2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/devices.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/sysemu.h"
42 #include "sysemu/kvm.h"
43 #include "hw/boards.h"
44 #include "hw/loader.h"
45 #include "exec/address-spaces.h"
46 #include "qemu/bitops.h"
47 #include "qemu/error-report.h"
48 #include "hw/pci-host/gpex.h"
49 #include "hw/arm/virt-acpi-build.h"
50 #include "hw/arm/sysbus-fdt.h"
51 #include "hw/platform-bus.h"
52 #include "hw/arm/fdt.h"
53 #include "hw/intc/arm_gic_common.h"
55 #include "hw/smbios/smbios.h"
56 #include "qapi/visitor.h"
57 #include "standard-headers/linux/input.h"
59 /* Number of external interrupt lines to configure the GIC with */
62 #define PLATFORM_BUS_NUM_IRQS 64
64 static ARMPlatformBusSystemParams platform_bus_params
;
66 typedef struct VirtBoardInfo
{
67 struct arm_boot_info bootinfo
;
68 const char *cpu_model
;
69 const MemMapEntry
*memmap
;
74 uint32_t clock_phandle
;
82 VirtBoardInfo
*daughterboard
;
92 #define TYPE_VIRT_MACHINE MACHINE_TYPE_NAME("virt")
93 #define VIRT_MACHINE(obj) \
94 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
95 #define VIRT_MACHINE_GET_CLASS(obj) \
96 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
97 #define VIRT_MACHINE_CLASS(klass) \
98 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
100 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
101 * RAM can go up to the 256GB mark, leaving 256GB of the physical
102 * address space unallocated and free for future use between 256G and 512G.
103 * If we need to provide more RAM to VMs in the future then we need to:
104 * * allocate a second bank of RAM starting at 2TB and working up
105 * * fix the DT and ACPI table generation code in QEMU to correctly
106 * report two split lumps of RAM to the guest
107 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
108 * (We don't want to fill all the way up to 512GB with RAM because
109 * we might want it for non-RAM purposes later. Conversely it seems
110 * reasonable to assume that anybody configuring a VM with a quarter
111 * of a terabyte of RAM will be doing it on a host with more than a
112 * terabyte of physical address space.)
114 #define RAMLIMIT_GB 255
115 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
117 /* Addresses and sizes of our components.
118 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
119 * 128MB..256MB is used for miscellaneous device I/O.
120 * 256MB..1GB is reserved for possible future PCI support (ie where the
121 * PCI memory window will go if we add a PCI host controller).
122 * 1GB and up is RAM (which may happily spill over into the
123 * high memory region beyond 4GB).
124 * This represents a compromise between how much RAM can be given to
125 * a 32 bit VM and leaving space for expansion and in particular for PCI.
126 * Note that devices should generally be placed at multiples of 0x10000,
127 * to accommodate guests using 64K pages.
129 static const MemMapEntry a15memmap
[] = {
130 /* Space up to 0x8000000 is reserved for a boot ROM */
131 [VIRT_FLASH
] = { 0, 0x08000000 },
132 [VIRT_CPUPERIPHS
] = { 0x08000000, 0x00020000 },
133 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
134 [VIRT_GIC_DIST
] = { 0x08000000, 0x00010000 },
135 [VIRT_GIC_CPU
] = { 0x08010000, 0x00010000 },
136 [VIRT_GIC_V2M
] = { 0x08020000, 0x00001000 },
137 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
138 [VIRT_GIC_ITS
] = { 0x08080000, 0x00020000 },
139 /* This redistributor space allows up to 2*64kB*123 CPUs */
140 [VIRT_GIC_REDIST
] = { 0x080A0000, 0x00F60000 },
141 [VIRT_UART
] = { 0x09000000, 0x00001000 },
142 [VIRT_RTC
] = { 0x09010000, 0x00001000 },
143 [VIRT_FW_CFG
] = { 0x09020000, 0x00000018 },
144 [VIRT_GPIO
] = { 0x09030000, 0x00001000 },
145 [VIRT_SECURE_UART
