2 * QEMU generic PowerPC hardware System Emulator
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "hw/ppc/ppc.h"
26 #include "hw/ppc/ppc_e500.h"
27 #include "qemu/timer.h"
28 #include "sysemu/sysemu.h"
29 #include "hw/timer/m48t59.h"
31 #include "hw/loader.h"
32 #include "sysemu/kvm.h"
35 //#define PPC_DEBUG_IRQ
36 //#define PPC_DEBUG_TB
39 # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
41 # define LOG_IRQ(...) do { } while (0)
46 # define LOG_TB(...) qemu_log(__VA_ARGS__)
48 # define LOG_TB(...) do { } while (0)
51 static void cpu_ppc_tb_stop (CPUPPCState
*env
);
52 static void cpu_ppc_tb_start (CPUPPCState
*env
);
54 void ppc_set_irq(PowerPCCPU
*cpu
, int n_IRQ
, int level
)
56 CPUState
*cs
= CPU(cpu
);
57 CPUPPCState
*env
= &cpu
->env
;
58 unsigned int old_pending
= env
->pending_interrupts
;
61 env
->pending_interrupts
|= 1 << n_IRQ
;
62 cpu_interrupt(cs
, CPU_INTERRUPT_HARD
);
64 env
->pending_interrupts
&= ~(1 << n_IRQ
);
65 if (env
->pending_interrupts
== 0) {
66 cpu_reset_interrupt(cs
, CPU_INTERRUPT_HARD
);
70 if (old_pending
!= env
->pending_interrupts
) {
72 kvmppc_set_interrupt(cpu
, n_IRQ
, level
);
76 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
77 "req %08x\n", __func__
, env
, n_IRQ
, level
,
78 env
->pending_interrupts
, CPU(cpu
)->interrupt_request
);
81 /* PowerPC 6xx / 7xx internal IRQ controller */
82 static void ppc6xx_set_irq(void *opaque
, int pin
, int level
)
84 PowerPCCPU
*cpu
= opaque
;
85 CPUPPCState
*env
= &cpu
->env
;
88 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
90 cur_level
= (env
->irq_input_state
>> pin
) & 1;
91 /* Don't generate spurious events */
92 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
93 CPUState
*cs
= CPU(cpu
);
96 case PPC6xx_INPUT_TBEN
:
97 /* Level sensitive - active high */
98 LOG_IRQ("%s: %s the time base\n",
99 __func__
, level
? "start" : "stop");
101 cpu_ppc_tb_start(env
);
103 cpu_ppc_tb_stop(env
);
105 case PPC6xx_INPUT_INT
:
106 /* Level sensitive - active high */
107 LOG_IRQ("%s: set the external IRQ state to %d\n",
109 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
111 case PPC6xx_INPUT_SMI
:
112 /* Level sensitive - active high */
113 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
115 ppc_set_irq(cpu
, PPC_INTERRUPT_SMI
, level
);
117 case PPC6xx_INPUT_MCP
:
118 /* Negative edge sensitive */
119 /* XXX: TODO: actual reaction may depends on HID0 status
120 * 603/604/740/750: check HID0[EMCP]
122 if (cur_level
== 1 && level
== 0) {
123 LOG_IRQ("%s: raise machine check state\n",
125 ppc_set_irq(cpu
, PPC_INTERRUPT_MCK
, 1);
128 case PPC6xx_INPUT_CKSTP_IN
:
129 /* Level sensitive - active low */
130 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
131 /* XXX: Note that the only way to restart the CPU is to reset it */
133 LOG_IRQ("%s: stop the CPU\n", __func__
);
137 case PPC6xx_INPUT_HRESET
:
138 /* Level sensitive - active low */
140 LOG_IRQ("%s: reset the CPU\n", __func__
);
141 cpu_interrupt(cs
, CPU_INTERRUPT_RESET
);
144 case PPC6xx_INPUT_SRESET
:
145 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
147 ppc_set_irq(cpu
, PPC_INTERRUPT_RESET
, level
);
150 /* Unknown pin - do nothing */
151 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
155 env
->irq_input_state
|= 1 << pin
;
157 env
->irq_input_state
&= ~(1 << pin
);
161 void ppc6xx_irq_init(CPUPPCState
*env
)
163 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
165 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc6xx_set_irq
, cpu
,
169 #if defined(TARGET_PPC64)
170 /* PowerPC 970 internal IRQ controller */
171 static void ppc970_set_irq(void *opaque
, int pin
, int level
)
173 PowerPCCPU
*cpu
= opaque
;
174 CPUPPCState
*env
= &cpu
->env
;
177 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
179 cur_level
= (env
->irq_input_state
>> pin
) & 1;
180 /* Don't generate spurious events */
181 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
182 CPUState
*cs
= CPU(cpu
);
185 case PPC970_INPUT_INT
:
186 /* Level sensitive - active high */
