvalue
= 0,
2243 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.dfar_s
),
2244 offsetof(CPUARMState
, cp15
.dfar_ns
) } },
2245 { .name
= "FAR_EL1", .state
= ARM_CP_STATE_AA64
,
2246 .opc0
= 3, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 0,
2247 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[1]),
2252 static const ARMCPRegInfo vmsa_cp_reginfo
[] = {
2253 { .name
= "ESR_EL1", .state
= ARM_CP_STATE_AA64
,
2254 .opc0
= 3, .crn
= 5, .crm
= 2, .opc1
= 0, .opc2
= 0,
2256 .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[1]), .resetvalue
= 0, },
2257 { .name
= "TTBR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2258 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 0,
2259 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
2260 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
2261 offsetof(CPUARMState
, cp15
.ttbr0_ns
) } },
2262 { .name
= "TTBR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2263 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 1,
2264 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
2265 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
2266 offsetof(CPUARMState
, cp15
.ttbr1_ns
) } },
2267 { .name
= "TCR_EL1", .state
= ARM_CP_STATE_AA64
,
2268 .opc0
= 3, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
2269 .access
= PL1_RW
, .writefn
= vmsa_tcr_el1_write
,
2270 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
2271 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[1]) },
2272 { .name
= "TTBCR", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
2273 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
, .writefn
= vmsa_ttbcr_write
,
2274 .raw_writefn
= vmsa_ttbcr_raw_write
,
2275 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tcr_el
[3]),
2276 offsetoflow32(CPUARMState
, cp15
.tcr_el
[1])} },
2280 static void omap_ticonfig_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2283 env
->cp15
.c15_ticonfig
= value
& 0xe7;
2284 /* The OS_TYPE bit in this register changes the reported CPUID! */
2285 env
->cp15
.c0_cpuid
= (value
& (1 << 5)) ?
2286 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
2289 static void omap_threadid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2292 env
->cp15
.c15_threadid
= value
& 0xffff;
2295 static void omap_wfi_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2298 /* Wait-for-interrupt (deprecated) */
2299 cpu_interrupt(CPU(arm_env_get_cpu(env
)), CPU_INTERRUPT_HALT
);
2302 static void omap_cachemaint_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2305 /* On OMAP there are registers indicating the max/min index of dcache lines
2306 * containing a dirty line; cache flush operations have to reset these.
2308 env
->cp15
.c15_i_max
= 0x000;
2309 env
->cp15
.c15_i_min
= 0xff0;
2312 static const ARMCPRegInfo omap_cp_reginfo
[] = {
2313 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= CP_ANY
,
2314 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_OVERRIDE
,
2315 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.esr_el
[1]),
2317 { .name
= "", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
2318 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
2319 { .name
= "TICONFIG", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
2321 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_ticonfig
), .resetvalue
= 0,
2322 .writefn
= omap_ticonfig_write
},
2323 { .name
= "IMAX", .cp
= 15, .crn
= 15, .crm
= 2, .opc1
= 0, .opc2
= 0,
2325 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_max
), .resetvalue
= 0, },
2326 { .name
= "IMIN", .cp
= 15, .crn
= 15, .crm
= 3, .opc1
= 0, .opc2
= 0,
2327 .access
= PL1_RW
, .resetvalue
= 0xff0,
2328 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_min
) },
2329 { .name
= "THREADID", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 0, .opc2
= 0,
2331 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_threadid
), .resetvalue
= 0,
2332 .writefn
= omap_threadid_write
},
2333 { .name
= "TI925T_STATUS", .cp
= 15, .crn
= 15,
2334 .crm
= 8, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
2335 .type
= ARM_CP_NO_RAW
,
2336 .readfn
= arm_cp_read_zero
, .writefn
= omap_wfi_write
, },
2337 /* TODO: Peripheral port remap register:
2338 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2339 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2342 { .name
= "OMAP_CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
2343 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
2344 .type
= ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
,
2345 .writefn
= omap_cachemaint_write
},
2346 { .name
= "C9", .cp
= 15, .crn
= 9,
2347 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
,
2348 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
, .resetvalue
= 0 },
2352 static void xscale_cpar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2355 env
->cp15
.c15_cpar
= value
& 0x3fff;
2358 static const ARMCPRegInfo xscale_cp_reginfo
[] = {
2359 { .name
= "XSCALE_CPAR",
2360 .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
2361 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_cpar
), .resetvalue
= 0,
2362 .writefn
= xscale_cpar_write
, },
2363 { .name
= "XSCALE_AUXCR",
2364 .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 1, .access
= PL1_RW
,
2365 .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_xscaleauxcr
),
2367 /* XScale specific cache-lockdown: since we have no cache we NOP these
2368 * and hope the guest does not really rely on cache behaviour.
2370 { .name
= "XSCALE_LOCK_ICACHE_LINE",
2371 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 0,
2372 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2373 { .name
= "XSCALE_UNLOCK_ICACHE",
2374 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 1,
2375 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2376 { .name
= "XSCALE_DCACHE_LOCK",
2377 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 0,
2378 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
2379 { .name
= "XSCALE_UNLOCK_DCACHE",
2380 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 1,
2381 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2385 static const ARMCPRegInfo dummy_c15_cp_reginfo
[] = {
2386 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2387 * implementation of this implementation-defined space.
2388 * Ideally this should eventually disappear in favour of actually
2389 * implementing the correct behaviour for all cores.
2391 { .name
= "C15_IMPDEF", .cp
= 15, .crn
= 15,
2392 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
2394 .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
| ARM_CP_OVERRIDE
,
2399 static const ARMCPRegInfo cache_dirty_status_cp_reginfo
[] = {
2400 /* Cache status: RAZ because we have no cache so it's always clean */
2401 { .name
= "CDSR", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 6,
2402 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2407 static const ARMCPRegInfo cache_block_ops_cp_reginfo
[] = {
2408 /* We never have a a block transfer operation in progress */
2409 { .name
= "BXSR", .cp
= 15, .crn
= 7, .crm
= 12, .opc1
= 0, .opc2
= 4,
2410 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2412 /* The cache ops themselves: these all NOP for QEMU */
2413 { .name
= "IICR", .cp
= 15, .crm
= 5, .opc1
= 0,
2414 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2415 { .name
= "IDCR", .cp
= 15, .crm
= 6, .opc1
= 0,
2416 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2417 { .name
= "CDCR", .cp
= 15, .crm
= 12, .opc1
= 0,
2418 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2419 { .name
= "PIR", .cp
= 15, .crm
= 12, .opc1
= 1,
2420 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2421 { .name
= "PDR", .cp
= 15, .crm
= 12, .opc1
= 2,
2422 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2423 { .name
= "CIDCR", .cp
= 15, .crm
= 14, .opc1
= 0,
2424 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2428 static const ARMCPRegInfo cache_test_clean_cp_reginfo
[] = {
2429 /* The cache test-and-clean instructions always return (1 << 30)
2430 * to indicate that there are no dirty cache lines.
2432 { .name
= "TC_DCACHE", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 3,
2433 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2434 .resetvalue
= (1 << 30) },
2435 { .name
= "TCI_DCACHE", .cp
= 15, .crn
= 7, .crm
= 14, .opc1
= 0, .opc2
= 3,
2436 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2437 .resetvalue
= (1 << 30) },
2441 static const ARMCPRegInfo strongarm_cp_reginfo
[] = {
2442 /* Ignore ReadBuffer accesses */
2443 { .name
= "C9_READBUFFER", .cp
= 15, .crn
= 9,
2444 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
2445 .access
= PL1_RW
, .resetvalue
= 0,
2446 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
},
2450 static uint64_t midr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2452 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2453 unsigned int cur_el
= arm_current_el(env
);
2454 bool secure
= arm_is_secure(env
);
2456 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL2
) && !secure
&& cur_el
== 1) {
2457 return env
->cp15
.vpidr_el2
;
2459 return raw_read(env
, ri
);
2462 static uint64_t mpidr_read_val(CPUARMState
*env
)
2464 ARMCPU
*cpu
= ARM_CPU(arm_env_get_cpu(env
));
2465 uint64_t mpidr
= cpu
->mp_affinity
;
2467 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
2468 mpidr
|= (1U << 31);
2469 /* Cores which are uniprocessor (non-coherent)
2470 * but still implement the MP extensions set
2471 * bit 30. (For instance, Cortex-R5).
2473 if (cpu
->mp_is_up
) {
2474 mpidr
|= (1u << 30);
2480 static uint64_t mpidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2482 unsigned int cur_el
= arm_current_el(env
);
2483 bool secure
= arm_is_secure(env
);
2485 if (arm_feature(env
, ARM_FEATURE_EL2
) && !secure
&& cur_el
== 1) {
2486 return env
->cp15
.vmpidr_el2
;
2488 return mpidr_read_val(env
);
2491 static const ARMCPRegInfo mpidr_cp_reginfo
[] = {
2492 { .name
= "MPIDR", .state
= ARM_CP_STATE_BOTH
,
2493 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 5,
2494 .access
= PL1_R
, .readfn
= mpidr_read
, .type
= ARM_CP_NO_RAW
},
2498 static const ARMCPRegInfo lpae_cp_reginfo
[] = {
2500 { .name
= "AMAIR0", .state
= ARM_CP_STATE_BOTH
,
2501 .opc0
= 3, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 0,
2502 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
2504 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2505 { .name
= "AMAIR1", .cp
= 15, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 1,
2506 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
2508 { .name
= "PAR", .cp
= 15, .crm
= 7, .opc1
= 0,
2509 .access
= PL1_RW
, .type
= ARM_CP_64BIT
, .resetvalue
= 0,
2510 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.par_s
),
2511 offsetof(CPUARMState
, cp15
.par_ns
)} },
2512 { .name
= "TTBR0", .cp
= 15, .crm
= 2, .opc1
= 0,
2513 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
2514 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
2515 offsetof(CPUARMState
, cp15
.ttbr0_ns
) },
2516 .writefn
= vmsa_ttbr_write
, },
2517 { .name
= "TTBR1", .cp
= 15, .crm
= 2, .opc1
= 1,
2518 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
2519 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
2520 offsetof(CPUARMState
, cp15
.ttbr1_ns
) },
2521 .writefn
= vmsa_ttbr_write
, },
2525 static uint64_t aa64_fpcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2527 return vfp_get_fpcr(env
);
2530 static void aa64_fpcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2533 vfp_set_fpcr(env
, value
);
2536 static uint64_t aa64_fpsr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2538 return vfp_get_fpsr(env
);
2541 static void aa64_fpsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2544 vfp_set_fpsr(env
, value
);
2547 static CPAccessResult
aa64_daif_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2549 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UMA
)) {
2550 return CP_ACCESS_TRAP
;
2552 return CP_ACCESS_OK
;
2555 static void aa64_daif_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2558 env
->daif
= value
& PSTATE_DAIF
;
2561 static CPAccessResult
aa64_cacheop_access(CPUARMState
*env
,
2562 const ARMCPRegInfo
*ri
)
2564 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2565 * SCTLR_EL1.UCI is set.
2567 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCI
)) {
2568 return CP_ACCESS_TRAP
;
2570 return CP_ACCESS_OK
;
2573 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2574 * Page D4-1736 (DDI0487A.b)
2577 static void tlbi_aa64_vmalle1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2580 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2581 CPUState
*cs
= CPU(cpu
);
2583 if (arm_is_secure_below_el3(env
)) {
2584 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2586 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
, -1);
2590 static void tlbi_aa64_vmalle1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2593 bool sec
= arm_is_secure_below_el3(env
);
2596 CPU_FOREACH(other_cs
) {
2598 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2600 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S12NSE1
,
2601 ARMMMUIdx_S12NSE0
, -1);
2606 static void tlbi_aa64_alle1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2609 /* Note that the 'ALL' scope must invalidate both stage 1 and
2610 * stage 2 translations, whereas most other scopes only invalidate
2611 * stage 1 translations.
2613 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2614 CPUState
*cs
= CPU(cpu
);
2616 if (arm_is_secure_below_el3(env
)) {
2617 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2619 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
2620 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
,
2621 ARMMMUIdx_S2NS
, -1);
2623 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
, -1);
2628 static void tlbi_aa64_alle2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2631 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2632 CPUState
*cs
= CPU(cpu
);
2634 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1E2
, -1);
2637 static void tlbi_aa64_alle3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2640 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2641 CPUState
*cs
= CPU(cpu
);
2643 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1E3
, -1);
2646 static void tlbi_aa64_alle1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2649 /* Note that the 'ALL' scope must invalidate both stage 1 and
2650 * stage 2 translations, whereas most other scopes only invalidate
2651 * stage 1 translations.
2653 bool sec
= arm_is_secure_below_el3(env
);
2654 bool has_el2
= arm_feature(env
, ARM_FEATURE_EL2
);
2657 CPU_FOREACH(other_cs
) {
2659 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2660 } else if (has_el2
) {
2661 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S12NSE1
,
2662 ARMMMUIdx_S12NSE0
, ARMMMUIdx_S2NS
, -1);
2664 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S12NSE1
,
2665 ARMMMUIdx_S12NSE0
, -1);
2670 static void tlbi_aa64_alle2is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2675 CPU_FOREACH(other_cs
) {
2676 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1E2
, -1);
2680 static void tlbi_aa64_alle3is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2685 CPU_FOREACH(other_cs
) {
2686 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1E3
, -1);
2690 static void tlbi_aa64_vae1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2693 /* Invalidate by VA, EL1&0 (AArch64 version).
2694 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
2695 * since we don't support flush-for-specific-ASID-only or
2696 * flush-last-level-only.
2698 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2699 CPUState
*cs
= CPU(cpu
);
2700 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2702 if (arm_is_secure_below_el3(env
)) {
2703 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S1SE1
,
2704 ARMMMUIdx_S1SE0
, -1);
2706 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S12NSE1
,
2707 ARMMMUIdx_S12NSE0
, -1);
2711 static void tlbi_aa64_vae2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2714 /* Invalidate by VA, EL2
2715 * Currently handles both VAE2 and VALE2, since we don't support
2716 * flush-last-level-only.
2718 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2719 CPUState
*cs
= CPU(cpu
);
2720 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2722 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S1E2
, -1);
2725 static void tlbi_aa64_vae3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2728 /* Invalidate by VA, EL3
2729 * Currently handles both VAE3 and VALE3, since we don't support
2730 * flush-last-level-only.
2732 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2733 CPUState
*cs
= CPU(cpu
);
2734 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2736 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S1E3
, -1);
2739 static void tlbi_aa64_vae1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2742 bool sec
= arm_is_secure_below_el3(env
);
2744 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2746 CPU_FOREACH(other_cs
) {
2748 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S1SE1
,
2749 ARMMMUIdx_S1SE0
, -1);
2751 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S12NSE1
,
2752 ARMMMUIdx_S12NSE0
, -1);
2757 static void tlbi_aa64_vae2is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2761 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2763 CPU_FOREACH(other_cs
) {
2764 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S1E2
, -1);
2768 static void tlbi_aa64_vae3is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2772 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2774 CPU_FOREACH(other_cs
) {
2775 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S1E3
, -1);
2779 static void tlbi_aa64_ipas2e1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2782 /* Invalidate by IPA. This has to invalidate any structures that
2783 * contain only stage 2 translation information, but does not need
2784 * to apply to structures that contain combined stage 1 and stage 2
2785 * translation information.
2786 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
2788 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2789 CPUState
*cs
= CPU(cpu
);
2792 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
2796 pageaddr
= sextract64(value
<< 12, 0, 48);
2798 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S2NS
, -1);
2801 static void tlbi_aa64_ipas2e1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2807 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
2811 pageaddr
= sextract64(value
<< 12, 0, 48);
2813 CPU_FOREACH(other_cs
) {
2814 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S2NS
, -1);
2818 static CPAccessResult
aa64_zva_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2820 /* We don't implement EL2, so the only control on DC ZVA is the
2821 * bit in the SCTLR which can prohibit access for EL0.
2823 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_DZE
)) {
2824 return CP_ACCESS_TRAP
;
2826 return CP_ACCESS_OK
;
2829 static uint64_t aa64_dczid_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2831 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2832 int dzp_bit
= 1 << 4;
2834 /* DZP indicates whether DC ZVA access is allowed */
2835 if (aa64_zva_access(env
, NULL
) == CP_ACCESS_OK
) {
2838 return cpu
->dcz_blocksize
| dzp_bit
;
2841 static CPAccessResult
sp_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2843 if (!(env
->pstate
& PSTATE_SP
)) {
2844 /* Access to SP_EL0 is undefined if it's being used as
2845 * the stack pointer.
2847 return CP_ACCESS_TRAP_UNCATEGORIZED
;
2849 return CP_ACCESS_OK
;
2852 static uint64_t spsel_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2854 return env
->pstate
& PSTATE_SP
;
2857 static void spsel_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t val
)
2859 update_spsel(env
, val
);
2862 static void sctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2865 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2867 if (raw_read(env
, ri
) == value
) {
2868 /* Skip the TLB flush if nothing actually changed; Linux likes
2869 * to do a lot of pointless SCTLR writes.
2874 raw_write(env
, ri
, value
);
2875 /* ??? Lots of these bits are not implemented. */
2876 /* This may enable/disable the MMU, so do a TLB flush. */
2877 tlb_flush(CPU(cpu
), 1);
2880 static const ARMCPRegInfo v8_cp_reginfo
[] = {
2881 /* Minimal set of EL0-visible registers. This will need to be expanded
2882 * significantly for system emulation of AArch64 CPUs.