] = { 0x09040000, 0x00001000 },
146 [VIRT_MMIO
] = { 0x0a000000, 0x00000200 },
147 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
148 [VIRT_PLATFORM_BUS
] = { 0x0c000000, 0x02000000 },
149 [VIRT_SECURE_MEM
] = { 0x0e000000, 0x01000000 },
150 [VIRT_PCIE_MMIO
] = { 0x10000000, 0x2eff0000 },
151 [VIRT_PCIE_PIO
] = { 0x3eff0000, 0x00010000 },
152 [VIRT_PCIE_ECAM
] = { 0x3f000000, 0x01000000 },
153 [VIRT_MEM
] = { 0x40000000, RAMLIMIT_BYTES
},
154 /* Second PCIe window, 512GB wide at the 512GB boundary */
155 [VIRT_PCIE_MMIO_HIGH
] = { 0x8000000000ULL
, 0x8000000000ULL
},
158 static const int a15irqmap
[] = {
161 [VIRT_PCIE
] = 3, /* ... to 6 */
163 [VIRT_SECURE_UART
] = 8,
164 [VIRT_MMIO
] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
165 [VIRT_GIC_V2M
] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
166 [VIRT_PLATFORM_BUS
] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
169 static VirtBoardInfo machines
[] = {
171 .cpu_model
= "cortex-a15",
176 .cpu_model
= "cortex-a53",
181 .cpu_model
= "cortex-a57",
192 static VirtBoardInfo
*find_machine_info(const char *cpu
)
196 for (i
= 0; i
< ARRAY_SIZE(machines
); i
++) {
197 if (strcmp(cpu
, machines
[i
].cpu_model
) == 0) {
204 static void create_fdt(VirtBoardInfo
*vbi
)
206 void *fdt
= create_device_tree(&vbi
->fdt_size
);
209 error_report("create_device_tree() failed");
216 qemu_fdt_setprop_string(fdt
, "/", "compatible", "linux,dummy-virt");
217 qemu_fdt_setprop_cell(fdt
, "/", "#address-cells", 0x2);
218 qemu_fdt_setprop_cell(fdt
, "/", "#size-cells", 0x2);
221 * /chosen and /memory nodes must exist for load_dtb
222 * to fill in necessary properties later
224 qemu_fdt_add_subnode(fdt
, "/chosen");
225 qemu_fdt_add_subnode(fdt
, "/memory");
226 qemu_fdt_setprop_string(fdt
, "/memory", "device_type", "memory");
228 /* Clock node, for the benefit of the UART. The kernel device tree
229 * binding documentation claims the PL011 node clock properties are
230 * optional but in practice if you omit them the kernel refuses to
231 * probe for the device.
233 vbi
->clock_phandle
= qemu_fdt_alloc_phandle(fdt
);
234 qemu_fdt_add_subnode(fdt
, "/apb-pclk");
235 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "compatible", "fixed-clock");
236 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "#clock-cells", 0x0);
237 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "clock-frequency", 24000000);
238 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "clock-output-names",
240 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "phandle", vbi
->clock_phandle
);
244 static void fdt_add_psci_node(const VirtBoardInfo
*vbi
)
246 uint32_t cpu_suspend_fn
;
250 void *fdt
= vbi
->fdt
;
251 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(0));
253 if (!vbi
->using_psci
) {
257 qemu_fdt_add_subnode(fdt
, "/psci");
258 if (armcpu
->psci_version
== 2) {
259 const char comp
[] = "arm,psci-0.2\0arm,psci";
260 qemu_fdt_setprop(fdt
, "/psci", "compatible", comp
, sizeof(comp
));
262 cpu_off_fn
= QEMU_PSCI_0_2_FN_CPU_OFF
;
263 if (arm_feature(&armcpu
->env
, ARM_FEATURE_AARCH64
)) {
264 cpu_suspend_fn
= QEMU_PSCI_0_2_FN64_CPU_SUSPEND
;
265 cpu_on_fn
= QEMU_PSCI_0_2_FN64_CPU_ON
;
266 migrate_fn
= QEMU_PSCI_0_2_FN64_MIGRATE
;
268 cpu_suspend_fn
= QEMU_PSCI_0_2_FN_CPU_SUSPEND
;
269 cpu_on_fn
= QEMU_PSCI_0_2_FN_CPU_ON
;
270 migrate_fn
= QEMU_PSCI_0_2_FN_MIGRATE
;
273 qemu_fdt_setprop_string(fdt
, "/psci", "compatible", "arm,psci");
275 cpu_suspend_fn
= QEMU_PSCI_0_1_FN_CPU_SUSPEND
;
276 cpu_off_fn
= QEMU_PSCI_0_1_FN_CPU_OFF
;
277 cpu_on_fn
= QEMU_PSCI_0_1_FN_CPU_ON
;
278 migrate_fn
= QEMU_PSCI_0_1_FN_MIGRATE
;
281 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
282 * to the instruction that should be used to invoke PSCI functions.
