4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "exec/helper-proto.h"
22 #include "internals.h"
23 #include "exec/exec-all.h"
24 #include "exec/cpu_ldst.h"
26 #define SIGNBIT (uint32_t)0x80000000
27 #define SIGNBIT64 ((uint64_t)1 << 63)
29 static void raise_exception(CPUARMState
*env
, uint32_t excp
,
30 uint32_t syndrome
, uint32_t target_el
)
32 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
34 assert(!excp_is_internal(excp
));
35 cs
->exception_index
= excp
;
36 env
->exception
.syndrome
= syndrome
;
37 env
->exception
.target_el
= target_el
;
41 static int exception_target_el(CPUARMState
*env
)
43 int target_el
= MAX(1, arm_current_el(env
));
45 /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
46 * to EL3 in this case.
48 if (arm_is_secure(env
) && !arm_el_is_aa64(env
, 3) && target_el
== 1) {
55 uint32_t HELPER(neon_tbl
)(CPUARMState
*env
, uint32_t ireg
, uint32_t def
,
56 uint32_t rn
, uint32_t maxindex
)
63 table
= (uint64_t *)&env
->vfp
.regs
[rn
];
65 for (shift
= 0; shift
< 32; shift
+= 8) {
66 index
= (ireg
>> shift
) & 0xff;
67 if (index
< maxindex
) {
68 tmp
= (table
[index
>> 3] >> ((index
& 7) << 3)) & 0xff;
71 val
|= def
& (0xff << shift
);
77 #if !defined(CONFIG_USER_ONLY)
79 /* try to fill the TLB and return an exception if error. If retaddr is
80 * NULL, it means that the function was called in C code (i.e. not
81 * from generated code or from helper.c)
83 void tlb_fill(CPUState
*cs
, target_ulong addr
, int is_write
, int mmu_idx
,
88 ARMMMUFaultInfo fi
= {};
90 ret
= arm_tlb_fill(cs
, addr
, is_write
, mmu_idx
, &fsr
, &fi
);
92 ARMCPU
*cpu
= ARM_CPU(cs
);
93 CPUARMState
*env
= &cpu
->env
;
95 unsigned int target_el
;
99 /* now we have a real cpu fault */
100 cpu_restore_state(cs
, retaddr
);
103 target_el
= exception_target_el(env
);
106 env
->cp15
.hpfar_el2
= extract64(fi
.s2addr
, 12, 47) << 4;
108 same_el
= arm_current_el(env
) == target_el
;
109 /* AArch64 syndrome does not have an LPAE bit */
110 syn
= fsr
& ~(1 << 9);
112 /* For insn and data aborts we assume there is no instruction syndrome
113 * information; this is always true for exceptions reported to EL1.
116 syn
= syn_insn_abort(same_el
, 0, fi
.s1ptw
, syn
);
117 exc
= EXCP_PREFETCH_ABORT
;
119 syn
= syn_data_abort_no_iss(same_el
,
120 0, 0, fi
.s1ptw
, is_write
== 1, syn
);
121 if (is_write
== 1 && arm_feature(env
, ARM_FEATURE_V6
)) {
124 exc
= EXCP_DATA_ABORT
;
127 env
->exception
.vaddress
= addr
;
128 env
->exception
.fsr
= fsr
;
129 raise_exception(env
, exc
, syn
, target_el
);
133 /* Raise a data fault alignment exception for the specified virtual address */
134 void arm_cpu_do_unaligned_access(CPUState
*cs
, vaddr vaddr
, int is_write
,
135 int is_user
, uintptr_t retaddr
)
137 ARMCPU
*cpu
= ARM_CPU(cs
);
138 CPUARMState
*env
= &cpu
->env
;
143 /* now we have a real cpu fault */
144 cpu_restore_state(cs
, retaddr
);
147 target_el
= exception_target_el(env
);
148 same_el
= (arm_current_el(env
) == target_el
);
150 env
->exception
.vaddress
= vaddr
;
152 /* the DFSR for an alignment fault depends on whether we're using
153 * the LPAE long descriptor format, or the short descriptor format
155 if (arm_s1_regime_using_lpae_format(env
, cpu_mmu_index(env
, false))) {
156 env
->exception
.fsr
= 0x21;
158 env
->exception
.fsr
= 0x1;
161 if (is_write
== 1 && arm_feature(env
, ARM_FEATURE_V6
)) {
162 env
->exception
.fsr
|= (1 << 11);
165 raise_exception(env
, EXCP_DATA_ABORT
,
166 syn_data_abort_no_iss(same_el
,
167 0, 0, 0, is_write
== 1, 0x21),
171 #endif /* !defined(CONFIG_USER_ONLY) */