2884 { .name
= "NZCV", .state
= ARM_CP_STATE_AA64
,
2885 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 2,
2886 .access
= PL0_RW
, .type
= ARM_CP_NZCV
},
2887 { .name
= "DAIF", .state
= ARM_CP_STATE_AA64
,
2888 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 2,
2889 .type
= ARM_CP_NO_RAW
,
2890 .access
= PL0_RW
, .accessfn
= aa64_daif_access
,
2891 .fieldoffset
= offsetof(CPUARMState
, daif
),
2892 .writefn
= aa64_daif_write
, .resetfn
= arm_cp_reset_ignore
},
2893 { .name
= "FPCR", .state
= ARM_CP_STATE_AA64
,
2894 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 4,
2895 .access
= PL0_RW
, .readfn
= aa64_fpcr_read
, .writefn
= aa64_fpcr_write
},
2896 { .name
= "FPSR", .state
= ARM_CP_STATE_AA64
,
2897 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 4,
2898 .access
= PL0_RW
, .readfn
= aa64_fpsr_read
, .writefn
= aa64_fpsr_write
},
2899 { .name
= "DCZID_EL0", .state
= ARM_CP_STATE_AA64
,
2900 .opc0
= 3, .opc1
= 3, .opc2
= 7, .crn
= 0, .crm
= 0,
2901 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
,
2902 .readfn
= aa64_dczid_read
},
2903 { .name
= "DC_ZVA", .state
= ARM_CP_STATE_AA64
,
2904 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 4, .opc2
= 1,
2905 .access
= PL0_W
, .type
= ARM_CP_DC_ZVA
,
2906 #ifndef CONFIG_USER_ONLY
2907 /* Avoid overhead of an access check that always passes in user-mode */
2908 .accessfn
= aa64_zva_access
,
2911 { .name
= "CURRENTEL", .state
= ARM_CP_STATE_AA64
,
2912 .opc0
= 3, .opc1
= 0, .opc2
= 2, .crn
= 4, .crm
= 2,
2913 .access
= PL1_R
, .type
= ARM_CP_CURRENTEL
},
2914 /* Cache ops: all NOPs since we don't emulate caches */
2915 { .name
= "IC_IALLUIS", .state
= ARM_CP_STATE_AA64
,
2916 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
2917 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2918 { .name
= "IC_IALLU", .state
= ARM_CP_STATE_AA64
,
2919 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
2920 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2921 { .name
= "IC_IVAU", .state
= ARM_CP_STATE_AA64
,
2922 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 5, .opc2
= 1,
2923 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2924 .accessfn
= aa64_cacheop_access
},
2925 { .name
= "DC_IVAC", .state
= ARM_CP_STATE_AA64
,
2926 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
2927 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2928 { .name
= "DC_ISW", .state
= ARM_CP_STATE_AA64
,
2929 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
2930 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2931 { .name
= "DC_CVAC", .state
= ARM_CP_STATE_AA64
,
2932 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 10, .opc2
= 1,
2933 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2934 .accessfn
= aa64_cacheop_access
},
2935 { .name
= "DC_CSW", .state
= ARM_CP_STATE_AA64
,
2936 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
2937 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2938 { .name
= "DC_CVAU", .state
= ARM_CP_STATE_AA64
,
2939 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 11, .opc2
= 1,
2940 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2941 .accessfn
= aa64_cacheop_access
},
2942 { .name
= "DC_CIVAC", .state
= ARM_CP_STATE_AA64
,
2943 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 14, .opc2
= 1,
2944 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2945 .accessfn
= aa64_cacheop_access
},
2946 { .name
= "DC_CISW", .state
= ARM_CP_STATE_AA64
,
2947 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
2948 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2949 /* TLBI operations */
2950 { .name
= "TLBI_VMALLE1IS", .state
= ARM_CP_STATE_AA64
,
2951 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
2952 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2953 .writefn
= tlbi_aa64_vmalle1is_write
},
2954 { .name
= "TLBI_VAE1IS", .state
= ARM_CP_STATE_AA64
,
2955 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
2956 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2957 .writefn
= tlbi_aa64_vae1is_write
},
2958 { .name
= "TLBI_ASIDE1IS", .state
= ARM_CP_STATE_AA64
,
2959 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
2960 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2961 .writefn
= tlbi_aa64_vmalle1is_write
},
2962 { .name
= "TLBI_VAAE1IS", .state
= ARM_CP_STATE_AA64
,
2963 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
2964 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2965 .writefn
= tlbi_aa64_vae1is_write
},
2966 { .name
= "TLBI_VALE1IS", .state
= ARM_CP_STATE_AA64
,
2967 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
2968 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2969 .writefn
= tlbi_aa64_vae1is_write
},
2970 { .name
= "TLBI_VAALE1IS", .state
= ARM_CP_STATE_AA64
,
2971 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
2972 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2973 .writefn
= tlbi_aa64_vae1is_write
},
2974 { .name
= "TLBI_VMALLE1", .state
= ARM_CP_STATE_AA64
,
2975 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
2976 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2977 .writefn
= tlbi_aa64_vmalle1_write
},
2978 { .name
= "TLBI_VAE1", .state
= ARM_CP_STATE_AA64
,
2979 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
2980 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2981 .writefn
= tlbi_aa64_vae1_write
},
2982 { .name
= "TLBI_ASIDE1", .state
= ARM_CP_STATE_AA64
,
2983 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
2984 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2985 .writefn
= tlbi_aa64_vmalle1_write
},
2986 { .name
= "TLBI_VAAE1", .state
= ARM_CP_STATE_AA64
,
2987 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
2988 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2989 .writefn
= tlbi_aa64_vae1_write
},
2990 { .name
= "TLBI_VALE1", .state
= ARM_CP_STATE_AA64
,
2991 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
2992 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2993 .writefn
= tlbi_aa64_vae1_write
},
2994 { .name
= "TLBI_VAALE1", .state
= ARM_CP_STATE_AA64
,
2995 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
2996 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2997 .writefn
= tlbi_aa64_vae1_write
},
2998 { .name
= "TLBI_IPAS2E1IS", .state
= ARM_CP_STATE_AA64
,
2999 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 1,
3000 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3001 .writefn
= tlbi_aa64_ipas2e1is_write
},
3002 { .name
= "TLBI_IPAS2LE1IS", .state
= ARM_CP_STATE_AA64
,
3003 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 5,
3004 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3005 .writefn
= tlbi_aa64_ipas2e1is_write
},
3006 { .name
= "TLBI_ALLE1IS", .state
= ARM_CP_STATE_AA64
,
3007 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 4,
3008 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3009 .writefn
= tlbi_aa64_alle1is_write
},
3010 { .name
= "TLBI_VMALLS12E1IS", .state
= ARM_CP_STATE_AA64
,
3011 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 6,
3012 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3013 .writefn
= tlbi_aa64_alle1is_write
},
3014 { .name
= "TLBI_IPAS2E1", .state
= ARM_CP_STATE_AA64
,
3015 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 1,
3016 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3017 .writefn
= tlbi_aa64_ipas2e1_write
},
3018 { .name
= "TLBI_IPAS2LE1", .state
= ARM_CP_STATE_AA64
,
3019 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 5,
3020 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3021 .writefn
= tlbi_aa64_ipas2e1_write
},
3022 { .name
= "TLBI_ALLE1", .state
= ARM_CP_STATE_AA64
,
3023 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 4,
3024 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3025 .writefn
= tlbi_aa64_alle1_write
},
3026 { .name
= "TLBI_VMALLS12E1", .state
= ARM_CP_STATE_AA64
,
3027 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 6,
3028 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3029 .writefn
= tlbi_aa64_alle1is_write
},
3030 #ifndef CONFIG_USER_ONLY
3031 /* 64 bit address translation operations */
3032 { .name
= "AT_S1E1R", .state
= ARM_CP_STATE_AA64
,
3033 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 0,
3034 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3035 { .name
= "AT_S1E1W", .state
= ARM_CP_STATE_AA64
,
3036 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 1,
3037 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3038 { .name
= "AT_S1E0R", .state
= ARM_CP_STATE_AA64
,
3039 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 2,
3040 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3041 { .name
= "AT_S1E0W", .state
= ARM_CP_STATE_AA64
,
3042 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 3,
3043 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3044 { .name
= "AT_S12E1R", .state
= ARM_CP_STATE_AA64
,
3045 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 4,
3046 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3047 { .name
= "AT_S12E1W", .state
= ARM_CP_STATE_AA64
,
3048 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 5,
3049 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3050 { .name
= "AT_S12E0R", .state
= ARM_CP_STATE_AA64
,
3051 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 6,
3052 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3053 { .name
= "AT_S12E0W", .state
= ARM_CP_STATE_AA64
,
3054 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 7,
3055 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3056 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3057 { .name
= "AT_S1E3R", .state
= ARM_CP_STATE_AA64
,
3058 .opc0
= 1, .opc1
= 6, .crn
= 7, .crm
= 8, .opc2
= 0,
3059 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3060 { .name
= "AT_S1E3W", .state
= ARM_CP_STATE_AA64
,
3061 .opc0
= 1, .opc1
= 6, .crn
= 7, .crm
= 8, .opc2
= 1,
3062 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3063 { .name
= "PAR_EL1", .state
= ARM_CP_STATE_AA64
,
3064 .type
= ARM_CP_ALIAS
,
3065 .opc0
= 3, .opc1
= 0, .crn
= 7, .crm
= 4, .opc2
= 0,
3066 .access
= PL1_RW
, .resetvalue
= 0,
3067 .fieldoffset
= offsetof(CPUARMState
, cp15
.par_el
[1]),
3068 .writefn
= par_write
},
3070 /* TLB invalidate last level of translation table walk */
3071 { .name
= "TLBIMVALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
3072 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
3073 { .name
= "TLBIMVAALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
3074 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
3075 .writefn
= tlbimvaa_is_write
},
3076 { .name
= "TLBIMVAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
3077 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
3078 { .name
= "TLBIMVAAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
3079 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
3080 /* 32 bit cache operations */
3081 { .name
= "ICIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
3082 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3083 { .name
= "BPIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 6,
3084 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3085 { .name
= "ICIALLU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
3086 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3087 { .name
= "ICIMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 1,
3088 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3089 { .name
= "BPIALL", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 6,
3090 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3091 { .name
= "BPIMVA", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 7,
3092 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3093 { .name
= "DCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
3094 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3095 { .name
= "DCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
3096 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3097 { .name
= "DCCMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 1,
3098 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3099 { .name
= "DCCSW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
3100 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3101 { .name
= "DCCMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 11, .opc2
= 1,
3102 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3103 { .name
= "DCCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 1,
3104 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3105 { .name
= "DCCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
3106 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3107 /* MMU Domain access control / MPU write buffer control */
3108 { .name
= "DACR", .cp
= 15, .opc1
= 0, .crn
= 3, .crm
= 0, .opc2
= 0,
3109 .access
= PL1_RW
, .resetvalue
= 0,
3110 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
3111 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
3112 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
3113 { .name
= "ELR_EL1", .state
= ARM_CP_STATE_AA64
,
3114 .type
= ARM_CP_ALIAS
,
3115 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 1,
3117 .fieldoffset
= offsetof(CPUARMState
, elr_el
[1]) },
3118 { .name
= "SPSR_EL1", .state
= ARM_CP_STATE_AA64
,
3119 .type
= ARM_CP_ALIAS
,
3120 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 0,
3121 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[1]) },
3122 /* We rely on the access checks not allowing the guest to write to the
3123 * state field when SPSel indicates that it's being used as the stack
3126 { .name
= "SP_EL0", .state
= ARM_CP_STATE_AA64
,
3127 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 1, .opc2
= 0,
3128 .access
= PL1_RW
, .accessfn
= sp_el0_access
,
3129 .type
= ARM_CP_ALIAS
,
3130 .fieldoffset
= offsetof(CPUARMState
, sp_el
[0]) },
3131 { .name
= "SP_EL1", .state
= ARM_CP_STATE_AA64
,
3132 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 1, .opc2
= 0,
3133 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
3134 .fieldoffset
= offsetof(CPUARMState
, sp_el
[1]) },
3135 { .name
= "SPSel", .state
= ARM_CP_STATE_AA64
,
3136 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 2, .opc2
= 0,
3137 .type
= ARM_CP_NO_RAW
,
3138 .access
= PL1_RW
, .readfn
= spsel_read
, .writefn
= spsel_write
},
3142 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3143 static const ARMCPRegInfo el3_no_el2_cp_reginfo
[] = {
3144 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
3145 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
3147 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
3148 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
3149 .type
= ARM_CP_NO_RAW
,
3150 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
3152 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
3153 { .name
= "CPTR_EL2", .state
= ARM_CP_STATE_BOTH
,
3154 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 2,
3155 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3156 { .name
= "MAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3157 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 0,
3158 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3160 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3161 .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 1,
3162 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3163 { .name
= "AMAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3164 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 0,
3165 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3167 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3168 .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 1,
3169 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3171 { .name
= "AFSR0_EL2", .state
= ARM_CP_STATE_BOTH
,
3172 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 0,
3173 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3175 { .name
= "AFSR1_EL2", .state
= ARM_CP_STATE_BOTH
,
3176 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 1,
3177 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3179 { .name
= "TCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3180 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 2,
3181 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3182 { .name
= "VTCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3183 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
3184 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
3185 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3186 { .name
= "VTTBR", .state
= ARM_CP_STATE_AA32
,
3187 .cp
= 15, .opc1
= 6, .crm
= 2,
3188 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3189 .type
= ARM_CP_CONST
| ARM_CP_64BIT
, .resetvalue
= 0 },
3190 { .name
= "VTTBR_EL2", .state
= ARM_CP_STATE_AA64
,
3191 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 0,
3192 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3193 { .name
= "SCTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
3194 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 0,
3195 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3196 { .name
= "TPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
3197 .opc0
= 3, .opc1
= 4, .crn
= 13, .crm
= 0, .opc2
= 2,
3198 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3199 { .name
= "TTBR0_EL2", .state
= ARM_CP_STATE_AA64
,
3200 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 0,
3201 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3202 { .name
= "HTTBR", .cp
= 15, .opc1
= 4, .crm
= 2,
3203 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3205 { .name
= "CNTHCTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3206 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 1, .opc2
= 0,
3207 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3208 { .name
= "CNTVOFF_EL2", .state
= ARM_CP_STATE_AA64
,
3209 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 0, .opc2
= 3,
3210 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3211 { .name
= "CNTVOFF", .cp
= 15, .opc1
= 4, .crm
= 14,
3212 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3214 { .name
= "CNTHP_CVAL_EL2", .state
= ARM_CP_STATE_AA64
,
3215 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 2,
3216 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3217 { .name
= "CNTHP_CVAL", .cp
= 15, .opc1
= 6, .crm
= 14,
3218 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3220 { .name
= "CNTHP_TVAL_EL2", .state
= ARM_CP_STATE_BOTH
,
3221 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 0,
3222 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3223 { .name
= "CNTHP_CTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3224 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 1,
3225 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3229 static void hcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
3231 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3232 uint64_t valid_mask
= HCR_MASK
;
3234 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
3235 valid_mask
&= ~HCR_HCD
;
3237 valid_mask
&= ~HCR_TSC
;
3240 /* Clear RES0 bits. */
3241 value
&= valid_mask
;
3243 /* These bits change the MMU setup:
3244 * HCR_VM enables stage 2 translation
3245 * HCR_PTW forbids certain page-table setups
3246 * HCR_DC Disables stage1 and enables stage2 translation
3248 if ((raw_read(env
, ri
) ^ value
) & (HCR_VM
| HCR_PTW
| HCR_DC
)) {
3249 tlb_flush(CPU(cpu
), 1);
3251 raw_write(env
, ri
, value
);
3254 static const ARMCPRegInfo el2_cp_reginfo
[] = {
3255 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
3256 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
3257 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.hcr_el2
),
3258 .writefn
= hcr_write
},
3259 { .name
= "DACR32_EL2", .state
= ARM_CP_STATE_AA64
,
3260 .opc0
= 3, .opc1
= 4, .crn
= 3, .crm
= 0, .opc2
= 0,
3261 .access
= PL2_RW
, .resetvalue
= 0,
3262 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
3263 .fieldoffset
= offsetof(CPUARMState
, cp15
.dacr32_el2
) },
3264 { .name
= "ELR_EL2", .state
= ARM_CP_STATE_AA64
,
3265 .type
= ARM_CP_ALIAS
,
3266 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 1,
3268 .fieldoffset
= offsetof(CPUARMState
, elr_el
[2]) },
3269 { .name
= "ESR_EL2", .state
= ARM_CP_STATE_AA64
,
3270 .type
= ARM_CP_ALIAS
,
3271 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 2, .opc2
= 0,
3272 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[2]) },
3273 { .name
= "IFSR32_EL2", .state
= ARM_CP_STATE_AA64
,
3274 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 0, .opc2
= 1,
3275 .access
= PL2_RW
, .resetvalue
= 0,
3276 .fieldoffset
= offsetof(CPUARMState
, cp15
.ifsr32_el2
) },
3277 { .name
= "FAR_EL2", .state
= ARM_CP_STATE_AA64
,
3278 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 0,
3279 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[2]) },
3280 { .name
= "SPSR_EL2", .state
= ARM_CP_STATE_AA64
,
3281 .type
= ARM_CP_ALIAS
,
3282 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 0,
3283 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[6]) },
3284 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
3285 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
3286 .access
= PL2_RW
, .writefn
= vbar_write
,
3287 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[2]),
3289 { .name
= "SP_EL2", .state
= ARM_CP_STATE_AA64
,
3290 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 1, .opc2
= 0,
3291 .access
= PL3_RW
, .type
= ARM_CP_ALIAS
,
3292 .fieldoffset
= offsetof(CPUARMState
, sp_el
[2]) },
3293 { .name
= "CPTR_EL2", .state
= ARM_CP_STATE_BOTH
,
3294 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 2,
3295 .access
= PL2_RW
, .accessfn
= cptr_access
, .resetvalue
= 0,
3296 .fieldoffset
= offsetof(CPUARMState
, cp15
.cptr_el
[2]) },
3297 { .name
= "MAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3298 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 0,
3299 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[2]),
3301 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3302 .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 1,
3303 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
3304 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.mair_el
[2]) },
3305 { .name
= "AMAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3306 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 0,
3307 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3309 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3310 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3311 .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 1,
3312 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3314 { .name
= "AFSR0_EL2", .state
= ARM_CP_STATE_BOTH
,
3315 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 0,
3316 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3318 { .name
= "AFSR1_EL2", .state
= ARM_CP_STATE_BOTH
,
3319 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 1,
3320 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3322 { .name
= "TCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3323 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 2,
3324 .access
= PL2_RW
, .writefn
= vmsa_tcr_el1_write
,
3325 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
3326 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[2]) },
3327 { .name
= "VTCR", .state
= ARM_CP_STATE_AA32
,
3328 .cp
= 15, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
3329 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3330 .fieldoffset
= offsetof(CPUARMState
, cp15
.vtcr_el2
) },
3331 { .name
= "VTCR_EL2", .state
= ARM_CP_STATE_AA64
,
3332 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
3333 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
3334 .fieldoffset
= offsetof(CPUARMState
, cp15
.vtcr_el2
) },
3335 { .name
= "VTTBR", .state
= ARM_CP_STATE_AA32
,
3336 .cp
= 15, .opc1
= 6, .crm
= 2,
3337 .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
3338 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3339 .fieldoffset
= offsetof(CPUARMState
, cp15
.vttbr_el2
),
3340 .writefn
= vttbr_write
},
3341 { .name
= "VTTBR_EL2", .state
= ARM_CP_STATE_AA64
,
3342 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 0,
3343 .access
= PL2_RW
, .writefn
= vttbr_write
,
3344 .fieldoffset
= offsetof(CPUARMState
, cp15
.vttbr_el2
) },
3345 { .name
= "SCTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
3346 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 0,
3347 .access
= PL2_RW
, .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
3348 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[2]) },
3349 { .name
= "TPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
3350 .opc0
= 3, .opc1
= 4, .crn
= 13, .crm
= 0, .opc2
= 2,
3351 .access
= PL2_RW
, .resetvalue
= 0,
3352 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[2]) },
3353 { .name
= "TTBR0_EL2", .state
= ARM_CP_STATE_AA64
,
3354 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 0,
3355 .access
= PL2_RW
, .resetvalue
= 0,
3356 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[2]) },
3357 { .name
= "HTTBR", .cp
= 15, .opc1
= 4, .crm
= 2,
3358 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
3359 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[2]) },
3360 { .name
= "TLBI_ALLE2", .state
= ARM_CP_STATE_AA64
,
3361 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 0,
3362 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3363 .writefn
= tlbi_aa64_alle2_write
},
3364 { .name
= "TLBI_VAE2", .state
= ARM_CP_STATE_AA64
,
3365 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 1,
3366 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3367 .writefn
= tlbi_aa64_vae2_write
},
3368 { .name
= "TLBI_VALE2", .state
= ARM_CP_STATE_AA64
,
3369 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 5,
3370 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3371 .writefn
= tlbi_aa64_vae2_write
},
3372 { .name
= "TLBI_ALLE2IS", .state
= ARM_CP_STATE_AA64
,
3373 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 0,
3374 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3375 .writefn
= tlbi_aa64_alle2is_write
},
3376 { .name
= "TLBI_VAE2IS", .state
= ARM_CP_STATE_AA64
,
3377 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 1,
3378 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3379 .writefn
= tlbi_aa64_vae2is_write
},
3380 { .name
= "TLBI_VALE2IS", .state
= ARM_CP_STATE_AA64
,
3381 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 5,
3382 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3383 .writefn
= tlbi_aa64_vae2is_write
},
3384 #ifndef CONFIG_USER_ONLY
3385 /* Unlike the other EL2-related AT operations, these must
3386 * UNDEF from EL3 if EL2 is not implemented, which is why we
3387 * define them here rather than with the rest of the AT ops.
3389 { .name
= "AT_S1E2R", .state
= ARM_CP_STATE_AA64
,
3390 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 0,
3391 .access
= PL2_W
, .accessfn
= at_s1e2_access
,
3392 .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3393 { .name
= "AT_S1E2W", .state
= ARM_CP_STATE_AA64
,
3394 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 1,
3395 .access
= PL2_W
, .accessfn
= at_s1e2_access
,
3396 .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3397 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3398 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3399 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3400 * to behave as if SCR.NS was 1.
3402 { .name
= "ATS1HR", .cp
= 15, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 0,
3404 .writefn
= ats1h_write
, .type
= ARM_CP_NO_RAW
},
3405 { .name
= "ATS1HW", .cp
= 15, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 1,
3407 .writefn
= ats1h_write
, .type
= ARM_CP_NO_RAW
},
3408 { .name
= "CNTHCTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3409 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 1, .opc2
= 0,
3410 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3411 * reset values as IMPDEF. We choose to reset to 3 to comply with
3412 * both ARMv7 and ARMv8.
3414 .access
= PL2_RW
, .resetvalue
= 3,
3415 .fieldoffset
= offsetof(CPUARMState
, cp15
.cnthctl_el2
) },
3416 { .name
= "CNTVOFF_EL2", .state
= ARM_CP_STATE_AA64
,
3417 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 0, .opc2
= 3,
3418 .access
= PL2_RW
, .type
= ARM_CP_IO
, .resetvalue
= 0,
3419 .writefn
= gt_cntvoff_write
,
3420 .fieldoffset
= offsetof(CPUARMState
, cp15
.cntvoff_el2
) },
3421 { .name
= "CNTVOFF", .cp
= 15, .opc1
= 4, .crm
= 14,
3422 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
| ARM_CP_IO
,
3423 .writefn
= gt_cntvoff_write
,
3424 .fieldoffset
= offsetof(CPUARMState
, cp15
.cntvoff_el2
) },
3425 { .name
= "CNTHP_CVAL_EL2", .state
= ARM_CP_STATE_AA64
,
3426 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 2,
3427 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].cval
),
3428 .type
= ARM_CP_IO
, .access
= PL2_RW
,
3429 .writefn
= gt_hyp_cval_write
, .raw_writefn
= raw_write
},
3430 { .name
= "CNTHP_CVAL", .cp
= 15, .opc1
= 6, .crm
= 14,
3431 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].cval
),
3432 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_IO
,
3433 .writefn
= gt_hyp_cval_write
, .raw_writefn
= raw_write
},
3434 { .name
= "CNTHP_TVAL_EL2", .state
= ARM_CP_STATE_BOTH
,
3435 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 0,
3436 .type
= ARM_CP_IO
, .access
= PL2_RW
,
3437 .resetfn
= gt_hyp_timer_reset
,
3438 .readfn
= gt_hyp_tval_read
, .writefn
= gt_hyp_tval_write
},
3439 { .name
= "CNTHP_CTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3441 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 1,
3443 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].ctl
),
3445 .writefn
= gt_hyp_ctl_write
, .raw_writefn
= raw_write
},
3450 static const ARMCPRegInfo el3_cp_reginfo
[] = {
3451 { .name
= "SCR_EL3", .state
= ARM_CP_STATE_AA64
,
3452 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 0,
3453 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.scr_el3
),
3454 .resetvalue
= 0, .writefn
= scr_write
},
3455 { .name
= "SCR", .type
= ARM_CP_ALIAS
,
3456 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 0,
3457 .access
= PL3_RW
, .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.scr_el3
),
3458 .writefn
= scr_write
},
3459 { .name
= "SDER32_EL3", .state
= ARM_CP_STATE_AA64
,
3460 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 1,
3461 .access
= PL3_RW
, .resetvalue
= 0,
3462 .fieldoffset
= offsetof(CPUARMState
, cp15
.sder
) },
3464 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 1,
3465 .access
= PL3_RW
, .resetvalue
= 0,
3466 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.sder
) },
3467 /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */
3468 { .name
= "NSACR", .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
3469 .access
= PL3_W
| PL1_R
, .resetvalue
= 0,
3470 .fieldoffset
= offsetof(CPUARMState
, cp15
.nsacr
) },
3471 { .name
= "MVBAR", .cp
= 15, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
3472 .access
= PL3_RW
, .writefn
= vbar_write
, .resetvalue
= 0,
3473 .fieldoffset
= offsetof(CPUARMState
, cp15
.mvbar
) },
3474 { .name
= "SCTLR_EL3", .state
= ARM_CP_STATE_AA64
,
3475 .type
= ARM_CP_ALIAS
, /* reset handled by AArch32 view */
3476 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 0,
3477 .access
= PL3_RW
, .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
3478 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[3]) },
3479 { .name
= "TTBR0_EL3", .state
= ARM_CP_STATE_AA64
,
3480 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 0,
3481 .access
= PL3_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
3482 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[3]) },
3483 { .name
= "TCR_EL3", .state
= ARM_CP_STATE_AA64
,
3484 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 2,
3485 .access
= PL3_RW
, .writefn
= vmsa_tcr_el1_write
,
3486 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
3487 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[3]) },
3488 { .name
= "ELR_EL3", .state
= ARM_CP_STATE_AA64
,
3489 .type
= ARM_CP_ALIAS
,
3490 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 1,
3492 .fieldoffset
= offsetof(CPUARMState
, elr_el
[3]) },
3493 { .name
= "ESR_EL3", .state
= ARM_CP_STATE_AA64
,
3494 .type
= ARM_CP_ALIAS
,
3495 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 2, .opc2
= 0,
3496 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[3]) },
3497 { .name
= "FAR_EL3", .state
= ARM_CP_STATE_AA64
,
3498 .opc0
= 3, .opc1
= 6, .crn
= 6, .crm
= 0, .opc2
= 0,
3499 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[3]) },
3500 { .name
= "SPSR_EL3", .state
= ARM_CP_STATE_AA64
,
3501 .type
= ARM_CP_ALIAS
,
3502 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 0,
3503 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[7]) },
3504 { .name
= "VBAR_EL3", .state
= ARM_CP_STATE_AA64
,
3505 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 0,
3506 .access
= PL3_RW
, .writefn
= vbar_write
,
3507 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[3]),
3509 { .name
= "CPTR_EL3", .state
= ARM_CP_STATE_AA64
,
3510 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 2,
3511 .access
= PL3_RW
, .accessfn
= cptr_access
, .resetvalue
= 0,
3512 .fieldoffset
= offsetof(CPUARMState
, cp15
.cptr_el
[3]) },
3513 { .name
= "TPIDR_EL3", .state
= ARM_CP_STATE_AA64
,
3514 .opc0
= 3, .opc1
= 6, .crn
= 13, .crm
= 0, .opc2
= 2,
3515 .access
= PL3_RW
, .resetvalue
= 0,
3516 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[3]) },
3517 { .name
= "AMAIR_EL3", .state
= ARM_CP_STATE_AA64
,
3518 .opc0
= 3, .opc1
= 6, .crn
= 10, .crm
= 3, .opc2
= 0,
3519 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
3521 { .name
= "AFSR0_EL3", .state
= ARM_CP_STATE_BOTH
,
3522 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 1, .opc2
= 0,
3523 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
3525 { .name
= "AFSR1_EL3", .state
= ARM_CP_STATE_BOTH
,
3526 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 1, .opc2
= 1,
3527 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
3529 { .name
= "TLBI_ALLE3IS", .state
= ARM_CP_STATE_AA64
,
3530 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 0,
3531 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3532 .writefn
= tlbi_aa64_alle3is_write
},
3533 { .name
= "TLBI_VAE3IS", .state
= ARM_CP_STATE_AA64
,
3534 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 1,
3535 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3536 .writefn
= tlbi_aa64_vae3is_write
},
3537 { .name
= "TLBI_VALE3IS", .state
= ARM_CP_STATE_AA64
,
3538 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 5,
3539 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3540 .writefn
= tlbi_aa64_vae3is_write
},
3541 { .name
= "TLBI_ALLE3", .state
= ARM_CP_STATE_AA64
,
3542 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 0,
3543 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3544 .writefn
= tlbi_aa64_alle3_write
},
3545 { .name
= "TLBI_VAE3", .state
= ARM_CP_STATE_AA64
,
3546 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 1,
3547 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3548 .writefn
= tlbi_aa64_vae3_write
},
3549 { .name
= "TLBI_VALE3", .state
= ARM_CP_STATE_AA64
,
3550 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 5,
3551 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3552 .writefn
= tlbi_aa64_vae3_write
},
3556 static CPAccessResult
ctr_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3558 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
3559 * but the AArch32 CTR has its own reginfo struct)
3561 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCT
)) {
3562 return CP_ACCESS_TRAP
;
3564 return CP_ACCESS_OK
;
3567 static const ARMCPRegInfo debug_cp_reginfo
[] = {
3568 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
3569 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
3570 * unlike DBGDRAR it is never accessible from EL0.
3571 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
3574 { .name
= "DBGDRAR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
3575 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3576 { .name
= "MDRAR_EL1", .state
= ARM_CP_STATE_AA64
,
3577 .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
3578 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3579 { .name
= "DBGDSAR", .cp
= 14, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
3580 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3581 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
3582 { .name
= "MDSCR_EL1", .state
= ARM_CP_STATE_BOTH
,
3583 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
3585 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
),
3587 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
3588 * We don't implement the configurable EL0 access.