283 * However, the device tree binding uses 'method' instead, so that is
284 * what we should use here.
286 qemu_fdt_setprop_string(fdt
, "/psci", "method", "hvc");
288 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_suspend", cpu_suspend_fn
);
289 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_off", cpu_off_fn
);
290 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_on", cpu_on_fn
);
291 qemu_fdt_setprop_cell(fdt
, "/psci", "migrate", migrate_fn
);
294 static void fdt_add_timer_nodes(const VirtBoardInfo
*vbi
, int gictype
)
296 /* Note that on A15 h/w these interrupts are level-triggered,
297 * but for the GIC implementation provided by both QEMU and KVM
298 * they are edge-triggered.
301 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
;
304 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
305 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
306 (1 << vbi
->smp_cpus
) - 1);
309 qemu_fdt_add_subnode(vbi
->fdt
, "/timer");
311 armcpu
= ARM_CPU(qemu_get_cpu(0));
312 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
313 const char compat
[] = "arm,armv8-timer\0arm,armv7-timer";
314 qemu_fdt_setprop(vbi
->fdt
, "/timer", "compatible",
315 compat
, sizeof(compat
));
317 qemu_fdt_setprop_string(vbi
->fdt
, "/timer", "compatible",
320 qemu_fdt_setprop(vbi
->fdt
, "/timer", "always-on", NULL
, 0);
321 qemu_fdt_setprop_cells(vbi
->fdt
, "/timer", "interrupts",
322 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_S_EL1_IRQ
, irqflags
,
323 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL1_IRQ
, irqflags
,
324 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_VIRT_IRQ
, irqflags
,
325 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL2_IRQ
, irqflags
);
328 static void fdt_add_cpu_nodes(const VirtBoardInfo
*vbi
)
334 * From Documentation/devicetree/bindings/arm/cpus.txt
335 * On ARM v8 64-bit systems value should be set to 2,
336 * that corresponds to the MPIDR_EL1 register size.
337 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
338 * in the system, #address-cells can be set to 1, since
339 * MPIDR_EL1[63:32] bits are not used for CPUs
342 * Here we actually don't know whether our system is 32- or 64-bit one.
343 * The simplest way to go is to examine affinity IDs of all our CPUs. If
344 * at least one of them has Aff3 populated, we set #address-cells to 2.
346 for (cpu
= 0; cpu
< vbi
->smp_cpus
; cpu
++) {
347 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
349 if (armcpu
->mp_affinity
& ARM_AFF3_MASK
) {
355 qemu_fdt_add_subnode(vbi
->fdt
, "/cpus");
356 qemu_fdt_setprop_cell(vbi
->fdt
, "/cpus", "#address-cells", addr_cells
);
357 qemu_fdt_setprop_cell(vbi
->fdt
, "/cpus", "#size-cells", 0x0);
359 for (cpu
= vbi
->smp_cpus
- 1; cpu
>= 0; cpu
--) {
360 char *nodename
= g_strdup_printf("/cpus/cpu@%d", cpu
);
361 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
363 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
364 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "device_type", "cpu");
365 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "compatible",
366 armcpu
->dtb_compatible
);
368 if (vbi
->using_psci
&& vbi
->smp_cpus
> 1) {
369 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
370 "enable-method", "psci");
373 if (addr_cells
== 2) {
374 qemu_fdt_setprop_u64(vbi
->fdt
, nodename
, "reg",
375 armcpu
->mp_affinity
);
377 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "reg",
378 armcpu
->mp_affinity
);
385 static void fdt_add_v2m_gic_node(VirtBoardInfo
*vbi
)
387 vbi
->v2m_phandle