173 uint32_t HELPER(add_setq
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
175 uint32_t res
= a
+ b
;
176 if (((res
^ a
) & SIGNBIT
) && !((a
^ b
) & SIGNBIT
))
181 uint32_t HELPER(add_saturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
183 uint32_t res
= a
+ b
;
184 if (((res
^ a
) & SIGNBIT
) && !((a
^ b
) & SIGNBIT
)) {
186 res
= ~(((int32_t)a
>> 31) ^ SIGNBIT
);
191 uint32_t HELPER(sub_saturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
193 uint32_t res
= a
- b
;
194 if (((res
^ a
) & SIGNBIT
) && ((a
^ b
) & SIGNBIT
)) {
196 res
= ~(((int32_t)a
>> 31) ^ SIGNBIT
);
201 uint32_t HELPER(double_saturate
)(CPUARMState
*env
, int32_t val
)
204 if (val
>= 0x40000000) {
207 } else if (val
<= (int32_t)0xc0000000) {
216 uint32_t HELPER(add_usaturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
218 uint32_t res
= a
+ b
;
226 uint32_t HELPER(sub_usaturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
228 uint32_t res
= a
- b
;
236 /* Signed saturation. */
237 static inline uint32_t do_ssat(CPUARMState
*env
, int32_t val
, int shift
)
243 mask
= (1u << shift
) - 1;
247 } else if (top
< -1) {
254 /* Unsigned saturation. */
255 static inline uint32_t do_usat(CPUARMState
*env
, int32_t val
, int shift
)
259 max
= (1u << shift
) - 1;
263 } else if (val
> max
) {
270 /* Signed saturate. */
271 uint32_t HELPER(ssat
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
273 return do_ssat(env
, x
, shift
);
276 /* Dual halfword signed saturate. */
277 uint32_t HELPER(ssat16
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
281 res
= (uint16_t)do_ssat(env
, (int16_t)x
, shift
);
282 res
|= do_ssat(env
, ((int32_t)x
) >> 16, shift
) << 16;
286 /* Unsigned saturate. */
287 uint32_t HELPER(usat
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
289 return do_usat(env
, x
, shift
);
292 /* Dual halfword unsigned saturate. */
293 uint32_t HELPER(usat16
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
297 res
= (uint16_t)do_usat(env
, (int16_t)x
, shift
);
298 res
|= do_usat(env
, ((int32_t)x
) >> 16, shift
) << 16;
302 void HELPER(setend
)(CPUARMState
*env
)
304 env
->uncached_cpsr
^= CPSR_E
;
307 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
308 * The function returns the target EL (1-3) if the instruction is to be trapped;
309 * otherwise it returns 0 indicating it is not trapped.
311 static inline int check_wfx_trap(CPUARMState
*env
, bool is_wfe
)
313 int cur_el
= arm_current_el(env
);
316 /* If we are currently in EL0 then we need to check if SCTLR is set up for
317 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
319 if (cur_el
< 1 && arm_feature(env
, ARM_FEATURE_V8
)) {
322 mask
= is_wfe
? SCTLR_nTWE
: SCTLR_nTWI
;
323 if (arm_is_secure_below_el3(env
) && !arm_el_is_aa64(env
, 3)) {
324 /* Secure EL0 and Secure PL1 is at EL3 */
330 if (!(env
->cp15
.sctlr_el
[target_el
] & mask
)) {
335 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
336 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
337 * bits will be zero indicating no trap.
339 if (cur_el
< 2 && !arm_is_secure(env
)) {
340 mask
= (is_wfe
) ? HCR_TWE
: HCR_TWI
;
341 if (env
->cp15
.hcr_el2
& mask
) {
346 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
348 mask
= (is_wfe
) ? SCR_TWE
: SCR_TWI
;
349 if (env
->cp15
.scr_el3
& mask
) {
357 void HELPER(wfi
)(CPUARMState
*env
)
359 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
360 int target_el
= check_wfx_trap(env
, false);
362 if (cpu_has_work(cs
)) {
363 /* Don't bother to go into our "low power state" if
364 * we would just wake up immediately.
