4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21 #include <sys/types.h>
25 #include "qemu-common.h"
30 #include "qemu/osdep.h"
31 #include "sysemu/kvm.h"
32 #include "sysemu/sysemu.h"
33 #include "hw/xen/xen.h"
34 #include "qemu/timer.h"
35 #include "qemu/config-file.h"
36 #include "exec/memory.h"
37 #include "sysemu/dma.h"
38 #include "exec/address-spaces.h"
39 #if defined(CONFIG_USER_ONLY)
41 #else /* !CONFIG_USER_ONLY */
42 #include "sysemu/xen-mapcache.h"
45 #include "exec/cpu-all.h"
47 #include "exec/cputlb.h"
48 #include "translate-all.h"
50 #include "exec/memory-internal.h"
51 #include "exec/ram_addr.h"
52 #include "qemu/cache-utils.h"
54 #include "qemu/range.h"
56 //#define DEBUG_SUBPAGE
58 #if !defined(CONFIG_USER_ONLY)
59 static bool in_migration
;
61 RAMList ram_list
= { .blocks
= QTAILQ_HEAD_INITIALIZER(ram_list
.blocks
) };
63 static MemoryRegion
*system_memory
;
64 static MemoryRegion
*system_io
;
66 AddressSpace address_space_io
;
67 AddressSpace address_space_memory
;
69 MemoryRegion io_mem_rom
, io_mem_notdirty
;
70 static MemoryRegion io_mem_unassigned
;
74 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
75 /* current CPU in the current thread. It is only valid inside
77 DEFINE_TLS(CPUState
*, current_cpu
);
78 /* 0 = Do not count executed instructions.
79 1 = Precise instruction counting.
80 2 = Adaptive rate instruction counting. */
83 #if !defined(CONFIG_USER_ONLY)
85 typedef struct PhysPageEntry PhysPageEntry
;
87 struct PhysPageEntry
{
88 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
90 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
94 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
96 /* Size of the L2 (and L3, etc) page tables. */
97 #define ADDR_SPACE_BITS 64
100 #define P_L2_SIZE (1 << P_L2_BITS)
102 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
104 typedef PhysPageEntry Node
[P_L2_SIZE
];
106 typedef struct PhysPageMap
{
107 unsigned sections_nb
;
108 unsigned sections_nb_alloc
;
110 unsigned nodes_nb_alloc
;
112 MemoryRegionSection
*sections
;
115 struct AddressSpaceDispatch
{
116 /* This is a multi-level map on the physical address space.
117 * The bottom level has pointers to MemoryRegionSections.
119 PhysPageEntry phys_map
;
124 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
125 typedef struct subpage_t
{
129 uint16_t sub_section
[TARGET_PAGE_SIZE
];
132 #define PHYS_SECTION_UNASSIGNED 0
133 #define PHYS_SECTION_NOTDIRTY 1
134 #define PHYS_SECTION_ROM 2
135 #define PHYS_SECTION_WATCH 3
137 static void io_mem_init(void);
138 static void memory_map_init(void);
139 static void tcg_commit(MemoryListener
*listener
);
141 static MemoryRegion io_mem_watch
;
144 #if !defined(CONFIG_USER_ONLY)
146 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
148 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
149 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
* 2, 16);
150 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, map
->nodes_nb
+ nodes
);
151 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
155 static uint32_t phys_map_node_alloc(PhysPageMap
*map
)
160 ret
= map
->nodes_nb
++;
161 assert(ret
!= PHYS_MAP_NODE_NIL
);
162 assert(ret
!= map
->nodes_nb_alloc
);
163 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
164 map
->nodes
[ret
][i
].skip
= 1;
165 map
->nodes
[ret
][i
].ptr
= PHYS_MAP_NODE_NIL
;
170 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
171 hwaddr
*index
, hwaddr
*nb
, uint16_t leaf
,
176 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
178 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
179 lp
->ptr
= phys_map_node_alloc(map
);
180 p
= map
->nodes
[lp
->ptr
];
182 for (i
= 0; i
< P_L2_SIZE
; i
++) {
184 p
[i
].ptr
= PHYS_SECTION_UNASSIGNED
;
188 p
= map
->nodes
[lp
->ptr
];
190 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
192 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
193 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
199 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
205 static void phys_page_set(AddressSpaceDispatch
*d
,
206 hwaddr index
, hwaddr nb
,
209 /* Wildly overreserve - it doesn't matter much. */
210 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
212 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
215 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
216 * and update our entry so we can skip it and go directly to the destination.
218 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
, unsigned long *compacted
)
220 unsigned valid_ptr
= P_L2_SIZE
;
225 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
230 for (i
= 0; i
< P_L2_SIZE
; i
++) {
231 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
238 phys_page_compact(&p
[i
], nodes
, compacted
);
242 /* We can only compress if there's only one child. */
247 assert(valid_ptr
< P_L2_SIZE
);
249 /* Don't compress if it won't fit in the # of bits we have. */
250 if (lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 3)) {
254 lp
->ptr
= p
[valid_ptr
].ptr
;
255 if (!p
[valid_ptr
].skip
) {
256 /* If our only child is a leaf, make this a leaf. */
257 /* By design, we should have made this node a leaf to begin with so we
258 * should never reach here.
259 * But since it's so simple to handle this, let's do it just in case we
264 lp
->skip
+= p
[valid_ptr
].skip
;
268 static void phys_page_compact_all(AddressSpaceDispatch
*d
, int nodes_nb
)
270 DECLARE_BITMAP(compacted
, nodes_nb
);
272 if (d
->phys_map
.skip
) {
273 phys_page_compact(&d
->phys_map
, d
->map
.nodes
, compacted
);
277 static MemoryRegionSection
*phys_page_find(PhysPageEntry lp
, hwaddr addr
,
278 Node
*nodes
, MemoryRegionSection
*sections
)
281 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
284 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
285 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
286 return §ions
[PHYS_SECTION_UNASSIGNED
];
289 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
292 if (sections
[lp
.ptr
].size
.hi
||
293 range_covers_byte(sections
[lp
.ptr
].offset_within_address_space
,
294 sections
[lp
.ptr
].size
.lo
, addr
)) {
295 return §ions
[lp
.ptr
];
297 return §ions
[PHYS_SECTION_UNASSIGNED
];
301 bool memory_region_is_unassigned(MemoryRegion
*mr
)
303 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
304 && mr
!= &io_mem_watch
;
307 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
309 bool resolve_subpage
)
311 MemoryRegionSection
*section
;
314 section
= phys_page_find(d
->phys_map
, addr
, d
->map
.nodes
, d
->map
.sections
);
315 if (resolve_subpage
&& section
->mr
->subpage
) {
316 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
317 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
322 static MemoryRegionSection
*
323 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
324 hwaddr
*plen
, bool resolve_subpage
)
326 MemoryRegionSection
*section
;
329 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
330 /* Compute offset within MemoryRegionSection */
331 addr
-= section
->offset_within_address_space
;
333 /* Compute offset within MemoryRegion */
334 *xlat
= addr
+ section
->offset_within_region
;
336 diff
= int128_sub(section
->mr
->size
, int128_make64(addr
));
337 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
341 static inline bool memory_access_is_direct(MemoryRegion
*mr
, bool is_write
)
343 if (memory_region_is_ram(mr
)) {
344 return !(is_write
&& mr
->readonly
);
346 if (memory_region_is_romd(mr