= qemu_fdt_alloc_phandle(vbi
->fdt
);
388 qemu_fdt_add_subnode(vbi
->fdt
, "/intc/v2m");
389 qemu_fdt_setprop_string(vbi
->fdt
, "/intc/v2m", "compatible",
390 "arm,gic-v2m-frame");
391 qemu_fdt_setprop(vbi
->fdt
, "/intc/v2m", "msi-controller", NULL
, 0);
392 qemu_fdt_setprop_sized_cells(vbi
->fdt
, "/intc/v2m", "reg",
393 2, vbi
->memmap
[VIRT_GIC_V2M
].base
,
394 2, vbi
->memmap
[VIRT_GIC_V2M
].size
);
395 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc/v2m", "phandle", vbi
->v2m_phandle
);
398 static void fdt_add_gic_node(VirtBoardInfo
*vbi
, int type
)
400 vbi
->gic_phandle
= qemu_fdt_alloc_phandle(vbi
->fdt
);
401 qemu_fdt_setprop_cell(vbi
->fdt
, "/", "interrupt-parent", vbi
->gic_phandle
);
403 qemu_fdt_add_subnode(vbi
->fdt
, "/intc");
404 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "#interrupt-cells", 3);
405 qemu_fdt_setprop(vbi
->fdt
, "/intc", "interrupt-controller", NULL
, 0);
406 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "#address-cells", 0x2);
407 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "#size-cells", 0x2);
408 qemu_fdt_setprop(vbi
->fdt
, "/intc", "ranges", NULL
, 0);
410 qemu_fdt_setprop_string(vbi
->fdt
, "/intc", "compatible",
412 qemu_fdt_setprop_sized_cells(vbi
->fdt
, "/intc", "reg",
413 2, vbi
->memmap
[VIRT_GIC_DIST
].base
,
414 2, vbi
->memmap
[VIRT_GIC_DIST
].size
,
415 2, vbi
->memmap
[VIRT_GIC_REDIST
].base
,
416 2, vbi
->memmap
[VIRT_GIC_REDIST
].size
);
418 /* 'cortex-a15-gic' means 'GIC v2' */
419 qemu_fdt_setprop_string(vbi
->fdt
, "/intc", "compatible",
420 "arm,cortex-a15-gic");
421 qemu_fdt_setprop_sized_cells(vbi
->fdt
, "/intc", "reg",
422 2, vbi
->memmap
[VIRT_GIC_DIST
].base
,
423 2, vbi
->memmap
[VIRT_GIC_DIST
].size
,
424 2, vbi
->memmap
[VIRT_GIC_CPU
].base
,
425 2, vbi
->memmap
[VIRT_GIC_CPU
].size
);
428 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "phandle", vbi
->gic_phandle
);
431 static void create_v2m(VirtBoardInfo
*vbi
, qemu_irq
*pic
)
434 int irq
= vbi
->irqmap
[VIRT_GIC_V2M
];
437 dev
= qdev_create(NULL
, "arm-gicv2m");
438 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vbi
->memmap
[VIRT_GIC_V2M
].base
);
439 qdev_prop_set_uint32(dev
, "base-spi", irq
);
440 qdev_prop_set_uint32(dev
, "num-spi", NUM_GICV2M_SPIS
);
441 qdev_init_nofail(dev
);
443 for (i
= 0; i
< NUM_GICV2M_SPIS
; i
++) {
444 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
447 fdt_add_v2m_gic_node(vbi
);
450 static void create_gic(VirtBoardInfo
*vbi
, qemu_irq
*pic
, int type
, bool secure
)
452 /* We create a standalone GIC */
454 SysBusDevice
*gicbusdev
;
458 gictype
= (type
== 3) ? gicv3_class_name() : gic_class_name();
460 gicdev
= qdev_create(NULL
, gictype
);
461 qdev_prop_set_uint32(gicdev
, "revision", type
);
462 qdev_prop_set_uint32(gicdev
, "num-cpu", smp_cpus
);
463 /* Note that the num-irq property counts both internal and external
464 * interrupts; there are always 32 of the former (mandated by GIC spec).
466 qdev_prop_set_uint32(gicdev
, "num-irq", NUM_IRQS
+ 32);
467 if (!kvm_irqchip_in_kernel()) {
468 qdev_prop_set_bit(gicdev
, "has-security-extensions", secure
);
470 qdev_init_nofail(gicdev
);
471 gicbusdev
= SYS_BUS_DEVICE(gicdev
);
472 sysbus_mmio_map(gicbusdev
, 0, vbi
->memmap
[VIRT_GIC_DIST
].base
);
474 sysbus_mmio_map(gicbusdev
, 1, vbi
->memmap
[VIRT_GIC_REDIST
].base
);
476 sysbus_mmio_map(gicbusdev
, 1, vbi
->memmap
[VIRT_GIC_CPU
].base
);
479 /* Wire the outputs from each CPU's generic timer to the
480 * appropriate GIC PPI inputs, and the GIC's IRQ output to
481 * the CPU's IRQ input.