3590 { .name
= "MDCCSR_EL0", .state
= ARM_CP_STATE_BOTH
,
3591 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
3592 .type
= ARM_CP_ALIAS
,
3594 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
), },
3595 /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
3596 { .name
= "OSLAR_EL1", .state
= ARM_CP_STATE_BOTH
,
3597 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 4,
3598 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3599 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
3600 { .name
= "OSDLR_EL1", .state
= ARM_CP_STATE_BOTH
,
3601 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 3, .opc2
= 4,
3602 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
3603 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
3604 * implement vector catch debug events yet.
3607 .cp
= 14, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
3608 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
3612 static const ARMCPRegInfo debug_lpae_cp_reginfo
[] = {
3613 /* 64 bit access versions of the (dummy) debug registers */
3614 { .name
= "DBGDRAR", .cp
= 14, .crm
= 1, .opc1
= 0,
3615 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
3616 { .name
= "DBGDSAR", .cp
= 14, .crm
= 2, .opc1
= 0,
3617 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
3621 void hw_watchpoint_update(ARMCPU
*cpu
, int n
)
3623 CPUARMState
*env
= &cpu
->env
;
3625 vaddr wvr
= env
->cp15
.dbgwvr
[n
];
3626 uint64_t wcr
= env
->cp15
.dbgwcr
[n
];
3628 int flags
= BP_CPU
| BP_STOP_BEFORE_ACCESS
;
3630 if (env
->cpu_watchpoint
[n
]) {
3631 cpu_watchpoint_remove_by_ref(CPU(cpu
), env
->cpu_watchpoint
[n
]);
3632 env
->cpu_watchpoint
[n
] = NULL
;
3635 if (!extract64(wcr
, 0, 1)) {
3636 /* E bit clear : watchpoint disabled */
3640 switch (extract64(wcr
, 3, 2)) {
3642 /* LSC 00 is reserved and must behave as if the wp is disabled */
3645 flags
|= BP_MEM_READ
;
3648 flags
|= BP_MEM_WRITE
;
3651 flags
|= BP_MEM_ACCESS
;
3655 /* Attempts to use both MASK and BAS fields simultaneously are
3656 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
3657 * thus generating a watchpoint for every byte in the masked region.
3659 mask
= extract64(wcr
, 24, 4);
3660 if (mask
== 1 || mask
== 2) {
3661 /* Reserved values of MASK; we must act as if the mask value was
3662 * some non-reserved value, or as if the watchpoint were disabled.
3663 * We choose the latter.
3667 /* Watchpoint covers an aligned area up to 2GB in size */
3669 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
3670 * whether the watchpoint fires when the unmasked bits match; we opt
3671 * to generate the exceptions.
3675 /* Watchpoint covers bytes defined by the byte address select bits */
3676 int bas
= extract64(wcr
, 5, 8);
3680 /* This must act as if the watchpoint is disabled */
3684 if (extract64(wvr
, 2, 1)) {
3685 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
3686 * ignored, and BAS[3:0] define which bytes to watch.
3690 /* The BAS bits are supposed to be programmed to indicate a contiguous
3691 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
3692 * we fire for each byte in the word/doubleword addressed by the WVR.
3693 * We choose to ignore any non-zero bits after the first range of 1s.
3695 basstart
= ctz32(bas
);
3696 len
= cto32(bas
>> basstart
);
3700 cpu_watchpoint_insert(CPU(cpu
), wvr
, len
, flags
,
3701 &env
->cpu_watchpoint
[n
]);
3704 void hw_watchpoint_update_all(ARMCPU
*cpu
)
3707 CPUARMState
*env
= &cpu
->env
;
3709 /* Completely clear out existing QEMU watchpoints and our array, to
3710 * avoid possible stale entries following migration load.
3712 cpu_watchpoint_remove_all(CPU(cpu
), BP_CPU
);
3713 memset(env
->cpu_watchpoint
, 0, sizeof(env
->cpu_watchpoint
));
3715 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_watchpoint
); i
++) {
3716 hw_watchpoint_update(cpu
, i
);
3720 static void dbgwvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3723 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3726 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
3727 * register reads and behaves as if values written are sign extended.
3728 * Bits [1:0] are RES0.
3730 value
= sextract64(value
, 0, 49) & ~3ULL;
3732 raw_write(env
, ri
, value
);
3733 hw_watchpoint_update(cpu
, i
);
3736 static void dbgwcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3739 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3742 raw_write(env
, ri
, value
);
3743 hw_watchpoint_update(cpu
, i
);
3746 void hw_breakpoint_update(ARMCPU
*cpu
, int n
)
3748 CPUARMState
*env
= &cpu
->env
;
3749 uint64_t bvr
= env
->cp15
.dbgbvr
[n
];
3750 uint64_t bcr
= env
->cp15
.dbgbcr
[n
];
3755 if (env
->cpu_breakpoint
[n
]) {
3756 cpu_breakpoint_remove_by_ref(CPU(cpu
), env
->cpu_breakpoint
[n
]);
3757 env
->cpu_breakpoint
[n
] = NULL
;
3760 if (!extract64(bcr
, 0, 1)) {
3761 /* E bit clear : watchpoint disabled */
3765 bt
= extract64(bcr
, 20, 4);
3768 case 4: /* unlinked address mismatch (reserved if AArch64) */
3769 case 5: /* linked address mismatch (reserved if AArch64) */
3770 qemu_log_mask(LOG_UNIMP
,
3771 "arm: address mismatch breakpoint types not implemented");
3773 case 0: /* unlinked address match */
3774 case 1: /* linked address match */
3776 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
3777 * we behave as if the register was sign extended. Bits [1:0] are
3778 * RES0. The BAS field is used to allow setting breakpoints on 16
3779 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
3780 * a bp will fire if the addresses covered by the bp and the addresses
3781 * covered by the insn overlap but the insn doesn't start at the
3782 * start of the bp address range. We choose to require the insn and
3783 * the bp to have the same address. The constraints on writing to
3784 * BAS enforced in dbgbcr_write mean we have only four cases:
3785 * 0b0000 => no breakpoint
3786 * 0b0011 => breakpoint on addr
3787 * 0b1100 => breakpoint on addr + 2
3788 * 0b1111 => breakpoint on addr
3789 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
3791 int bas
= extract64(bcr
, 5, 4);
3792 addr
= sextract64(bvr
, 0, 49) & ~3ULL;
3801 case 2: /* unlinked context ID match */
3802 case 8: /* unlinked VMID match (reserved if no EL2) */
3803 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
3804 qemu_log_mask(LOG_UNIMP
,
3805 "arm: unlinked context breakpoint types not implemented");
3807 case 9: /* linked VMID match (reserved if no EL2) */
3808 case 11: /* linked context ID and VMID match (reserved if no EL2) */
3809 case 3: /* linked context ID match */
3811 /* We must generate no events for Linked context matches (unless
3812 * they are linked to by some other bp/wp, which is handled in
3813 * updates for the linking bp/wp). We choose to also generate no events
3814 * for reserved values.
3819 cpu_breakpoint_insert(CPU(cpu
), addr
, flags
, &env
->cpu_breakpoint
[n
]);
3822 void hw_breakpoint_update_all(ARMCPU
*cpu
)
3825 CPUARMState
*env
= &cpu
->env
;
3827 /* Completely clear out existing QEMU breakpoints and our array, to
3828 * avoid possible stale entries following migration load.
3830 cpu_breakpoint_remove_all(CPU(cpu
), BP_CPU
);
3831 memset(env
->cpu_breakpoint
, 0, sizeof(env
->cpu_breakpoint
));
3833 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_breakpoint
); i
++) {
3834 hw_breakpoint_update(cpu
, i
);
3838 static void dbgbvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3841 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3844 raw_write(env
, ri
, value
);
3845 hw_breakpoint_update(cpu
, i
);
3848 static void dbgbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3851 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3854 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
3857 value
= deposit64(value
, 6, 1, extract64(value
, 5, 1));
3858 value
= deposit64(value
, 8, 1, extract64(value
, 7, 1));
3860 raw_write(env
, ri
, value
);
3861 hw_breakpoint_update(cpu
, i
);
3864 static void define_debug_regs(ARMCPU
*cpu
)
3866 /* Define v7 and v8 architectural debug registers.
3867 * These are just dummy implementations for now.
3870 int wrps
, brps
, ctx_cmps
;
3871 ARMCPRegInfo dbgdidr
= {
3872 .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
3873 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->dbgdidr
,
3876 /* Note that all these register fields hold "number of Xs minus 1". */
3877 brps
= extract32(cpu
->dbgdidr
, 24, 4);
3878 wrps
= extract32(cpu
->dbgdidr
, 28, 4);
3879 ctx_cmps
= extract32(cpu
->dbgdidr
, 20, 4);
3881 assert(ctx_cmps
<= brps
);
3883 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
3884 * of the debug registers such as number of breakpoints;
3885 * check that if they both exist then they agree.
3887 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
3888 assert(extract32(cpu
->id_aa64dfr0
, 12, 4) == brps
);
3889 assert(extract32(cpu
->id_aa64dfr0
, 20, 4) == wrps
);
3890 assert(extract32(cpu
->id_aa64dfr0
, 28, 4) == ctx_cmps
);
3893 define_one_arm_cp_reg(cpu
, &dbgdidr
);
3894 define_arm_cp_regs(cpu
, debug_cp_reginfo
);
3896 if (arm_feature(&cpu
->env
, ARM_FEATURE_LPAE
)) {
3897 define_arm_cp_regs(cpu
, debug_lpae_cp_reginfo
);
3900 for (i
= 0; i
< brps
+ 1; i
++) {
3901 ARMCPRegInfo dbgregs
[] = {
3902 { .name
= "DBGBVR", .state
= ARM_CP_STATE_BOTH
,
3903 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 4,
3905 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbvr
[i
]),
3906 .writefn
= dbgbvr_write
, .raw_writefn
= raw_write
3908 { .name
= "DBGBCR", .state
= ARM_CP_STATE_BOTH
,
3909 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 5,
3911 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbcr
[i
]),
3912 .writefn
= dbgbcr_write
, .raw_writefn
= raw_write
3916 define_arm_cp_regs(cpu
, dbgregs
);
3919 for (i
= 0; i
< wrps
+ 1; i
++) {
3920 ARMCPRegInfo dbgregs
[] = {
3921 { .name
= "DBGWVR", .state
= ARM_CP_STATE_BOTH
,
3922 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 6,
3924 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwvr
[i
]),
3925 .writefn
= dbgwvr_write
, .raw_writefn
= raw_write
3927 { .name
= "DBGWCR", .state
= ARM_CP_STATE_BOTH
,
3928 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 7,
3930 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwcr
[i
]),
3931 .writefn
= dbgwcr_write
, .raw_writefn
= raw_write
3935 define_arm_cp_regs(cpu
, dbgregs
);
3939 void register_cp_regs_for_features(ARMCPU
*cpu
)
3941 /* Register all the coprocessor registers based on feature bits */
3942 CPUARMState
*env
= &cpu
->env
;
3943 if (arm_feature(env
, ARM_FEATURE_M
)) {
3944 /* M profile has no coprocessor registers */
3948 define_arm_cp_regs(cpu
, cp_reginfo
);
3949 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
3950 /* Must go early as it is full of wildcards that may be
3951 * overridden by later definitions.
3953 define_arm_cp_regs(cpu
, not_v8_cp_reginfo
);
3956 if (arm_feature(env
, ARM_FEATURE_V6
)) {
3957 /* The ID registers all have impdef reset values */
3958 ARMCPRegInfo v6_idregs
[] = {
3959 { .name
= "ID_PFR0", .state
= ARM_CP_STATE_BOTH
,
3960 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
3961 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3962 .resetvalue
= cpu
->id_pfr0
},
3963 { .name
= "ID_PFR1", .state
= ARM_CP_STATE_BOTH
,
3964 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 1,
3965 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3966 .resetvalue
= cpu
->id_pfr1
},
3967 { .name
= "ID_DFR0", .state
= ARM_CP_STATE_BOTH
,
3968 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 2,
3969 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3970 .resetvalue
= cpu
->id_dfr0
},
3971 { .name
= "ID_AFR0", .state
= ARM_CP_STATE_BOTH
,
3972 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 3,
3973 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3974 .resetvalue
= cpu
->id_afr0
},
3975 { .name
= "ID_MMFR0", .state
= ARM_CP_STATE_BOTH
,
3976 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 4,
3977 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3978 .resetvalue
= cpu
->id_mmfr0
},
3979 { .name
= "ID_MMFR1", .state
= ARM_CP_STATE_BOTH
,
3980 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 5,
3981 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3982 .resetvalue
= cpu
->id_mmfr1
},
3983 { .name
= "ID_MMFR2", .state
= ARM_CP_STATE_BOTH
,
3984 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 6,
3985 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3986 .resetvalue
= cpu
->id_mmfr2
},
3987 { .name
= "ID_MMFR3", .state
= ARM_CP_STATE_BOTH
,
3988 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 7,
3989 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3990 .resetvalue
= cpu
->id_mmfr3
},
3991 { .name
= "ID_ISAR0", .state
= ARM_CP_STATE_BOTH
,
3992 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 0,
3993 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3994 .resetvalue
= cpu
->id_isar0
},
3995 { .name
= "ID_ISAR1", .state
= ARM_CP_STATE_BOTH
,
3996 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 1,
3997 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3998 .resetvalue
= cpu
->id_isar1
},
3999 { .name
= "ID_ISAR2", .state
= ARM_CP_STATE_BOTH
,
4000 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
4001 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4002 .resetvalue
= cpu
->id_isar2
},
4003 { .name
= "ID_ISAR3", .state
= ARM_CP_STATE_BOTH
,
4004 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 3,
4005 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4006 .resetvalue
= cpu
->id_isar3
},
4007 { .name
= "ID_ISAR4", .state
= ARM_CP_STATE_BOTH
,
4008 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 4,
4009 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4010 .resetvalue
= cpu
->id_isar4
},
4011 { .name
= "ID_ISAR5", .state
= ARM_CP_STATE_BOTH
,
4012 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 5,
4013 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4014 .resetvalue
= cpu
->id_isar5
},
4015 /* 6..7 are as yet unallocated and must RAZ */
4016 { .name
= "ID_ISAR6", .cp
= 15, .crn
= 0, .crm
= 2,
4017 .opc1
= 0, .opc2
= 6, .access
= PL1_R
, .type
= ARM_CP_CONST
,
4019 { .name
= "ID_ISAR7", .cp
= 15, .crn
= 0, .crm
= 2,
4020 .opc1
= 0, .opc2
= 7, .access
= PL1_R
, .type
= ARM_CP_CONST
,
4024 define_arm_cp_regs(cpu
, v6_idregs
);
4025 define_arm_cp_regs(cpu
, v6_cp_reginfo
);
4027 define_arm_cp_regs(cpu
, not_v6_cp_reginfo
);
4029 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
4030 define_arm_cp_regs(cpu
, v6k_cp_reginfo
);
4032 if (arm_feature(env
, ARM_FEATURE_V7MP
) &&
4033 !arm_feature(env
, ARM_FEATURE_MPU
)) {
4034 define_arm_cp_regs(cpu
, v7mp_cp_reginfo
);
4036 if (arm_feature(env
, ARM_FEATURE_V7
)) {
4037 /* v7 performance monitor control register: same implementor
4038 * field as main ID register, and we implement only the cycle
4041 #ifndef CONFIG_USER_ONLY
4042 ARMCPRegInfo pmcr
= {
4043 .name
= "PMCR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 0,
4045 .type
= ARM_CP_IO
| ARM_CP_ALIAS
,
4046 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcr
),
4047 .accessfn
= pmreg_access
, .writefn
= pmcr_write
,
4048 .raw_writefn
= raw_write
,
4050 ARMCPRegInfo pmcr64
= {
4051 .name
= "PMCR_EL0", .state
= ARM_CP_STATE_AA64
,
4052 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 0,
4053 .access
= PL0_RW
, .accessfn
= pmreg_access
,
4055 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcr
),
4056 .resetvalue
= cpu
->midr
& 0xff000000,
4057 .writefn
= pmcr_write
, .raw_writefn
= raw_write
,
4059 define_one_arm_cp_reg(cpu
, &pmcr
);
4060 define_one_arm_cp_reg(cpu
, &pmcr64
);
4062 ARMCPRegInfo clidr
= {
4063 .name
= "CLIDR", .state
= ARM_CP_STATE_BOTH
,
4064 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 1,
4065 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->clidr
4067 define_one_arm_cp_reg(cpu
, &clidr
);
4068 define_arm_cp_regs(cpu
, v7_cp_reginfo
);
4069 define_debug_regs(cpu
);
4071 define_arm_cp_regs(cpu
, not_v7_cp_reginfo
);
4073 if (arm_feature(env
, ARM_FEATURE_V8
)) {
4074 /* AArch64 ID registers, which all have impdef reset values */
4075 ARMCPRegInfo v8_idregs
[] = {
4076 { .name
= "ID_AA64PFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4077 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 0,
4078 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4079 .resetvalue
= cpu
->id_aa64pfr0
},
4080 { .name
= "ID_AA64PFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4081 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 1,
4082 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4083 .resetvalue
= cpu
->id_aa64pfr1
},
4084 { .name
= "ID_AA64DFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4085 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 0,
4086 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4087 /* We mask out the PMUVer field, because we don't currently
4088 * implement the PMU. Not advertising it prevents the guest
4089 * from trying to use it and getting UNDEFs on registers we
4092 .resetvalue
= cpu
->id_aa64dfr0
& ~0xf00 },
4093 { .name
= "ID_AA64DFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4094 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 1,
4095 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4096 .resetvalue
= cpu
->id_aa64dfr1
},
4097 { .name
= "ID_AA64AFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4098 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 4,
4099 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4100 .resetvalue
= cpu
->id_aa64afr0
},
4101 { .name
= "ID_AA64AFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4102 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 5,
4103 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4104 .resetvalue
= cpu
->id_aa64afr1
},
4105 { .name
= "ID_AA64ISAR0_EL1", .state
= ARM_CP_STATE_AA64
,
4106 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 0,
4107 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4108 .resetvalue
= cpu
->id_aa64isar0
},
4109 { .name
= "ID_AA64ISAR1_EL1", .state
= ARM_CP_STATE_AA64
,
4110 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 1,
4111 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4112 .resetvalue
= cpu
->id_aa64isar1
},
4113 { .name
= "ID_AA64MMFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4114 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
4115 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4116 .resetvalue
= cpu
->id_aa64mmfr0
},
4117 { .name
= "ID_AA64MMFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4118 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 1,
4119 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4120 .resetvalue
= cpu
->id_aa64mmfr1
},
4121 { .name
= "MVFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4122 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 0,
4123 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4124 .resetvalue
= cpu
->mvfr0
},
4125 { .name
= "MVFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4126 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 1,
4127 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4128 .resetvalue
= cpu
->mvfr1
},
4129 { .name
= "MVFR2_EL1", .state
= ARM_CP_STATE_AA64
,
4130 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 2,
4131 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4132 .resetvalue
= cpu
->mvfr2
},
4135 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4136 if (!arm_feature(env
, ARM_FEATURE_EL3
) &&
4137 !arm_feature(env
, ARM_FEATURE_EL2
)) {
4138 ARMCPRegInfo rvbar
= {
4139 .name
= "RVBAR_EL1", .state
= ARM_CP_STATE_AA64
,
4140 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
4141 .type
= ARM_CP_CONST
, .access
= PL1_R
, .resetvalue
= cpu
->rvbar
4143 define_one_arm_cp_reg(cpu
, &rvbar
);
4145 define_arm_cp_regs(cpu
, v8_idregs
);
4146 define_arm_cp_regs(cpu
, v8_cp_reginfo
);
4148 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
4149 uint64_t vmpidr_def
= mpidr_read_val(env
);
4150 ARMCPRegInfo vpidr_regs
[] = {
4151 { .name
= "VPIDR", .state
= ARM_CP_STATE_AA32
,
4152 .cp
= 15, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
4153 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
4154 .resetvalue
= cpu
->midr
,
4155 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
4156 { .name
= "VPIDR_EL2", .state
= ARM_CP_STATE_AA64
,
4157 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
4158 .access
= PL2_RW
, .resetvalue
= cpu
->midr
,
4159 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
4160 { .name
= "VMPIDR", .state
= ARM_CP_STATE_AA32
,
4161 .cp
= 15, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
4162 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
4163 .resetvalue
= vmpidr_def
,
4164 .fieldoffset
= offsetof(CPUARMState
, cp15
.vmpidr_el2
) },
4165 { .name
= "VMPIDR_EL2", .state
= ARM_CP_STATE_AA64
,
4166 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
4168 .resetvalue
= vmpidr_def
,
4169 .fieldoffset
= offsetof(CPUARMState
, cp15
.vmpidr_el2
) },
4172 define_arm_cp_regs(cpu
, vpidr_regs
);
4173 define_arm_cp_regs(cpu
, el2_cp_reginfo
);
4174 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4175 if (!arm_feature(env
, ARM_FEATURE_EL3
)) {
4176 ARMCPRegInfo rvbar
= {
4177 .name
= "RVBAR_EL2", .state
= ARM_CP_STATE_AA64
,
4178 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 1,
4179 .type
= ARM_CP_CONST
, .access
= PL2_R
, .resetvalue
= cpu
->rvbar
4181 define_one_arm_cp_reg(cpu
, &rvbar
);
4184 /* If EL2 is missing but higher ELs are enabled, we need to
4185 * register the no_el2 reginfos.
4187 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
4188 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4189 * of MIDR_EL1 and MPIDR_EL1.
4191 ARMCPRegInfo vpidr_regs
[] = {
4192 { .name
= "VPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
4193 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
4194 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
4195 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->midr
,
4196 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
4197 { .name
= "VMPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
4198 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
4199 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
4200 .type
= ARM_CP_NO_RAW
,
4201 .writefn
= arm_cp_write_ignore
, .readfn
= mpidr_read
},
4204 define_arm_cp_regs(cpu
, vpidr_regs
);
4205 define_arm_cp_regs(cpu
, el3_no_el2_cp_reginfo
);
4208 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
4209 define_arm_cp_regs(cpu
, el3_cp_reginfo
);
4210 ARMCPRegInfo rvbar
= {
4211 .name
= "RVBAR_EL3", .state
= ARM_CP_STATE_AA64
,
4212 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 1,
4213 .type
= ARM_CP_CONST
, .access
= PL3_R
, .resetvalue
= cpu
->rvbar
4215 define_one_arm_cp_reg(cpu
, &rvbar
);
4217 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
4218 if (arm_feature(env
, ARM_FEATURE_V6
)) {
4219 /* PMSAv6 not implemented */
4220 assert(arm_feature(env
, ARM_FEATURE_V7
));
4221 define_arm_cp_regs(cpu
, vmsa_pmsa_cp_reginfo
);
4222 define_arm_cp_regs(cpu
, pmsav7_cp_reginfo
);
4224 define_arm_cp_regs(cpu
, pmsav5_cp_reginfo
);
4227 define_arm_cp_regs(cpu
, vmsa_pmsa_cp_reginfo
);
4228 define_arm_cp_regs(cpu
, vmsa_cp_reginfo
);
4230 if (arm_feature(env
, ARM_FEATURE_THUMB2EE
)) {
4231 define_arm_cp_regs(cpu
, t2ee_cp_reginfo
);
4233 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
4234 define_arm_cp_regs(cpu
, generic_timer_cp_reginfo
);
4236 if (arm_feature(env
, ARM_FEATURE_VAPA
)) {
4237 define_arm_cp_regs(cpu
, vapa_cp_reginfo
);
4239 if (arm_feature(env
, ARM_FEATURE_CACHE_TEST_CLEAN
)) {
4240 define_arm_cp_regs(cpu
, cache_test_clean_cp_reginfo
);
4242 if (arm_feature(env
, ARM_FEATURE_CACHE_DIRTY_REG
)) {
4243 define_arm_cp_regs(cpu
, cache_dirty_status_cp_reginfo
);
4245 if (arm_feature(env
, ARM_FEATURE_CACHE_BLOCK_OPS
)) {
4246 define_arm_cp_regs(cpu
, cache_block_ops_cp_reginfo
);
4248 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
4249 define_arm_cp_regs(cpu
, omap_cp_reginfo
);
4251 if (arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
4252 define_arm_cp_regs(cpu
, strongarm_cp_reginfo
);
4254 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
4255 define_arm_cp_regs(cpu
, xscale_cp_reginfo
);
4257 if (arm_feature(env
, ARM_FEATURE_DUMMY_C15_REGS
)) {
4258 define_arm_cp_regs(cpu
, dummy_c15_cp_reginfo
);
4260 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
4261 define_arm_cp_regs(cpu
, lpae_cp_reginfo
);
4263 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
4264 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
4265 * be read-only (ie write causes UNDEF exception).