)) {
353 MemoryRegion
*address_space_translate(AddressSpace
*as
, hwaddr addr
,
354 hwaddr
*xlat
, hwaddr
*plen
,
358 MemoryRegionSection
*section
;
363 section
= address_space_translate_internal(as
->dispatch
, addr
, &addr
, plen
, true);
366 if (!mr
->iommu_ops
) {
370 iotlb
= mr
->iommu_ops
->translate(mr
, addr
);
371 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
372 | (addr
& iotlb
.addr_mask
));
373 len
= MIN(len
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
374 if (!(iotlb
.perm
& (1 << is_write
))) {
375 mr
= &io_mem_unassigned
;
379 as
= iotlb
.target_as
;
382 if (memory_access_is_direct(mr
, is_write
)) {
383 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
384 len
= MIN(page
, len
);
392 MemoryRegionSection
*
393 address_space_translate_for_iotlb(AddressSpace
*as
, hwaddr addr
, hwaddr
*xlat
,
396 MemoryRegionSection
*section
;
397 section
= address_space_translate_internal(as
->dispatch
, addr
, xlat
, plen
, false);
399 assert(!section
->mr
->iommu_ops
);
404 void cpu_exec_init_all(void)
406 #if !defined(CONFIG_USER_ONLY)
407 qemu_mutex_init(&ram_list
.mutex
);
413 #if !defined(CONFIG_USER_ONLY)
415 static int cpu_common_post_load(void *opaque
, int version_id
)
417 CPUState
*cpu
= opaque
;
419 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
420 version_id is increased. */
421 cpu
->interrupt_request
&= ~0x01;
422 tlb_flush(cpu
->env_ptr
, 1);
427 const VMStateDescription vmstate_cpu_common
= {
428 .name
= "cpu_common",
430 .minimum_version_id
= 1,
431 .minimum_version_id_old
= 1,
432 .post_load
= cpu_common_post_load
,
433 .fields
= (VMStateField
[]) {
434 VMSTATE_UINT32(halted
, CPUState
),
435 VMSTATE_UINT32(interrupt_request
, CPUState
),
436 VMSTATE_END_OF_LIST()
442 CPUState
*qemu_get_cpu(int index
)
447 if (cpu
->cpu_index
== index
) {
455 #if !defined(CONFIG_USER_ONLY)
456 void tcg_cpu_address_space_init(CPUState
*cpu
, AddressSpace
*as
)
458 /* We only support one address space per cpu at the moment. */
459 assert(cpu
->as
== as
);
461 if (cpu
->tcg_as_listener
) {
462 memory_listener_unregister(cpu
->tcg_as_listener
);
464 cpu
->tcg_as_listener
= g_new0(MemoryListener
, 1);
466 cpu
->tcg_as_listener
->commit
= tcg_commit
;
467 memory_listener_register(cpu
->tcg_as_listener
, as
);
471 void cpu_exec_init(CPUArchState
*env
)
473 CPUState
*cpu
= ENV_GET_CPU(env
);
474 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
478 #if defined(CONFIG_USER_ONLY)
482 CPU_FOREACH(some_cpu
) {
485 cpu
->cpu_index
= cpu_index
;
487 QTAILQ_INIT(&env
->breakpoints
);
488 QTAILQ_INIT(&env
->watchpoints
);
489 #ifndef CONFIG_USER_ONLY
490 cpu
->as
= &address_space_memory
;
491 cpu
->thread_id
= qemu_get_thread_id();
493 QTAILQ_INSERT_TAIL(&cpus
, cpu
, node
);
494 #if defined(CONFIG_USER_ONLY)
497 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
498 vmstate_register(NULL
, cpu_index
, &vmstate_cpu_common
, cpu
);
500 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
501 register_savevm(NULL
, "cpu", cpu_index
, CPU_SAVE_VERSION
,
502 cpu_save
, cpu_load
, env
);
503 assert(cc
->vmsd
== NULL
);
504 assert(qdev_get_vmsd(DEVICE(cpu
)) == NULL
);
506 if (cc
->vmsd
!= NULL
) {
507 vmstate_register(NULL
, cpu_index
, cc
->vmsd
, cpu
);
511 #if defined(TARGET_HAS_ICE)
512 #if defined(CONFIG_USER_ONLY)
513 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
515 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
518 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
520 hwaddr phys
= cpu_get_phys_page_debug(cpu
, pc
);
522 tb_invalidate_phys_addr(cpu
->as
,
523 phys
| (pc
& ~TARGET_PAGE_MASK
));
527 #endif /* TARGET_HAS_ICE */
529 #if defined(CONFIG_USER_ONLY)
530 void cpu_watchpoint_remove_all(CPUArchState
*env
, int mask
)
535 int cpu_watchpoint_insert(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
536 int flags
, CPUWatchpoint
**watchpoint
)
541 /* Add a watchpoint. */
542 int cpu_watchpoint_insert(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
543 int flags
, CPUWatchpoint
**watchpoint
)
545 target_ulong len_mask
= ~(len
- 1);
548 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
549 if ((len
& (len
- 1)) || (addr
& ~len_mask
) ||
550 len
== 0 || len
> TARGET_PAGE_SIZE
) {
551 fprintf(stderr
, "qemu: tried to set invalid watchpoint at "
552 TARGET_FMT_lx
", len=" TARGET_FMT_lu
"\n", addr
, len
);
555 wp
= g_malloc(sizeof(*wp
));
558 wp
->len_mask
= len_mask
;
561 /* keep all GDB-injected watchpoints in front */
563 QTAILQ_INSERT_HEAD(&env
->watchpoints
, wp
, entry
);
565 QTAILQ_INSERT_TAIL(&env
->watchpoints
, wp
, entry
);
567 tlb_flush_page(env
, addr
);
574 /* Remove a specific watchpoint. */
575 int cpu_watchpoint_remove(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
578 target_ulong len_mask
= ~(len
- 1);
581 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
582 if (addr
== wp
->vaddr
&& len_mask
== wp
->len_mask
583 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
584 cpu_watchpoint_remove_by_ref(env
, wp
);
591 /* Remove a specific watchpoint by reference. */
592 void cpu_watchpoint_remove_by_ref(CPUArchState
*env
, CPUWatchpoint
*watchpoint
)
594 QTAILQ_REMOVE(&env
->watchpoints
, watchpoint
, entry
);
596 tlb_flush_page(env
, watchpoint
->vaddr
);
601 /* Remove all matching watchpoints. */
602 void cpu_watchpoint_remove_all(CPUArchState
*env
, int mask
)
604 CPUWatchpoint
*wp
, *next
;
606 QTAILQ_FOREACH_SAFE(wp
, &env
->watchpoints
, entry
, next
) {
607 if (wp
->flags
& mask
)
608 cpu_watchpoint_remove_by_ref(env
, wp
);
613 /* Add a breakpoint. */
614 int cpu_breakpoint_insert(CPUArchState
*env
, target_ulong pc
, int flags
,
615 CPUBreakpoint
**breakpoint
)
617 #if defined(TARGET_HAS_ICE)
620 bp
= g_malloc(sizeof(*bp
));
625 /* keep all GDB-injected breakpoints in front */
626 if (flags
& BP_GDB
) {
627 QTAILQ_INSERT_HEAD(&env
->breakpoints
, bp
, entry
);
629 QTAILQ_INSERT_TAIL(&env
->breakpoints
, bp
, entry
);
632 breakpoint_invalidate(ENV_GET_CPU(env
), pc
);
643 /* Remove a specific breakpoint. */
644 int cpu_breakpoint_remove(CPUArchState
*env
, target_ulong pc
, int flags
)
646 #if defined(TARGET_HAS_ICE)
649 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
650 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
651 cpu_breakpoint_remove_by_ref(env
, bp
);
661 /* Remove a specific breakpoint by reference. */
662 void cpu_breakpoint_remove_by_ref(CPUArchState
*env
, CPUBreakpoint
*breakpoint
)
664 #if defined(TARGET_HAS_ICE)
665 QTAILQ_REMOVE(&env
->breakpoints
, breakpoint
, entry
);
667 breakpoint_invalidate(ENV_GET_CPU(env
), breakpoint
->pc
);
673 /* Remove all matching breakpoints. */
674 void cpu_breakpoint_remove_all(CPUArchState
*env
, int mask
)
676 #if defined(TARGET_HAS_ICE)
677 CPUBreakpoint
*bp
, *next
;
679 QTAILQ_FOREACH_SAFE(bp
, &env
->breakpoints
, entry
, next
) {
680 if (bp
->flags
& mask
)
681 cpu_breakpoint_remove_by_ref(env
, bp
);
686 /* enable or disable single step mode. EXCP_DEBUG is returned by the
687 CPU loop after each instruction */
688 void cpu_single_step(CPUState
*cpu
, int enabled
)
690 #if defined(TARGET_HAS_ICE)
691 if (cpu
->singlestep_enabled
!= enabled
) {
692 cpu
->singlestep_enabled
= enabled
;
694 kvm_update_guest_debug(cpu
, 0);
696 /* must flush all the translated code to avoid inconsistencies */
697 /* XXX: only flush what is necessary */
698 CPUArchState
*env
= cpu
->env_ptr
;
705 void cpu_abort(CPUArchState
*env
, const char *fmt
, ...)