483 for (i
= 0; i
< smp_cpus
; i
++) {
484 DeviceState
*cpudev
= DEVICE(qemu_get_cpu(i
));
485 int ppibase
= NUM_IRQS
+ i
* GIC_INTERNAL
+ GIC_NR_SGIS
;
487 /* Mapping from the output timer irq lines from the CPU to the
488 * GIC PPI inputs we use for the virt board.
490 const int timer_irq
[] = {
491 [GTIMER_PHYS
] = ARCH_TIMER_NS_EL1_IRQ
,
492 [GTIMER_VIRT
] = ARCH_TIMER_VIRT_IRQ
,
493 [GTIMER_HYP
] = ARCH_TIMER_NS_EL2_IRQ
,
494 [GTIMER_SEC
] = ARCH_TIMER_S_EL1_IRQ
,
497 for (irq
= 0; irq
< ARRAY_SIZE(timer_irq
); irq
++) {
498 qdev_connect_gpio_out(cpudev
, irq
,
499 qdev_get_gpio_in(gicdev
,
500 ppibase
+ timer_irq
[irq
]));
503 sysbus_connect_irq(gicbusdev
, i
, qdev_get_gpio_in(cpudev
, ARM_CPU_IRQ
));
504 sysbus_connect_irq(gicbusdev
, i
+ smp_cpus
,
505 qdev_get_gpio_in(cpudev
, ARM_CPU_FIQ
));
508 for (i
= 0; i
< NUM_IRQS
; i
++) {
509 pic
[i
] = qdev_get_gpio_in(gicdev
, i
);
512 fdt_add_gic_node(vbi
, type
);
515 create_v2m(vbi
, pic
);
519 static void create_uart(const VirtBoardInfo
*vbi
, qemu_irq
*pic
, int uart
,
523 hwaddr base
= vbi
->memmap
[uart
].base
;
524 hwaddr size
= vbi
->memmap
[uart
].size
;
525 int irq
= vbi
->irqmap
[uart
];
526 const char compat
[] = "arm,pl011\0arm,primecell";
527 const char clocknames
[] = "uartclk\0apb_pclk";
528 DeviceState
*dev
= qdev_create(NULL
, "pl011");
529 SysBusDevice
*s
= SYS_BUS_DEVICE(dev
);
531 qdev_init_nofail(dev
);
532 memory_region_add_subregion(mem
, base
,
533 sysbus_mmio_get_region(s
, 0));
534 sysbus_connect_irq(s
, 0, pic
[irq
]);
536 nodename
= g_strdup_printf("/pl011@%" PRIx64
, base
);
537 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
538 /* Note that we can't use setprop_string because of the embedded NUL */
539 qemu_fdt_setprop(vbi
->fdt
, nodename
, "compatible",
540 compat
, sizeof(compat
));
541 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
543 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
544 GIC_FDT_IRQ_TYPE_SPI
, irq
,
545 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
546 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "clocks",
547 vbi
->clock_phandle
, vbi
->clock_phandle
);
548 qemu_fdt_setprop(vbi
->fdt
, nodename
, "clock-names",
549 clocknames
, sizeof(clocknames
));
551 if (uart
== VIRT_UART
) {
552 qemu_fdt_setprop_string(vbi
->fdt
, "/chosen", "stdout-path", nodename
);
554 /* Mark as not usable by the normal world */
555 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "status", "disabled");
556 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "secure-status", "okay");
562 static void create_rtc(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
565 hwaddr base
= vbi
->memmap
[VIRT_RTC
].base
;
566 hwaddr size
= vbi
->memmap
[VIRT_RTC
].size
;
567 int irq
= vbi
->irqmap
[VIRT_RTC
];
568 const char compat
[] = "arm,pl031\0arm,primecell";
570 sysbus_create_simple("pl031", base
, pic
[irq
]);
572 nodename
= g_strdup_printf("/pl031@%" PRIx64
, base
);
573 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
574 qemu_fdt_setprop(vbi
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
575 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
577 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
578 GIC_FDT_IRQ_TYPE_SPI
, irq
,
579 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
580 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "clocks", vbi
->clock_phandle
);
581 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "clock-names", "apb_pclk");
585 static DeviceState
*gpio_key_dev
;
586 static void virt_powerdown_req(Notifier
*n
, void *opaque
)
588 /* use gpio Pin 3 for power button event */
589 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev
, 0), 1);
592 static Notifier virt_system_powerdown_notifier
= {
593 .notify
= virt_powerdown_req
596 static void create_gpio(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
599 DeviceState