4268 ARMCPRegInfo id_pre_v8_midr_cp_reginfo
[] = {
4269 /* Pre-v8 MIDR space.
4270 * Note that the MIDR isn't a simple constant register because
4271 * of the TI925 behaviour where writes to another register can
4272 * cause the MIDR value to change.
4274 * Unimplemented registers in the c15 0 0 0 space default to
4275 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
4276 * and friends override accordingly.
4279 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= CP_ANY
,
4280 .access
= PL1_R
, .resetvalue
= cpu
->midr
,
4281 .writefn
= arm_cp_write_ignore
, .raw_writefn
= raw_write
,
4282 .readfn
= midr_read
,
4283 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
4284 .type
= ARM_CP_OVERRIDE
},
4285 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
4287 .cp
= 15, .crn
= 0, .crm
= 3, .opc1
= 0, .opc2
= CP_ANY
,
4288 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4290 .cp
= 15, .crn
= 0, .crm
= 4, .opc1
= 0, .opc2
= CP_ANY
,
4291 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4293 .cp
= 15, .crn
= 0, .crm
= 5, .opc1
= 0, .opc2
= CP_ANY
,
4294 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4296 .cp
= 15, .crn
= 0, .crm
= 6, .opc1
= 0, .opc2
= CP_ANY
,
4297 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4299 .cp
= 15, .crn
= 0, .crm
= 7, .opc1
= 0, .opc2
= CP_ANY
,
4300 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4303 ARMCPRegInfo id_v8_midr_cp_reginfo
[] = {
4304 { .name
= "MIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
4305 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 0,
4306 .access
= PL1_R
, .type
= ARM_CP_NO_RAW
, .resetvalue
= cpu
->midr
,
4307 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
4308 .readfn
= midr_read
},
4309 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
4310 { .name
= "MIDR", .type
= ARM_CP_ALIAS
| ARM_CP_CONST
,
4311 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 4,
4312 .access
= PL1_R
, .resetvalue
= cpu
->midr
},
4313 { .name
= "MIDR", .type
= ARM_CP_ALIAS
| ARM_CP_CONST
,
4314 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 7,
4315 .access
= PL1_R
, .resetvalue
= cpu
->midr
},
4316 { .name
= "REVIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
4317 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 6,
4318 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->revidr
},
4321 ARMCPRegInfo id_cp_reginfo
[] = {
4322 /* These are common to v8 and pre-v8 */
4324 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 1,
4325 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
4326 { .name
= "CTR_EL0", .state
= ARM_CP_STATE_AA64
,
4327 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 0, .crm
= 0,
4328 .access
= PL0_R
, .accessfn
= ctr_el0_access
,
4329 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
4330 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
4332 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 2,
4333 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4336 /* TLBTR is specific to VMSA */
4337 ARMCPRegInfo id_tlbtr_reginfo
= {
4339 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 3,
4340 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
4342 /* MPUIR is specific to PMSA V6+ */
4343 ARMCPRegInfo id_mpuir_reginfo
= {
4345 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 4,
4346 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4347 .resetvalue
= cpu
->pmsav7_dregion
<< 8
4349 ARMCPRegInfo crn0_wi_reginfo
= {
4350 .name
= "CRN0_WI", .cp
= 15, .crn
= 0, .crm
= CP_ANY
,
4351 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_W
,
4352 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
4354 if (arm_feature(env
, ARM_FEATURE_OMAPCP
) ||
4355 arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
4357 /* Register the blanket "writes ignored" value first to cover the
4358 * whole space. Then update the specific ID registers to allow write
4359 * access, so that they ignore writes rather than causing them to
4362 define_one_arm_cp_reg(cpu
, &crn0_wi_reginfo
);
4363 for (r
= id_pre_v8_midr_cp_reginfo
;
4364 r
->type
!= ARM_CP_SENTINEL
; r
++) {
4367 for (r
= id_cp_reginfo
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
4370 id_tlbtr_reginfo
.access
= PL1_RW
;
4371 id_tlbtr_reginfo
.access
= PL1_RW
;
4373 if (arm_feature(env
, ARM_FEATURE_V8
)) {
4374 define_arm_cp_regs(cpu
, id_v8_midr_cp_reginfo
);
4376 define_arm_cp_regs(cpu
, id_pre_v8_midr_cp_reginfo
);
4378 define_arm_cp_regs(cpu
, id_cp_reginfo
);
4379 if (!arm_feature(env
, ARM_FEATURE_MPU
)) {
4380 define_one_arm_cp_reg(cpu
, &id_tlbtr_reginfo
);
4381 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
4382 define_one_arm_cp_reg(cpu
, &id_mpuir_reginfo
);
4386 if (arm_feature(env
, ARM_FEATURE_MPIDR
)) {
4387 define_arm_cp_regs(cpu
, mpidr_cp_reginfo
);
4390 if (arm_feature(env
, ARM_FEATURE_AUXCR
)) {
4391 ARMCPRegInfo auxcr_reginfo
[] = {
4392 { .name
= "ACTLR_EL1", .state
= ARM_CP_STATE_BOTH
,
4393 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 1,
4394 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
4395 .resetvalue
= cpu
->reset_auxcr
},
4396 { .name
= "ACTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
4397 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 1,
4398 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4400 { .name
= "ACTLR_EL3", .state
= ARM_CP_STATE_AA64
,
4401 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 1,
4402 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
4406 define_arm_cp_regs(cpu
, auxcr_reginfo
);
4409 if (arm_feature(env
, ARM_FEATURE_CBAR
)) {
4410 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
4411 /* 32 bit view is [31:18] 0...0 [43:32]. */
4412 uint32_t cbar32
= (extract64(cpu
->reset_cbar
, 18, 14) << 18)
4413 | extract64(cpu
->reset_cbar
, 32, 12);
4414 ARMCPRegInfo cbar_reginfo
[] = {
4416 .type
= ARM_CP_CONST
,
4417 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
4418 .access
= PL1_R
, .resetvalue
= cpu
->reset_cbar
},
4419 { .name
= "CBAR_EL1", .state
= ARM_CP_STATE_AA64
,
4420 .type
= ARM_CP_CONST
,
4421 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 3, .opc2
= 0,
4422 .access
= PL1_R
, .resetvalue
= cbar32
},
4425 /* We don't implement a r/w 64 bit CBAR currently */
4426 assert(arm_feature(env
, ARM_FEATURE_CBAR_RO
));
4427 define_arm_cp_regs(cpu
, cbar_reginfo
);
4429 ARMCPRegInfo cbar
= {
4431 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
4432 .access
= PL1_R
|PL3_W
, .resetvalue
= cpu
->reset_cbar
,
4433 .fieldoffset
= offsetof(CPUARMState
,
4434 cp15
.c15_config_base_address
)
4436 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
4437 cbar
.access
= PL1_R
;
4438 cbar
.fieldoffset
= 0;
4439 cbar
.type
= ARM_CP_CONST
;
4441 define_one_arm_cp_reg(cpu
, &cbar
);
4445 /* Generic registers whose values depend on the implementation */
4447 ARMCPRegInfo sctlr
= {
4448 .name
= "SCTLR", .state
= ARM_CP_STATE_BOTH
,
4449 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
4451 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.sctlr_s
),
4452 offsetof(CPUARMState
, cp15
.sctlr_ns
) },
4453 .writefn
= sctlr_write
, .resetvalue
= cpu
->reset_sctlr
,
4454 .raw_writefn
= raw_write
,
4456 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
4457 /* Normally we would always end the TB on an SCTLR write, but Linux
4458 * arch/arm/mach-pxa/sleep.S expects two instructions following
4459 * an MMU enable to execute from cache. Imitate this behaviour.
4461 sctlr
.type
|= ARM_CP_SUPPRESS_TB_END
;
4463 define_one_arm_cp_reg(cpu
, &sctlr
);
4467 ARMCPU
*cpu_arm_init(const char *cpu_model
)
4469 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU
, cpu_model
));
4472 void arm_cpu_register_gdb_regs_for_features(ARMCPU
*cpu
)
4474 CPUState
*cs
= CPU(cpu
);
4475 CPUARMState
*env
= &cpu
->env
;
4477 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
4478 gdb_register_coprocessor(cs
, aarch64_fpu_gdb_get_reg
,
4479 aarch64_fpu_gdb_set_reg
,
4480 34, "aarch64-fpu.xml", 0);
4481 } else if (arm_feature(env
, ARM_FEATURE_NEON
)) {
4482 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
4483 51, "arm-neon.xml", 0);
4484 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
4485 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
4486 35, "arm-vfp3.xml", 0);
4487 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
4488 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
4489 19, "arm-vfp.xml", 0);
4493 /* Sort alphabetically by type name, except for "any". */
4494 static gint
arm_cpu_list_compare(gconstpointer a
, gconstpointer b
)
4496 ObjectClass
*class_a
= (ObjectClass
*)a
;
4497 ObjectClass
*class_b
= (ObjectClass
*)b
;
4498 const char *name_a
, *name_b
;
4500 name_a
= object_class_get_name(class_a
);
4501 name_b
= object_class_get_name(class_b
);
4502 if (strcmp(name_a
, "any-" TYPE_ARM_CPU
) == 0) {
4504 } else if (strcmp(name_b
, "any-" TYPE_ARM_CPU
) == 0) {
4507 return strcmp(name_a
, name_b
);
4511 static void arm_cpu_list_entry(gpointer data
, gpointer user_data
)
4513 ObjectClass
*oc
= data
;
4514 CPUListState
*s
= user_data
;
4515 const char *typename
;
4518 typename
= object_class_get_name(oc
);
4519 name
= g_strndup(typename
, strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
4520 (*s
->cpu_fprintf
)(s
->file
, " %s\n",
4525 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
)
4529 .cpu_fprintf
= cpu_fprintf
,
4533 list
= object_class_get_list(TYPE_ARM_CPU
, false);
4534 list
= g_slist_sort(list
, arm_cpu_list_compare
);
4535 (*cpu_fprintf
)(f
, "Available CPUs:\n");
4536 g_slist_foreach(list
, arm_cpu_list_entry
, &s
);
4539 /* The 'host' CPU type is dynamically registered only if KVM is
4540 * enabled, so we have to special-case it here:
4542 (*cpu_fprintf
)(f
, " host (only available in KVM mode)\n");
4546 static void arm_cpu_add_definition(gpointer data
, gpointer user_data
)
4548 ObjectClass
*oc
= data
;
4549 CpuDefinitionInfoList
**cpu_list
= user_data
;
4550 CpuDefinitionInfoList
*entry
;
4551 CpuDefinitionInfo
*info
;
4552 const char *typename
;
4554 typename
= object_class_get_name(oc
);
4555 info
= g_malloc0(sizeof(*info
));
4556 info
->name
= g_strndup(typename
,
4557 strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
4559 entry
= g_malloc0(sizeof(*entry
));
4560 entry
->value
= info
;
4561 entry
->next
= *cpu_list
;
4565 CpuDefinitionInfoList
*arch_query_cpu_definitions(Error
**errp
)
4567 CpuDefinitionInfoList
*cpu_list
= NULL
;
4570 list
= object_class_get_list(TYPE_ARM_CPU
, false);
4571 g_slist_foreach(list
, arm_cpu_add_definition
, &cpu_list
);
4577 static void add_cpreg_to_hashtable(ARMCPU
*cpu
, const ARMCPRegInfo
*r
,
4578 void *opaque
, int state
, int secstate
,
4579 int crm
, int opc1
, int opc2
)
4581 /* Private utility function for define_one_arm_cp_reg_with_opaque():
4582 * add a single reginfo struct to the hash table.
4584 uint32_t *key
= g_new(uint32_t, 1);
4585 ARMCPRegInfo
*r2
= g_memdup(r
, sizeof(ARMCPRegInfo
));
4586 int is64
= (r
->type
& ARM_CP_64BIT
) ? 1 : 0;
4587 int ns
= (secstate
& ARM_CP_SECSTATE_NS
) ? 1 : 0;
4589 /* Reset the secure state to the specific incoming state. This is
4590 * necessary as the register may have been defined with both states.
4592 r2
->secure
= secstate
;
4594 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
4595 /* Register is banked (using both entries in array).
4596 * Overwriting fieldoffset as the array is only used to define
4597 * banked registers but later only fieldoffset is used.
4599 r2
->fieldoffset
= r
->bank_fieldoffsets
[ns
];
4602 if (state
== ARM_CP_STATE_AA32
) {
4603 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
4604 /* If the register is banked then we don't need to migrate or
4605 * reset the 32-bit instance in certain cases:
4607 * 1) If the register has both 32-bit and 64-bit instances then we
4608 * can count on the 64-bit instance taking care of the
4610 * 2) If ARMv8 is enabled then we can count on a 64-bit version
4611 * taking care of the secure bank. This requires that separate
4612 * 32 and 64-bit definitions are provided.
4614 if ((r
->state
== ARM_CP_STATE_BOTH
&& ns
) ||
4615 (arm_feature(&cpu
->env
, ARM_FEATURE_V8
) && !ns
)) {
4616 r2
->type
|= ARM_CP_ALIAS
;
4618 } else if ((secstate
!= r
->secure
) && !ns
) {
4619 /* The register is not banked so we only want to allow migration of
4620 * the non-secure instance.
4622 r2
->type
|= ARM_CP_ALIAS
;
4625 if (r
->state
== ARM_CP_STATE_BOTH
) {
4626 /* We assume it is a cp15 register if the .cp field is left unset.
4632 #ifdef HOST_WORDS_BIGENDIAN
4633 if (r2
->fieldoffset
) {
4634 r2
->fieldoffset
+= sizeof(uint32_t);
4639 if (state
== ARM_CP_STATE_AA64
) {
4640 /* To allow abbreviation of ARMCPRegInfo
4641 * definitions, we treat cp == 0 as equivalent to
4642 * the value for "standard guest-visible sysreg".
4643 * STATE_BOTH definitions are also always "standard
4644 * sysreg" in their AArch64 view (the .cp value may
4645 * be non-zero for the benefit of the AArch32 view).
4647 if (r
->cp
== 0 || r
->state
== ARM_CP_STATE_BOTH
) {
4648 r2
->cp
= CP_REG_ARM64_SYSREG_CP
;
4650 *key
= ENCODE_AA64_CP_REG(r2
->cp
, r2
->crn
, crm
,
4651 r2
->opc0
, opc1
, opc2
);
4653 *key
= ENCODE_CP_REG(r2
->cp
, is64
, ns
, r2
->crn
, crm
, opc1
, opc2
);
4656 r2
->opaque
= opaque
;
4658 /* reginfo passed to helpers is correct for the actual access,
4659 * and is never ARM_CP_STATE_BOTH:
4662 /* Make sure reginfo passed to helpers for wildcarded regs
4663 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
4668 /* By convention, for wildcarded registers only the first
4669 * entry is used for migration; the others are marked as
4670 * ALIAS so we don't try to transfer the register
4671 * multiple times. Special registers (ie NOP/WFI) are
4672 * never migratable and not even raw-accessible.
4674 if ((r
->type
& ARM_CP_SPECIAL
)) {
4675 r2
->type
|= ARM_CP_NO_RAW
;
4677 if (((r
->crm
== CP_ANY
) && crm
!= 0) ||
4678 ((r
->opc1
== CP_ANY
) && opc1
!= 0) ||
4679 ((r
->opc2
== CP_ANY
) && opc2
!= 0)) {
4680 r2
->type
|= ARM_CP_ALIAS
;
4683 /* Check that raw accesses are either forbidden or handled. Note that
4684 * we can't assert this earlier because the setup of fieldoffset for
4685 * banked registers has to be done first.
4687 if (!(r2
->type
& ARM_CP_NO_RAW
)) {
4688 assert(!raw_accessors_invalid(r2
));
4691 /* Overriding of an existing definition must be explicitly
4694 if (!(r
->type
& ARM_CP_OVERRIDE
)) {
4695 ARMCPRegInfo
*oldreg
;
4696 oldreg
= g_hash_table_lookup(cpu
->cp_regs
, key
);
4697 if (oldreg
&& !(oldreg
->type
& ARM_CP_OVERRIDE
)) {
4698 fprintf(stderr
, "Register redefined: cp=%d %d bit "
4699 "crn=%d crm=%d opc1=%d opc2=%d, "
4700 "was %s, now %s\n", r2
->cp
, 32 + 32 * is64
,
4701 r2
->crn
, r2
->crm
, r2
->opc1
, r2
->opc2
,
4702 oldreg
->name
, r2
->name
);
4703 g_assert_not_reached();
4706 g_hash_table_insert(cpu
->cp_regs
, key
, r2
);
4710 void define_one_arm_cp_reg_with_opaque(ARMCPU
*cpu
,
4711 const ARMCPRegInfo
*r
, void *opaque
)
4713 /* Define implementations of coprocessor registers.
4714 * We store these in a hashtable because typically
4715 * there are less than 150 registers in a space which
4716 * is 16*16*16*8*8 = 262144 in size.
4717 * Wildcarding is supported for the crm, opc1 and opc2 fields.
4718 * If a register is defined twice then the second definition is
4719 * used, so this can be used to define some generic registers and
4720 * then override them with implementation specific variations.
4721 * At least one of the original and the second definition should
4722 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
4723 * against accidental use.
4725 * The state field defines whether the register is to be
4726 * visible in the AArch32 or AArch64 execution state. If the
4727 * state is set to ARM_CP_STATE_BOTH then we synthesise a
4728 * reginfo structure for the AArch32 view, which sees the lower
4729 * 32 bits of the 64 bit register.
4731 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
4732 * be wildcarded. AArch64 registers are always considered to be 64
4733 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
4734 * the register, if any.
4736 int crm
, opc1
, opc2
, state
;
4737 int crmmin
= (r
->crm
== CP_ANY
) ? 0 : r
->crm
;
4738 int crmmax
= (r
->crm
== CP_ANY
) ? 15 : r
->crm
;
4739 int opc1min
= (r
->opc1
== CP_ANY
) ? 0 : r
->opc1
;
4740 int opc1max
= (r
->opc1
== CP_ANY
) ? 7 : r
->opc1
;
4741 int opc2min
= (r
->opc2
== CP_ANY
) ? 0 : r
->opc2
;
4742 int opc2max
= (r
->opc2
== CP_ANY
) ? 7 : r
->opc2
;
4743 /* 64 bit registers have only CRm and Opc1 fields */
4744 assert(!((r
->type
& ARM_CP_64BIT
) && (r
->opc2
|| r
->crn
)));
4745 /* op0 only exists in the AArch64 encodings */
4746 assert((r
->state
!= ARM_CP_STATE_AA32
) || (r
->opc0
== 0));
4747 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
4748 assert((r
->state
!= ARM_CP_STATE_AA64
) || !(r
->type
& ARM_CP_64BIT
));
4749 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
4750 * encodes a minimum access level for the register. We roll this
4751 * runtime check into our general permission check code, so check
4752 * here that the reginfo's specified permissions are strict enough
4753 * to encompass the generic architectural permission check.
4755 if (r
->state
!= ARM_CP_STATE_AA32
) {
4758 case 0: case 1: case 2:
4771 /* unallocated encoding, so not possible */
4779 /* min_EL EL1, secure mode only (we don't check the latter) */
4783 /* broken reginfo with out-of-range opc1 */
4787 /* assert our permissions are not too lax (stricter is fine) */
4788 assert((r
->access
& ~mask
) == 0);
4791 /* Check that the register definition has enough info to handle
4792 * reads and writes if they are permitted.
4794 if (!(r
->type
& (ARM_CP_SPECIAL
|ARM_CP_CONST
))) {
4795 if (r
->access
& PL3_R
) {
4796 assert((r
->fieldoffset
||
4797 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
4800 if (r
->access
& PL3_W
) {
4801 assert((r
->fieldoffset
||
4802 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
4806 /* Bad type field probably means missing sentinel at end of reg list */
4807 assert(cptype_valid(r
->type
));
4808 for (crm
= crmmin
; crm
<= crmmax
; crm
++) {
4809 for (opc1
= opc1min
; opc1
<= opc1max
; opc1
++) {
4810 for (opc2
= opc2min
; opc2
<= opc2max
; opc2
++) {
4811 for (state
= ARM_CP_STATE_AA32
;
4812 state
<= ARM_CP_STATE_AA64
; state
++) {
4813 if (r
->state
!= state
&& r
->state
!= ARM_CP_STATE_BOTH
) {
4816 if (state
== ARM_CP_STATE_AA32
) {
4817 /* Under AArch32 CP registers can be common
4818 * (same for secure and non-secure world) or banked.
4820 switch (r
->secure
) {
4821 case ARM_CP_SECSTATE_S
:
4822 case ARM_CP_SECSTATE_NS
:
4823 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
4824 r
->secure
, crm
, opc1
, opc2
);
4827 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
4830 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
4836 /* AArch64 registers get mapped to non-secure instance
4838 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
4848 void define_arm_cp_regs_with_opaque(ARMCPU
*cpu
,
4849 const ARMCPRegInfo
*regs
, void *opaque
)
4851 /* Define a whole list of registers */
4852 const ARMCPRegInfo
*r
;
4853 for (r
= regs
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
4854 define_one_arm_cp_reg_with_opaque(cpu
, r
, opaque
);
4858 const ARMCPRegInfo
*get_arm_cp_reginfo(GHashTable
*cpregs
, uint32_t encoded_cp
)
4860 return g_hash_table_lookup(cpregs
, &encoded_cp
);
4863 void arm_cp_write_ignore(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4866 /* Helper coprocessor write function for write-ignore registers */
4869 uint64_t arm_cp_read_zero(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
4871 /* Helper coprocessor write function for read-as-zero registers */
4875 void arm_cp_reset_ignore(CPUARMState
*env
, const ARMCPRegInfo
*opaque
)
4877 /* Helper coprocessor reset function for do-nothing-on-reset registers */
4880 static int bad_mode_switch(CPUARMState
*env
, int mode
)
4882 /* Return true if it is not valid for us to switch to
4883 * this CPU mode (ie all the UNPREDICTABLE cases in
4884 * the ARM ARM CPSRWriteByInstr pseudocode).
4887 case ARM_CPU_MODE_USR
:
4888 case ARM_CPU_MODE_SYS
:
4889 case ARM_CPU_MODE_SVC
:
4890 case ARM_CPU_MODE_ABT
:
4891 case ARM_CPU_MODE_UND
:
4892 case ARM_CPU_MODE_IRQ
:
4893 case ARM_CPU_MODE_FIQ
:
4895 case ARM_CPU_MODE_MON
:
4896 return !arm_is_secure(env
);
4902 uint32_t cpsr_read(CPUARMState
*env
)
4905 ZF
= (env
->ZF
== 0);
4906 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
4907 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
4908 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
4909 | ((env
->condexec_bits
& 0xfc) << 8)
4910 | (env
->GE
<< 16) | (env
->daif
& CPSR_AIF
);
4913 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
4915 uint32_t changed_daif
;
4917 if (mask
& CPSR_NZCV
) {
4918 env
->ZF
= (~val
) & CPSR_Z
;
4920 env
->CF
= (val
>> 29) & 1;
4921 env
->VF
= (val
<< 3) & 0x80000000;
4924 env
->QF
= ((val
& CPSR_Q
) != 0);
4926 env
->thumb
= ((val
& CPSR_T
) != 0);
4927 if (mask
& CPSR_IT_0_1
) {
4928 env
->condexec_bits
&= ~3;
4929 env
->condexec_bits
|= (val
>> 25) & 3;
4931 if (mask
& CPSR_IT_2_7
) {
4932 env
->condexec_bits
&= 3;
4933 env
->condexec_bits
|= (val
>> 8) & 0xfc;
4935 if (mask
& CPSR_GE
) {
4936 env
->GE
= (val
>> 16) & 0xf;
4939 /* In a V7 implementation that includes the security extensions but does
4940 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
4941 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
4942 * bits respectively.
4944 * In a V8 implementation, it is permitted for privileged software to
4945 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
4947 if (!arm_feature(env
, ARM_FEATURE_V8
) &&
4948 arm_feature(env
, ARM_FEATURE_EL3
) &&
4949 !arm_feature(env
, ARM_FEATURE_EL2
) &&
4950 !arm_is_secure(env
)) {
4952 changed_daif
= (env
->daif
^ val
) & mask
;
4954 if (changed_daif
& CPSR_A
) {
4955 /* Check to see if we are allowed to change the masking of async
4956 * abort exceptions from a non-secure state.