707 CPUState
*cpu
= ENV_GET_CPU(env
);
713 fprintf(stderr
, "qemu: fatal: ");
714 vfprintf(stderr
, fmt
, ap
);
715 fprintf(stderr
, "\n");
716 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
717 if (qemu_log_enabled()) {
718 qemu_log("qemu: fatal: ");
719 qemu_log_vprintf(fmt
, ap2
);
721 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
727 #if defined(CONFIG_USER_ONLY)
729 struct sigaction act
;
730 sigfillset(&act
.sa_mask
);
731 act
.sa_handler
= SIG_DFL
;
732 sigaction(SIGABRT
, &act
, NULL
);
738 #if !defined(CONFIG_USER_ONLY)
739 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
743 /* The list is protected by the iothread lock here. */
744 block
= ram_list
.mru_block
;
745 if (block
&& addr
- block
->offset
< block
->length
) {
748 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
749 if (addr
- block
->offset
< block
->length
) {
754 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
758 ram_list
.mru_block
= block
;
762 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
768 end
= TARGET_PAGE_ALIGN(start
+ length
);
769 start
&= TARGET_PAGE_MASK
;
771 block
= qemu_get_ram_block(start
);
772 assert(block
== qemu_get_ram_block(end
- 1));
773 start1
= (uintptr_t)block
->host
+ (start
- block
->offset
);
774 cpu_tlb_reset_dirty_all(start1
, length
);
777 /* Note: start and end must be within the same ram block. */
778 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t length
,
783 cpu_physical_memory_clear_dirty_range(start
, length
, client
);
786 tlb_reset_dirty_range_all(start
, length
);
790 static void cpu_physical_memory_set_dirty_tracking(bool enable
)
792 in_migration
= enable
;
795 hwaddr
memory_region_section_get_iotlb(CPUArchState
*env
,
796 MemoryRegionSection
*section
,
798 hwaddr paddr
, hwaddr xlat
,
800 target_ulong
*address
)
805 if (memory_region_is_ram(section
->mr
)) {
807 iotlb
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
809 if (!section
->readonly
) {
810 iotlb
|= PHYS_SECTION_NOTDIRTY
;
812 iotlb
|= PHYS_SECTION_ROM
;
815 iotlb
= section
- section
->address_space
->dispatch
->map
.sections
;
819 /* Make accesses to pages with watchpoints go via the
820 watchpoint trap routines. */
821 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
822 if (vaddr
== (wp
->vaddr
& TARGET_PAGE_MASK
)) {
823 /* Avoid trapping reads of pages with a write breakpoint. */
824 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
825 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
826 *address
|= TLB_MMIO
;
834 #endif /* defined(CONFIG_USER_ONLY) */
836 #if !defined(CONFIG_USER_ONLY)
838 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
840 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
);
842 static void *(*phys_mem_alloc
)(size_t size
) = qemu_anon_ram_alloc
;
845 * Set a custom physical guest memory alloator.
846 * Accelerators with unusual needs may need this. Hopefully, we can
847 * get rid of it eventually.
849 void phys_mem_set_alloc(void *(*alloc
)(size_t))
851 phys_mem_alloc
= alloc
;
854 static uint16_t phys_section_add(PhysPageMap
*map
,
855 MemoryRegionSection
*section
)
857 /* The physical section number is ORed with a page-aligned
858 * pointer to produce the iotlb entries. Thus it should
859 * never overflow into the page-aligned value.
861 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
863 if (map
->sections_nb
== map
->sections_nb_alloc
) {
864 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
865 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
866 map
->sections_nb_alloc
);
868 map
->sections
[map
->sections_nb
] = *section
;
869 memory_region_ref(section
->mr
);
870 return map
->sections_nb
++;
873 static void phys_section_destroy(MemoryRegion
*mr
)
875 memory_region_unref(mr
);
878 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
879 memory_region_destroy(&subpage
->iomem
);
884 static void phys_sections_free(PhysPageMap
*map
)
886 while (map
->sections_nb
> 0) {
887 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
888 phys_section_destroy(section
->mr
);
890 g_free(map
->sections
);
894 static void register_subpage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
897 hwaddr base
= section
->offset_within_address_space
899 MemoryRegionSection
*existing
= phys_page_find(d
->phys_map
, base
,
900 d
->map
.nodes
, d
->map
.sections
);
901 MemoryRegionSection subsection
= {
902 .offset_within_address_space
= base
,
903 .size
= int128_make64(TARGET_PAGE_SIZE
),
907 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
909 if (!(existing
->mr
->subpage
)) {
910 subpage
= subpage_init(d
->as
, base
);
911 subsection
.address_space
= d
->as
;
912 subsection
.mr
= &subpage
->iomem
;
913 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
914 phys_section_add(&d
->map
, &subsection
));
916 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
918 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
919 end
= start
+ int128_get64(section
->size
) - 1;
920 subpage_register(subpage
, start
, end
,
921 phys_section_add(&d
->map
, section
));
925 static void register_multipage(AddressSpaceDispatch
*d
,
926 MemoryRegionSection
*section
)
928 hwaddr start_addr
= section
->offset_within_address_space
;
929 uint16_t section_index
= phys_section_add(&d
->map
, section
);
930 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
934 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
937 static void mem_add(MemoryListener
*listener
, MemoryRegionSection
*section
)
939 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
940 AddressSpaceDispatch
*d
= as
->next_dispatch
;
941 MemoryRegionSection now
= *section
, remain
= *section
;
942 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
944 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
945 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
946 - now
.offset_within_address_space
;
948 now
.size
= int128_min(int128_make64(left
), now
.size
);
949 register_subpage(d
, &now
);
951 now
.size
= int128_zero();
953 while (int128_ne(remain
.size
, now
.size
)) {
954 remain
.size
= int128_sub(remain
.size
, now
.size
);
955 remain
.offset_within_address_space
+= int128_get64(now
.size
);
956 remain
.offset_within_region
+= int128_get64(now
.size
);
958 if (int128_lt(remain
.size
, page_size
)) {
959 register_subpage(d
, &now
);
960 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
961 now
.size
= page_size
;
962 register_subpage(d
, &now
);
964 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
965 register_multipage(d
, &now
);
970 void qemu_flush_coalesced_mmio_buffer(void)
973 kvm_flush_coalesced_mmio_buffer();
976 void qemu_mutex_lock_ramlist(void)
978 qemu_mutex_lock(&ram_list
.mutex
);
981 void qemu_mutex_unlock_ramlist(void)
983 qemu_mutex_unlock(&ram_list
.mutex
);
990 #define HUGETLBFS_MAGIC 0x958458f6
992 static long gethugepagesize(const char *path
)
998 ret
= statfs(path
, &fs
);
999 } while (ret
!= 0 && errno
== EINTR
);
1006 if (fs
.f_type
!= HUGETLBFS_MAGIC
)
1007 fprintf(stderr
, "Warning: path not on HugeTLBFS: %s\n", path
);
1012 static sigjmp_buf sigjump
;
1014 static void sigbus_handler(int signal
)
1016 siglongjmp(sigjump
, 1);
1019 static void *file_ram_alloc(RAMBlock
*block
,
1024 char *sanitized_name
;
1028 unsigned long hpagesize
;
1030 hpagesize
= gethugepagesize(path
);
1035 if (memory
< hpagesize
) {
1039 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1040 fprintf(stderr
, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
1044 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1045 sanitized_name
= g_strdup(block
->mr
->name
);
1046 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1051 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1053 g_free(sanitized_name
);
1055 fd
= mkstemp(filename
);
1057 perror("unable to create backing store for hugepages");
1064 memory
= (memory
+hpagesize
-1) & ~(hpagesize
-1);
1067 * ftruncate is not supported by hugetlbfs in older
1068 * hosts, so don't bother bailing out on errors.