371 raise_exception(env
, EXCP_UDEF
, syn_wfx(1, 0xe, 0), target_el
);
374 cs
->exception_index
= EXCP_HLT
;
379 void HELPER(wfe
)(CPUARMState
*env
)
381 /* This is a hint instruction that is semantically different
382 * from YIELD even though we currently implement it identically.
383 * Don't actually halt the CPU, just yield back to top
384 * level loop. This is not going into a "low power state"
385 * (ie halting until some event occurs), so we never take
386 * a configurable trap to a different exception level.
391 void HELPER(yield
)(CPUARMState
*env
)
393 ARMCPU
*cpu
= arm_env_get_cpu(env
);
394 CPUState
*cs
= CPU(cpu
);
396 /* This is a non-trappable hint instruction that generally indicates
397 * that the guest is currently busy-looping. Yield control back to the
398 * top level loop so that a more deserving VCPU has a chance to run.
400 cs
->exception_index
= EXCP_YIELD
;
404 /* Raise an internal-to-QEMU exception. This is limited to only
405 * those EXCP values which are special cases for QEMU to interrupt
406 * execution and not to be used for exceptions which are passed to
407 * the guest (those must all have syndrome information and thus should
408 * use exception_with_syndrome).
410 void HELPER(exception_internal
)(CPUARMState
*env
, uint32_t excp
)
412 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
414 assert(excp_is_internal(excp
));
415 cs
->exception_index
= excp
;
419 /* Raise an exception with the specified syndrome register value */
420 void HELPER(exception_with_syndrome
)(CPUARMState
*env
, uint32_t excp
,
421 uint32_t syndrome
, uint32_t target_el
)
423 raise_exception(env
, excp
, syndrome
, target_el
);
426 uint32_t HELPER(cpsr_read
)(CPUARMState
*env
)
428 return cpsr_read(env
) & ~(CPSR_EXEC
| CPSR_RESERVED
);
431 void HELPER(cpsr_write
)(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
433 cpsr_write(env
, val
, mask
, CPSRWriteByInstr
);
436 /* Write the CPSR for a 32-bit exception return */
437 void HELPER(cpsr_write_eret
)(CPUARMState
*env
, uint32_t val
)
439 cpsr_write(env
, val
, CPSR_ERET_MASK
, CPSRWriteExceptionReturn
);
442 /* Access to user mode registers from privileged modes. */
443 uint32_t HELPER(get_user_reg
)(CPUARMState
*env
, uint32_t regno
)
448 val
= env
->banked_r13
[BANK_USRSYS
];
449 } else if (regno
== 14) {
450 val
= env
->banked_r14
[BANK_USRSYS
];
451 } else if (regno
>= 8
452 && (env
->uncached_cpsr
& 0x1f) == ARM_CPU_MODE_FIQ
) {
453 val
= env
->usr_regs
[regno
- 8];
455 val
= env
->regs
[regno
];
460 void HELPER(set_user_reg
)(CPUARMState
*env
, uint32_t regno
, uint32_t val
)
463 env
->banked_r13
[BANK_USRSYS
] = val
;
464 } else if (regno
== 14) {
465 env
->banked_r14
[BANK_USRSYS
] = val
;
466 } else if (regno
>= 8
467 && (env
->uncached_cpsr
& 0x1f) == ARM_CPU_MODE_FIQ
) {
468 env
->usr_regs
[regno
- 8] = val
;
470 env
->regs
[regno
] = val
;
474 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
476 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
479 env
->banked_r13
[bank_number(mode
)] = val
;
483 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
485 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_SYS
) {
486 /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
487 * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
489 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
490 exception_target_el(env
));
493 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
494 return env
->regs
[13];
496 return env
->banked_r13
[bank_number(mode
)];
500 static void msr_mrs_banked_exc_checks(CPUARMState
*env
, uint32_t tgtmode
,
503 /* Raise an exception if the requested access is one of the UNPREDICTABLE
504 * cases; otherwise return. This broadly corresponds to the pseudocode
505 * BankedRegisterAccessValid() and SPSRAccessValid(),
506 * except that we have already handled some cases at translate time.