4958 if (!(env
->cp15
.scr_el3
& SCR_AW
)) {
4959 qemu_log_mask(LOG_GUEST_ERROR
,
4960 "Ignoring attempt to switch CPSR_A flag from "
4961 "non-secure world with SCR.AW bit clear\n");
4966 if (changed_daif
& CPSR_F
) {
4967 /* Check to see if we are allowed to change the masking of FIQ
4968 * exceptions from a non-secure state.
4970 if (!(env
->cp15
.scr_el3
& SCR_FW
)) {
4971 qemu_log_mask(LOG_GUEST_ERROR
,
4972 "Ignoring attempt to switch CPSR_F flag from "
4973 "non-secure world with SCR.FW bit clear\n");
4977 /* Check whether non-maskable FIQ (NMFI) support is enabled.
4978 * If this bit is set software is not allowed to mask
4979 * FIQs, but is allowed to set CPSR_F to 0.
4981 if ((A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_NMFI
) &&
4983 qemu_log_mask(LOG_GUEST_ERROR
,
4984 "Ignoring attempt to enable CPSR_F flag "
4985 "(non-maskable FIQ [NMFI] support enabled)\n");
4991 env
->daif
&= ~(CPSR_AIF
& mask
);
4992 env
->daif
|= val
& CPSR_AIF
& mask
;
4994 if ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
) {
4995 if (bad_mode_switch(env
, val
& CPSR_M
)) {
4996 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
4997 * We choose to ignore the attempt and leave the CPSR M field
5002 switch_mode(env
, val
& CPSR_M
);
5005 mask
&= ~CACHED_CPSR_BITS
;
5006 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
5009 /* Sign/zero extend */
5010 uint32_t HELPER(sxtb16
)(uint32_t x
)
5013 res
= (uint16_t)(int8_t)x
;
5014 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
5018 uint32_t HELPER(uxtb16
)(uint32_t x
)
5021 res
= (uint16_t)(uint8_t)x
;
5022 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
5026 uint32_t HELPER(clz
)(uint32_t x
)
5031 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
5035 if (num
== INT_MIN
&& den
== -1)
5040 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
5047 uint32_t HELPER(rbit
)(uint32_t x
)
5052 #if defined(CONFIG_USER_ONLY)
5054 /* These should probably raise undefined insn exceptions. */
5055 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
5057 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5059 cpu_abort(CPU(cpu
), "v7m_msr %d\n", reg
);
5062 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
5064 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5066 cpu_abort(CPU(cpu
), "v7m_mrs %d\n", reg
);
5070 void switch_mode(CPUARMState
*env
, int mode
)
5072 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5074 if (mode
!= ARM_CPU_MODE_USR
) {
5075 cpu_abort(CPU(cpu
), "Tried to switch out of user mode\n");
5079 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
5081 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5083 cpu_abort(CPU(cpu
), "banked r13 write\n");
5086 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
5088 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5090 cpu_abort(CPU(cpu
), "banked r13 read\n");
5094 uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
5095 uint32_t cur_el
, bool secure
)
5100 void aarch64_sync_64_to_32(CPUARMState
*env
)
5102 g_assert_not_reached();
5107 /* Map CPU modes onto saved register banks. */
5108 int bank_number(int mode
)
5111 case ARM_CPU_MODE_USR
:
5112 case ARM_CPU_MODE_SYS
:
5114 case ARM_CPU_MODE_SVC
:
5116 case ARM_CPU_MODE_ABT
:
5118 case ARM_CPU_MODE_UND
:
5120 case ARM_CPU_MODE_IRQ
:
5122 case ARM_CPU_MODE_FIQ
:
5124 case ARM_CPU_MODE_HYP
:
5126 case ARM_CPU_MODE_MON
:
5129 g_assert_not_reached();
5132 void switch_mode(CPUARMState
*env
, int mode
)
5137 old_mode
= env
->uncached_cpsr
& CPSR_M
;
5138 if (mode
== old_mode
)
5141 if (old_mode
== ARM_CPU_MODE_FIQ
) {
5142 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
5143 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
5144 } else if (mode
== ARM_CPU_MODE_FIQ
) {
5145 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
5146 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
5149 i
= bank_number(old_mode
);
5150 env
->banked_r13
[i
] = env
->regs
[13];
5151 env
->banked_r14
[i
] = env
->regs
[14];
5152 env
->banked_spsr
[i
] = env
->spsr
;
5154 i
= bank_number(mode
);
5155 env
->regs
[13] = env
->banked_r13
[i
];
5156 env
->regs
[14] = env
->banked_r14
[i
];
5157 env
->spsr
= env
->banked_spsr
[i
];
5160 /* Physical Interrupt Target EL Lookup Table
5162 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5164 * The below multi-dimensional table is used for looking up the target
5165 * exception level given numerous condition criteria. Specifically, the
5166 * target EL is based on SCR and HCR routing controls as well as the
5167 * currently executing EL and secure state.
5170 * target_el_table[2][2][2][2][2][4]
5171 * | | | | | +--- Current EL
5172 * | | | | +------ Non-secure(0)/Secure(1)
5173 * | | | +--------- HCR mask override
5174 * | | +------------ SCR exec state control
5175 * | +--------------- SCR mask override
5176 * +------------------ 32-bit(0)/64-bit(1) EL3
5178 * The table values are as such:
5182 * The ARM ARM target EL table includes entries indicating that an "exception
5183 * is not taken". The two cases where this is applicable are:
5184 * 1) An exception is taken from EL3 but the SCR does not have the exception
5186 * 2) An exception is taken from EL2 but the HCR does not have the exception
5188 * In these two cases, the below table contain a target of EL1. This value is
5189 * returned as it is expected that the consumer of the table data will check
5190 * for "target EL >= current EL" to ensure the exception is not taken.
5194 * BIT IRQ IMO Non-secure Secure
5195 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5197 const int8_t target_el_table
[2][2][2][2][2][4] = {
5198 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5199 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5200 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5201 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5202 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5203 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5204 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5205 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5206 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5207 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5208 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5209 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5210 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5211 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5212 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5213 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5217 * Determine the target EL for physical exceptions
5219 uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
5220 uint32_t cur_el
, bool secure
)
5222 CPUARMState
*env
= cs
->env_ptr
;
5223 int rw
= ((env
->cp15
.scr_el3
& SCR_RW
) == SCR_RW
);
5227 int is64
= arm_el_is_aa64(env
, 3);
5231 scr
= ((env
->cp15
.scr_el3
& SCR_IRQ
) == SCR_IRQ
);
5232 hcr
= ((env
->cp15
.hcr_el2
& HCR_IMO
) == HCR_IMO
);
5235 scr
= ((env
->cp15
.scr_el3
& SCR_FIQ
) == SCR_FIQ
);
5236 hcr
= ((env
->cp15
.hcr_el2
& HCR_FMO
) == HCR_FMO
);
5239 scr
= ((env
->cp15
.scr_el3
& SCR_EA
) == SCR_EA
);
5240 hcr
= ((env
->cp15
.hcr_el2
& HCR_AMO
) == HCR_AMO
);
5244 /* If HCR.TGE is set then HCR is treated as being 1 */
5245 hcr
|= ((env
->cp15
.hcr_el2
& HCR_TGE
) == HCR_TGE
);
5247 /* Perform a table-lookup for the target EL given the current state */
5248 target_el
= target_el_table
[is64
][scr
][rw
][hcr
][secure
][cur_el
];
5250 assert(target_el
> 0);
5255 static void v7m_push(CPUARMState
*env
, uint32_t val
)
5257 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
5260 stl_phys(cs
->as
, env
->regs
[13], val
);
5263 static uint32_t v7m_pop(CPUARMState
*env
)
5265 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
5268 val
= ldl_phys(cs
->as
, env
->regs
[13]);
5273 /* Switch to V7M main or process stack pointer. */
5274 static void switch_v7m_sp(CPUARMState
*env
, int process
)
5277 if (env
->v7m
.current_sp
!= process
) {
5278 tmp
= env
->v7m
.other_sp
;
5279 env
->v7m
.other_sp
= env
->regs
[13];
5280 env
->regs
[13] = tmp
;
5281 env
->v7m
.current_sp
= process
;
5285 static void do_v7m_exception_exit(CPUARMState
*env
)
5290 type
= env
->regs
[15];
5291 if (env
->v7m
.exception
!= 0)
5292 armv7m_nvic_complete_irq(env
->nvic
, env
->v7m
.exception
);
5294 /* Switch to the target stack. */
5295 switch_v7m_sp(env
, (type
& 4) != 0);
5296 /* Pop registers. */
5297 env
->regs
[0] = v7m_pop(env
);
5298 env
->regs
[1] = v7m_pop(env
);
5299 env
->regs
[2] = v7m_pop(env
);
5300 env
->regs
[3] = v7m_pop(env
);
5301 env
->regs
[12] = v7m_pop(env
);
5302 env
->regs
[14] = v7m_pop(env
);
5303 env
->regs
[15] = v7m_pop(env
);
5304 if (env
->regs
[15] & 1) {
5305 qemu_log_mask(LOG_GUEST_ERROR
,
5306 "M profile return from interrupt with misaligned "
5307 "PC is UNPREDICTABLE\n");
5308 /* Actual hardware seems to ignore the lsbit, and there are several
5309 * RTOSes out there which incorrectly assume the r15 in the stack
5310 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
5312 env
->regs
[15] &= ~1U;
5314 xpsr
= v7m_pop(env
);
5315 xpsr_write(env
, xpsr
, 0xfffffdff);
5316 /* Undo stack alignment. */
5319 /* ??? The exception return type specifies Thread/Handler mode. However
5320 this is also implied by the xPSR value. Not sure what to do
5321 if there is a mismatch. */
5322 /* ??? Likewise for mismatches between the CONTROL register and the stack
5326 void arm_v7m_cpu_do_interrupt(CPUState
*cs
)
5328 ARMCPU
*cpu
= ARM_CPU(cs
);
5329 CPUARMState
*env
= &cpu
->env
;
5330 uint32_t xpsr
= xpsr_read(env
);
5334 arm_log_exception(cs
->exception_index
);
5337 if (env
->v7m
.current_sp
)
5339 if (env
->v7m
.exception
== 0)
5342 /* For exceptions we just mark as pending on the NVIC, and let that
5344 /* TODO: Need to escalate if the current priority is higher than the
5345 one we're raising. */
5346 switch (cs
->exception_index
) {
5348 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
);
5351 /* The PC already points to the next instruction. */
5352 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SVC
);
5354 case EXCP_PREFETCH_ABORT
:
5355 case EXCP_DATA_ABORT
:
5356 /* TODO: if we implemented the MPU registers, this is where we
5357 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
5359 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
);
5362 if (semihosting_enabled()) {
5364 nr
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
5367 qemu_log_mask(CPU_LOG_INT
,
5368 "...handling as semihosting call 0x%x\n",
5370 env
->regs
[0] = do_arm_semihosting(env
);
5374 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_DEBUG
);
5377 env
->v7m
.exception
= armv7m_nvic_acknowledge_irq(env
->nvic
);
5379 case EXCP_EXCEPTION_EXIT
:
5380 do_v7m_exception_exit(env
);
5383 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
5384 return; /* Never happens. Keep compiler happy. */
5387 /* Align stack pointer. */
5388 /* ??? Should only do this if Configuration Control Register
5389 STACKALIGN bit is set. */
5390 if (env
->regs
[13] & 4) {
5394 /* Switch to the handler mode. */
5395 v7m_push(env
, xpsr
);
5396 v7m_push(env
, env
->regs
[15]);
5397 v7m_push(env
, env
->regs
[14]);
5398 v7m_push(env
, env
->regs
[12]);
5399 v7m_push(env
, env
->regs
[3]);
5400 v7m_push(env
, env
->regs
[2]);
5401 v7m_push(env
, env
->regs
[1]);
5402 v7m_push(env
, env
->regs
[0]);
5403 switch_v7m_sp(env
, 0);
5405 env
->condexec_bits
= 0;
5407 addr
= ldl_phys(cs
->as
, env
->v7m
.vecbase
+ env
->v7m
.exception
* 4);
5408 env
->regs
[15] = addr
& 0xfffffffe;
5409 env
->thumb
= addr
& 1;
5412 /* Function used to synchronize QEMU's AArch64 register set with AArch32
5413 * register set. This is necessary when switching between AArch32 and AArch64
5416 void aarch64_sync_32_to_64(CPUARMState
*env
)
5419 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
5421 /* We can blanket copy R[0:7] to X[0:7] */
5422 for (i
= 0; i
< 8; i
++) {
5423 env
->xregs
[i
] = env
->regs
[i
];
5426 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
5427 * Otherwise, they come from the banked user regs.
5429 if (mode
== ARM_CPU_MODE_FIQ
) {
5430 for (i
= 8; i
< 13; i
++) {
5431 env
->xregs
[i
] = env
->usr_regs
[i
- 8];
5434 for (i
= 8; i
< 13; i
++) {
5435 env
->xregs
[i
] = env
->regs
[i
];
5439 /* Registers x13-x23 are the various mode SP and FP registers. Registers
5440 * r13 and r14 are only copied if we are in that mode, otherwise we copy
5441 * from the mode banked register.
5443 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
5444 env
->xregs
[13] = env
->regs
[13];
5445 env
->xregs
[14] = env
->regs
[14];
5447 env
->xregs
[13] = env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)];
5448 /* HYP is an exception in that it is copied from r14 */
5449 if (mode
== ARM_CPU_MODE_HYP
) {
5450 env
->xregs
[14] = env
->regs
[14];
5452 env
->xregs
[14] = env
->banked_r14
[bank_number(ARM_CPU_MODE_USR
)];
5456 if (mode
== ARM_CPU_MODE_HYP
) {
5457 env
->xregs
[15] = env
->regs
[13];
5459 env
->xregs
[15] = env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)];
5462 if (mode
== ARM_CPU_MODE_IRQ
) {
5463 env
->xregs
[16] = env
->regs
[14];
5464 env
->xregs
[17] = env
->regs
[13];
5466 env
->xregs
[16] = env
->banked_r14
[bank_number(ARM_CPU_MODE_IRQ
)];
5467 env
->xregs
[17] = env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)];
5470 if (mode
== ARM_CPU_MODE_SVC
) {
5471 env
->xregs
[18] = env
->regs
[14];
5472 env
->xregs
[19] = env
->regs
[13];
5474 env
->xregs
[18] = env
->banked_r14
[bank_number(ARM_CPU_MODE_SVC
)];
5475 env
->xregs
[19] = env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)];
5478 if (mode
== ARM_CPU_MODE_ABT
) {
5479 env
->xregs
[20] = env
->regs
[14];
5480 env
->xregs
[21] = env
->regs
[13];
5482 env
->xregs
[20] = env
->banked_r14
[bank_number(ARM_CPU_MODE_ABT
)];
5483 env
->xregs
[21] = env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)];
5486 if (mode
== ARM_CPU_MODE_UND
) {
5487 env
->xregs
[22] = env
->regs
[14];
5488 env
->xregs
[23] = env
->regs
[13];
5490 env
->xregs
[22] = env
->banked_r14
[bank_number(ARM_CPU_MODE_UND
)];
5491 env
->xregs
[23] = env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)];
5494 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
5495 * mode, then we can copy from r8-r14. Otherwise, we copy from the
5496 * FIQ bank for r8-r14.
5498 if (mode
== ARM_CPU_MODE_FIQ
) {
5499 for (i
= 24; i
< 31; i
++) {
5500 env
->xregs
[i
] = env
->regs
[i
- 16]; /* X[24:30] <- R[8:14] */
5503 for (i
= 24; i
< 29; i
++) {
5504 env
->xregs
[i
] = env
->fiq_regs
[i
- 24];
5506 env
->xregs
[29] = env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)];
5507 env
->xregs
[30] = env
->banked_r14
[bank_number(ARM_CPU_MODE_FIQ
)];
5510 env
->pc
= env
->regs
[15];
5513 /* Function used to synchronize QEMU's AArch32 register set with AArch64
5514 * register set. This is necessary when switching between AArch32 and AArch64
5517 void aarch64_sync_64_to_32(CPUARMState
*env
)
5520 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
5522 /* We can blanket copy X[0:7] to R[0:7] */
5523 for (i
= 0; i
< 8; i
++) {
5524 env
->regs
[i
] = env
->xregs
[i
];
5527 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
5528 * Otherwise, we copy x8-x12 into the banked user regs.
5530 if (mode
== ARM_CPU_MODE_FIQ
) {
5531 for (i
= 8; i
< 13; i
++) {
5532 env
->usr_regs
[i
- 8] = env
->xregs
[i
];
5535 for (i
= 8; i
< 13; i
++) {
5536 env
->regs
[i
] = env
->xregs
[i
];
5540 /* Registers r13 & r14 depend on the current mode.
5541 * If we are in a given mode, we copy the corresponding x registers to r13
5542 * and r14. Otherwise, we copy the x register to the banked r13 and r14
5545 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
5546 env
->regs
[13] = env
->xregs
[13];
5547 env
->regs
[14] = env
->xregs
[14];
5549 env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[13];
5551 /* HYP is an exception in that it does not have its own banked r14 but
5552 * shares the USR r14
5554 if (mode
== ARM_CPU_MODE_HYP
) {
5555 env
->regs
[14] = env
->xregs
[14];
5557 env
->banked_r14
[bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[14];
5561 if (mode
== ARM_CPU_MODE_HYP
) {
5562 env
->regs
[13] = env
->xregs
[15];
5564 env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)] = env
->xregs
[15];
5567 if (mode
== ARM_CPU_MODE_IRQ
) {
5568 env
->regs
[14] = env
->xregs
[16];
5569 env
->regs
[13] = env
->xregs
[17];
5571 env
->banked_r14
[bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[16];
5572 env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[17];
5575 if (mode
== ARM_CPU_MODE_SVC
) {
5576 env
->regs
[14] = env
->xregs
[18];
5577 env
->regs
[13] = env
->xregs
[19];
5579 env
->banked_r14
[bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[18];
5580 env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[19];
5583 if (mode
== ARM_CPU_MODE_ABT
) {
5584 env
->regs
[14] = env
->xregs
[20];
5585 env
->regs
[13] = env
->xregs
[21];
5587 env
->banked_r14
[bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[20];
5588 env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[21];
5591 if (mode
== ARM_CPU_MODE_UND
) {
5592 env
->regs
[14] = env
->xregs
[22];
5593 env
->regs
[13] = env
->xregs
[23];
5595 env
->banked_r14
[bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[22];
5596 env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[23];
5599 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
5600 * mode, then we can copy to r8-r14. Otherwise, we copy to the
5601 * FIQ bank for r8-r14.
5603 if (mode
== ARM_CPU_MODE_FIQ
) {
5604 for (i
= 24; i
< 31; i
++) {
5605 env
->regs
[i
- 16] = env
->xregs
[i
]; /* X[24:30] -> R[8:14] */
5608 for (i
= 24; i
< 29; i
++) {
5609 env
->fiq_regs
[i
- 24] = env
->xregs
[i
];
5611 env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[29];
5612 env
->banked_r14
[bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[30];
5615 env
->regs
[15] = env
->pc
;
5618 /* Handle a CPU exception. */
5619 void arm_cpu_do_interrupt(CPUState
*cs
)
5621 ARMCPU
*cpu
= ARM_CPU(cs
);
5622 CPUARMState
*env
= &cpu
->env
;
5631 arm_log_exception(cs
->exception_index
);
5633 if (arm_is_psci_call(cpu
, cs
->exception_index
)) {
5634 arm_handle_psci_call(cpu
);
5635 qemu_log_mask(CPU_LOG_INT
, "...handled as PSCI call\n");
5639 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
5640 switch (env
->exception
.syndrome
>> ARM_EL_EC_SHIFT
) {
5642 case EC_BREAKPOINT_SAME_EL
:
5646 case EC_WATCHPOINT_SAME_EL
:
5652 case EC_VECTORCATCH
:
5661 env
->cp15
.mdscr_el1
= deposit64(env
->cp15
.mdscr_el1
, 2, 4, moe
);
5664 /* TODO: Vectored interrupt controller. */
5665 switch (cs
->exception_index
) {
5667 new_mode
= ARM_CPU_MODE_UND
;
5676 if (semihosting_enabled()) {
5677 /* Check for semihosting interrupt. */
5679 mask
= arm_lduw_code(env
, env
->regs
[15] - 2, env
->bswap_code
)
5682 mask
= arm_ldl_code(env
, env
->regs
[15] - 4, env
->bswap_code
)
5685 /* Only intercept calls from privileged modes, to provide some
5686 semblance of security. */
5687 if (((mask
== 0x123456 && !env
->thumb
)
5688 || (mask
== 0xab && env
->thumb
))
5689 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
5690 qemu_log_mask(CPU_LOG_INT
,
5691 "...handling as semihosting call 0x%x\n",
5693 env
->regs
[0] = do_arm_semihosting(env
);
5697 new_mode
= ARM_CPU_MODE_SVC
;
5700 /* The PC already points to the next instruction. */
5704 /* See if this is a semihosting syscall. */
5705 if (env
->thumb
&& semihosting_enabled()) {
5706 mask
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
5708 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
5710 qemu_log_mask(CPU_LOG_INT
,
5711 "...handling as semihosting call 0x%x\n",
5713 env
->regs
[0] = do_arm_semihosting(env
);
5717 env
->exception
.fsr
= 2;
5718 /* Fall through to prefetch abort. */
5719 case EXCP_PREFETCH_ABORT
:
5720 A32_BANKED_CURRENT_REG_SET(env
, ifsr
, env
->exception
.fsr
);
5721 A32_BANKED_CURRENT_REG_SET(env
, ifar
, env
->exception
.vaddress
);
5722 qemu_log_mask(CPU_LOG_INT
, "...with IFSR 0x%x IFAR 0x%x\n",
5723 env
->exception
.fsr
, (uint32_t)env
->exception
.vaddress
);
5724 new_mode
= ARM_CPU_MODE_ABT
;
5726 mask
= CPSR_A
| CPSR_I
;
5729 case EXCP_DATA_ABORT
:
5730 A32_BANKED_CURRENT_REG_SET(env
, dfsr
, env
->exception
.fsr
);
5731 A32_BANKED_CURRENT_REG_SET(env
, dfar
, env
->exception
.vaddress
);
5732 qemu_log_mask(CPU_LOG_INT
, "...with DFSR 0x%x DFAR 0x%x\n",
5734 (uint32_t)env
->exception
.vaddress
);
5735 new_mode
= ARM_CPU_MODE_ABT
;
5737 mask
= CPSR_A
| CPSR_I
;
5741 new_mode
= ARM_CPU_MODE_IRQ
;
5743 /* Disable IRQ and imprecise data aborts. */
5744 mask
= CPSR_A
| CPSR_I
;
5746 if (env
->cp15
.scr_el3
& SCR_IRQ
) {
5747 /* IRQ routed to monitor mode */
5748 new_mode
= ARM_CPU_MODE_MON
;
5753 new_mode
= ARM_CPU_MODE_FIQ
;
5755 /* Disable FIQ, IRQ and imprecise data aborts. */
5756 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
5757 if (env
->cp15
.scr_el3
& SCR_FIQ
) {
5758 /* FIQ routed to monitor mode */
5759 new_mode
= ARM_CPU_MODE_MON
;
5764 new_mode
= ARM_CPU_MODE_MON
;
5766 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
5770 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
5771 return; /* Never happens. Keep compiler happy. */
5774 if (new_mode
== ARM_CPU_MODE_MON
) {
5775 addr
+= env
->cp15
.mvbar
;
5776 } else if (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_V
) {
5777 /* High vectors. When enabled, base address cannot be remapped. */
5780 /* ARM v7 architectures provide a vector base address register to remap
5781 * the interrupt vector table.
5782 * This register is only followed in non-monitor mode, and is banked.
5783 * Note: only bits 31:5 are valid.