1069 * If anything goes wrong with it under other filesystems,
1072 if (ftruncate(fd
, memory
))
1073 perror("ftruncate");
1075 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, MAP_PRIVATE
, fd
, 0);
1076 if (area
== MAP_FAILED
) {
1077 perror("file_ram_alloc: can't mmap RAM pages");
1084 struct sigaction act
, oldact
;
1085 sigset_t set
, oldset
;
1087 memset(&act
, 0, sizeof(act
));
1088 act
.sa_handler
= &sigbus_handler
;
1091 ret
= sigaction(SIGBUS
, &act
, &oldact
);
1093 perror("file_ram_alloc: failed to install signal handler");
1097 /* unblock SIGBUS */
1099 sigaddset(&set
, SIGBUS
);
1100 pthread_sigmask(SIG_UNBLOCK
, &set
, &oldset
);
1102 if (sigsetjmp(sigjump
, 1)) {
1103 fprintf(stderr
, "file_ram_alloc: failed to preallocate pages\n");
1107 /* MAP_POPULATE silently ignores failures */
1108 for (i
= 0; i
< (memory
/hpagesize
); i
++) {
1109 memset(area
+ (hpagesize
*i
), 0, 1);
1112 ret
= sigaction(SIGBUS
, &oldact
, NULL
);
1114 perror("file_ram_alloc: failed to reinstall signal handler");
1118 pthread_sigmask(SIG_SETMASK
, &oldset
, NULL
);
1131 static void *file_ram_alloc(RAMBlock
*block
,
1135 fprintf(stderr
, "-mem-path not supported on this host\n");
1140 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1142 RAMBlock
*block
, *next_block
;
1143 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1145 assert(size
!= 0); /* it would hand out same offset multiple times */
1147 if (QTAILQ_EMPTY(&ram_list
.blocks
))
1150 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1151 ram_addr_t end
, next
= RAM_ADDR_MAX
;
1153 end
= block
->offset
+ block
->length
;
1155 QTAILQ_FOREACH(next_block
, &ram_list
.blocks
, next
) {
1156 if (next_block
->offset
>= end
) {
1157 next
= MIN(next
, next_block
->offset
);
1160 if (next
- end
>= size
&& next
- end
< mingap
) {
1162 mingap
= next
- end
;
1166 if (offset
== RAM_ADDR_MAX
) {
1167 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1175 ram_addr_t
last_ram_offset(void)
1178 ram_addr_t last
= 0;
1180 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
)
1181 last
= MAX(last
, block
->offset
+ block
->length
);
1186 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1190 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1191 if (!qemu_opt_get_bool(qemu_get_machine_opts(),
1192 "dump-guest-core", true)) {
1193 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1195 perror("qemu_madvise");
1196 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1197 "but dump_guest_core=off specified\n");
1202 void qemu_ram_set_idstr(ram_addr_t addr
, const char *name
, DeviceState
*dev
)
1204 RAMBlock
*new_block
, *block
;
1207 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1208 if (block
->offset
== addr
) {
1214 assert(!new_block
->idstr
[0]);
1217 char *id
= qdev_get_dev_path(dev
);
1219 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1223 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1225 /* This assumes the iothread lock is taken here too. */
1226 qemu_mutex_lock_ramlist();
1227 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1228 if (block
!= new_block
&& !strcmp(block
->idstr
, new_block
->idstr
)) {
1229 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1234 qemu_mutex_unlock_ramlist();
1237 static int memory_try_enable_merging(void *addr
, size_t len
)
1239 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
1240 /* disabled by the user */
1244 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1247 ram_addr_t
qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
1250 RAMBlock
*block
, *new_block
;
1251 ram_addr_t old_ram_size
, new_ram_size
;
1253 old_ram_size
= last_ram_offset() >> TARGET_PAGE_BITS
;
1255 size
= TARGET_PAGE_ALIGN(size
);
1256 new_block
= g_malloc0(sizeof(*new_block
));
1259 /* This assumes the iothread lock is taken here too. */
1260 qemu_mutex_lock_ramlist();
1262 new_block
->offset
= find_ram_offset(size
);
1264 new_block
->host
= host
;
1265 new_block
->flags
|= RAM_PREALLOC_MASK
;
1266 } else if (xen_enabled()) {
1268 fprintf(stderr
, "-mem-path not supported with Xen\n");
1271 xen_ram_alloc(new_block
->offset
, size
, mr
);
1274 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
1276 * file_ram_alloc() needs to allocate just like
1277 * phys_mem_alloc, but we haven't bothered to provide
1281 "-mem-path not supported with this accelerator\n");
1284 new_block
->host
= file_ram_alloc(new_block
, size
, mem_path
);
1286 if (!new_block
->host
) {
1287 new_block
->host
= phys_mem_alloc(size
);
1288 if (!new_block
->host
) {
1289 fprintf(stderr
, "Cannot set up guest memory '%s': %s\n",
1290 new_block
->mr
->name
, strerror(errno
));
1293 memory_try_enable_merging(new_block
->host
, size
);
1296 new_block
->length
= size
;
1298 /* Keep the list sorted from biggest to smallest block. */
1299 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1300 if (block
->length
< new_block
->length
) {
1305 QTAILQ_INSERT_BEFORE(block
, new_block
, next
);
1307 QTAILQ_INSERT_TAIL(&ram_list
.blocks
, new_block
, next
);
1309 ram_list
.mru_block
= NULL
;
1312 qemu_mutex_unlock_ramlist();
1314 new_ram_size
= last_ram_offset() >> TARGET_PAGE_BITS
;
1316 if (new_ram_size
> old_ram_size
) {
1318 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
1319 ram_list
.dirty_memory
[i
] =
1320 bitmap_zero_extend(ram_list
.dirty_memory
[i
],
1321 old_ram_size
, new_ram_size
);
1324 cpu_physical_memory_set_dirty_range(new_block
->offset
, size
);
1326 qemu_ram_setup_dump(new_block
->host
, size
);
1327 qemu_madvise(new_block
->host
, size
, QEMU_MADV_HUGEPAGE
);
1328 qemu_madvise(new_block
->host
, size
, QEMU_MADV_DONTFORK
);
1331 kvm_setup_guest_memory(new_block
->host
, size
);
1333 return new_block
->offset
;
1336 ram_addr_t
qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
)
1338 return qemu_ram_alloc_from_ptr(size
, NULL
, mr
);
1341 void qemu_ram_free_from_ptr(ram_addr_t addr
)
1345 /* This assumes the iothread lock is taken here too. */
1346 qemu_mutex_lock_ramlist();
1347 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1348 if (addr
== block
->offset
) {
1349 QTAILQ_REMOVE(&ram_list
.blocks
, block
, next
);
1350 ram_list
.mru_block
= NULL
;
1356 qemu_mutex_unlock_ramlist();
1359 void qemu_ram_free(ram_addr_t addr
)
1363 /* This assumes the iothread lock is taken here too. */
1364 qemu_mutex_lock_ramlist();
1365 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1366 if (addr
== block
->offset
) {
1367 QTAILQ_REMOVE(&ram_list
.blocks
, block
, next
);
1368 ram_list
.mru_block
= NULL
;
1370 if (block
->flags
& RAM_PREALLOC_MASK
) {
1372 } else if (xen_enabled()) {
1373 xen_invalidate_map_cache_entry(block
->host
);
1375 } else if (block
->fd
>= 0) {
1376 munmap(block
->host
, block
->length
);
1380 qemu_anon_ram_free(block
->host
, block
->length
);
1386 qemu_mutex_unlock_ramlist();
1391 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
1398 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1399 offset
= addr
- block
->offset
;
1400 if (offset
< block
->length
) {
1401 vaddr
= block
->host
+ offset
;
1402 if (block
->flags
& RAM_PREALLOC_MASK
) {
1404 } else if (xen_enabled()) {
1408 munmap(vaddr
, length
);
1409 if (block
->fd
>= 0) {
1411 flags
|= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
:
1414 flags
|= MAP_PRIVATE
;
1416 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1417 flags
, block
->fd
, offset
);
1420 * Remap needs to match alloc. Accelerators that
1421 * set phys_mem_alloc never remap. If they did,
1422 * we'd need a remap hook here.