187 LOG_IRQ("%s: set the external IRQ state to %d\n",
189 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
191 case PPC970_INPUT_THINT
:
192 /* Level sensitive - active high */
193 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__
,
195 ppc_set_irq(cpu
, PPC_INTERRUPT_THERM
, level
);
197 case PPC970_INPUT_MCP
:
198 /* Negative edge sensitive */
199 /* XXX: TODO: actual reaction may depends on HID0 status
200 * 603/604/740/750: check HID0[EMCP]
202 if (cur_level
== 1 && level
== 0) {
203 LOG_IRQ("%s: raise machine check state\n",
205 ppc_set_irq(cpu
, PPC_INTERRUPT_MCK
, 1);
208 case PPC970_INPUT_CKSTP
:
209 /* Level sensitive - active low */
210 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
212 LOG_IRQ("%s: stop the CPU\n", __func__
);
215 LOG_IRQ("%s: restart the CPU\n", __func__
);
220 case PPC970_INPUT_HRESET
:
221 /* Level sensitive - active low */
223 cpu_interrupt(cs
, CPU_INTERRUPT_RESET
);
226 case PPC970_INPUT_SRESET
:
227 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
229 ppc_set_irq(cpu
, PPC_INTERRUPT_RESET
, level
);
231 case PPC970_INPUT_TBEN
:
232 LOG_IRQ("%s: set the TBEN state to %d\n", __func__
,
237 /* Unknown pin - do nothing */
238 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
242 env
->irq_input_state
|= 1 << pin
;
244 env
->irq_input_state
&= ~(1 << pin
);
248 void ppc970_irq_init(CPUPPCState
*env
)
250 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
252 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc970_set_irq
, cpu
,
256 /* POWER7 internal IRQ controller */
257 static void power7_set_irq(void *opaque
, int pin
, int level
)
259 PowerPCCPU
*cpu
= opaque
;
260 CPUPPCState
*env
= &cpu
->env
;
262 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
266 case POWER7_INPUT_INT
:
267 /* Level sensitive - active high */
268 LOG_IRQ("%s: set the external IRQ state to %d\n",
270 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
273 /* Unknown pin - do nothing */
274 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
278 env
->irq_input_state
|= 1 << pin
;
280 env
->irq_input_state
&= ~(1 << pin
);
284 void ppcPOWER7_irq_init(CPUPPCState
*env
)
286 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
288 env
->irq_inputs
= (void **)qemu_allocate_irqs(&power7_set_irq
, cpu
,
291 #endif /* defined(TARGET_PPC64) */
293 /* PowerPC 40x internal IRQ controller */
294 static void ppc40x_set_irq(void *opaque
, int pin
, int level
)
296 PowerPCCPU
*cpu
= opaque
;
297 CPUPPCState
*env
= &cpu
->env
;
300 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
302 cur_level
= (env
->irq_input_state
>> pin
) & 1;
303 /* Don't generate spurious events */
304 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
305 CPUState
*cs
= CPU(cpu
);
308 case PPC40x_INPUT_RESET_SYS
:
310 LOG_IRQ("%s: reset the PowerPC system\n",
312 ppc40x_system_reset(cpu
);
315 case PPC40x_INPUT_RESET_CHIP
:
317 LOG_IRQ("%s: reset the PowerPC chip\n", __func__
);
318 ppc40x_chip_reset(cpu
);
321 case PPC40x_INPUT_RESET_CORE
:
322 /* XXX: TODO: update DBSR[MRR] */
324 LOG_IRQ("%s: reset the PowerPC core\n", __func__
);
325 ppc40x_core_reset(cpu
);
328 case PPC40x_INPUT_CINT
:
329 /* Level sensitive - active high */
330 LOG_IRQ("%s: set the critical IRQ state to %d\n",
332 ppc_set_irq(cpu
, PPC_INTERRUPT_CEXT
, level
);
334 case PPC40x_INPUT_INT
:
335 /* Level sensitive - active high */
336 LOG_IRQ("%s: set the external IRQ state to %d\n",
338 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
340 case PPC40x_INPUT_HALT
:
341 /* Level sensitive - active low */
343 LOG_IRQ("%s: stop the CPU\n", __func__
);
346 LOG_IRQ("%s: restart the CPU\n", __func__
);
351 case PPC40x_INPUT_DEBUG
:
352 /* Level sensitive - active high */
353 LOG_IRQ("%s: set the debug pin state to %d\n",
355 ppc_set_irq(cpu
, PPC_INTERRUPT_DEBUG
, level
);
358 /* Unknown pin - do nothing */
359 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
363 env
->irq_input_state
|= 1 << pin
;
365 env
->irq_input_state
&= ~(1 << pin
);
369 void ppc40x_irq_init(CPUPPCState
*env
)