5785 addr
+= A32_BANKED_CURRENT_REG_GET(env
, vbar
);
5788 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_MON
) {
5789 env
->cp15
.scr_el3
&= ~SCR_NS
;
5792 switch_mode (env
, new_mode
);
5793 /* For exceptions taken to AArch32 we must clear the SS bit in both
5794 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
5796 env
->uncached_cpsr
&= ~PSTATE_SS
;
5797 env
->spsr
= cpsr_read(env
);
5798 /* Clear IT bits. */
5799 env
->condexec_bits
= 0;
5800 /* Switch to the new mode, and to the correct instruction set. */
5801 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
5803 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
5804 * and we should just guard the thumb mode on V4 */
5805 if (arm_feature(env
, ARM_FEATURE_V4T
)) {
5806 env
->thumb
= (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_TE
) != 0;
5808 env
->regs
[14] = env
->regs
[15] + offset
;
5809 env
->regs
[15] = addr
;
5810 cs
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
5814 /* Return the exception level which controls this address translation regime */
5815 static inline uint32_t regime_el(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
5818 case ARMMMUIdx_S2NS
:
5819 case ARMMMUIdx_S1E2
:
5821 case ARMMMUIdx_S1E3
:
5823 case ARMMMUIdx_S1SE0
:
5824 return arm_el_is_aa64(env
, 3) ? 1 : 3;
5825 case ARMMMUIdx_S1SE1
:
5826 case ARMMMUIdx_S1NSE0
:
5827 case ARMMMUIdx_S1NSE1
:
5830 g_assert_not_reached();
5834 /* Return true if this address translation regime is secure */
5835 static inline bool regime_is_secure(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
5838 case ARMMMUIdx_S12NSE0
:
5839 case ARMMMUIdx_S12NSE1
:
5840 case ARMMMUIdx_S1NSE0
:
5841 case ARMMMUIdx_S1NSE1
:
5842 case ARMMMUIdx_S1E2
:
5843 case ARMMMUIdx_S2NS
:
5845 case ARMMMUIdx_S1E3
:
5846 case ARMMMUIdx_S1SE0
:
5847 case ARMMMUIdx_S1SE1
:
5850 g_assert_not_reached();
5854 /* Return the SCTLR value which controls this address translation regime */
5855 static inline uint32_t regime_sctlr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
5857 return env
->cp15
.sctlr_el
[regime_el(env
, mmu_idx
)];
5860 /* Return true if the specified stage of address translation is disabled */
5861 static inline bool regime_translation_disabled(CPUARMState
*env
,
5864 if (mmu_idx
== ARMMMUIdx_S2NS
) {
5865 return (env
->cp15
.hcr_el2
& HCR_VM
) == 0;
5867 return (regime_sctlr(env
, mmu_idx
) & SCTLR_M
) == 0;
5870 /* Return the TCR controlling this translation regime */
5871 static inline TCR
*regime_tcr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
5873 if (mmu_idx
== ARMMMUIdx_S2NS
) {
5874 return &env
->cp15
.vtcr_el2
;
5876 return &env
->cp15
.tcr_el
[regime_el(env
, mmu_idx
)];
5879 /* Return the TTBR associated with this translation regime */
5880 static inline uint64_t regime_ttbr(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
5883 if (mmu_idx
== ARMMMUIdx_S2NS
) {
5884 return env
->cp15
.vttbr_el2
;
5887 return env
->cp15
.ttbr0_el
[regime_el(env
, mmu_idx
)];
5889 return env
->cp15
.ttbr1_el
[regime_el(env
, mmu_idx
)];
5893 /* Return true if the translation regime is using LPAE format page tables */
5894 static inline bool regime_using_lpae_format(CPUARMState
*env
,
5897 int el
= regime_el(env
, mmu_idx
);
5898 if (el
== 2 || arm_el_is_aa64(env
, el
)) {
5901 if (arm_feature(env
, ARM_FEATURE_LPAE
)
5902 && (regime_tcr(env
, mmu_idx
)->raw_tcr
& TTBCR_EAE
)) {
5908 static inline bool regime_is_user(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
5911 case ARMMMUIdx_S1SE0
:
5912 case ARMMMUIdx_S1NSE0
:
5916 case ARMMMUIdx_S12NSE0
:
5917 case ARMMMUIdx_S12NSE1
:
5918 g_assert_not_reached();
5922 /* Translate section/page access permissions to page
5923 * R/W protection flags
5926 * @mmu_idx: MMU index indicating required translation regime
5927 * @ap: The 3-bit access permissions (AP[2:0])
5928 * @domain_prot: The 2-bit domain access permissions
5930 static inline int ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
5931 int ap
, int domain_prot
)
5933 bool is_user
= regime_is_user(env
, mmu_idx
);
5935 if (domain_prot
== 3) {
5936 return PAGE_READ
| PAGE_WRITE
;
5941 if (arm_feature(env
, ARM_FEATURE_V7
)) {
5944 switch (regime_sctlr(env
, mmu_idx
) & (SCTLR_S
| SCTLR_R
)) {
5946 return is_user
? 0 : PAGE_READ
;
5953 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
5958 return PAGE_READ
| PAGE_WRITE
;
5961 return PAGE_READ
| PAGE_WRITE
;
5962 case 4: /* Reserved. */
5965 return is_user
? 0 : PAGE_READ
;
5969 if (!arm_feature(env
, ARM_FEATURE_V6K
)) {
5974 g_assert_not_reached();
5978 /* Translate section/page access permissions to page
5979 * R/W protection flags.
5981 * @ap: The 2-bit simple AP (AP[2:1])
5982 * @is_user: TRUE if accessing from PL0
5984 static inline int simple_ap_to_rw_prot_is_user(int ap
, bool is_user
)
5988 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
5990 return PAGE_READ
| PAGE_WRITE
;
5992 return is_user
? 0 : PAGE_READ
;
5996 g_assert_not_reached();
6001 simple_ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, int ap
)
6003 return simple_ap_to_rw_prot_is_user(ap
, regime_is_user(env
, mmu_idx
));
6006 /* Translate section/page access permissions to protection flags
6009 * @mmu_idx: MMU index indicating required translation regime
6010 * @is_aa64: TRUE if AArch64
6011 * @ap: The 2-bit simple AP (AP[2:1])
6012 * @ns: NS (non-secure) bit
6013 * @xn: XN (execute-never) bit
6014 * @pxn: PXN (privileged execute-never) bit
6016 static int get_S1prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, bool is_aa64
,
6017 int ap
, int ns
, int xn
, int pxn
)
6019 bool is_user
= regime_is_user(env
, mmu_idx
);
6020 int prot_rw
, user_rw
;
6024 assert(mmu_idx
!= ARMMMUIdx_S2NS
);
6026 user_rw
= simple_ap_to_rw_prot_is_user(ap
, true);
6030 prot_rw
= simple_ap_to_rw_prot_is_user(ap
, false);
6033 if (ns
&& arm_is_secure(env
) && (env
->cp15
.scr_el3
& SCR_SIF
)) {
6037 /* TODO have_wxn should be replaced with
6038 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
6039 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
6040 * compatible processors have EL2, which is required for [U]WXN.
6042 have_wxn
= arm_feature(env
, ARM_FEATURE_LPAE
);
6045 wxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_WXN
;
6049 switch (regime_el(env
, mmu_idx
)) {
6052 xn
= pxn
|| (user_rw
& PAGE_WRITE
);
6059 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
6060 switch (regime_el(env
, mmu_idx
)) {
6064 xn
= xn
|| !(user_rw
& PAGE_READ
);
6068 uwxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_UWXN
;
6070 xn
= xn
|| !(prot_rw
& PAGE_READ
) || pxn
||
6071 (uwxn
&& (user_rw
& PAGE_WRITE
));
6081 if (xn
|| (wxn
&& (prot_rw
& PAGE_WRITE
))) {
6084 return prot_rw
| PAGE_EXEC
;
6087 static bool get_level1_table_address(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
6088 uint32_t *table
, uint32_t address
)
6090 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
6091 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
6093 if (address
& tcr
->mask
) {
6094 if (tcr
->raw_tcr
& TTBCR_PD1
) {
6095 /* Translation table walk disabled for TTBR1 */
6098 *table
= regime_ttbr(env
, mmu_idx
, 1) & 0xffffc000;
6100 if (tcr
->raw_tcr
& TTBCR_PD0
) {
6101 /* Translation table walk disabled for TTBR0 */
6104 *table
= regime_ttbr(env
, mmu_idx
, 0) & tcr
->base_mask
;
6106 *table
|= (address
>> 18) & 0x3ffc;
6110 /* All loads done in the course of a page table walk go through here.
6111 * TODO: rather than ignoring errors from physical memory reads (which
6112 * are external aborts in ARM terminology) we should propagate this
6113 * error out so that we can turn it into a Data Abort if this walk
6114 * was being done for a CPU load/store or an address translation instruction
6115 * (but not if it was for a debug access).
6117 static uint32_t arm_ldl_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
)
6119 MemTxAttrs attrs
= {};
6121 attrs
.secure
= is_secure
;
6122 return address_space_ldl(cs
->as
, addr
, attrs
, NULL
);
6125 static uint64_t arm_ldq_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
)
6127 MemTxAttrs attrs
= {};
6129 attrs
.secure
= is_secure
;
6130 return address_space_ldq(cs
->as
, addr
, attrs
, NULL
);
6133 static bool get_phys_addr_v5(CPUARMState
*env
, uint32_t address
,
6134 int access_type
, ARMMMUIdx mmu_idx
,
6135 hwaddr
*phys_ptr
, int *prot
,
6136 target_ulong
*page_size
, uint32_t *fsr
)
6138 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
6149 /* Pagetable walk. */
6150 /* Lookup l1 descriptor. */
6151 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
6152 /* Section translation fault if page walk is disabled by PD0 or PD1 */
6156 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
));
6158 domain
= (desc
>> 5) & 0x0f;
6159 if (regime_el(env
, mmu_idx
) == 1) {
6160 dacr
= env
->cp15
.dacr_ns
;
6162 dacr
= env
->cp15
.dacr_s
;
6164 domain_prot
= (dacr
>> (domain
* 2)) & 3;
6166 /* Section translation fault. */
6170 if (domain_prot
== 0 || domain_prot
== 2) {
6172 code
= 9; /* Section domain fault. */
6174 code
= 11; /* Page domain fault. */
6179 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
6180 ap
= (desc
>> 10) & 3;
6182 *page_size
= 1024 * 1024;
6184 /* Lookup l2 entry. */
6186 /* Coarse pagetable. */
6187 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
6189 /* Fine pagetable. */
6190 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
6192 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
));
6194 case 0: /* Page translation fault. */
6197 case 1: /* 64k page. */
6198 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
6199 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
6200 *page_size
= 0x10000;
6202 case 2: /* 4k page. */
6203 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
6204 ap
= (desc
>> (4 + ((address
>> 9) & 6))) & 3;
6205 *page_size
= 0x1000;
6207 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
6209 /* ARMv6/XScale extended small page format */
6210 if (arm_feature(env
, ARM_FEATURE_XSCALE
)
6211 || arm_feature(env
, ARM_FEATURE_V6
)) {
6212 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
6213 *page_size
= 0x1000;
6215 /* UNPREDICTABLE in ARMv5; we choose to take a
6216 * page translation fault.
6222 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
6225 ap
= (desc
>> 4) & 3;
6228 /* Never happens, but compiler isn't smart enough to tell. */
6233 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
6234 *prot
|= *prot
? PAGE_EXEC
: 0;
6235 if (!(*prot
& (1 << access_type
))) {
6236 /* Access permission fault. */
6239 *phys_ptr
= phys_addr
;
6242 *fsr
= code
| (domain
<< 4);
6246 static bool get_phys_addr_v6(CPUARMState
*env
, uint32_t address
,
6247 int access_type
, ARMMMUIdx mmu_idx
,
6248 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
6249 target_ulong
*page_size
, uint32_t *fsr
)
6251 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
6265 /* Pagetable walk. */
6266 /* Lookup l1 descriptor. */
6267 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
6268 /* Section translation fault if page walk is disabled by PD0 or PD1 */
6272 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
));
6274 if (type
== 0 || (type
== 3 && !arm_feature(env
, ARM_FEATURE_PXN
))) {
6275 /* Section translation fault, or attempt to use the encoding
6276 * which is Reserved on implementations without PXN.
6281 if ((type
== 1) || !(desc
& (1 << 18))) {
6282 /* Page or Section. */
6283 domain
= (desc
>> 5) & 0x0f;
6285 if (regime_el(env
, mmu_idx
) == 1) {
6286 dacr
= env
->cp15
.dacr_ns
;
6288 dacr
= env
->cp15
.dacr_s
;
6290 domain_prot
= (dacr
>> (domain
* 2)) & 3;
6291 if (domain_prot
== 0 || domain_prot
== 2) {
6293 code
= 9; /* Section domain fault. */
6295 code
= 11; /* Page domain fault. */
6300 if (desc
& (1 << 18)) {
6302 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
6303 phys_addr
|= (uint64_t)extract32(desc
, 20, 4) << 32;
6304 phys_addr
|= (uint64_t)extract32(desc
, 5, 4) << 36;
6305 *page_size
= 0x1000000;
6308 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
6309 *page_size
= 0x100000;
6311 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
6312 xn
= desc
& (1 << 4);
6315 ns
= extract32(desc
, 19, 1);
6317 if (arm_feature(env
, ARM_FEATURE_PXN
)) {
6318 pxn
= (desc
>> 2) & 1;
6320 ns
= extract32(desc
, 3, 1);
6321 /* Lookup l2 entry. */
6322 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
6323 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
));
6324 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
6326 case 0: /* Page translation fault. */
6329 case 1: /* 64k page. */
6330 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
6331 xn
= desc
& (1 << 15);
6332 *page_size
= 0x10000;
6334 case 2: case 3: /* 4k page. */
6335 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
6337 *page_size
= 0x1000;
6340 /* Never happens, but compiler isn't smart enough to tell. */
6345 if (domain_prot
== 3) {
6346 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
6348 if (pxn
&& !regime_is_user(env
, mmu_idx
)) {
6351 if (xn
&& access_type
== 2)
6354 if (arm_feature(env
, ARM_FEATURE_V6K
) &&
6355 (regime_sctlr(env
, mmu_idx
) & SCTLR_AFE
)) {
6356 /* The simplified model uses AP[0] as an access control bit. */
6357 if ((ap
& 1) == 0) {
6358 /* Access flag fault. */
6359 code
= (code
== 15) ? 6 : 3;
6362 *prot
= simple_ap_to_rw_prot(env
, mmu_idx
, ap
>> 1);
6364 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
6369 if (!(*prot
& (1 << access_type
))) {
6370 /* Access permission fault. */
6375 /* The NS bit will (as required by the architecture) have no effect if
6376 * the CPU doesn't support TZ or this is a non-secure translation
6377 * regime, because the attribute will already be non-secure.
6379 attrs
->secure
= false;
6381 *phys_ptr
= phys_addr
;
6384 *fsr
= code
| (domain
<< 4);
6388 /* Fault type for long-descriptor MMU fault reporting; this corresponds
6389 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
6392 translation_fault
= 1,
6394 permission_fault
= 3,
6397 static bool get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
6398 int access_type
, ARMMMUIdx mmu_idx
,
6399 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
, int *prot
,
6400 target_ulong
*page_size_ptr
, uint32_t *fsr
)
6402 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
6403 /* Read an LPAE long-descriptor translation table. */
6404 MMUFaultType fault_type
= translation_fault
;
6411 hwaddr descaddr
, descmask
;
6412 uint32_t tableattrs
;
6413 target_ulong page_size
;
6415 int32_t granule_sz
= 9;
6416 int32_t va_size
= 32;
6418 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
6419 int ap
, ns
, xn
, pxn
;
6420 uint32_t el
= regime_el(env
, mmu_idx
);
6421 bool ttbr1_valid
= true;
6424 * This code does not handle the different format TCR for VTCR_EL2.
6425 * This code also does not support shareability levels.
6426 * Attribute and permission bit handling should also be checked when adding
6427 * support for those page table walks.
6429 if (arm_el_is_aa64(env
, el
)) {
6432 if (mmu_idx
!= ARMMMUIdx_S2NS
) {
6433 tbi
= extract64(tcr
->raw_tcr
, 20, 1);
6436 if (extract64(address
, 55, 1)) {
6437 tbi
= extract64(tcr
->raw_tcr
, 38, 1);
6439 tbi
= extract64(tcr
->raw_tcr
, 37, 1);
6444 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
6448 ttbr1_valid
= false;
6451 /* There is no TTBR1 for EL2 */
6453 ttbr1_valid
= false;
6457 /* Determine whether this address is in the region controlled by
6458 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
6459 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
6460 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
6462 uint32_t t0sz
= extract32(tcr
->raw_tcr
, 0, 6);
6463 if (va_size
== 64) {
6464 t0sz
= MIN(t0sz
, 39);
6465 t0sz
= MAX(t0sz
, 16);
6467 uint32_t t1sz
= extract32(tcr
->raw_tcr
, 16, 6);
6468 if (va_size
== 64) {
6469 t1sz
= MIN(t1sz
, 39);
6470 t1sz
= MAX(t1sz
, 16);
6472 if (t0sz
&& !extract64(address
, va_size
- t0sz
, t0sz
- tbi
)) {
6473 /* there is a ttbr0 region and we are in it (high bits all zero) */
6475 } else if (ttbr1_valid
&& t1sz
&&
6476 !extract64(~address
, va_size
- t1sz
, t1sz
- tbi
)) {
6477 /* there is a ttbr1 region and we are in it (high bits all one) */
6480 /* ttbr0 region is "everything not in the ttbr1 region" */
6482 } else if (!t1sz
&& ttbr1_valid
) {
6483 /* ttbr1 region is "everything not in the ttbr0 region" */
6486 /* in the gap between the two regions, this is a Translation fault */
6487 fault_type
= translation_fault
;
6491 /* Note that QEMU ignores shareability and cacheability attributes,
6492 * so we don't need to do anything with the SH, ORGN, IRGN fields
6493 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
6494 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
6495 * implement any ASID-like capability so we can ignore it (instead
6496 * we will always flush the TLB any time the ASID is changed).
6498 if (ttbr_select
== 0) {
6499 ttbr
= regime_ttbr(env
, mmu_idx
, 0);
6501 epd
= extract32(tcr
->raw_tcr
, 7, 1);
6505 tg
= extract32(tcr
->raw_tcr
, 14, 2);
6506 if (tg
== 1) { /* 64KB pages */
6509 if (tg
== 2) { /* 16KB pages */
6513 /* We should only be here if TTBR1 is valid */
6514 assert(ttbr1_valid
);
6516 ttbr
= regime_ttbr(env
, mmu_idx
, 1);
6517 epd
= extract32(tcr
->raw_tcr
, 23, 1);
6520 tg
= extract32(tcr
->raw_tcr
, 30, 2);
6521 if (tg
== 3) { /* 64KB pages */
6524 if (tg
== 1) { /* 16KB pages */
6529 /* Here we should have set up all the parameters for the translation:
6530 * va_size, ttbr, epd, tsz, granule_sz, tbi
6534 /* Translation table walk disabled => Translation fault on TLB miss
6535 * Note: This is always 0 on 64-bit EL2 and EL3.
6540 /* The starting level depends on the virtual address size (which can be
6541 * up to 48 bits) and the translation granule size. It indicates the number
6542 * of strides (granule_sz bits at a time) needed to consume the bits
6543 * of the input address. In the pseudocode this is:
6544 * level = 4 - RoundUp((inputsize - grainsize) / stride)
6545 * where their 'inputsize' is our 'va_size - tsz', 'grainsize' is
6546 * our 'granule_sz + 3' and 'stride' is our 'granule_sz'.
6547 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
6548 * = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz
6549 * = 4 - (va_size - tsz - 4) / granule_sz;
6551 level
= 4 - (va_size
- tsz
- 4) / granule_sz
;
6553 /* Clear the vaddr bits which aren't part of the within-region address,
6554 * so that we don't have to special case things when calculating the
6555 * first descriptor address.
6558 address
&= (1ULL << (va_size
- tsz
)) - 1;
6561 descmask
= (1ULL << (granule_sz
+ 3)) - 1;
6563 /* Now we can extract the actual base address from the TTBR */
6564 descaddr
= extract64(ttbr
, 0, 48);
6565 descaddr
&= ~((1ULL << (va_size
- tsz
- (granule_sz
* (4 - level
)))) - 1);
6567 /* Secure accesses start with the page table in secure memory and
6568 * can be downgraded to non-secure at any step. Non-secure accesses
6569 * remain non-secure. We implement this by just ORing in the NSTable/NS
6570 * bits at each step.
6572 tableattrs
= regime_is_secure(env
, mmu_idx
) ? 0 : (1 << 4);
6574 uint64_t descriptor
;
6577 descaddr
|= (address
>> (granule_sz
* (4 - level
))) & descmask
;
6579 nstable
= extract32(tableattrs
, 4, 1);
6580 descriptor
= arm_ldq_ptw(cs
, descaddr
, !nstable
);
6581 if (!(descriptor
& 1) ||
6582 (!(descriptor
& 2) && (level
== 3))) {
6583 /* Invalid, or the Reserved level 3 encoding */
6586 descaddr
= descriptor
& 0xfffffff000ULL
;
6588 if ((descriptor
& 2) && (level
< 3)) {
6589 /* Table entry. The top five bits are attributes which may
6590 * propagate down through lower levels of the table (and
6591 * which are all arranged so that 0 means "no effect", so
6592 * we can gather them up by ORing in the bits at each level).
6594 tableattrs
|= extract64(descriptor
, 59, 5);
6598 /* Block entry at level 1 or 2, or page entry at level 3.
6599 * These are basically the same thing, although the number
6600 * of bits we pull in from the vaddr varies.
6602 page_size
= (1ULL << ((granule_sz
* (4 - level
)) + 3));
6603 descaddr
|= (address
& (page_size
- 1));
6604 /* Extract attributes from the descriptor and merge with table attrs */
6605 attrs
= extract64(descriptor
, 2, 10)
6606 | (extract64(descriptor
, 52, 12) << 10);
6607 attrs
|= extract32(tableattrs
, 0, 2) << 11; /* XN, PXN */
6608 attrs
|= extract32(tableattrs
, 3, 1) << 5; /* APTable[1] => AP[2] */
6609 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
6610 * means "force PL1 access only", which means forcing AP[1] to 0.
6612 if (extract32(tableattrs
, 2, 1)) {
6615 attrs
|= nstable
<< 3; /* NS */
6618 /* Here descaddr is the final physical address, and attributes
6621 fault_type
= access_fault
;
6622 if ((attrs
& (1 << 8)) == 0) {
6627 ap
= extract32(attrs
, 4, 2);
6628 ns
= extract32(attrs
, 3, 1);
6629 xn
= extract32(attrs
, 12, 1);
6630 pxn
= extract32(attrs
, 11, 1);
6632 *prot
= get_S1prot(env
, mmu_idx
, va_size
== 64, ap
, ns
, xn
, pxn
);
6634 fault_type
= permission_fault
;
6635 if (!(*prot
& (1 << access_type
))) {
6640 /* The NS bit will (as required by the architecture) have no effect if
6641 * the CPU doesn't support TZ or this is a non-secure translation
6642 * regime, because the attribute will already be non-secure.
6644 txattrs
->secure
= false;
6646 *phys_ptr
= descaddr
;
6647 *page_size_ptr
= page_size
;
6651 /* Long-descriptor format IFSR/DFSR value */
6652 *fsr
= (1 << 9) | (fault_type
<< 2) | level
;
6656 static inline void get_phys_addr_pmsav7_default(CPUARMState
*env
,
6658 int32_t address
, int *prot
)
6660 *prot
= PAGE_READ
| PAGE_WRITE
;
6662 case 0xF0000000 ... 0xFFFFFFFF:
6663 if (regime_sctlr(env
, mmu_idx
) & SCTLR_V
) { /* hivecs execing is ok */
6667 case 0x00000000 ... 0x7FFFFFFF:
6674 static bool get_phys_addr_pmsav7(CPUARMState
*env
, uint32_t address
,
6675 int access_type
, ARMMMUIdx mmu_idx
,
6676 hwaddr
*phys_ptr
, int *prot
, uint32_t *fsr
)
6678 ARMCPU
*cpu
= arm_env_get_cpu(env
);
6680 bool is_user
= regime_is_user(env
, mmu_idx
);
6682 *phys_ptr
= address
;
6685 if (regime_translation_disabled(env
, mmu_idx
)) { /* MPU disabled */
6686 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
6687 } else { /* MPU enabled */
6688 for (n
= (int)cpu
->pmsav7_dregion
- 1; n
>= 0; n
--) {
6690 uint32_t base
= env
->pmsav7
.drbar
[n
];
6691 uint32_t rsize
= extract32(env
->pmsav7
.drsr
[n
], 1, 5);
6695 if (!(env
->pmsav7
.drsr
[n
] & 0x1)) {
6700 qemu_log_mask(LOG_GUEST_ERROR
, "DRSR.Rsize field can not be 0");
6704 rmask
= (1ull << rsize
) - 1;
6707 qemu_log_mask(LOG_GUEST_ERROR
, "DRBAR %" PRIx32
" misaligned "
6708 "to DRSR region size, mask = %" PRIx32
,
6713 if (address
< base
|| address
> base
+ rmask
) {
6717 /* Region matched */
6719 if (rsize
>= 8) { /* no subregions for regions < 256 bytes */
6721 uint32_t srdis_mask
;
6723 rsize
-= 3; /* sub region size (power of 2) */
6724 snd
= ((address
- base
) >> rsize
) & 0x7;
6725 srdis
= extract32(env
->pmsav7
.drsr
[n
], snd
+ 8, 1);
6727 srdis_mask
= srdis
? 0x3 : 0x0;
6728 for (i
= 2; i
<= 8 && rsize
< TARGET_PAGE_BITS
; i
*= 2) {
6729 /* This will check in groups of 2, 4 and then 8, whether
6730 * the subregion bits are consistent. rsize is incremented
6731 * back up to give the region size, considering consistent
6732 * adjacent subregions as one region. Stop testing if rsize
6733 * is already big enough for an entire QEMU page.