1424 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
1426 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1427 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1430 if (area
!= vaddr
) {
1431 fprintf(stderr
, "Could not remap addr: "
1432 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
1436 memory_try_enable_merging(vaddr
, length
);
1437 qemu_ram_setup_dump(vaddr
, length
);
1443 #endif /* !_WIN32 */
1445 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1446 With the exception of the softmmu code in this file, this should
1447 only be used for local memory (e.g. video ram) that the device owns,
1448 and knows it isn't going to access beyond the end of the block.
1450 It should not be used for general purpose DMA.
1451 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1453 void *qemu_get_ram_ptr(ram_addr_t addr
)
1455 RAMBlock
*block
= qemu_get_ram_block(addr
);
1457 if (xen_enabled()) {
1458 /* We need to check if the requested address is in the RAM
1459 * because we don't want to map the entire memory in QEMU.
1460 * In that case just map until the end of the page.
1462 if (block
->offset
== 0) {
1463 return xen_map_cache(addr
, 0, 0);
1464 } else if (block
->host
== NULL
) {
1466 xen_map_cache(block
->offset
, block
->length
, 1);
1469 return block
->host
+ (addr
- block
->offset
);
1472 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1473 * but takes a size argument */
1474 static void *qemu_ram_ptr_length(ram_addr_t addr
, hwaddr
*size
)
1479 if (xen_enabled()) {
1480 return xen_map_cache(addr
, *size
, 1);
1484 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1485 if (addr
- block
->offset
< block
->length
) {
1486 if (addr
- block
->offset
+ *size
> block
->length
)
1487 *size
= block
->length
- addr
+ block
->offset
;
1488 return block
->host
+ (addr
- block
->offset
);
1492 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1497 /* Some of the softmmu routines need to translate from a host pointer
1498 (typically a TLB entry) back to a ram offset. */
1499 MemoryRegion
*qemu_ram_addr_from_host(void *ptr
, ram_addr_t
*ram_addr
)
1502 uint8_t *host
= ptr
;
1504 if (xen_enabled()) {
1505 *ram_addr
= xen_ram_addr_from_mapcache(ptr
);
1506 return qemu_get_ram_block(*ram_addr
)->mr
;
1509 block
= ram_list
.mru_block
;
1510 if (block
&& block
->host
&& host
- block
->host
< block
->length
) {
1514 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1515 /* This case append when the block is not mapped. */
1516 if (block
->host
== NULL
) {
1519 if (host
- block
->host
< block
->length
) {
1527 *ram_addr
= block
->offset
+ (host
- block
->host
);
1531 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
1532 uint64_t val
, unsigned size
)
1534 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
1535 tb_invalidate_phys_page_fast(ram_addr
, size
);
1539 stb_p(qemu_get_ram_ptr(ram_addr
), val
);
1542 stw_p(qemu_get_ram_ptr(ram_addr
), val
);
1545 stl_p(qemu_get_ram_ptr(ram_addr
), val
);
1550 cpu_physical_memory_set_dirty_flag(ram_addr
, DIRTY_MEMORY_MIGRATION
);
1551 cpu_physical_memory_set_dirty_flag(ram_addr
, DIRTY_MEMORY_VGA
);
1552 /* we remove the notdirty callback only if the code has been
1554 if (!cpu_physical_memory_is_clean(ram_addr
)) {
1555 CPUArchState
*env
= current_cpu
->env_ptr
;
1556 tlb_set_dirty(env
, current_cpu
->mem_io_vaddr
);
1560 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
1561 unsigned size
, bool is_write
)
1566 static const MemoryRegionOps notdirty_mem_ops
= {
1567 .write
= notdirty_mem_write
,
1568 .valid
.accepts
= notdirty_mem_accepts
,
1569 .endianness
= DEVICE_NATIVE_ENDIAN
,
1572 /* Generate a debug exception if a watchpoint has been hit. */
1573 static void check_watchpoint(int offset
, int len_mask
, int flags
)
1575 CPUState
*cpu
= current_cpu
;
1576 CPUArchState
*env
= cpu
->env_ptr
;
1577 target_ulong pc
, cs_base
;
1582 if (env
->watchpoint_hit
) {
1583 /* We re-entered the check after replacing the TB. Now raise
1584 * the debug interrupt so that is will trigger after the
1585 * current instruction. */
1586 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
1589 vaddr
= (cpu
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
1590 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1591 if ((vaddr
== (wp
->vaddr
& len_mask
) ||
1592 (vaddr
& wp
->len_mask
) == wp
->vaddr
) && (wp
->flags
& flags
)) {
1593 wp
->flags
|= BP_WATCHPOINT_HIT
;
1594 if (!env
->watchpoint_hit
) {
1595 env
->watchpoint_hit
= wp
;
1596 tb_check_watchpoint(env
);
1597 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
1598 env
->exception_index
= EXCP_DEBUG
;
1601 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
1602 tb_gen_code(env
, pc
, cs_base
, cpu_flags
, 1);
1603 cpu_resume_from_signal(env
, NULL
);
1607 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
1612 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1613 so these check for a hit then pass through to the normal out-of-line
1615 static uint64_t watch_mem_read(void *opaque
, hwaddr addr
,
1618 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~(size
- 1), BP_MEM_READ
);
1620 case 1: return ldub_phys(&address_space_memory
, addr
);
1621 case 2: return lduw_phys(&address_space_memory
, addr
);
1622 case 4: return ldl_phys(&address_space_memory
, addr
);
1627 static void watch_mem_write(void *opaque
, hwaddr addr
,
1628 uint64_t val
, unsigned size
)
1630 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~(size
- 1), BP_MEM_WRITE
);
1633 stb_phys(&address_space_memory
, addr
, val
);
1636 stw_phys(&address_space_memory
, addr
, val
);
1639 stl_phys(&address_space_memory
, addr
, val
);
1645 static const MemoryRegionOps watch_mem_ops
= {
1646 .read
= watch_mem_read
,
1647 .write
= watch_mem_write
,
1648 .endianness
= DEVICE_NATIVE_ENDIAN
,
1651 static uint64_t subpage_read(void *opaque
, hwaddr addr
,
1654 subpage_t
*subpage
= opaque
;
1657 #if defined(DEBUG_SUBPAGE)
1658 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
1659 subpage
, len
, addr
);
1661 address_space_read(subpage
->as
, addr
+ subpage
->base
, buf
, len
);
1674 static void subpage_write(void *opaque
, hwaddr addr
,
1675 uint64_t value
, unsigned len
)
1677 subpage_t
*subpage
= opaque
;
1680 #if defined(DEBUG_SUBPAGE)
1681 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