508 int curmode
= env
->uncached_cpsr
& CPSR_M
;
510 if (curmode
== tgtmode
) {
514 if (tgtmode
== ARM_CPU_MODE_USR
) {
517 if (curmode
!= ARM_CPU_MODE_FIQ
) {
522 if (curmode
== ARM_CPU_MODE_SYS
) {
527 if (curmode
== ARM_CPU_MODE_HYP
|| curmode
== ARM_CPU_MODE_SYS
) {
536 if (tgtmode
== ARM_CPU_MODE_HYP
) {
538 case 17: /* ELR_Hyp */
539 if (curmode
!= ARM_CPU_MODE_HYP
&& curmode
!= ARM_CPU_MODE_MON
) {
544 if (curmode
!= ARM_CPU_MODE_MON
) {
554 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
555 exception_target_el(env
));
558 void HELPER(msr_banked
)(CPUARMState
*env
, uint32_t value
, uint32_t tgtmode
,
561 msr_mrs_banked_exc_checks(env
, tgtmode
, regno
);
565 env
->banked_spsr
[bank_number(tgtmode
)] = value
;
567 case 17: /* ELR_Hyp */
568 env
->elr_el
[2] = value
;
571 env
->banked_r13
[bank_number(tgtmode
)] = value
;
574 env
->banked_r14
[bank_number(tgtmode
)] = value
;
578 case ARM_CPU_MODE_USR
:
579 env
->usr_regs
[regno
- 8] = value
;
581 case ARM_CPU_MODE_FIQ
:
582 env
->fiq_regs
[regno
- 8] = value
;
585 g_assert_not_reached();
589 g_assert_not_reached();
593 uint32_t HELPER(mrs_banked
)(CPUARMState
*env
, uint32_t tgtmode
, uint32_t regno
)
595 msr_mrs_banked_exc_checks(env
, tgtmode
, regno
);
599 return env
->banked_spsr
[bank_number(tgtmode
)];
600 case 17: /* ELR_Hyp */
601 return env
->elr_el
[2];
603 return env
->banked_r13
[bank_number(tgtmode
)];
605 return env
->banked_r14
[bank_number(tgtmode
)];
608 case ARM_CPU_MODE_USR
:
609 return env
->usr_regs
[regno
- 8];
610 case ARM_CPU_MODE_FIQ
:
611 return env
->fiq_regs
[regno
- 8];
613 g_assert_not_reached();
616 g_assert_not_reached();
620 void HELPER(access_check_cp_reg
)(CPUARMState
*env
, void *rip
, uint32_t syndrome
,
623 const ARMCPRegInfo
*ri
= rip
;
626 if (arm_feature(env
, ARM_FEATURE_XSCALE
) && ri
->cp
< 14
627 && extract32(env
->cp15
.c15_cpar
, ri
->cp
, 1) == 0) {
628 raise_exception(env
, EXCP_UDEF
, syndrome
, exception_target_el(env
));
635 switch (ri
->accessfn(env
, ri
, isread
)) {
639 target_el
= exception_target_el(env
);
641 case CP_ACCESS_TRAP_EL2
:
642 /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
643 * a bug in the access function.
645 assert(!arm_is_secure(env
) && arm_current_el(env
) != 3);
648 case CP_ACCESS_TRAP_EL3
:
651 case CP_ACCESS_TRAP_UNCATEGORIZED
:
652 target_el
= exception_target_el(env
);
653 syndrome
= syn_uncategorized();
655 case CP_ACCESS_TRAP_UNCATEGORIZED_EL2
:
657 syndrome
= syn_uncategorized();
659 case CP_ACCESS_TRAP_UNCATEGORIZED_EL3
:
661 syndrome
= syn_uncategorized();
663 case CP_ACCESS_TRAP_FP_EL2
:
665 /* Since we are an implementation that takes exceptions on a trapped
666 * conditional insn only if the insn has passed its condition code
667 * check, we take the IMPDEF choice to always report CV=1 COND=0xe
668 * (which is also the required value for AArch64 traps).