6735 int snd_rounded
= snd
& ~(i
- 1);
6736 uint32_t srdis_multi
= extract32(env
->pmsav7
.drsr
[n
],
6737 snd_rounded
+ 8, i
);
6738 if (srdis_mask
^ srdis_multi
) {
6741 srdis_mask
= (srdis_mask
<< i
) | srdis_mask
;
6745 if (rsize
< TARGET_PAGE_BITS
) {
6746 qemu_log_mask(LOG_UNIMP
, "No support for MPU (sub)region"
6747 "alignment of %" PRIu32
" bits. Minimum is %d\n",
6748 rsize
, TARGET_PAGE_BITS
);
6757 if (n
== -1) { /* no hits */
6758 if (cpu
->pmsav7_dregion
&&
6759 (is_user
|| !(regime_sctlr(env
, mmu_idx
) & SCTLR_BR
))) {
6760 /* background fault */
6764 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
6765 } else { /* a MPU hit! */
6766 uint32_t ap
= extract32(env
->pmsav7
.dracr
[n
], 8, 3);
6768 if (is_user
) { /* User mode AP bit decoding */
6773 break; /* no access */
6775 *prot
|= PAGE_WRITE
;
6779 *prot
|= PAGE_READ
| PAGE_EXEC
;
6782 qemu_log_mask(LOG_GUEST_ERROR
,
6783 "Bad value for AP bits in DRACR %"
6786 } else { /* Priv. mode AP bits decoding */
6789 break; /* no access */
6793 *prot
|= PAGE_WRITE
;
6797 *prot
|= PAGE_READ
| PAGE_EXEC
;
6800 qemu_log_mask(LOG_GUEST_ERROR
,
6801 "Bad value for AP bits in DRACR %"
6807 if (env
->pmsav7
.dracr
[n
] & (1 << 12)) {
6808 *prot
&= ~PAGE_EXEC
;
6813 *fsr
= 0x00d; /* Permission fault */
6814 return !(*prot
& (1 << access_type
));
6817 static bool get_phys_addr_pmsav5(CPUARMState
*env
, uint32_t address
,
6818 int access_type
, ARMMMUIdx mmu_idx
,
6819 hwaddr
*phys_ptr
, int *prot
, uint32_t *fsr
)
6824 bool is_user
= regime_is_user(env
, mmu_idx
);
6826 *phys_ptr
= address
;
6827 for (n
= 7; n
>= 0; n
--) {
6828 base
= env
->cp15
.c6_region
[n
];
6829 if ((base
& 1) == 0) {
6832 mask
= 1 << ((base
>> 1) & 0x1f);
6833 /* Keep this shift separate from the above to avoid an
6834 (undefined) << 32. */
6835 mask
= (mask
<< 1) - 1;
6836 if (((base
^ address
) & ~mask
) == 0) {
6845 if (access_type
== 2) {
6846 mask
= env
->cp15
.pmsav5_insn_ap
;
6848 mask
= env
->cp15
.pmsav5_data_ap
;
6850 mask
= (mask
>> (n
* 4)) & 0xf;
6860 *prot
= PAGE_READ
| PAGE_WRITE
;
6865 *prot
|= PAGE_WRITE
;
6869 *prot
= PAGE_READ
| PAGE_WRITE
;
6882 /* Bad permission. */
6890 /* get_phys_addr - get the physical address for this virtual address
6892 * Find the physical address corresponding to the given virtual address,
6893 * by doing a translation table walk on MMU based systems or using the
6894 * MPU state on MPU based systems.
6896 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
6897 * prot and page_size may not be filled in, and the populated fsr value provides
6898 * information on why the translation aborted, in the format of a
6899 * DFSR/IFSR fault register, with the following caveats:
6900 * * we honour the short vs long DFSR format differences.
6901 * * the WnR bit is never set (the caller must do this).
6902 * * for PSMAv5 based systems we don't bother to return a full FSR format
6906 * @address: virtual address to get physical address for
6907 * @access_type: 0 for read, 1 for write, 2 for execute
6908 * @mmu_idx: MMU index indicating required translation regime
6909 * @phys_ptr: set to the physical address corresponding to the virtual address
6910 * @attrs: set to the memory transaction attributes to use
6911 * @prot: set to the permissions for the page containing phys_ptr
6912 * @page_size: set to the size of the page containing phys_ptr
6913 * @fsr: set to the DFSR/IFSR value on failure
6915 static inline bool get_phys_addr(CPUARMState
*env
, target_ulong address
,
6916 int access_type
, ARMMMUIdx mmu_idx
,
6917 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
6918 target_ulong
*page_size
, uint32_t *fsr
)
6920 if (mmu_idx
== ARMMMUIdx_S12NSE0
|| mmu_idx
== ARMMMUIdx_S12NSE1
) {
6921 /* TODO: when we support EL2 we should here call ourselves recursively
6922 * to do the stage 1 and then stage 2 translations. The arm_ld*_ptw
6923 * functions will also need changing to perform ARMMMUIdx_S2NS loads
6924 * rather than direct physical memory loads when appropriate.
6925 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
6927 assert(!arm_feature(env
, ARM_FEATURE_EL2
));
6928 mmu_idx
+= ARMMMUIdx_S1NSE0
;
6931 /* The page table entries may downgrade secure to non-secure, but
6932 * cannot upgrade an non-secure translation regime's attributes
6935 attrs
->secure
= regime_is_secure(env
, mmu_idx
);
6936 attrs
->user
= regime_is_user(env
, mmu_idx
);
6938 /* Fast Context Switch Extension. This doesn't exist at all in v8.
6939 * In v7 and earlier it affects all stage 1 translations.
6941 if (address
< 0x02000000 && mmu_idx
!= ARMMMUIdx_S2NS
6942 && !arm_feature(env
, ARM_FEATURE_V8
)) {
6943 if (regime_el(env
, mmu_idx
) == 3) {
6944 address
+= env
->cp15
.fcseidr_s
;
6946 address
+= env
->cp15
.fcseidr_ns
;
6950 /* pmsav7 has special handling for when MPU is disabled so call it before
6951 * the common MMU/MPU disabled check below.
6953 if (arm_feature(env
, ARM_FEATURE_MPU
) &&
6954 arm_feature(env
, ARM_FEATURE_V7
)) {
6955 *page_size
= TARGET_PAGE_SIZE
;
6956 return get_phys_addr_pmsav7(env
, address
, access_type
, mmu_idx
,
6957 phys_ptr
, prot
, fsr
);
6960 if (regime_translation_disabled(env
, mmu_idx
)) {
6961 /* MMU/MPU disabled. */
6962 *phys_ptr
= address
;
6963 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
6964 *page_size
= TARGET_PAGE_SIZE
;
6968 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
6970 *page_size
= TARGET_PAGE_SIZE
;
6971 return get_phys_addr_pmsav5(env
, address
, access_type
, mmu_idx
,
6972 phys_ptr
, prot
, fsr
);
6975 if (regime_using_lpae_format(env
, mmu_idx
)) {
6976 return get_phys_addr_lpae(env
, address
, access_type
, mmu_idx
, phys_ptr
,
6977 attrs
, prot
, page_size
, fsr
);
6978 } else if (regime_sctlr(env
, mmu_idx
) & SCTLR_XP
) {
6979 return get_phys_addr_v6(env
, address
, access_type
, mmu_idx
, phys_ptr
,
6980 attrs
, prot
, page_size
, fsr
);
6982 return get_phys_addr_v5(env
, address
, access_type
, mmu_idx
, phys_ptr
,
6983 prot
, page_size
, fsr
);
6987 /* Walk the page table and (if the mapping exists) add the page
6988 * to the TLB. Return false on success, or true on failure. Populate
6989 * fsr with ARM DFSR/IFSR fault register format value on failure.
6991 bool arm_tlb_fill(CPUState
*cs
, vaddr address
,
6992 int access_type
, int mmu_idx
, uint32_t *fsr
)
6994 ARMCPU
*cpu
= ARM_CPU(cs
);
6995 CPUARMState
*env
= &cpu
->env
;
6997 target_ulong page_size
;
7000 MemTxAttrs attrs
= {};
7002 ret
= get_phys_addr(env
, address
, access_type
, mmu_idx
, &phys_addr
,
7003 &attrs
, &prot
, &page_size
, fsr
);
7005 /* Map a single [sub]page. */
7006 phys_addr
&= TARGET_PAGE_MASK
;
7007 address
&= TARGET_PAGE_MASK
;
7008 tlb_set_page_with_attrs(cs
, address
, phys_addr
, attrs
,
7009 prot
, mmu_idx
, page_size
);
7016 hwaddr
arm_cpu_get_phys_page_debug(CPUState
*cs
, vaddr addr
)
7018 ARMCPU
*cpu
= ARM_CPU(cs
);
7019 CPUARMState
*env
= &cpu
->env
;
7021 target_ulong page_size
;
7025 MemTxAttrs attrs
= {};
7027 ret
= get_phys_addr(env
, addr
, 0, cpu_mmu_index(env
, false), &phys_addr
,
7028 &attrs
, &prot
, &page_size
, &fsr
);
7037 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
7039 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
7040 env
->regs
[13] = val
;
7042 env
->banked_r13
[bank_number(mode
)] = val
;
7046 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
7048 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
7049 return env
->regs
[13];
7051 return env
->banked_r13
[bank_number(mode
)];
7055 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
7057 ARMCPU
*cpu
= arm_env_get_cpu(env
);
7061 return xpsr_read(env
) & 0xf8000000;
7063 return xpsr_read(env
) & 0xf80001ff;
7065 return xpsr_read(env
) & 0xff00fc00;
7067 return xpsr_read(env
) & 0xff00fdff;
7069 return xpsr_read(env
) & 0x000001ff;
7071 return xpsr_read(env
) & 0x0700fc00;
7073 return xpsr_read(env
) & 0x0700edff;
7075 return env
->v7m
.current_sp
? env
->v7m
.other_sp
: env
->regs
[13];
7077 return env
->v7m
.current_sp
? env
->regs
[13] : env
->v7m
.other_sp
;
7078 case 16: /* PRIMASK */
7079 return (env
->daif
& PSTATE_I
) != 0;
7080 case 17: /* BASEPRI */
7081 case 18: /* BASEPRI_MAX */
7082 return env
->v7m
.basepri
;
7083 case 19: /* FAULTMASK */
7084 return (env
->daif
& PSTATE_F
) != 0;
7085 case 20: /* CONTROL */
7086 return env
->v7m
.control
;
7088 /* ??? For debugging only. */
7089 cpu_abort(CPU(cpu
), "Unimplemented system register read (%d)\n", reg
);
7094 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
7096 ARMCPU
*cpu
= arm_env_get_cpu(env
);
7100 xpsr_write(env
, val
, 0xf8000000);
7103 xpsr_write(env
, val
, 0xf8000000);
7106 xpsr_write(env
, val
, 0xfe00fc00);
7109 xpsr_write(env
, val
, 0xfe00fc00);
7112 /* IPSR bits are readonly. */
7115 xpsr_write(env
, val
, 0x0600fc00);
7118 xpsr_write(env
, val
, 0x0600fc00);
7121 if (env
->v7m
.current_sp
)
7122 env
->v7m
.other_sp
= val
;
7124 env
->regs
[13] = val
;
7127 if (env
->v7m
.current_sp
)
7128 env
->regs
[13] = val
;
7130 env
->v7m
.other_sp
= val
;
7132 case 16: /* PRIMASK */
7134 env
->daif
|= PSTATE_I
;
7136 env
->daif
&= ~PSTATE_I
;
7139 case 17: /* BASEPRI */
7140 env
->v7m
.basepri
= val
& 0xff;
7142 case 18: /* BASEPRI_MAX */
7144 if (val
!= 0 && (val
< env
->v7m
.basepri
|| env
->v7m
.basepri
== 0))
7145 env
->v7m
.basepri
= val
;
7147 case 19: /* FAULTMASK */
7149 env
->daif
|= PSTATE_F
;
7151 env
->daif
&= ~PSTATE_F
;
7154 case 20: /* CONTROL */
7155 env
->v7m
.control
= val
& 3;
7156 switch_v7m_sp(env
, (val
& 2) != 0);
7159 /* ??? For debugging only. */
7160 cpu_abort(CPU(cpu
), "Unimplemented system register write (%d)\n", reg
);
7167 void HELPER(dc_zva
)(CPUARMState
*env
, uint64_t vaddr_in
)
7169 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
7170 * Note that we do not implement the (architecturally mandated)
7171 * alignment fault for attempts to use this on Device memory
7172 * (which matches the usual QEMU behaviour of not implementing either
7173 * alignment faults or any memory attribute handling).
7176 ARMCPU
*cpu
= arm_env_get_cpu(env
);
7177 uint64_t blocklen
= 4 << cpu
->dcz_blocksize
;
7178 uint64_t vaddr
= vaddr_in
& ~(blocklen
- 1);
7180 #ifndef CONFIG_USER_ONLY
7182 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
7183 * the block size so we might have to do more than one TLB lookup.
7184 * We know that in fact for any v8 CPU the page size is at least 4K
7185 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
7186 * 1K as an artefact of legacy v5 subpage support being present in the
7187 * same QEMU executable.
7189 int maxidx
= DIV_ROUND_UP(blocklen
, TARGET_PAGE_SIZE
);
7190 void *hostaddr
[maxidx
];
7192 unsigned mmu_idx
= cpu_mmu_index(env
, false);
7193 TCGMemOpIdx oi
= make_memop_idx(MO_UB
, mmu_idx
);
7195 for (try = 0; try < 2; try++) {
7197 for (i
= 0; i
< maxidx
; i
++) {
7198 hostaddr
[i
] = tlb_vaddr_to_host(env
,
7199 vaddr
+ TARGET_PAGE_SIZE
* i
,
7206 /* If it's all in the TLB it's fair game for just writing to;
7207 * we know we don't need to update dirty status, etc.
7209 for (i
= 0; i
< maxidx
- 1; i
++) {
7210 memset(hostaddr
[i
], 0, TARGET_PAGE_SIZE
);
7212 memset(hostaddr
[i
], 0, blocklen
- (i
* TARGET_PAGE_SIZE
));
7215 /* OK, try a store and see if we can populate the tlb. This
7216 * might cause an exception if the memory isn't writable,
7217 * in which case we will longjmp out of here. We must for
7218 * this purpose use the actual register value passed to us
7219 * so that we get the fault address right.
7221 helper_ret_stb_mmu(env
, vaddr_in
, 0, oi
, GETRA());
7222 /* Now we can populate the other TLB entries, if any */
7223 for (i
= 0; i
< maxidx
; i
++) {
7224 uint64_t va
= vaddr
+ TARGET_PAGE_SIZE
* i
;
7225 if (va
!= (vaddr_in
& TARGET_PAGE_MASK
)) {
7226 helper_ret_stb_mmu(env
, va
, 0, oi
, GETRA());
7231 /* Slow path (probably attempt to do this to an I/O device or
7232 * similar, or clearing of a block of code we have translations
7233 * cached for). Just do a series of byte writes as the architecture
7234 * demands. It's not worth trying to use a cpu_physical_memory_map(),
7235 * memset(), unmap() sequence here because:
7236 * + we'd need to account for the blocksize being larger than a page
7237 * + the direct-RAM access case is almost always going to be dealt
7238 * with in the fastpath code above, so there's no speed benefit
7239 * + we would have to deal with the map returning NULL because the
7240 * bounce buffer was in use
7242 for (i
= 0; i
< blocklen
; i
++) {
7243 helper_ret_stb_mmu(env
, vaddr
+ i
, 0, oi
, GETRA());
7247 memset(g2h(vaddr
), 0, blocklen
);
7251 /* Note that signed overflow is undefined in C. The following routines are
7252 careful to use unsigned types where modulo arithmetic is required.
7253 Failure to do so _will_ break on newer gcc. */
7255 /* Signed saturating arithmetic. */
7257 /* Perform 16-bit signed saturating addition. */
7258 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
7263 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
7272 /* Perform 8-bit signed saturating addition. */
7273 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
7278 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
7287 /* Perform 16-bit signed saturating subtraction. */
7288 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
7293 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
7302 /* Perform 8-bit signed saturating subtraction. */
7303 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
7308 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
7317 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
7318 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
7319 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
7320 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
7323 #include "op_addsub.h"
7325 /* Unsigned saturating arithmetic. */
7326 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
7335 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
7343 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
7352 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
7360 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
7361 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
7362 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
7363 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
7366 #include "op_addsub.h"
7368 /* Signed modulo arithmetic. */
7369 #define SARITH16(a, b, n, op) do { \
7371 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
7372 RESULT(sum, n, 16); \
7374 ge |= 3 << (n * 2); \
7377 #define SARITH8(a, b, n, op) do { \
7379 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
7380 RESULT(sum, n, 8); \
7386 #define ADD16(a, b, n) SARITH16(a, b, n, +)
7387 #define SUB16(a, b, n) SARITH16(a, b, n, -)
7388 #define ADD8(a, b, n) SARITH8(a, b, n, +)
7389 #define SUB8(a, b, n) SARITH8(a, b, n, -)
7393 #include "op_addsub.h"
7395 /* Unsigned modulo arithmetic. */
7396 #define ADD16(a, b, n) do { \
7398 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
7399 RESULT(sum, n, 16); \
7400 if ((sum >> 16) == 1) \
7401 ge |= 3 << (n * 2); \
7404 #define ADD8(a, b, n) do { \
7406 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
7407 RESULT(sum, n, 8); \
7408 if ((sum >> 8) == 1) \
7412 #define SUB16(a, b, n) do { \
7414 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
7415 RESULT(sum, n, 16); \
7416 if ((sum >> 16) == 0) \
7417 ge |= 3 << (n * 2); \
7420 #define SUB8(a, b, n) do { \
7422 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
7423 RESULT(sum, n, 8); \
7424 if ((sum >> 8) == 0) \
7431 #include "op_addsub.h"
7433 /* Halved signed arithmetic. */
7434 #define ADD16(a, b, n) \
7435 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
7436 #define SUB16(a, b, n) \
7437 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
7438 #define ADD8(a, b, n) \
7439 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
7440 #define SUB8(a, b, n) \
7441 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
7444 #include "op_addsub.h"
7446 /* Halved unsigned arithmetic. */
7447 #define ADD16(a, b, n) \
7448 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
7449 #define SUB16(a, b, n) \
7450 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
7451 #define ADD8(a, b, n) \
7452 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
7453 #define SUB8(a, b, n) \
7454 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
7457 #include "op_addsub.h"
7459 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
7467 /* Unsigned sum of absolute byte differences. */
7468 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
7471 sum
= do_usad(a
, b
);
7472 sum
+= do_usad(a
>> 8, b
>> 8);
7473 sum
+= do_usad(a
>> 16, b
>>16);
7474 sum
+= do_usad(a
>> 24, b
>> 24);
7478 /* For ARMv6 SEL instruction. */
7479 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
7492 return (a
& mask
) | (b
& ~mask
);
7495 /* VFP support. We follow the convention used for VFP instructions:
7496 Single precision routines have a "s" suffix, double precision a
7499 /* Convert host exception flags to vfp form. */
7500 static inline int vfp_exceptbits_from_host(int host_bits
)
7502 int target_bits
= 0;
7504 if (host_bits
& float_flag_invalid
)
7506 if (host_bits
& float_flag_divbyzero
)
7508 if (host_bits
& float_flag_overflow
)
7510 if (host_bits
& (float_flag_underflow
| float_flag_output_denormal
))
7512 if (host_bits
& float_flag_inexact
)
7513 target_bits
|= 0x10;
7514 if (host_bits
& float_flag_input_denormal
)
7515 target_bits
|= 0x80;
7519 uint32_t HELPER(vfp_get_fpscr
)(CPUARMState
*env
)
7524 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
7525 | (env
->vfp
.vec_len
<< 16)
7526 | (env
->vfp
.vec_stride
<< 20);
7527 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
7528 i
|= get_float_exception_flags(&env
->vfp
.standard_fp_status
);
7529 fpscr
|= vfp_exceptbits_from_host(i
);
7533 uint32_t vfp_get_fpscr(CPUARMState
*env
)
7535 return HELPER(vfp_get_fpscr
)(env
);
7538 /* Convert vfp exception flags to target form. */
7539 static inline int vfp_exceptbits_to_host(int target_bits
)
7543 if (target_bits
& 1)
7544 host_bits
|= float_flag_invalid
;
7545 if (target_bits
& 2)
7546 host_bits
|= float_flag_divbyzero
;
7547 if (target_bits
& 4)
7548 host_bits
|= float_flag_overflow
;
7549 if (target_bits
& 8)
7550 host_bits
|= float_flag_underflow
;
7551 if (target_bits
& 0x10)
7552 host_bits
|= float_flag_inexact
;
7553 if (target_bits
& 0x80)
7554 host_bits
|= float_flag_input_denormal
;
7558 void HELPER(vfp_set_fpscr
)(CPUARMState
*env
, uint32_t val
)
7563 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
7564 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
7565 env
->vfp
.vec_len
= (val
>> 16) & 7;
7566 env
->vfp
.vec_stride
= (val
>> 20) & 3;
7569 if (changed
& (3 << 22)) {
7570 i
= (val
>> 22) & 3;
7572 case FPROUNDING_TIEEVEN
:
7573 i
= float_round_nearest_even
;
7575 case FPROUNDING_POSINF
:
7578 case FPROUNDING_NEGINF
:
7579 i
= float_round_down
;
7581 case FPROUNDING_ZERO
:
7582 i
= float_round_to_zero
;
7585 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
7587 if (changed
& (1 << 24)) {
7588 set_flush_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
7589 set_flush_inputs_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
7591 if (changed
& (1 << 25))
7592 set_default_nan_mode((val
& (1 << 25)) != 0, &env
->vfp
.fp_status
);
7594 i
= vfp_exceptbits_to_host(val
);
7595 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
7596 set_float_exception_flags(0, &env
->vfp
.standard_fp_status
);
7599 void vfp_set_fpscr(CPUARMState
*env
, uint32_t val
)
7601 HELPER(vfp_set_fpscr
)(env
, val
);
7604 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
7606 #define VFP_BINOP(name) \
7607 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
7609 float_status *fpst = fpstp; \
7610 return float32_ ## name(a, b, fpst); \
7612 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
7614 float_status *fpst = fpstp; \
7615 return float64_ ## name(a, b, fpst); \
7627 float32
VFP_HELPER(neg
, s
)(float32 a
)
7629 return float32_chs(a
);
7632 float64
VFP_HELPER(neg
, d
)(float64 a
)
7634 return float64_chs(a
);
7637 float32
VFP_HELPER(abs
, s
)(float32 a
)
7639 return float32_abs(a
);
7642 float64
VFP_HELPER(abs
, d
)(float64 a
)
7644 return float64_abs(a
);
7647 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUARMState
*env
)
7649 return float32_sqrt(a
, &env
->vfp
.fp_status
);
7652 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUARMState
*env
)
7654 return float64_sqrt(a
, &env
->vfp
.fp_status
);
7657 /* XXX: check quiet/signaling case */
7658 #define DO_VFP_cmp(p, type) \
7659 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
7662 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
7663 case 0: flags = 0x6; break; \
7664 case -1: flags = 0x8; break; \
7665 case 1: flags = 0x2; break; \
7666 default: case 2: flags = 0x3; break; \
7668 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
7669 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
7671 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
7674 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
7675 case 0: flags = 0x6; break; \
7676 case -1: flags = 0x8; break; \
7677 case 1: flags = 0x2; break; \
7678 default: case 2: flags = 0x3; break; \
7680 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
7681 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
7683 DO_VFP_cmp(s
, float32
)
7684 DO_VFP_cmp(d
, float64
)
7687 /* Integer to float and float to integer conversions */
7689 #define CONV_ITOF(name, fsz, sign) \
7690 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
7692 float_status *fpst = fpstp; \
7693 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
7696 #define CONV_FTOI(name, fsz, sign, round) \
7697 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
7699 float_status *fpst = fpstp; \
7700 if (float##fsz##_is_any_nan(x)) { \
7701 float_raise(float_flag_invalid, fpst); \
7704 return float##fsz##_to_##sign##int32##round(x, fpst); \
7707 #define FLOAT_CONVS(name, p, fsz, sign) \
7708 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
7709 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
7710 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
7712 FLOAT_CONVS(si
, s
, 32, )
7713 FLOAT_CONVS(si
, d
, 64, )
7714 FLOAT_CONVS(ui
, s
, 32, u
)
7715 FLOAT_CONVS(ui
, d
, 64, u
)
7721 /* floating point conversion */
7722 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUARMState
*env
)
7724 float64 r
= float32_to_float64(x
, &env
->vfp
.fp_status
);
7725 /* ARM requires that S<->D conversion of any kind of NaN generates
7726 * a quiet NaN by forcing the most significant frac bit to 1.