1682 " value %"PRIx64
"\n",
1683 __func__
, subpage
, len
, addr
, value
);
1698 address_space_write(subpage
->as
, addr
+ subpage
->base
, buf
, len
);
1701 static bool subpage_accepts(void *opaque
, hwaddr addr
,
1702 unsigned len
, bool is_write
)
1704 subpage_t
*subpage
= opaque
;
1705 #if defined(DEBUG_SUBPAGE)
1706 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
1707 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
1710 return address_space_access_valid(subpage
->as
, addr
+ subpage
->base
,
1714 static const MemoryRegionOps subpage_ops
= {
1715 .read
= subpage_read
,
1716 .write
= subpage_write
,
1717 .valid
.accepts
= subpage_accepts
,
1718 .endianness
= DEVICE_NATIVE_ENDIAN
,
1721 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1726 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
1728 idx
= SUBPAGE_IDX(start
);
1729 eidx
= SUBPAGE_IDX(end
);
1730 #if defined(DEBUG_SUBPAGE)
1731 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
1732 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
1734 for (; idx
<= eidx
; idx
++) {
1735 mmio
->sub_section
[idx
] = section
;
1741 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
)
1745 mmio
= g_malloc0(sizeof(subpage_t
));
1749 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
1750 "subpage", TARGET_PAGE_SIZE
);
1751 mmio
->iomem
.subpage
= true;
1752 #if defined(DEBUG_SUBPAGE)
1753 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
1754 mmio
, base
, TARGET_PAGE_SIZE
);
1756 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
1761 static uint16_t dummy_section(PhysPageMap
*map
, MemoryRegion
*mr
)
1763 MemoryRegionSection section
= {
1764 .address_space
= &address_space_memory
,
1766 .offset_within_address_space
= 0,
1767 .offset_within_region
= 0,
1768 .size
= int128_2_64(),
1771 return phys_section_add(map
, §ion
);
1774 MemoryRegion
*iotlb_to_region(AddressSpace
*as
, hwaddr index
)
1776 return as
->dispatch
->map
.sections
[index
& ~TARGET_PAGE_MASK
].mr
;
1779 static void io_mem_init(void)
1781 memory_region_init_io(&io_mem_rom
, NULL
, &unassigned_mem_ops
, NULL
, "rom", UINT64_MAX
);
1782 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
1783 "unassigned", UINT64_MAX
);
1784 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
1785 "notdirty", UINT64_MAX
);
1786 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
1787 "watch", UINT64_MAX
);
1790 static void mem_begin(MemoryListener
*listener
)
1792 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1793 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
1796 n
= dummy_section(&d
->map
, &io_mem_unassigned
);
1797 assert(n
== PHYS_SECTION_UNASSIGNED
);
1798 n
= dummy_section(&d
->map
, &io_mem_notdirty
);
1799 assert(n
== PHYS_SECTION_NOTDIRTY
);
1800 n
= dummy_section(&d
->map
, &io_mem_rom
);
1801 assert(n
== PHYS_SECTION_ROM
);
1802 n
= dummy_section(&d
->map
, &io_mem_watch
);
1803 assert(n
== PHYS_SECTION_WATCH
);
1805 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
1807 as
->next_dispatch
= d
;
1810 static void mem_commit(MemoryListener
*listener
)
1812 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1813 AddressSpaceDispatch
*cur
= as
->dispatch
;
1814 AddressSpaceDispatch
*next
= as
->next_dispatch
;
1816 phys_page_compact_all(next
, next
->map
.nodes_nb
);
1818 as
->dispatch
= next
;
1821 phys_sections_free(&cur
->map
);
1826 static void tcg_commit(MemoryListener
*listener
)
1830 /* since each CPU stores ram addresses in its TLB cache, we must
1831 reset the modified entries */
1834 CPUArchState
*env
= cpu
->env_ptr
;
1836 /* FIXME: Disentangle the cpu.h circular files deps so we can
1837 directly get the right CPU from listener. */
1838 if (cpu
->tcg_as_listener
!= listener
) {
1845 static void core_log_global_start(MemoryListener
*listener
)
1847 cpu_physical_memory_set_dirty_tracking(true);
1850 static void core_log_global_stop(MemoryListener
*listener
)
1852 cpu_physical_memory_set_dirty_tracking(false);
1855 static MemoryListener core_memory_listener
= {
1856 .log_global_start
= core_log_global_start
,
1857 .log_global_stop
= core_log_global_stop
,
1861 void address_space_init_dispatch(AddressSpace
*as
)
1863 as
->dispatch
= NULL
;
1864 as
->dispatch_listener
= (MemoryListener
) {
1866 .commit
= mem_commit
,
1867 .region_add
= mem_add
,
1868 .region_nop
= mem_add
,
1871 memory_listener_register(&as
->dispatch_listener
, as
);
1874 void address_space_destroy_dispatch(AddressSpace
*as
)
1876 AddressSpaceDispatch
*d
= as
->dispatch
;
1878 memory_listener_unregister(&as
->dispatch_listener
);
1880 as
->dispatch
= NULL
;
1883 static void memory_map_init(void)
1885 system_memory
= g_malloc(sizeof(*system_memory
));
1887 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
1888 address_space_init(&address_space_memory
, system_memory
, "memory");
1890 system_io
= g_malloc(sizeof(*system_io
));
1891 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
1893 address_space_init(&address_space_io
, system_io
, "I/O");
1895 memory_listener_register(&core_memory_listener
, &address_space_memory
);
1898 MemoryRegion
*get_system_memory(void)
1900 return system_memory
;
1903 MemoryRegion
*get_system_io(void)
1908 #endif /* !defined(CONFIG_USER_ONLY) */
1910 /* physical memory access (slow version, mainly for debug) */
1911 #if defined(CONFIG_USER_ONLY)
1912 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
1913 uint8_t *buf
, int len
, int is_write
)
1920 page
= addr
& TARGET_PAGE_MASK
;
1921 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
1924 flags
= page_get_flags(page
);
1925 if (!(flags
& PAGE_VALID
))
1928 if (!(flags
& PAGE_WRITE
))
1930 /* XXX: this code should not depend on lock_user */
1931 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
1934 unlock_user(p
, addr
, l
);
1936 if (!(flags
& PAGE_READ
))
1938 /* XXX: this code should not depend on lock_user */
1939 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
1942 unlock_user(p
, addr
, 0);
1953 static void invalidate_and_set_dirty(hwaddr addr
,
1956 if (cpu_physical_memory_is_clean(addr
)) {
1957 /* invalidate code */
1958 tb_invalidate_phys_page_range(addr
, addr
+ length
, 0);
1960 cpu_physical_memory_set_dirty_flag(addr
, DIRTY_MEMORY_VGA
);
1961 cpu_physical_memory_set_dirty_flag(addr
, DIRTY_MEMORY_MIGRATION
);
1963 xen_modified_memory(addr