*pl061_dev
;
600 hwaddr base
= vbi
->memmap
[VIRT_GPIO
].base
;
601 hwaddr size
= vbi
->memmap
[VIRT_GPIO
].size
;
602 int irq
= vbi
->irqmap
[VIRT_GPIO
];
603 const char compat
[] = "arm,pl061\0arm,primecell";
605 pl061_dev
= sysbus_create_simple("pl061", base
, pic
[irq
]);
607 uint32_t phandle
= qemu_fdt_alloc_phandle(vbi
->fdt
);
608 nodename
= g_strdup_printf("/pl061@%" PRIx64
, base
);
609 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
610 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
612 qemu_fdt_setprop(vbi
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
613 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#gpio-cells", 2);
614 qemu_fdt_setprop(vbi
->fdt
, nodename
, "gpio-controller", NULL
, 0);
615 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
616 GIC_FDT_IRQ_TYPE_SPI
, irq
,
617 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
618 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "clocks", vbi
->clock_phandle
);
619 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "clock-names", "apb_pclk");
620 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "phandle", phandle
);
622 gpio_key_dev
= sysbus_create_simple("gpio-key", -1,
623 qdev_get_gpio_in(pl061_dev
, 3));
624 qemu_fdt_add_subnode(vbi
->fdt
, "/gpio-keys");
625 qemu_fdt_setprop_string(vbi
->fdt
, "/gpio-keys", "compatible", "gpio-keys");
626 qemu_fdt_setprop_cell(vbi
->fdt
, "/gpio-keys", "#size-cells", 0);
627 qemu_fdt_setprop_cell(vbi
->fdt
, "/gpio-keys", "#address-cells", 1);
629 qemu_fdt_add_subnode(vbi
->fdt
, "/gpio-keys/poweroff");
630 qemu_fdt_setprop_string(vbi
->fdt
, "/gpio-keys/poweroff",
631 "label", "GPIO Key Poweroff");
632 qemu_fdt_setprop_cell(vbi
->fdt
, "/gpio-keys/poweroff", "linux,code",
634 qemu_fdt_setprop_cells(vbi
->fdt
, "/gpio-keys/poweroff",
635 "gpios", phandle
, 3, 0);
637 /* connect powerdown request */
638 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier
);
643 static void create_virtio_devices(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
646 hwaddr size
= vbi
->memmap
[VIRT_MMIO
].size
;
648 /* We create the transports in forwards order. Since qbus_realize()
649 * prepends (not appends) new child buses, the incrementing loop below will
650 * create a list of virtio-mmio buses with decreasing base addresses.
652 * When a -device option is processed from the command line,
653 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
654 * order. The upshot is that -device options in increasing command line
655 * order are mapped to virtio-mmio buses with decreasing base addresses.
657 * When this code was originally written, that arrangement ensured that the
658 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
659 * the first -device on the command line. (The end-to-end order is a
660 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
661 * guest kernel's name-to-address assignment strategy.)
663 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
664 * the message, if not necessarily the code, of commit 70161ff336.
665 * Therefore the loop now establishes the inverse of the original intent.
667 * Unfortunately, we can't counteract the kernel change by reversing the
668 * loop; it would break existing command lines.
670 * In any case, the kernel makes no guarantee about the stability of
671 * enumeration order of virtio devices (as demonstrated by it changing
672 * between kernel versions). For reliable and stable identification
673 * of disks users must use UUIDs or similar mechanisms.
675 for (i
= 0; i
< NUM_VIRTIO_TRANSPORTS
; i
++) {
676 int irq
= vbi
->irqmap
[VIRT_MMIO
] + i
;
677 hwaddr base
= vbi
->memmap
[VIRT_MMIO
].base
+ i
* size
;
679 sysbus_create_simple("virtio-mmio", base
, pic
[irq
]);
682 /* We add dtb nodes in reverse order so that they appear in the finished
683 * device tree lowest address first.