670 syndrome
= syn_fp_access_trap(1, 0xe, false);
672 case CP_ACCESS_TRAP_FP_EL3
:
674 syndrome
= syn_fp_access_trap(1, 0xe, false);
677 g_assert_not_reached();
680 raise_exception(env
, EXCP_UDEF
, syndrome
, target_el
);
683 void HELPER(set_cp_reg
)(CPUARMState
*env
, void *rip
, uint32_t value
)
685 const ARMCPRegInfo
*ri
= rip
;
687 ri
->writefn(env
, ri
, value
);
690 uint32_t HELPER(get_cp_reg
)(CPUARMState
*env
, void *rip
)
692 const ARMCPRegInfo
*ri
= rip
;
694 return ri
->readfn(env
, ri
);
697 void HELPER(set_cp_reg64
)(CPUARMState
*env
, void *rip
, uint64_t value
)
699 const ARMCPRegInfo
*ri
= rip
;
701 ri
->writefn(env
, ri
, value
);
704 uint64_t HELPER(get_cp_reg64
)(CPUARMState
*env
, void *rip
)
706 const ARMCPRegInfo
*ri
= rip
;
708 return ri
->readfn(env
, ri
);
711 void HELPER(msr_i_pstate
)(CPUARMState
*env
, uint32_t op
, uint32_t imm
)
713 /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
714 * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
715 * to catch that case at translate time.
717 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UMA
)) {
718 uint32_t syndrome
= syn_aa64_sysregtrap(0, extract32(op
, 0, 3),
719 extract32(op
, 3, 3), 4,
721 raise_exception(env
, EXCP_UDEF
, syndrome
, exception_target_el(env
));
725 case 0x05: /* SPSel */
726 update_spsel(env
, imm
);
728 case 0x1e: /* DAIFSet */
729 env
->daif
|= (imm
<< 6) & PSTATE_DAIF
;
731 case 0x1f: /* DAIFClear */
732 env
->daif
&= ~((imm
<< 6) & PSTATE_DAIF
);
735 g_assert_not_reached();
739 void HELPER(clear_pstate_ss
)(CPUARMState
*env
)
741 env
->pstate
&= ~PSTATE_SS
;
744 void HELPER(pre_hvc
)(CPUARMState
*env
)
746 ARMCPU
*cpu
= arm_env_get_cpu(env
);
747 int cur_el
= arm_current_el(env
);
748 /* FIXME: Use actual secure state. */
752 if (arm_is_psci_call(cpu
, EXCP_HVC
)) {
753 /* If PSCI is enabled and this looks like a valid PSCI call then
754 * that overrides the architecturally mandated HVC behaviour.
759 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
760 /* If EL2 doesn't exist, HVC always UNDEFs */
762 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
763 /* EL3.HCE has priority over EL2.HCD. */
764 undef
= !(env
->cp15
.scr_el3
& SCR_HCE
);
766 undef
= env
->cp15
.hcr_el2
& HCR_HCD
;
769 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
770 * For ARMv8/AArch64, HVC is allowed in EL3.
771 * Note that we've already trapped HVC from EL0 at translation
774 if (secure
&& (!is_a64(env
) || cur_el
== 1)) {
779 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
780 exception_target_el(env
));
784 void HELPER(pre_smc
)(CPUARMState
*env
, uint32_t syndrome
)
786 ARMCPU
*cpu
= arm_env_get_cpu(env
);
787 int cur_el
= arm_current_el(env
);
788 bool secure
= arm_is_secure(env
);
789 bool smd
= env
->cp15
.scr_el3
& SCR_SMD
;
790 /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
791 * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
792 * extensions, SMD only applies to NS state.
793 * On ARMv7 without the Virtualization extensions, the SMD bit
794 * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
795 * so we need not special case this here.
797 bool undef
= arm_feature(env
, ARM_FEATURE_AARCH64
) ? smd
: smd
&& !secure
;
799 if (arm_is_psci_call(cpu
, EXCP_SMC
)) {
800 /* If PSCI is enabled and this looks like a valid PSCI call then
801 * that overrides the architecturally mandated SMC behaviour.
806 if (!arm_feature(env
, ARM_FEATURE_EL3
)) {
807 /* If we have no EL3 then SMC always UNDEFs */
809 } else if (!secure
&& cur_el
== 1 && (env
->cp15
.hcr_el2
& HCR_TSC
)) {
810 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. */
811 raise_exception(env
, EXCP_HYP_TRAP
, syndrome
, 2);
815 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
816 exception_target_el(env
));
820 static int el_from_spsr(uint32_t spsr
)
822 /* Return the exception level that this SPSR is requesting a return to,
823 * or -1 if it is invalid (an illegal return)
825 if (spsr
& PSTATE_nRW
) {
826 switch (spsr
& CPSR_M
) {
827 case ARM_CPU_MODE_USR
:
829 case ARM_CPU_MODE_HYP
:
831 case ARM_CPU_MODE_FIQ
:
832 case ARM_CPU_MODE_IRQ
:
833 case ARM_CPU_MODE_SVC
:
834 case ARM_CPU_MODE_ABT
:
835 case ARM_CPU_MODE_UND
:
836 case ARM_CPU_MODE_SYS
:
838 case ARM_CPU_MODE_MON
:
839 /* Returning to Mon from AArch64 is never possible,
840 * so this is an illegal return.