, length
);
1966 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
1968 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
1970 /* Regions are assumed to support 1-4 byte accesses unless
1971 otherwise specified. */
1972 if (access_size_max
== 0) {
1973 access_size_max
= 4;
1976 /* Bound the maximum access by the alignment of the address. */
1977 if (!mr
->ops
->impl
.unaligned
) {
1978 unsigned align_size_max
= addr
& -addr
;
1979 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
1980 access_size_max
= align_size_max
;
1984 /* Don't attempt accesses larger than the maximum. */
1985 if (l
> access_size_max
) {
1986 l
= access_size_max
;
1989 l
= 1 << (qemu_fls(l
) - 1);
1995 bool address_space_rw(AddressSpace
*as
, hwaddr addr
, uint8_t *buf
,
1996 int len
, bool is_write
)
2007 mr
= address_space_translate(as
, addr
, &addr1
, &l
, is_write
);
2010 if (!memory_access_is_direct(mr
, is_write
)) {
2011 l
= memory_access_size(mr
, l
, addr1
);
2012 /* XXX: could force current_cpu to NULL to avoid
2016 /* 64 bit write access */
2018 error
|= io_mem_write(mr
, addr1
, val
, 8);
2021 /* 32 bit write access */
2023 error
|= io_mem_write(mr
, addr1
, val
, 4);
2026 /* 16 bit write access */
2028 error
|= io_mem_write(mr
, addr1
, val
, 2);
2031 /* 8 bit write access */
2033 error
|= io_mem_write(mr
, addr1
, val
, 1);
2039 addr1
+= memory_region_get_ram_addr(mr
);
2041 ptr
= qemu_get_ram_ptr(addr1
);
2042 memcpy(ptr
, buf
, l
);
2043 invalidate_and_set_dirty(addr1
, l
);
2046 if (!memory_access_is_direct(mr
, is_write
)) {
2048 l
= memory_access_size(mr
, l
, addr1
);
2051 /* 64 bit read access */
2052 error
|= io_mem_read(mr
, addr1
, &val
, 8);
2056 /* 32 bit read access */
2057 error
|= io_mem_read(mr
, addr1
, &val
, 4);
2061 /* 16 bit read access */
2062 error
|= io_mem_read(mr
, addr1
, &val
, 2);
2066 /* 8 bit read access */
2067 error
|= io_mem_read(mr
, addr1
, &val
, 1);
2075 ptr
= qemu_get_ram_ptr(mr
->ram_addr
+ addr1
);
2076 memcpy(buf
, ptr
, l
);
2087 bool address_space_write(AddressSpace
*as
, hwaddr addr
,
2088 const uint8_t *buf
, int len
)
2090 return address_space_rw(as
, addr
, (uint8_t *)buf
, len
, true);
2093 bool address_space_read(AddressSpace
*as
, hwaddr addr
, uint8_t *buf
, int len
)
2095 return address_space_rw(as
, addr
, buf
, len
, false);
2099 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
2100 int len
, int is_write
)
2102 address_space_rw(&address_space_memory
, addr
, buf
, len
, is_write
);
2105 enum write_rom_type
{
2110 static inline void cpu_physical_memory_write_rom_internal(AddressSpace
*as
,
2111 hwaddr addr
, const uint8_t *buf
, int len
, enum write_rom_type type
)
2120 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2122 if (!(memory_region_is_ram(mr
) ||
2123 memory_region_is_romd(mr
))) {
2126 addr1
+= memory_region_get_ram_addr(mr
);
2128 ptr
= qemu_get_ram_ptr(addr1
);
2131 memcpy(ptr
, buf
, l
);
2132 invalidate_and_set_dirty(addr1
, l
);
2135 flush_icache_range((uintptr_t)ptr
, (uintptr_t)ptr
+ l
);
2145 /* used for ROM loading : can write in RAM and ROM */
2146 void cpu_physical_memory_write_rom(AddressSpace
*as
, hwaddr addr
,
2147 const uint8_t *buf
, int len
)
2149 cpu_physical_memory_write_rom_internal(as
, addr
, buf
, len
, WRITE_DATA
);
2152 void cpu_flush_icache_range(hwaddr start
, int len
)
2155 * This function should do the same thing as an icache flush that was
2156 * triggered from within the guest. For TCG we are always cache coherent,
2157 * so there is no need to flush anything. For KVM / Xen we need to flush
2158 * the host's instruction cache at least.
2160 if (tcg_enabled()) {
2164 cpu_physical_memory_write_rom_internal(&address_space_memory
,
2165 start
, NULL
, len
, FLUSH_CACHE
);
2175 static BounceBuffer bounce
;
2177 typedef struct MapClient
{
2179 void (*callback
)(void *opaque
);
2180 QLIST_ENTRY(MapClient
) link
;
2183 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
2184 = QLIST_HEAD_INITIALIZER(map_client_list
);
2186 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
))
2188 MapClient
*client
= g_malloc(sizeof(*client
));
2190 client
->opaque
= opaque
;
2191 client
->callback
= callback
;
2192 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
2196 static void cpu_unregister_map_client(void *_client
)
2198 MapClient
*client
= (MapClient
*)_client
;
2200 QLIST_REMOVE(client
, link
);
2204 static void cpu_notify_map_clients(void)
2208 while (!QLIST_EMPTY(&map_client_list
)) {
2209 client
= QLIST_FIRST(&map_client_list
);
2210 client
->callback(client
->opaque
);
2211 cpu_unregister_map_client(client
);
2215 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
, int len
, bool is_write
)
2222 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2223 if (!memory_access_is_direct(mr
, is_write
)) {
2224 l
= memory_access_size(mr
, l
, addr
);
2225 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
)) {
2236 /* Map a physical memory region into a host virtual address.
2237 * May map a subset of the requested range, given by and returned in *plen.
2238 * May return NULL if resources needed to perform the mapping are exhausted.
2239 * Use only for reads OR writes - not for read-modify-write operations.
2240 * Use cpu_register_map_client() to know when retrying the map operation is
2241 * likely to succeed.
2243 void *address_space_map(AddressSpace
*as
,
2250 hwaddr l
, xlat
, base
;
2251 MemoryRegion
*mr
, *this_mr
;
2259 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2260 if (!memory_access_is_direct(mr
, is_write
)) {
2261 if (bounce
.buffer
) {
2264 /* Avoid unbounded allocations */
2265 l
= MIN(l
, TARGET_PAGE_SIZE
);
2266 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
2270 memory_region_ref(mr
);
2273 address_space_read(as
, addr
, bounce
.buffer
, l
);
2277 return bounce
.buffer
;
2281 raddr
= memory_region_get_ram_addr(mr
);
2292 this_mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2293 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
2298 memory_region_ref(mr
);
2300 return qemu_ram_ptr_length(raddr
+ base
, plen
);
2303 /* Unmaps a memory region previously mapped by address_space_map().
2304 * Will also mark the memory as dirty if is_write == 1. access_len gives
2305 * the amount of memory that was actually read or written by the caller.