685 * Note that this mapping is independent of the loop above. The previous
686 * loop influences virtio device to virtio transport assignment, whereas
687 * this loop controls how virtio transports are laid out in the dtb.
689 for (i
= NUM_VIRTIO_TRANSPORTS
- 1; i
>= 0; i
--) {
691 int irq
= vbi
->irqmap
[VIRT_MMIO
] + i
;
692 hwaddr base
= vbi
->memmap
[VIRT_MMIO
].base
+ i
* size
;
694 nodename
= g_strdup_printf("/virtio_mmio@%" PRIx64
, base
);
695 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
696 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
697 "compatible", "virtio,mmio");
698 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
700 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
701 GIC_FDT_IRQ_TYPE_SPI
, irq
,
702 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
707 static void create_one_flash(const char *name
, hwaddr flashbase
,
708 hwaddr flashsize
, const char *file
,
709 MemoryRegion
*sysmem
)
711 /* Create and map a single flash device. We use the same
712 * parameters as the flash devices on the Versatile Express board.
714 DriveInfo
*dinfo
= drive_get_next(IF_PFLASH
);
715 DeviceState
*dev
= qdev_create(NULL
, "cfi.pflash01");
716 SysBusDevice
*sbd
= SYS_BUS_DEVICE(dev
);
717 const uint64_t sectorlength
= 256 * 1024;
720 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
724 qdev_prop_set_uint32(dev
, "num-blocks", flashsize
/ sectorlength
);
725 qdev_prop_set_uint64(dev
, "sector-length", sectorlength
);
726 qdev_prop_set_uint8(dev
, "width", 4);
727 qdev_prop_set_uint8(dev
, "device-width", 2);
728 qdev_prop_set_bit(dev
, "big-endian", false);
729 qdev_prop_set_uint16(dev
, "id0", 0x89);
730 qdev_prop_set_uint16(dev
, "id1", 0x18);
731 qdev_prop_set_uint16(dev
, "id2", 0x00);
732 qdev_prop_set_uint16(dev
, "id3", 0x00);
733 qdev_prop_set_string(dev
, "name", name
);
734 qdev_init_nofail(dev
);
736 memory_region_add_subregion(sysmem
, flashbase
,
737 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0));
743 if (drive_get(IF_PFLASH
, 0, 0)) {
744 error_report("The contents of the first flash device may be "
745 "specified with -bios or with -drive if=pflash... "
746 "but you cannot use both options at once");
749 fn
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, file
);
751 error_report("Could not find ROM image '%s'", file
);
754 image_size
= load_image_mr(fn
, sysbus_mmio_get_region(sbd
, 0));
756 if (image_size
< 0) {
757 error_report("Could not load ROM image '%s'", file
);
763 static void create_flash(const VirtBoardInfo
*vbi
,
764 MemoryRegion
*sysmem
,
765 MemoryRegion
*secure_sysmem
)
767 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
768 * Any file passed via -bios goes in the first of these.
769 * sysmem is the system memory space. secure_sysmem is the secure view
770 * of the system, and the first flash device should be made visible only
771 * there. The second flash device is visible to both secure and nonsecure.
772 * If sysmem == secure_sysmem this means there is no separate Secure
773 * address space and both flash devices are generally visible.
775 hwaddr flashsize
= vbi
->memmap
[VIRT_FLASH
].size
/ 2;
776 hwaddr flashbase
= vbi
->memmap
[VIRT_FLASH
].base
;
779 create_one_flash("virt.flash0", flashbase
, flashsize
,
780 bios_name
, secure_sysmem
);
781 create_one_flash("virt.flash1", flashbase
+ flashsize
, flashsize
,
784 if (sysmem
== secure_sysmem
) {
785 /* Report both flash devices as a single node in the DT */
786 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
787 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
788 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "compatible", "cfi-flash");
789 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
790 2, flashbase
, 2, flashsize
,
791 2, flashbase
+ flashsize
, 2, flashsize
);
792 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "bank-width", 4);
795 /* Report the devices as separate nodes so we can mark one as
796 * only visible to the secure world.