371 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
373 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc40x_set_irq
,
374 cpu
, PPC40x_INPUT_NB
);
377 /* PowerPC E500 internal IRQ controller */
378 static void ppce500_set_irq(void *opaque
, int pin
, int level
)
380 PowerPCCPU
*cpu
= opaque
;
381 CPUPPCState
*env
= &cpu
->env
;
384 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
386 cur_level
= (env
->irq_input_state
>> pin
) & 1;
387 /* Don't generate spurious events */
388 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
390 case PPCE500_INPUT_MCK
:
392 LOG_IRQ("%s: reset the PowerPC system\n",
394 qemu_system_reset_request();
397 case PPCE500_INPUT_RESET_CORE
:
399 LOG_IRQ("%s: reset the PowerPC core\n", __func__
);
400 ppc_set_irq(cpu
, PPC_INTERRUPT_MCK
, level
);
403 case PPCE500_INPUT_CINT
:
404 /* Level sensitive - active high */
405 LOG_IRQ("%s: set the critical IRQ state to %d\n",
407 ppc_set_irq(cpu
, PPC_INTERRUPT_CEXT
, level
);
409 case PPCE500_INPUT_INT
:
410 /* Level sensitive - active high */
411 LOG_IRQ("%s: set the core IRQ state to %d\n",
413 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
415 case PPCE500_INPUT_DEBUG
:
416 /* Level sensitive - active high */
417 LOG_IRQ("%s: set the debug pin state to %d\n",
419 ppc_set_irq(cpu
, PPC_INTERRUPT_DEBUG
, level
);
422 /* Unknown pin - do nothing */
423 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
427 env
->irq_input_state
|= 1 << pin
;
429 env
->irq_input_state
&= ~(1 << pin
);
433 void ppce500_irq_init(CPUPPCState
*env
)
435 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
437 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppce500_set_irq
,
438 cpu
, PPCE500_INPUT_NB
);
441 /* Enable or Disable the E500 EPR capability */
442 void ppce500_set_mpic_proxy(bool enabled
)
447 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
449 cpu
->env
.mpic_proxy
= enabled
;
451 kvmppc_set_mpic_proxy(cpu
, enabled
);
456 /*****************************************************************************/
457 /* PowerPC time base and decrementer emulation */
459 uint64_t cpu_ppc_get_tb(ppc_tb_t
*tb_env
, uint64_t vmclk
, int64_t tb_offset
)
461 /* TB time in tb periods */
462 return muldiv64(vmclk
, tb_env
->tb_freq
, get_ticks_per_sec()) + tb_offset
;
465 uint64_t cpu_ppc_load_tbl (CPUPPCState
*env
)
467 ppc_tb_t
*tb_env
= env
->tb_env
;
471 return env
->spr
[SPR_TBL
];
474 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->tb_offset
);
475 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
480 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState
*env
)
482 ppc_tb_t
*tb_env
= env
->tb_env
;
485 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->tb_offset
);
486 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
491 uint32_t cpu_ppc_load_tbu (CPUPPCState
*env
)
494 return env
->spr
[SPR_TBU
];
497 return _cpu_ppc_load_tbu(env
);
500 static inline void cpu_ppc_store_tb(ppc_tb_t
*tb_env
, uint64_t vmclk
,
501 int64_t *tb_offsetp
, uint64_t value
)
503 *tb_offsetp
= value
- muldiv64(vmclk
, tb_env
->tb_freq
, get_ticks_per_sec());
504 LOG_TB("%s: tb %016" PRIx64
" offset %08" PRIx64
"\n",
505 __func__
, value
, *tb_offsetp
);
508 void cpu_ppc_store_tbl (CPUPPCState
*env
, uint32_t value
)
510 ppc_tb_t
*tb_env
= env
->tb_env
;
513 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->tb_offset
);
514 tb
&= 0xFFFFFFFF00000000ULL
;
515 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
516 &tb_env
->tb_offset
, tb
| (uint64_t)value
);
519 static inline void _cpu_ppc_store_tbu(CPUPPCState
*env
, uint32_t value
)
521 ppc_tb_t
*tb_env
= env
->tb_env
;
524 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->tb_offset
);
525 tb
&= 0x00000000FFFFFFFFULL
;
526 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
527 &tb_env
->tb_offset
, ((uint64_t)value
<< 32) | tb
);
530 void cpu_ppc_store_tbu (CPUPPCState
*env
, uint32_t value
)
532 _cpu_ppc_store_tbu(env
, value
);
535 uint64_t cpu_ppc_load_atbl (CPUPPCState
*env
)
537 ppc_tb_t
*tb_env
= env
->tb_env