2307 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
2308 int is_write
, hwaddr access_len
)
2310 if (buffer
!= bounce
.buffer
) {
2314 mr
= qemu_ram_addr_from_host(buffer
, &addr1
);
2317 while (access_len
) {
2319 l
= TARGET_PAGE_SIZE
;
2322 invalidate_and_set_dirty(addr1
, l
);
2327 if (xen_enabled()) {
2328 xen_invalidate_map_cache_entry(buffer
);
2330 memory_region_unref(mr
);
2334 address_space_write(as
, bounce
.addr
, bounce
.buffer
, access_len
);
2336 qemu_vfree(bounce
.buffer
);
2337 bounce
.buffer
= NULL
;
2338 memory_region_unref(bounce
.mr
);
2339 cpu_notify_map_clients();
2342 void *cpu_physical_memory_map(hwaddr addr
,
2346 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
2349 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
2350 int is_write
, hwaddr access_len
)
2352 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
2355 /* warning: addr must be aligned */
2356 static inline uint32_t ldl_phys_internal(AddressSpace
*as
, hwaddr addr
,
2357 enum device_endian endian
)
2365 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2366 if (l
< 4 || !memory_access_is_direct(mr
, false)) {
2368 io_mem_read(mr
, addr1
, &val
, 4);
2369 #if defined(TARGET_WORDS_BIGENDIAN)
2370 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2374 if (endian
== DEVICE_BIG_ENDIAN
) {
2380 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
2384 case DEVICE_LITTLE_ENDIAN
:
2385 val
= ldl_le_p(ptr
);
2387 case DEVICE_BIG_ENDIAN
:
2388 val
= ldl_be_p(ptr
);
2398 uint32_t ldl_phys(AddressSpace
*as
, hwaddr addr
)
2400 return ldl_phys_internal(as
, addr
, DEVICE_NATIVE_ENDIAN
);
2403 uint32_t ldl_le_phys(AddressSpace
*as
, hwaddr addr
)
2405 return ldl_phys_internal(as
, addr
, DEVICE_LITTLE_ENDIAN
);
2408 uint32_t ldl_be_phys(AddressSpace
*as
, hwaddr addr
)
2410 return ldl_phys_internal(as
, addr
, DEVICE_BIG_ENDIAN
);
2413 /* warning: addr must be aligned */
2414 static inline uint64_t ldq_phys_internal(AddressSpace
*as
, hwaddr addr
,
2415 enum device_endian endian
)
2423 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
2425 if (l
< 8 || !memory_access_is_direct(mr
, false)) {
2427 io_mem_read(mr
, addr1
, &val
, 8);
2428 #if defined(TARGET_WORDS_BIGENDIAN)
2429 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2433 if (endian
== DEVICE_BIG_ENDIAN
) {
2439 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
2443 case DEVICE_LITTLE_ENDIAN
:
2444 val
= ldq_le_p(ptr
);
2446 case DEVICE_BIG_ENDIAN
:
2447 val
= ldq_be_p(ptr
);
2457 uint64_t ldq_phys(AddressSpace
*as
, hwaddr addr
)
2459 return ldq_phys_internal(as
, addr
, DEVICE_NATIVE_ENDIAN
);
2462 uint64_t ldq_le_phys(AddressSpace
*as
, hwaddr addr
)
2464 return ldq_phys_internal(as
, addr
, DEVICE_LITTLE_ENDIAN
);
2467 uint64_t ldq_be_phys(AddressSpace
*as
, hwaddr addr
)
2469 return ldq_phys_internal(as
, addr
, DEVICE_BIG_ENDIAN
);
2473 uint32_t ldub_phys(AddressSpace
*as
, hwaddr addr
)
2476 address_space_rw(as
, addr
, &val
, 1, 0);
2480 /* warning: addr must be aligned */
2481 static inline uint32_t lduw_phys_internal(AddressSpace
*as
, hwaddr addr
,
2482 enum device_endian endian
)
2490 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
2492 if (l
< 2 || !memory_access_is_direct(mr
, false)) {
2494 io_mem_read(mr
, addr1
, &val
, 2);
2495 #if defined(TARGET_WORDS_BIGENDIAN)
2496 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2500 if (endian
== DEVICE_BIG_ENDIAN
) {
2506 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
2510 case DEVICE_LITTLE_ENDIAN
:
2511 val
= lduw_le_p(ptr
);
2513 case DEVICE_BIG_ENDIAN
:
2514 val
= lduw_be_p(ptr
);
2524 uint32_t lduw_phys(AddressSpace
*as
, hwaddr addr
)
2526 return lduw_phys_internal(as
, addr
, DEVICE_NATIVE_ENDIAN
);
2529 uint32_t lduw_le_phys(AddressSpace
*as
, hwaddr addr
)
2531 return lduw_phys_internal(as
, addr
, DEVICE_LITTLE_ENDIAN
);
2534 uint32_t lduw_be_phys(AddressSpace
*as
, hwaddr addr
)
2536 return lduw_phys_internal(as
, addr
, DEVICE_BIG_ENDIAN
);
2539 /* warning: addr must be aligned. The ram page is not masked as dirty
2540 and the code inside is not invalidated. It is useful if the dirty
2541 bits are used to track modified PTEs */
2542 void stl_phys_notdirty(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2549 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
2551 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
2552 io_mem_write(mr
, addr1
, val
, 4);
2554 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
2555 ptr
= qemu_get_ram_ptr(addr1
);
2558 if (unlikely(in_migration
)) {
2559 if (cpu_physical_memory_is_clean(addr1
)) {
2560 /* invalidate code */
2561 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
2563 cpu_physical_memory_set_dirty_flag(addr1
,
2564 DIRTY_MEMORY_MIGRATION
);
2565 cpu_physical_memory_set_dirty_flag(addr1
, DIRTY_MEMORY_VGA
);
2571 /* warning: addr must be aligned */
2572 static inline void stl_phys_internal(AddressSpace
*as
,
2573 hwaddr addr
, uint32_t val
,
2574 enum device_endian endian
)
2581 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
2583 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
2584 #if defined(TARGET_WORDS_BIGENDIAN)
2585 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2589 if (endian
== DEVICE_BIG_ENDIAN
) {
2593 io_mem_write(mr
, addr1
, val
, 4);
2596 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
2597 ptr
= qemu_get_ram_ptr(addr1
);
2599 case DEVICE_LITTLE_ENDIAN
:
2602 case DEVICE_BIG_ENDIAN
:
2609 invalidate_and_set_dirty(addr1
, 4);
2613 void stl_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2615 stl_phys_internal(as
, addr
, val
, DEVICE_NATIVE_ENDIAN
);
2618 void stl_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2620 stl_phys_internal(as
, addr
, val
, DEVICE_LITTLE_ENDIAN
);
2623 void stl_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2625 stl_phys_internal(as
, addr
, val
, DEVICE_BIG_ENDIAN
);
2629 void stb_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2632 address_space_rw(as
, addr
, &v
, 1, 1);
2635 /* warning: addr must be aligned */
2636 static inline void stw_phys_internal(AddressSpace
*as
,
2637 hwaddr addr
, uint32_t val
,
2638 enum device_endian endian
)
2645 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2646 if (l
< 2 || !memory_access_is_direct(mr
, true)) {
2647 #if defined(TARGET_WORDS_BIGENDIAN)
2648 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2652 if (endian
== DEVICE_BIG_ENDIAN
) {
2656 io_mem_write(mr
, addr1
, val
, 2);
2659 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
2660 ptr
= qemu_get_ram_ptr(addr1
);
2662 case DEVICE_LITTLE_ENDIAN
:
2665 case DEVICE_BIG_ENDIAN
:
2672 invalidate_and_set_dirty(addr1
, 2);
2676 void stw_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2678 stw_phys_internal(as
, addr
, val
, DEVICE_NATIVE_ENDIAN
);
2681 void stw_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2683 stw_phys_internal(as
, addr
, val
, DEVICE_LITTLE_ENDIAN
);
2686 void stw_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2688 stw_phys_internal(as
, addr
, val
, DEVICE_BIG_ENDIAN
);
2692 void stq_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
2695 address_space_rw(as
, addr
, (void *) &val
, 8, 1);
2698 void stq_le_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
2700 val
= cpu_to_le64(val
);
2701 address_space_rw(as
, addr
, (void *) &val
, 8, 1);
2704 void stq_be_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
2706 val
= cpu_to_be64(val
);
2707 address_space_rw(as
, addr
, (void *) &val
, 8, 1);
2710 /* virtual memory access for debug (includes writing to ROM) */
2711 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2712 uint8_t *buf
, int len
, int is_write
)
2719 page
= addr
& TARGET_PAGE_MASK
;
2720 phys_addr
= cpu_get_phys_page_debug(cpu
, page
);
2721 /* if no physical page mapped, return an error */
2722 if (phys_addr
== -1)
2724 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2727 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
2729 cpu_physical_memory_write_rom(cpu
->as
, phys_addr
, buf
, l
);
2731 address_space_rw(cpu
->as
, phys_addr
, buf
, l
, 0);
2741 #if !defined(CONFIG_USER_ONLY)
2744 * A helper function for the _utterly broken_ virtio device model to find out if
2745 * it's running on a big endian machine. Don't do this at home kids!
2747 bool virtio_is_big_endian(void);
2748 bool virtio_is_big_endian(void)
2750 #if defined(TARGET_WORDS_BIGENDIAN)
2759 #ifndef CONFIG_USER_ONLY
2760 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
2765 mr
= address_space_translate(&address_space_memory
,
2766 phys_addr
, &phys_addr
, &l
, false);
2768 return !(memory_region_is_ram(mr
) ||
2769 memory_region_is_romd(mr
));
2772 void qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
2776 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
2777 func(block
->host
, block
->offset
, block
->length
, opaque
);