846 if (extract32(spsr
, 1, 1)) {
847 /* Return with reserved M[1] bit set */
850 if (extract32(spsr
, 0, 4) == 1) {
851 /* return to EL0 with M[0] bit set */
854 return extract32(spsr
, 2, 2);
858 void HELPER(exception_return
)(CPUARMState
*env
)
860 int cur_el
= arm_current_el(env
);
861 unsigned int spsr_idx
= aarch64_banked_spsr_index(cur_el
);
862 uint32_t spsr
= env
->banked_spsr
[spsr_idx
];
864 bool return_to_aa64
= (spsr
& PSTATE_nRW
) == 0;
866 aarch64_save_sp(env
, cur_el
);
868 env
->exclusive_addr
= -1;
870 /* We must squash the PSTATE.SS bit to zero unless both of the
872 * 1. debug exceptions are currently disabled
873 * 2. singlestep will be active in the EL we return to
874 * We check 1 here and 2 after we've done the pstate/cpsr write() to
875 * transition to the EL we're going to.
877 if (arm_generate_debug_exceptions(env
)) {
881 new_el
= el_from_spsr(spsr
);
886 || (new_el
== 2 && !arm_feature(env
, ARM_FEATURE_EL2
))) {
887 /* Disallow return to an EL which is unimplemented or higher
888 * than the current one.
893 if (new_el
!= 0 && arm_el_is_aa64(env
, new_el
) != return_to_aa64
) {
894 /* Return to an EL which is configured for a different register width */
898 if (new_el
== 2 && arm_is_secure_below_el3(env
)) {
899 /* Return to the non-existent secure-EL2 */
903 if (new_el
== 1 && (env
->cp15
.hcr_el2
& HCR_TGE
)
904 && !arm_is_secure_below_el3(env
)) {
908 if (!return_to_aa64
) {
910 /* We do a raw CPSR write because aarch64_sync_64_to_32()
911 * will sort the register banks out for us, and we've already
912 * caught all the bad-mode cases in el_from_spsr().
914 cpsr_write(env
, spsr
, ~0, CPSRWriteRaw
);
915 if (!arm_singlestep_active(env
)) {
916 env
->uncached_cpsr
&= ~PSTATE_SS
;
918 aarch64_sync_64_to_32(env
);
921 env
->regs
[15] = env
->elr_el
[cur_el
] & ~0x1;
923 env
->regs
[15] = env
->elr_el
[cur_el
] & ~0x3;
927 pstate_write(env
, spsr
);
928 if (!arm_singlestep_active(env
)) {
929 env
->pstate
&= ~PSTATE_SS
;
931 aarch64_restore_sp(env
, new_el
);
932 env
->pc
= env
->elr_el
[cur_el
];
938 /* Illegal return events of various kinds have architecturally
939 * mandated behaviour:
940 * restore NZCV and DAIF from SPSR_ELx
942 * restore PC from ELR_ELx
943 * no change to exception level, execution state or stack pointer
945 env
->pstate
|= PSTATE_IL
;
946 env
->pc
= env
->elr_el
[cur_el
];
947 spsr
&= PSTATE_NZCV
| PSTATE_DAIF
;
948 spsr
|= pstate_read(env
) & ~(PSTATE_NZCV
| PSTATE_DAIF
);
949 pstate_write(env
, spsr
);
950 if (!arm_singlestep_active(env
)) {
951 env
->pstate
&= ~PSTATE_SS
;
955 /* Return true if the linked breakpoint entry lbn passes its checks */
956 static bool linked_bp_matches(ARMCPU
*cpu
, int lbn
)
958 CPUARMState
*env
= &cpu
->env
;
959 uint64_t bcr
= env
->cp15
.dbgbcr
[lbn
];
960 int brps
= extract32(cpu
->dbgdidr
, 24, 4);
961 int ctx_cmps
= extract32(cpu
->dbgdidr
, 20, 4);
965 /* Links to unimplemented or non-context aware breakpoints are
966 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
967 * as if linked to an UNKNOWN context-aware breakpoint (in which
968 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
969 * We choose the former.