;
540 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->atb_offset
);
541 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
546 uint32_t cpu_ppc_load_atbu (CPUPPCState
*env
)
548 ppc_tb_t
*tb_env
= env
->tb_env
;
551 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->atb_offset
);
552 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
557 void cpu_ppc_store_atbl (CPUPPCState
*env
, uint32_t value
)
559 ppc_tb_t
*tb_env
= env
->tb_env
;
562 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->atb_offset
);
563 tb
&= 0xFFFFFFFF00000000ULL
;
564 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
565 &tb_env
->atb_offset
, tb
| (uint64_t)value
);
568 void cpu_ppc_store_atbu (CPUPPCState
*env
, uint32_t value
)
570 ppc_tb_t
*tb_env
= env
->tb_env
;
573 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->atb_offset
);
574 tb
&= 0x00000000FFFFFFFFULL
;
575 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
576 &tb_env
->atb_offset
, ((uint64_t)value
<< 32) | tb
);
579 static void cpu_ppc_tb_stop (CPUPPCState
*env
)
581 ppc_tb_t
*tb_env
= env
->tb_env
;
582 uint64_t tb
, atb
, vmclk
;
584 /* If the time base is already frozen, do nothing */
585 if (tb_env
->tb_freq
!= 0) {
586 vmclk
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
587 /* Get the time base */
588 tb
= cpu_ppc_get_tb(tb_env
, vmclk
, tb_env
->tb_offset
);
589 /* Get the alternate time base */
590 atb
= cpu_ppc_get_tb(tb_env
, vmclk
, tb_env
->atb_offset
);
591 /* Store the time base value (ie compute the current offset) */
592 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->tb_offset
, tb
);
593 /* Store the alternate time base value (compute the current offset) */
594 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->atb_offset
, atb
);
595 /* Set the time base frequency to zero */
597 /* Now, the time bases are frozen to tb_offset / atb_offset value */
601 static void cpu_ppc_tb_start (CPUPPCState
*env
)
603 ppc_tb_t
*tb_env
= env
->tb_env
;
604 uint64_t tb
, atb
, vmclk
;
606 /* If the time base is not frozen, do nothing */
607 if (tb_env
->tb_freq
== 0) {
608 vmclk
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
609 /* Get the time base from tb_offset */
610 tb
= tb_env
->tb_offset
;
611 /* Get the alternate time base from atb_offset */
612 atb
= tb_env
->atb_offset
;
613 /* Restore the tb frequency from the decrementer frequency */
614 tb_env
->tb_freq
= tb_env
->decr_freq
;
615 /* Store the time base value */
616 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->tb_offset
, tb
);
617 /* Store the alternate time base value */
618 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->atb_offset
, atb
);
622 static inline uint32_t _cpu_ppc_load_decr(CPUPPCState
*env
, uint64_t next
)
624 ppc_tb_t
*tb_env
= env
->tb_env
;
628 diff
= next
- qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
630 decr
= muldiv64(diff
, tb_env
->decr_freq
, get_ticks_per_sec());
631 } else if (tb_env
->flags
& PPC_TIMER_BOOKE
) {
634 decr
= -muldiv64(-diff
, tb_env
->decr_freq
, get_ticks_per_sec());
636 LOG_TB("%s: %08" PRIx32
"\n", __func__
, decr
);
641 uint32_t cpu_ppc_load_decr (CPUPPCState
*env
)
643 ppc_tb_t
*tb_env
= env
->tb_env
;
646 return env
->spr
[SPR_DECR
];
649 return _cpu_ppc_load_decr(env
, tb_env
->decr_next
);
652 uint32_t cpu_ppc_load_hdecr (CPUPPCState
*env
)
654 ppc_tb_t
*tb_env
= env
->tb_env
;
656 return _cpu_ppc_load_decr(env
, tb_env
->hdecr_next
);
659 uint64_t cpu_ppc_load_purr (CPUPPCState
*env
)
661 ppc_tb_t
*tb_env
= env
->tb_env
;
664 diff
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) - tb_env
->purr_start
;
666 return tb_env
->purr_load
+ muldiv64(diff
, tb_env
->tb_freq
, get_ticks_per_sec());
669 /* When decrementer expires,
670 * all we need to do is generate or queue a CPU exception
672 static inline void cpu_ppc_decr_excp(PowerPCCPU
*cpu
)
675 LOG_TB("raise decrementer exception\n");
676 ppc_set_irq(cpu
, PPC_INTERRUPT_DECR
, 1);
679 static inline void cpu_ppc_hdecr_excp(PowerPCCPU
*cpu
)
682 LOG_TB("raise decrementer exception\n");