7728 return float64_maybe_silence_nan(r
);
7731 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUARMState
*env
)
7733 float32 r
= float64_to_float32(x
, &env
->vfp
.fp_status
);
7734 /* ARM requires that S<->D conversion of any kind of NaN generates
7735 * a quiet NaN by forcing the most significant frac bit to 1.
7737 return float32_maybe_silence_nan(r
);
7740 /* VFP3 fixed point conversion. */
7741 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
7742 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
7745 float_status *fpst = fpstp; \
7747 tmp = itype##_to_##float##fsz(x, fpst); \
7748 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
7751 /* Notice that we want only input-denormal exception flags from the
7752 * scalbn operation: the other possible flags (overflow+inexact if
7753 * we overflow to infinity, output-denormal) aren't correct for the
7754 * complete scale-and-convert operation.
7756 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
7757 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
7761 float_status *fpst = fpstp; \
7762 int old_exc_flags = get_float_exception_flags(fpst); \
7764 if (float##fsz##_is_any_nan(x)) { \
7765 float_raise(float_flag_invalid, fpst); \
7768 tmp = float##fsz##_scalbn(x, shift, fpst); \
7769 old_exc_flags |= get_float_exception_flags(fpst) \
7770 & float_flag_input_denormal; \
7771 set_float_exception_flags(old_exc_flags, fpst); \
7772 return float##fsz##_to_##itype##round(tmp, fpst); \
7775 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
7776 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
7777 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
7778 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
7780 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
7781 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
7782 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
7784 VFP_CONV_FIX(sh
, d
, 64, 64, int16
)
7785 VFP_CONV_FIX(sl
, d
, 64, 64, int32
)
7786 VFP_CONV_FIX_A64(sq
, d
, 64, 64, int64
)
7787 VFP_CONV_FIX(uh
, d
, 64, 64, uint16
)
7788 VFP_CONV_FIX(ul
, d
, 64, 64, uint32
)
7789 VFP_CONV_FIX_A64(uq
, d
, 64, 64, uint64
)
7790 VFP_CONV_FIX(sh
, s
, 32, 32, int16
)
7791 VFP_CONV_FIX(sl
, s
, 32, 32, int32
)
7792 VFP_CONV_FIX_A64(sq
, s
, 32, 64, int64
)
7793 VFP_CONV_FIX(uh
, s
, 32, 32, uint16
)
7794 VFP_CONV_FIX(ul
, s
, 32, 32, uint32
)
7795 VFP_CONV_FIX_A64(uq
, s
, 32, 64, uint64
)
7797 #undef VFP_CONV_FIX_FLOAT
7798 #undef VFP_CONV_FLOAT_FIX_ROUND
7800 /* Set the current fp rounding mode and return the old one.
7801 * The argument is a softfloat float_round_ value.
7803 uint32_t HELPER(set_rmode
)(uint32_t rmode
, CPUARMState
*env
)
7805 float_status
*fp_status
= &env
->vfp
.fp_status
;
7807 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
7808 set_float_rounding_mode(rmode
, fp_status
);
7813 /* Set the current fp rounding mode in the standard fp status and return
7814 * the old one. This is for NEON instructions that need to change the
7815 * rounding mode but wish to use the standard FPSCR values for everything
7816 * else. Always set the rounding mode back to the correct value after
7818 * The argument is a softfloat float_round_ value.
7820 uint32_t HELPER(set_neon_rmode
)(uint32_t rmode
, CPUARMState
*env
)
7822 float_status
*fp_status
= &env
->vfp
.standard_fp_status
;
7824 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
7825 set_float_rounding_mode(rmode
, fp_status
);
7830 /* Half precision conversions. */
7831 static float32
do_fcvt_f16_to_f32(uint32_t a
, CPUARMState
*env
, float_status
*s
)
7833 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
7834 float32 r
= float16_to_float32(make_float16(a
), ieee
, s
);
7836 return float32_maybe_silence_nan(r
);
7841 static uint32_t do_fcvt_f32_to_f16(float32 a
, CPUARMState
*env
, float_status
*s
)
7843 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
7844 float16 r
= float32_to_float16(a
, ieee
, s
);
7846 r
= float16_maybe_silence_nan(r
);
7848 return float16_val(r
);
7851 float32
HELPER(neon_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
7853 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.standard_fp_status
);
7856 uint32_t HELPER(neon_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
7858 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.standard_fp_status
);
7861 float32
HELPER(vfp_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
7863 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.fp_status
);
7866 uint32_t HELPER(vfp_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
7868 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.fp_status
);
7871 float64
HELPER(vfp_fcvt_f16_to_f64
)(uint32_t a
, CPUARMState
*env
)
7873 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
7874 float64 r
= float16_to_float64(make_float16(a
), ieee
, &env
->vfp
.fp_status
);
7876 return float64_maybe_silence_nan(r
);
7881 uint32_t HELPER(vfp_fcvt_f64_to_f16
)(float64 a
, CPUARMState
*env
)
7883 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
7884 float16 r
= float64_to_float16(a
, ieee
, &env
->vfp
.fp_status
);
7886 r
= float16_maybe_silence_nan(r
);
7888 return float16_val(r
);
7891 #define float32_two make_float32(0x40000000)
7892 #define float32_three make_float32(0x40400000)
7893 #define float32_one_point_five make_float32(0x3fc00000)
7895 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
7897 float_status
*s
= &env
->vfp
.standard_fp_status
;
7898 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
7899 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
7900 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
7901 float_raise(float_flag_input_denormal
, s
);
7905 return float32_sub(float32_two
, float32_mul(a
, b
, s
), s
);
7908 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
7910 float_status
*s
= &env
->vfp
.standard_fp_status
;
7912 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
7913 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
7914 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
7915 float_raise(float_flag_input_denormal
, s
);
7917 return float32_one_point_five
;
7919 product
= float32_mul(a
, b
, s
);
7920 return float32_div(float32_sub(float32_three
, product
, s
), float32_two
, s
);
7925 /* Constants 256 and 512 are used in some helpers; we avoid relying on
7926 * int->float conversions at run-time. */
7927 #define float64_256 make_float64(0x4070000000000000LL)
7928 #define float64_512 make_float64(0x4080000000000000LL)
7929 #define float32_maxnorm make_float32(0x7f7fffff)
7930 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
7932 /* Reciprocal functions
7934 * The algorithm that must be used to calculate the estimate
7935 * is specified by the ARM ARM, see FPRecipEstimate()
7938 static float64
recip_estimate(float64 a
, float_status
*real_fp_status
)
7940 /* These calculations mustn't set any fp exception flags,
7941 * so we use a local copy of the fp_status.
7943 float_status dummy_status
= *real_fp_status
;
7944 float_status
*s
= &dummy_status
;
7945 /* q = (int)(a * 512.0) */
7946 float64 q
= float64_mul(float64_512
, a
, s
);
7947 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
7949 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
7950 q
= int64_to_float64(q_int
, s
);
7951 q
= float64_add(q
, float64_half
, s
);
7952 q
= float64_div(q
, float64_512
, s
);
7953 q
= float64_div(float64_one
, q
, s
);
7955 /* s = (int)(256.0 * r + 0.5) */
7956 q
= float64_mul(q
, float64_256
, s
);
7957 q
= float64_add(q
, float64_half
, s
);
7958 q_int
= float64_to_int64_round_to_zero(q
, s
);
7960 /* return (double)s / 256.0 */
7961 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
7964 /* Common wrapper to call recip_estimate */
7965 static float64
call_recip_estimate(float64 num
, int off
, float_status
*fpst
)
7967 uint64_t val64
= float64_val(num
);
7968 uint64_t frac
= extract64(val64
, 0, 52);
7969 int64_t exp
= extract64(val64
, 52, 11);
7971 float64 scaled
, estimate
;
7973 /* Generate the scaled number for the estimate function */
7975 if (extract64(frac
, 51, 1) == 0) {
7977 frac
= extract64(frac
, 0, 50) << 2;
7979 frac
= extract64(frac
, 0, 51) << 1;
7983 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
7984 scaled
= make_float64((0x3feULL
<< 52)
7985 | extract64(frac
, 44, 8) << 44);
7987 estimate
= recip_estimate(scaled
, fpst
);
7989 /* Build new result */
7990 val64
= float64_val(estimate
);
7991 sbit
= 0x8000000000000000ULL
& val64
;
7993 frac
= extract64(val64
, 0, 52);
7996 frac
= 1ULL << 51 | extract64(frac
, 1, 51);
7997 } else if (exp
== -1) {
7998 frac
= 1ULL << 50 | extract64(frac
, 2, 50);
8002 return make_float64(sbit
| (exp
<< 52) | frac
);
8005 static bool round_to_inf(float_status
*fpst
, bool sign_bit
)
8007 switch (fpst
->float_rounding_mode
) {
8008 case float_round_nearest_even
: /* Round to Nearest */
8010 case float_round_up
: /* Round to +Inf */
8012 case float_round_down
: /* Round to -Inf */
8014 case float_round_to_zero
: /* Round to Zero */
8018 g_assert_not_reached();
8021 float32
HELPER(recpe_f32
)(float32 input
, void *fpstp
)
8023 float_status
*fpst
= fpstp
;
8024 float32 f32
= float32_squash_input_denormal(input
, fpst
);
8025 uint32_t f32_val
= float32_val(f32
);
8026 uint32_t f32_sbit
= 0x80000000ULL
& f32_val
;
8027 int32_t f32_exp
= extract32(f32_val
, 23, 8);
8028 uint32_t f32_frac
= extract32(f32_val
, 0, 23);
8034 if (float32_is_any_nan(f32
)) {
8036 if (float32_is_signaling_nan(f32
)) {
8037 float_raise(float_flag_invalid
, fpst
);
8038 nan
= float32_maybe_silence_nan(f32
);
8040 if (fpst
->default_nan_mode
) {
8041 nan
= float32_default_nan
;
8044 } else if (float32_is_infinity(f32
)) {
8045 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
8046 } else if (float32_is_zero(f32
)) {
8047 float_raise(float_flag_divbyzero
, fpst
);
8048 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
8049 } else if ((f32_val
& ~(1ULL << 31)) < (1ULL << 21)) {
8050 /* Abs(value) < 2.0^-128 */
8051 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
8052 if (round_to_inf(fpst
, f32_sbit
)) {
8053 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
8055 return float32_set_sign(float32_maxnorm
, float32_is_neg(f32
));
8057 } else if (f32_exp
>= 253 && fpst
->flush_to_zero
) {
8058 float_raise(float_flag_underflow
, fpst
);
8059 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
8063 f64
= make_float64(((int64_t)(f32_exp
) << 52) | (int64_t)(f32_frac
) << 29);
8064 r64
= call_recip_estimate(f64
, 253, fpst
);
8065 r64_val
= float64_val(r64
);
8066 r64_exp
= extract64(r64_val
, 52, 11);
8067 r64_frac
= extract64(r64_val
, 0, 52);
8069 /* result = sign : result_exp<7:0> : fraction<51:29>; */
8070 return make_float32(f32_sbit
|
8071 (r64_exp
& 0xff) << 23 |
8072 extract64(r64_frac
, 29, 24));
8075 float64
HELPER(recpe_f64
)(float64 input
, void *fpstp
)
8077 float_status
*fpst
= fpstp
;
8078 float64 f64
= float64_squash_input_denormal(input
, fpst
);
8079 uint64_t f64_val
= float64_val(f64
);
8080 uint64_t f64_sbit
= 0x8000000000000000ULL
& f64_val
;
8081 int64_t f64_exp
= extract64(f64_val
, 52, 11);
8087 /* Deal with any special cases */
8088 if (float64_is_any_nan(f64
)) {
8090 if (float64_is_signaling_nan(f64
)) {
8091 float_raise(float_flag_invalid
, fpst
);
8092 nan
= float64_maybe_silence_nan(f64
);
8094 if (fpst
->default_nan_mode
) {
8095 nan
= float64_default_nan
;
8098 } else if (float64_is_infinity(f64
)) {
8099 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
8100 } else if (float64_is_zero(f64
)) {
8101 float_raise(float_flag_divbyzero
, fpst
);
8102 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
8103 } else if ((f64_val
& ~(1ULL << 63)) < (1ULL << 50)) {
8104 /* Abs(value) < 2.0^-1024 */
8105 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
8106 if (round_to_inf(fpst
, f64_sbit
)) {
8107 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
8109 return float64_set_sign(float64_maxnorm
, float64_is_neg(f64
));
8111 } else if (f64_exp
>= 2045 && fpst
->flush_to_zero
) {
8112 float_raise(float_flag_underflow
, fpst
);
8113 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
8116 r64
= call_recip_estimate(f64
, 2045, fpst
);
8117 r64_val
= float64_val(r64
);
8118 r64_exp
= extract64(r64_val
, 52, 11);
8119 r64_frac
= extract64(r64_val
, 0, 52);
8121 /* result = sign : result_exp<10:0> : fraction<51:0> */
8122 return make_float64(f64_sbit
|
8123 ((r64_exp
& 0x7ff) << 52) |
8127 /* The algorithm that must be used to calculate the estimate
8128 * is specified by the ARM ARM.
8130 static float64
recip_sqrt_estimate(float64 a
, float_status
*real_fp_status
)
8132 /* These calculations mustn't set any fp exception flags,
8133 * so we use a local copy of the fp_status.
8135 float_status dummy_status
= *real_fp_status
;
8136 float_status
*s
= &dummy_status
;
8140 if (float64_lt(a
, float64_half
, s
)) {
8141 /* range 0.25 <= a < 0.5 */
8143 /* a in units of 1/512 rounded down */
8144 /* q0 = (int)(a * 512.0); */
8145 q
= float64_mul(float64_512
, a
, s
);
8146 q_int
= float64_to_int64_round_to_zero(q
, s
);
8148 /* reciprocal root r */
8149 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
8150 q
= int64_to_float64(q_int
, s
);
8151 q
= float64_add(q
, float64_half
, s
);
8152 q
= float64_div(q
, float64_512
, s
);
8153 q
= float64_sqrt(q
, s
);
8154 q
= float64_div(float64_one
, q
, s
);
8156 /* range 0.5 <= a < 1.0 */
8158 /* a in units of 1/256 rounded down */
8159 /* q1 = (int)(a * 256.0); */
8160 q
= float64_mul(float64_256
, a
, s
);
8161 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
8163 /* reciprocal root r */
8164 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
8165 q
= int64_to_float64(q_int
, s
);
8166 q
= float64_add(q
, float64_half
, s
);
8167 q
= float64_div(q
, float64_256
, s
);
8168 q
= float64_sqrt(q
, s
);
8169 q
= float64_div(float64_one
, q
, s
);
8171 /* r in units of 1/256 rounded to nearest */
8172 /* s = (int)(256.0 * r + 0.5); */
8174 q
= float64_mul(q
, float64_256
,s
);
8175 q
= float64_add(q
, float64_half
, s
);
8176 q_int
= float64_to_int64_round_to_zero(q
, s
);
8178 /* return (double)s / 256.0;*/
8179 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
8182 float32
HELPER(rsqrte_f32
)(float32 input
, void *fpstp
)
8184 float_status
*s
= fpstp
;
8185 float32 f32
= float32_squash_input_denormal(input
, s
);
8186 uint32_t val
= float32_val(f32
);
8187 uint32_t f32_sbit
= 0x80000000 & val
;
8188 int32_t f32_exp
= extract32(val
, 23, 8);
8189 uint32_t f32_frac
= extract32(val
, 0, 23);
8195 if (float32_is_any_nan(f32
)) {
8197 if (float32_is_signaling_nan(f32
)) {
8198 float_raise(float_flag_invalid
, s
);
8199 nan
= float32_maybe_silence_nan(f32
);
8201 if (s
->default_nan_mode
) {
8202 nan
= float32_default_nan
;
8205 } else if (float32_is_zero(f32
)) {
8206 float_raise(float_flag_divbyzero
, s
);
8207 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
8208 } else if (float32_is_neg(f32
)) {
8209 float_raise(float_flag_invalid
, s
);
8210 return float32_default_nan
;
8211 } else if (float32_is_infinity(f32
)) {
8212 return float32_zero
;
8215 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
8216 * preserving the parity of the exponent. */
8218 f64_frac
= ((uint64_t) f32_frac
) << 29;
8220 while (extract64(f64_frac
, 51, 1) == 0) {
8221 f64_frac
= f64_frac
<< 1;
8222 f32_exp
= f32_exp
-1;
8224 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
8227 if (extract64(f32_exp
, 0, 1) == 0) {
8228 f64
= make_float64(((uint64_t) f32_sbit
) << 32
8232 f64
= make_float64(((uint64_t) f32_sbit
) << 32
8237 result_exp
= (380 - f32_exp
) / 2;
8239 f64
= recip_sqrt_estimate(f64
, s
);
8241 val64
= float64_val(f64
);
8243 val
= ((result_exp
& 0xff) << 23)
8244 | ((val64
>> 29) & 0x7fffff);
8245 return make_float32(val
);
8248 float64
HELPER(rsqrte_f64
)(float64 input
, void *fpstp
)
8250 float_status
*s
= fpstp
;
8251 float64 f64
= float64_squash_input_denormal(input
, s
);
8252 uint64_t val
= float64_val(f64
);
8253 uint64_t f64_sbit
= 0x8000000000000000ULL
& val
;
8254 int64_t f64_exp
= extract64(val
, 52, 11);
8255 uint64_t f64_frac
= extract64(val
, 0, 52);
8257 uint64_t result_frac
;
8259 if (float64_is_any_nan(f64
)) {
8261 if (float64_is_signaling_nan(f64
)) {
8262 float_raise(float_flag_invalid
, s
);
8263 nan
= float64_maybe_silence_nan(f64
);
8265 if (s
->default_nan_mode
) {
8266 nan
= float64_default_nan
;
8269 } else if (float64_is_zero(f64
)) {
8270 float_raise(float_flag_divbyzero
, s
);
8271 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
8272 } else if (float64_is_neg(f64
)) {
8273 float_raise(float_flag_invalid
, s
);
8274 return float64_default_nan
;
8275 } else if (float64_is_infinity(f64
)) {
8276 return float64_zero
;
8279 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
8280 * preserving the parity of the exponent. */
8283 while (extract64(f64_frac
, 51, 1) == 0) {
8284 f64_frac
= f64_frac
<< 1;
8285 f64_exp
= f64_exp
- 1;
8287 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
8290 if (extract64(f64_exp
, 0, 1) == 0) {
8291 f64
= make_float64(f64_sbit
8295 f64
= make_float64(f64_sbit
8300 result_exp
= (3068 - f64_exp
) / 2;
8302 f64
= recip_sqrt_estimate(f64
, s
);
8304 result_frac
= extract64(float64_val(f64
), 0, 52);
8306 return make_float64(f64_sbit
|
8307 ((result_exp
& 0x7ff) << 52) |
8311 uint32_t HELPER(recpe_u32
)(uint32_t a
, void *fpstp
)
8313 float_status
*s
= fpstp
;
8316 if ((a
& 0x80000000) == 0) {
8320 f64
= make_float64((0x3feULL
<< 52)
8321 | ((int64_t)(a
& 0x7fffffff) << 21));
8323 f64
= recip_estimate(f64
, s
);
8325 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
8328 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, void *fpstp
)
8330 float_status
*fpst
= fpstp
;
8333 if ((a
& 0xc0000000) == 0) {
8337 if (a
& 0x80000000) {
8338 f64
= make_float64((0x3feULL
<< 52)
8339 | ((uint64_t)(a
& 0x7fffffff) << 21));
8340 } else { /* bits 31-30 == '01' */
8341 f64
= make_float64((0x3fdULL
<< 52)
8342 | ((uint64_t)(a
& 0x3fffffff) << 22));
8345 f64
= recip_sqrt_estimate(f64
, fpst
);
8347 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
8350 /* VFPv4 fused multiply-accumulate */
8351 float32
VFP_HELPER(muladd
, s
)(float32 a
, float32 b
, float32 c
, void *fpstp
)
8353 float_status
*fpst
= fpstp
;
8354 return float32_muladd(a
, b
, c
, 0, fpst
);
8357 float64
VFP_HELPER(muladd
, d
)(float64 a
, float64 b
, float64 c
, void *fpstp
)
8359 float_status
*fpst
= fpstp
;
8360 return float64_muladd(a
, b
, c
, 0, fpst
);
8363 /* ARMv8 round to integral */
8364 float32
HELPER(rints_exact
)(float32 x
, void *fp_status
)
8366 return float32_round_to_int(x
, fp_status
);
8369 float64
HELPER(rintd_exact
)(float64 x
, void *fp_status
)
8371 return float64_round_to_int(x
, fp_status
);
8374 float32
HELPER(rints
)(float32 x
, void *fp_status
)
8376 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
8379 ret
= float32_round_to_int(x
, fp_status
);
8381 /* Suppress any inexact exceptions the conversion produced */
8382 if (!(old_flags
& float_flag_inexact
)) {
8383 new_flags
= get_float_exception_flags(fp_status
);
8384 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
8390 float64
HELPER(rintd
)(float64 x
, void *fp_status
)
8392 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
8395 ret
= float64_round_to_int(x
, fp_status
);
8397 new_flags
= get_float_exception_flags(fp_status
);
8399 /* Suppress any inexact exceptions the conversion produced */
8400 if (!(old_flags
& float_flag_inexact
)) {
8401 new_flags
= get_float_exception_flags(fp_status
);
8402 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
8408 /* Convert ARM rounding mode to softfloat */
8409 int arm_rmode_to_sf(int rmode
)
8412 case FPROUNDING_TIEAWAY
:
8413 rmode
= float_round_ties_away
;
8415 case FPROUNDING_ODD
:
8416 /* FIXME: add support for TIEAWAY and ODD */
8417 qemu_log_mask(LOG_UNIMP
, "arm: unimplemented rounding mode: %d\n",
8419 case FPROUNDING_TIEEVEN
:
8421 rmode
= float_round_nearest_even
;
8423 case FPROUNDING_POSINF
:
8424 rmode
= float_round_up
;
8426 case FPROUNDING_NEGINF
:
8427 rmode
= float_round_down
;
8429 case FPROUNDING_ZERO
:
8430 rmode
= float_round_to_zero
;
8437 * The upper bytes of val (above the number specified by 'bytes') must have
8438 * been zeroed out by the caller.
8440 uint32_t HELPER(crc32
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
8446 /* zlib crc32 converts the accumulator and output to one's complement. */
8447 return crc32(acc
^ 0xffffffff, buf
, bytes
) ^ 0xffffffff;
8450 uint32_t HELPER(crc32c
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
8456 /* Linux crc32c converts the output to one's complement. */
8457 return crc32c(acc
, buf
, bytes
) ^ 0xffffffff;