971 if (lbn
> brps
|| lbn
< (brps
- ctx_cmps
)) {
975 bcr
= env
->cp15
.dbgbcr
[lbn
];
977 if (extract64(bcr
, 0, 1) == 0) {
978 /* Linked breakpoint disabled : generate no events */
982 bt
= extract64(bcr
, 20, 4);
984 /* We match the whole register even if this is AArch32 using the
985 * short descriptor format (in which case it holds both PROCID and ASID),
986 * since we don't implement the optional v7 context ID masking.
988 contextidr
= extract64(env
->cp15
.contextidr_el
[1], 0, 32);
991 case 3: /* linked context ID match */
992 if (arm_current_el(env
) > 1) {
993 /* Context matches never fire in EL2 or (AArch64) EL3 */
996 return (contextidr
== extract64(env
->cp15
.dbgbvr
[lbn
], 0, 32));
997 case 5: /* linked address mismatch (reserved in AArch64) */
998 case 9: /* linked VMID match (reserved if no EL2) */
999 case 11: /* linked context ID and VMID match (reserved if no EL2) */
1001 /* Links to Unlinked context breakpoints must generate no
1002 * events; we choose to do the same for reserved values too.
1010 static bool bp_wp_matches(ARMCPU
*cpu
, int n
, bool is_wp
)
1012 CPUARMState
*env
= &cpu
->env
;
1014 int pac
, hmc
, ssc
, wt
, lbn
;
1015 /* Note that for watchpoints the check is against the CPU security
1016 * state, not the S/NS attribute on the offending data access.
1018 bool is_secure
= arm_is_secure(env
);
1019 int access_el
= arm_current_el(env
);
1022 CPUWatchpoint
*wp
= env
->cpu_watchpoint
[n
];
1024 if (!wp
|| !(wp
->flags
& BP_WATCHPOINT_HIT
)) {
1027 cr
= env
->cp15
.dbgwcr
[n
];
1028 if (wp
->hitattrs
.user
) {
1029 /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
1030 * match watchpoints as if they were accesses done at EL0, even if
1031 * the CPU is at EL1 or higher.
1036 uint64_t pc
= is_a64(env
) ? env
->pc
: env
->regs
[15];
1038 if (!env
->cpu_breakpoint
[n
] || env
->cpu_breakpoint
[n
]->pc
!= pc
) {
1041 cr
= env
->cp15
.dbgbcr
[n
];
1043 /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
1044 * enabled and that the address and access type match; for breakpoints
1045 * we know the address matched; check the remaining fields, including
1046 * linked breakpoints. We rely on WCR and BCR having the same layout
1047 * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
1048 * Note that some combinations of {PAC, HMC, SSC} are reserved and
1049 * must act either like some valid combination or as if the watchpoint
1050 * were disabled. We choose the former, and use this together with
1051 * the fact that EL3 must always be Secure and EL2 must always be
1052 * Non-Secure to simplify the code slightly compared to the full
1053 * table in the ARM ARM.
1055 pac
= extract64(cr
, 1, 2);
1056 hmc
= extract64(cr
, 13, 1);
1057 ssc
= extract64(cr
, 14, 2);
1075 switch (access_el
) {
1083 if (extract32(pac
, 0, 1) == 0) {
1088 if (extract32(pac
, 1, 1) == 0) {
1093 g_assert_not_reached();
1096 wt
= extract64(cr
, 20, 1);
1097 lbn
= extract64(cr
, 16, 4);
1099 if (wt
&& !linked_bp_matches(cpu
, lbn
)) {
1106 static bool check_watchpoints(ARMCPU
*cpu
)
1108 CPUARMState
*env
= &cpu
->env
;
1111 /* If watchpoints are disabled globally or we can't take debug
1112 * exceptions here then watchpoint firings are ignored.
1114 if (extract32(env
->cp15
.mdscr_el1
, 15, 1) == 0
1115 || !arm_generate_debug_exceptions(env
)) {
1119 for (n
= 0; n
< ARRAY_SIZE(env
->cpu_watchpoint
); n
++) {
1120 if (bp_wp_matches(cpu
, n
, true)) {
1127 static bool check_breakpoints(ARMCPU
*cpu
)
1129 CPUARMState
*env
= &cpu
->env
;
1132 /* If breakpoints are disabled globally or we can't take debug
1133 * exceptions here then breakpoint firings are ignored.