683 ppc_set_irq(cpu
, PPC_INTERRUPT_HDECR
, 1);
686 static void __cpu_ppc_store_decr(PowerPCCPU
*cpu
, uint64_t *nextp
,
688 void (*raise_excp
)(PowerPCCPU
*),
689 uint32_t decr
, uint32_t value
,
692 CPUPPCState
*env
= &cpu
->env
;
693 ppc_tb_t
*tb_env
= env
->tb_env
;
696 LOG_TB("%s: %08" PRIx32
" => %08" PRIx32
"\n", __func__
,
700 /* KVM handles decrementer exceptions, we don't need our own timer */
704 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
705 next
= now
+ muldiv64(value
, get_ticks_per_sec(), tb_env
->decr_freq
);
707 next
+= *nextp
- now
;
714 timer_mod(timer
, next
);
716 /* If we set a negative value and the decrementer was positive, raise an
719 if ((tb_env
->flags
& PPC_DECR_UNDERFLOW_TRIGGERED
)
720 && (value
& 0x80000000)
721 && !(decr
& 0x80000000)) {
726 static inline void _cpu_ppc_store_decr(PowerPCCPU
*cpu
, uint32_t decr
,
727 uint32_t value
, int is_excp
)
729 ppc_tb_t
*tb_env
= cpu
->env
.tb_env
;
731 __cpu_ppc_store_decr(cpu
, &tb_env
->decr_next
, tb_env
->decr_timer
,
732 &cpu_ppc_decr_excp
, decr
, value
, is_excp
);
735 void cpu_ppc_store_decr (CPUPPCState
*env
, uint32_t value
)
737 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
739 _cpu_ppc_store_decr(cpu
, cpu_ppc_load_decr(env
), value
, 0);
742 static void cpu_ppc_decr_cb(void *opaque
)
744 PowerPCCPU
*cpu
= opaque
;
746 _cpu_ppc_store_decr(cpu
, 0x00000000, 0xFFFFFFFF, 1);
749 static inline void _cpu_ppc_store_hdecr(PowerPCCPU
*cpu
, uint32_t hdecr
,
750 uint32_t value
, int is_excp
)
752 ppc_tb_t
*tb_env
= cpu
->env
.tb_env
;
754 if (tb_env
->hdecr_timer
!= NULL
) {
755 __cpu_ppc_store_decr(cpu
, &tb_env
->hdecr_next
, tb_env
->hdecr_timer
,
756 &cpu_ppc_hdecr_excp
, hdecr
, value
, is_excp
);
760 void cpu_ppc_store_hdecr (CPUPPCState
*env
, uint32_t value
)
762 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
764 _cpu_ppc_store_hdecr(cpu
, cpu_ppc_load_hdecr(env
), value
, 0);
767 static void cpu_ppc_hdecr_cb(void *opaque
)
769 PowerPCCPU
*cpu
= opaque
;
771 _cpu_ppc_store_hdecr(cpu
, 0x00000000, 0xFFFFFFFF, 1);
774 static void cpu_ppc_store_purr(PowerPCCPU
*cpu
, uint64_t value
)
776 ppc_tb_t
*tb_env
= cpu
->env
.tb_env
;
778 tb_env
->purr_load
= value
;
779 tb_env
->purr_start
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
782 static void cpu_ppc_set_tb_clk (void *opaque
, uint32_t freq
)
784 CPUPPCState
*env
= opaque
;
785 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
786 ppc_tb_t
*tb_env
= env
->tb_env
;
788 tb_env
->tb_freq
= freq
;
789 tb_env
->decr_freq
= freq
;
790 /* There is a bug in Linux 2.4 kernels:
791 * if a decrementer exception is pending when it enables msr_ee at startup,
792 * it's not ready to handle it...
794 _cpu_ppc_store_decr(cpu
, 0xFFFFFFFF, 0xFFFFFFFF, 0);
795 _cpu_ppc_store_hdecr(cpu
, 0xFFFFFFFF, 0xFFFFFFFF, 0);
796 cpu_ppc_store_purr(cpu
, 0x0000000000000000ULL
);
799 /* Set up (once) timebase frequency (in Hz) */
800 clk_setup_cb
cpu_ppc_tb_init (CPUPPCState
*env
, uint32_t freq
)
802 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
805 tb_env
= g_malloc0(sizeof(ppc_tb_t
));
806 env
->tb_env
= tb_env
;
807 tb_env
->flags
= PPC_DECR_UNDERFLOW_TRIGGERED
;
808 /* Create new timer */
809 tb_env
->decr_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_ppc_decr_cb
, cpu
);
811 /* XXX: find a suitable condition to enable the hypervisor decrementer
813 tb_env
->hdecr_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_ppc_hdecr_cb
,
816 tb_env
->hdecr_timer
= NULL
;
818 cpu_ppc_set_tb_clk(env
, freq
);
820 return &cpu_ppc_set_tb_clk
;
823 /* Specific helpers for POWER & PowerPC 601 RTC */
825 static clk_setup_cb
cpu_ppc601_rtc_init (CPUPPCState
*env
)
827 return cpu_ppc_tb_init(env
, 7812500);
831 void cpu_ppc601_store_rtcu (CPUPPCState
*env
, uint32_t value
)
833 _cpu_ppc_store_tbu(env
, value
);
836 uint32_t cpu_ppc601_load_rtcu (CPUPPCState
*env
)
838 return _cpu_ppc_load_tbu(env
);
841 void cpu_ppc601_store_rtcl (CPUPPCState
*env
, uint32_t value
)
843 cpu_ppc_store_tbl(env
, value
& 0x3FFFFF80);
846 uint32_t cpu_ppc601_load_rtcl (CPUPPCState
*env
)
848 return cpu_ppc_load_tbl(env
) & 0x3FFFFF80;
851 /*****************************************************************************/
852 /* PowerPC 40x timers */
855 typedef struct ppc40x_timer_t ppc40x_timer_t
;
856 struct ppc40x_timer_t
{
857 uint64_t pit_reload
; /* PIT auto-reload value */
858 uint64_t fit_next
; /* Tick for next FIT interrupt */
859 QEMUTimer
*fit_timer
;
860 uint64_t wdt_next
; /* Tick for next WDT interrupt */
861 QEMUTimer
*wdt_timer
;
863 /* 405 have the PIT, 440 have a DECR. */
864 unsigned int decr_excp
;
867 /* Fixed interval timer */
868 static void cpu_4xx_fit_cb (void *opaque
)
873 ppc40x_timer_t
*ppc40x_timer
;
877 cpu
= ppc_env_get_cpu(env
);
878 tb_env
= env
->tb_env
;
879 ppc40x_timer
= tb_env
->opaque
;
880 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
881 switch ((env
->spr
[SPR_40x_TCR
] >> 24) & 0x3) {
895 /* Cannot occur, but makes gcc happy */
898 next
= now
+ muldiv64(next
, get_ticks_per_sec(), tb_env
->tb_freq
);
901 timer_mod(ppc40x_timer
->fit_timer
, next
);
902 env
->spr
[SPR_40x_TSR
] |= 1 << 26;
903 if ((env
->spr
[SPR_40x_TCR
] >> 23) & 0x1) {
904 ppc_set_irq(cpu
, PPC_INTERRUPT_FIT
, 1);
906 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx
" TSR " TARGET_FMT_lx
"\n", __func__
,
907 (int)((env
->spr
[SPR_40x_TCR
] >> 23) & 0x1),
908 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
]);
911 /* Programmable interval timer */
912 static void start_stop_pit (CPUPPCState
*env
, ppc_tb_t
*tb_env
, int is_excp
)
914 ppc40x_timer_t
*ppc40x_timer
;
917 ppc40x_timer
= tb_env
->opaque
;
918 if (ppc40x_timer
->pit_reload
<= 1 ||
919 !((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1) ||
920 (is_excp
&& !((env
->spr
[SPR_40x_TCR
] >> 22) & 0x1))) {
922 LOG_TB("%s: stop PIT\n", __func__
);
923 timer_del(tb_env
->decr_timer
);
925 LOG_TB("%s: start PIT %016" PRIx64
"\n",
926 __func__
, ppc40x_timer
->pit_reload
);
927 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
928 next
= now
+ muldiv64(ppc40x_timer
->pit_reload
,
929 get_ticks_per_sec(), tb_env
->decr_freq
);
931 next
+= tb_env
->decr_next
- now
;
934 timer_mod(tb_env
->decr_timer
, next
);
935 tb_env
->decr_next
= next
;
939 static void cpu_4xx_pit_cb (void *opaque
)
944 ppc40x_timer_t
*ppc40x_timer
;
947 cpu
= ppc_env_get_cpu(env
);
948 tb_env
= env
->tb_env
;
949 ppc40x_timer
= tb_env
->opaque
;
950 env
->spr
[SPR_40x_TSR
] |= 1 << 27;
951 if ((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1) {
952 ppc_set_irq(cpu
, ppc40x_timer
->decr_excp
, 1);
954 start_stop_pit(env
, tb_env
, 1);
955 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx
" TSR " TARGET_FMT_lx
" "
956 "%016" PRIx64
"\n", __func__
,
957 (int)((env
->spr
[SPR_40x_TCR
] >> 22) & 0x1),
958 (int)((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1),
959 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
],
960 ppc40x_timer
->pit_reload
);
964 static void cpu_4xx_wdt_cb (void *opaque
)
969 ppc40x_timer_t
*ppc40x_timer
;
973 cpu
= ppc_env_get_cpu(env
);
974 tb_env
= env
->tb_env
;
975 ppc40x_timer
= tb_env
->opaque
;
976 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
977 switch ((env
->spr
[SPR_40x_TCR
] >> 30) & 0x3) {
991 /* Cannot occur, but makes gcc happy */
994 next
= now
+ muldiv64(next
, get_ticks_per_sec(), tb_env
->decr_freq
);
997 LOG_TB("%s: TCR " TARGET_FMT_lx
" TSR " TARGET_FMT_lx
"\n", __func__
,
998 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
]);
999 switch ((env
->spr
[SPR_40x_TSR
] >> 30) & 0x3) {
1002 timer_mod(ppc40x_timer
->wdt_timer
, next
);
1003 ppc40x_timer
->wdt_next
= next
;
1004 env
->spr
[SPR_40x_TSR
] |= 1 << 31;
1007 timer_mod(ppc40x_timer
->wdt_timer
, next
);
1008 ppc40x_timer
->wdt_next
= next
;
1009 env
->spr
[SPR_40x_TSR
] |= 1 << 30;
1010 if ((env
->spr
[SPR_40x_TCR
] >> 27) & 0x1) {
1011 ppc_set_irq(cpu
, PPC_INTERRUPT_WDT
, 1);
1015 env
->spr
[SPR_40x_TSR
] &= ~0x30000000;
1016 env
->spr
[SPR_40x_TSR
] |= env
->spr
[SPR_40x_TCR