1135 if (extract32(env
->cp15
.mdscr_el1
, 15, 1) == 0
1136 || !arm_generate_debug_exceptions(env
)) {
1140 for (n
= 0; n
< ARRAY_SIZE(env
->cpu_breakpoint
); n
++) {
1141 if (bp_wp_matches(cpu
, n
, false)) {
1148 void HELPER(check_breakpoints
)(CPUARMState
*env
)
1150 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1152 if (check_breakpoints(cpu
)) {
1153 HELPER(exception_internal(env
, EXCP_DEBUG
));
1157 bool arm_debug_check_watchpoint(CPUState
*cs
, CPUWatchpoint
*wp
)
1159 /* Called by core code when a CPU watchpoint fires; need to check if this
1160 * is also an architectural watchpoint match.
1162 ARMCPU
*cpu
= ARM_CPU(cs
);
1164 return check_watchpoints(cpu
);
1167 void arm_debug_excp_handler(CPUState
*cs
)
1169 /* Called by core code when a watchpoint or breakpoint fires;
1170 * need to check which one and raise the appropriate exception.
1172 ARMCPU
*cpu
= ARM_CPU(cs
);
1173 CPUARMState
*env
= &cpu
->env
;
1174 CPUWatchpoint
*wp_hit
= cs
->watchpoint_hit
;
1177 if (wp_hit
->flags
& BP_CPU
) {
1178 bool wnr
= (wp_hit
->flags
& BP_WATCHPOINT_HIT_WRITE
) != 0;
1179 bool same_el
= arm_debug_target_el(env
) == arm_current_el(env
);
1181 cs
->watchpoint_hit
= NULL
;
1183 if (extended_addresses_enabled(env
)) {
1184 env
->exception
.fsr
= (1 << 9) | 0x22;
1186 env
->exception
.fsr
= 0x2;
1188 env
->exception
.vaddress
= wp_hit
->hitaddr
;
1189 raise_exception(env
, EXCP_DATA_ABORT
,
1190 syn_watchpoint(same_el
, 0, wnr
),
1191 arm_debug_target_el(env
));
1194 uint64_t pc
= is_a64(env
) ? env
->pc
: env
->regs
[15];
1195 bool same_el
= (arm_debug_target_el(env
) == arm_current_el(env
));
1197 /* (1) GDB breakpoints should be handled first.
1198 * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
1199 * since singlestep is also done by generating a debug internal
1202 if (cpu_breakpoint_test(cs
, pc
, BP_GDB
)
1203 || !cpu_breakpoint_test(cs
, pc
, BP_CPU
)) {
1207 if (extended_addresses_enabled(env
)) {
1208 env
->exception
.fsr
= (1 << 9) | 0x22;
1210 env
->exception
.fsr
= 0x2;
1212 /* FAR is UNKNOWN, so doesn't need setting */
1213 raise_exception(env
, EXCP_PREFETCH_ABORT
,
1214 syn_breakpoint(same_el
),
1215 arm_debug_target_el(env
));
1219 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
1220 The only way to do that in TCG is a conditional branch, which clobbers
1221 all our temporaries. For now implement these as helper functions. */
1223 /* Similarly for variable shift instructions. */
1225 uint32_t HELPER(shl_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
1227 int shift
= i
& 0xff;
1234 } else if (shift
!= 0) {
1235 env
->CF
= (x
>> (32 - shift
)) & 1;
1241 uint32_t HELPER(shr_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
1243 int shift
= i
& 0xff;
1246 env
->CF
= (x
>> 31) & 1;
1250 } else if (shift
!= 0) {
1251 env
->CF
= (x
>> (shift
- 1)) & 1;
1257 uint32_t HELPER(sar_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
1259 int shift
= i
& 0xff;
1261 env
->CF
= (x
>> 31) & 1;
1262 return (int32_t)x
>> 31;
1263 } else if (shift
!= 0) {
1264 env
->CF
= (x
>> (shift
- 1)) & 1;
1265 return (int32_t)x
>> shift
;
1270 uint32_t HELPER(ror_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
1274 shift
= shift1
& 0x1f;
1277 env
->CF
= (x
>> 31) & 1;
1280 env
->CF
= (x
>> (shift
- 1)) & 1;
1281 return ((uint32_t)x
>> shift
) | (x
<< (32 - shift
));