] & 0x30000000;
1017 switch ((env
->spr
[SPR_40x_TCR
] >> 28) & 0x3) {
1021 case 0x1: /* Core reset */
1022 ppc40x_core_reset(cpu
);
1024 case 0x2: /* Chip reset */
1025 ppc40x_chip_reset(cpu
);
1027 case 0x3: /* System reset */
1028 ppc40x_system_reset(cpu
);
1034 void store_40x_pit (CPUPPCState
*env
, target_ulong val
)
1037 ppc40x_timer_t
*ppc40x_timer
;
1039 tb_env
= env
->tb_env
;
1040 ppc40x_timer
= tb_env
->opaque
;
1041 LOG_TB("%s val" TARGET_FMT_lx
"\n", __func__
, val
);
1042 ppc40x_timer
->pit_reload
= val
;
1043 start_stop_pit(env
, tb_env
, 0);
1046 target_ulong
load_40x_pit (CPUPPCState
*env
)
1048 return cpu_ppc_load_decr(env
);
1051 static void ppc_40x_set_tb_clk (void *opaque
, uint32_t freq
)
1053 CPUPPCState
*env
= opaque
;
1054 ppc_tb_t
*tb_env
= env
->tb_env
;
1056 LOG_TB("%s set new frequency to %" PRIu32
"\n", __func__
,
1058 tb_env
->tb_freq
= freq
;
1059 tb_env
->decr_freq
= freq
;
1060 /* XXX: we should also update all timers */
1063 clk_setup_cb
ppc_40x_timers_init (CPUPPCState
*env
, uint32_t freq
,
1064 unsigned int decr_excp
)
1067 ppc40x_timer_t
*ppc40x_timer
;
1069 tb_env
= g_malloc0(sizeof(ppc_tb_t
));
1070 env
->tb_env
= tb_env
;
1071 tb_env
->flags
= PPC_DECR_UNDERFLOW_TRIGGERED
;
1072 ppc40x_timer
= g_malloc0(sizeof(ppc40x_timer_t
));
1073 tb_env
->tb_freq
= freq
;
1074 tb_env
->decr_freq
= freq
;
1075 tb_env
->opaque
= ppc40x_timer
;
1076 LOG_TB("%s freq %" PRIu32
"\n", __func__
, freq
);
1077 if (ppc40x_timer
!= NULL
) {
1078 /* We use decr timer for PIT */
1079 tb_env
->decr_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_4xx_pit_cb
, env
);
1080 ppc40x_timer
->fit_timer
=
1081 timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_4xx_fit_cb
, env
);
1082 ppc40x_timer
->wdt_timer
=
1083 timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_4xx_wdt_cb
, env
);
1084 ppc40x_timer
->decr_excp
= decr_excp
;
1087 return &ppc_40x_set_tb_clk
;
1090 /*****************************************************************************/
1091 /* Embedded PowerPC Device Control Registers */
1092 typedef struct ppc_dcrn_t ppc_dcrn_t
;
1094 dcr_read_cb dcr_read
;
1095 dcr_write_cb dcr_write
;
1099 /* XXX: on 460, DCR addresses are 32 bits wide,
1100 * using DCRIPR to get the 22 upper bits of the DCR address
1102 #define DCRN_NB 1024
1104 ppc_dcrn_t dcrn
[DCRN_NB
];
1105 int (*read_error
)(int dcrn
);
1106 int (*write_error
)(int dcrn
);
1109 int ppc_dcr_read (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t *valp
)
1113 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1115 dcr
= &dcr_env
->dcrn
[dcrn
];
1116 if (dcr
->dcr_read
== NULL
)
1118 *valp
= (*dcr
->dcr_read
)(dcr
->opaque
, dcrn
);
1123 if (dcr_env
->read_error
!= NULL
)
1124 return (*dcr_env
->read_error
)(dcrn
);
1129 int ppc_dcr_write (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t val
)
1133 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1135 dcr
= &dcr_env
->dcrn
[dcrn
];
1136 if (dcr
->dcr_write
== NULL
)
1138 (*dcr
->dcr_write
)(dcr
->opaque
, dcrn
, val
);
1143 if (dcr_env
->write_error
!= NULL
)
1144 return (*dcr_env
->write_error
)(dcrn
);
1149 int ppc_dcr_register (CPUPPCState
*env
, int dcrn
, void *opaque
,
1150 dcr_read_cb dcr_read
, dcr_write_cb dcr_write
)
1155 dcr_env
= env
->dcr_env
;
1156 if (dcr_env
== NULL
)
1158 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1160 dcr
= &dcr_env
->dcrn
[dcrn
];
1161 if (dcr
->opaque
!= NULL
||
1162 dcr
->dcr_read
!= NULL
||
1163 dcr
->dcr_write
!= NULL
)
1165 dcr
->opaque
= opaque
;
1166 dcr
->dcr_read
= dcr_read
;
1167 dcr
->dcr_write
= dcr_write
;
1172 int ppc_dcr_init (CPUPPCState
*env
, int (*read_error
)(int dcrn
),
1173 int (*write_error
)(int dcrn
))
1177 dcr_env
= g_malloc0(sizeof(ppc_dcr_t
));
1178 dcr_env
->read_error
= read_error
;
1179 dcr_env
->write_error
= write_error
;
1180 env
->dcr_env
= dcr_env
;
1185 /*****************************************************************************/
1187 void PPC_debug_write (void *opaque
, uint32_t addr
, uint32_t val
)
1199 printf("Set loglevel to %04" PRIx32
"\n", val
);
1200 qemu_set_log(val
| 0x100);
1205 /*****************************************************************************/
1207 static inline uint32_t nvram_read (nvram_t
*nvram
, uint32_t addr
)
1209 return (*nvram
->read_fn
)(nvram
->opaque
, addr
);
1212 static inline void nvram_write (nvram_t
*nvram
, uint32_t addr
, uint32_t val
)
1214 (*nvram
->write_fn
)(nvram
->opaque
, addr
, val
);
1217 static void NVRAM_set_byte(nvram_t
*nvram
, uint32_t addr
, uint8_t value
)
1219 nvram_write(nvram
, addr
, value
);
1222 static uint8_t NVRAM_get_byte(nvram_t
*nvram
, uint32_t addr
)
1224 return nvram_read(nvram
, addr
);
1227 static void NVRAM_set_word(nvram_t
*nvram
, uint32_t addr
, uint16_t value
)
1229 nvram_write(nvram
, addr
, value
>> 8);
1230 nvram_write(nvram
, addr
+ 1, value
& 0xFF);
1233 static uint16_t NVRAM_get_word(nvram_t
*nvram
, uint32_t addr
)
1237 tmp
= nvram_read(nvram
, addr
) << 8;
1238 tmp
|= nvram_read(nvram
, addr
+ 1);
1243 static void NVRAM_set_lword(nvram_t
*nvram
, uint32_t addr
, uint32_t value
)
1245 nvram_write(nvram
, addr
, value
>> 24);
1246 nvram_write(nvram
, addr
+ 1, (value
>> 16) & 0xFF);
1247 nvram_write(nvram
, addr
+ 2, (value
>> 8) & 0xFF);
1248 nvram_write(nvram
, addr
+ 3, value
& 0xFF);
1251 uint32_t NVRAM_get_lword (nvram_t
*nvram
, uint32_t addr
)
1255 tmp
= nvram_read(nvram
, addr
) << 24;
1256 tmp
|= nvram_read(nvram
, addr
+ 1) << 16;
1257 tmp
|= nvram_read(nvram
, addr
+ 2) << 8;
1258 tmp
|= nvram_read(nvram
, addr
+ 3);
1263 static void NVRAM_set_string(nvram_t
*nvram
, uint32_t addr
, const char *str
,
1268 for (i
= 0; i
< max
&& str
[i
] != '\0'; i
++) {
1269 nvram_write(nvram
, addr
+ i
, str
[i
]);
1271 nvram_write(nvram
, addr
+ i
, str
[i
]);
1272 nvram_write(nvram
, addr
+ max
- 1, '\0');
1275 int NVRAM_get_string (nvram_t
*nvram
, uint8_t *dst
, uint16_t addr
, int max
)
1279 memset(dst
, 0, max
);
1280 for (i
= 0; i
< max
; i
++) {
1281 dst
[i
] = NVRAM_get_byte(nvram
, addr
+ i
);
1289 static uint16_t NVRAM_crc_update (uint16_t prev
, uint16_t value
)
1292 uint16_t pd
, pd1
, pd2
;
1297 pd2
= ((pd
>> 4) & 0x000F) ^ pd1
;
1298 tmp
^= (pd1
<< 3) | (pd1
<< 8);
1299 tmp
^= pd2
| (pd2
<< 7) | (pd2
<< 12);
1304 static uint16_t NVRAM_compute_crc (nvram_t
*nvram
, uint32_t start
, uint32_t count
)
1307 uint16_t crc
= 0xFFFF;
1312 for (i
= 0; i
!= count
; i
++) {
1313 crc
= NVRAM_crc_update(crc
, NVRAM_get_word(nvram
, start
+ i
));
1316 crc
= NVRAM_crc_update(crc
, NVRAM_get_byte(nvram
, start
+ i
) << 8);
1322 #define CMDLINE_ADDR 0x017ff000
1324 int PPC_NVRAM_set_params (nvram_t
*nvram
, uint16_t NVRAM_size
,
1326 uint32_t RAM_size
, int boot_device
,
1327 uint32_t kernel_image
, uint32_t kernel_size
,
1328 const char *cmdline
,
1329 uint32_t initrd_image
, uint32_t initrd_size
,
1330 uint32_t NVRAM_image
,
1331 int width
, int height
, int depth
)
1335 /* Set parameters for Open Hack'Ware BIOS */
1336 NVRAM_set_string(nvram
, 0x00, "QEMU_BIOS", 16);
1337 NVRAM_set_lword(nvram
, 0x10, 0x00000002); /* structure v2 */
1338 NVRAM_set_word(nvram
, 0x14, NVRAM_size
);
1339 NVRAM_set_string(nvram
, 0x20, arch
, 16);
1340 NVRAM_set_lword(nvram
, 0x30, RAM_size
);
1341 NVRAM_set_byte(nvram
, 0x34, boot_device
);
1342 NVRAM_set_lword(nvram
, 0x38, kernel_image
);
1343 NVRAM_set_lword(nvram
, 0x3C, kernel_size
);
1345 /* XXX: put the cmdline in NVRAM too ? */
1346 pstrcpy_targphys("cmdline", CMDLINE_ADDR
, RAM_size
- CMDLINE_ADDR
, cmdline
);
1347 NVRAM_set_lword(nvram
, 0x40, CMDLINE_ADDR
);
1348 NVRAM_set_lword(nvram
, 0x44, strlen(cmdline
));
1350 NVRAM_set_lword(nvram
, 0x40, 0);
1351 NVRAM_set_lword(nvram
, 0x44, 0);
1353 NVRAM_set_lword(nvram
, 0x48, initrd_image
);
1354 NVRAM_set_lword(nvram
, 0x4C, initrd_size
);
1355 NVRAM_set_lword(nvram
, 0x50, NVRAM_image
);
1357 NVRAM_set_word(nvram
, 0x54, width
);
1358 NVRAM_set_word(nvram
, 0x56, height
);
1359 NVRAM_set_word(nvram
, 0x58, depth
);
1360 crc
= NVRAM_compute_crc(nvram
, 0x00, 0xF8);
1361 NVRAM_set_word(nvram
, 0xFC, crc
);