798 nodename
= g_strdup_printf("/secflash@%" PRIx64
, flashbase
);
799 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
800 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "compatible", "cfi-flash");
801 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
802 2, flashbase
, 2, flashsize
);
803 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "bank-width", 4);
804 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "status", "disabled");
805 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "secure-status", "okay");
808 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
809 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
810 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "compatible", "cfi-flash");
811 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
812 2, flashbase
+ flashsize
, 2, flashsize
);
813 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "bank-width", 4);
818 static void create_fw_cfg(const VirtBoardInfo
*vbi
, AddressSpace
*as
)
820 hwaddr base
= vbi
->memmap
[VIRT_FW_CFG
].base
;
821 hwaddr size
= vbi
->memmap
[VIRT_FW_CFG
].size
;
824 fw_cfg_init_mem_wide(base
+ 8, base
, 8, base
+ 16, as
);
826 nodename
= g_strdup_printf("/fw-cfg@%" PRIx64
, base
);
827 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
828 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
829 "compatible", "qemu,fw-cfg-mmio");
830 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
835 static void create_pcie_irq_map(const VirtBoardInfo
*vbi
, uint32_t gic_phandle
,
836 int first_irq
, const char *nodename
)
839 uint32_t full_irq_map
[4 * 4 * 10] = { 0 };
840 uint32_t *irq_map
= full_irq_map
;
842 for (devfn
= 0; devfn
<= 0x18; devfn
+= 0x8) {
843 for (pin
= 0; pin
< 4; pin
++) {
844 int irq_type
= GIC_FDT_IRQ_TYPE_SPI
;
845 int irq_nr
= first_irq
+ ((pin
+ PCI_SLOT(devfn
)) % PCI_NUM_PINS
);
846 int irq_level
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
850 devfn
<< 8, 0, 0, /* devfn */
851 pin
+ 1, /* PCI pin */
852 gic_phandle
, 0, 0, irq_type
, irq_nr
, irq_level
}; /* GIC irq */
854 /* Convert map to big endian */
855 for (i
= 0; i
< 10; i
++) {
856 irq_map
[i
] = cpu_to_be32(map
[i
]);
862 qemu_fdt_setprop(vbi
->fdt
, nodename
, "interrupt-map",
863 full_irq_map
, sizeof(full_irq_map
));
865 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupt-map-mask",
866 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
870 static void create_pcie(const VirtBoardInfo
*vbi
, qemu_irq
*pic
,
873 hwaddr base_mmio
= vbi
->memmap
[VIRT_PCIE_MMIO
].base
;
874 hwaddr size_mmio
= vbi
->memmap
[VIRT_PCIE_MMIO
].size
;
875 hwaddr base_mmio_high
= vbi
->memmap
[VIRT_PCIE_MMIO_HIGH
].base
;
876 hwaddr size_mmio_high
= vbi
->memmap
[VIRT_PCIE_MMIO_HIGH
].size
;
877 hwaddr base_pio
= vbi
->memmap
[VIRT_PCIE_PIO
].base
;
878 hwaddr size_pio
= vbi
->memmap
[VIRT_PCIE_PIO
].size
;
879 hwaddr base_ecam
= vbi
->memmap
[VIRT_PCIE_ECAM
].base
;
880 hwaddr size_ecam
= vbi
->memmap
[VIRT_PCIE_ECAM
].size
;
881 hwaddr base
= base_mmio
;
882 int nr_pcie_buses
= size_ecam
/ PCIE_MMCFG_SIZE_MIN
;
883 int irq
= vbi
->irqmap
[VIRT_PCIE
];
884 MemoryRegion
*mmio_alias
;
885 MemoryRegion
*mmio_reg
;
886 MemoryRegion
*ecam_alias
;
887 MemoryRegion
*ecam_reg
;
893 dev
= qdev_create(NULL
, TYPE_GPEX_HOST
);
894 qdev_init_nofail(dev
);
896 /* Map only the first size_ecam bytes of ECAM space */
897 ecam_alias
= g_new0(MemoryRegion
, 1);
898 ecam_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0);
899 memory_region_init_alias(ecam_alias
, OBJECT(dev
), "pcie-ecam",
900 ecam_reg
, 0, size_ecam
);
901 memory_region_add_subregion(get_system_memory(), base_ecam
, ecam_alias
);
903 /* Map the MMIO window into system address space so as to expose
904 * the section of PCI MMIO space which starts at the same base address
905 * (ie 1:1 mapping for that part of PCI MMIO space visible through
908 mmio_alias
= g_new0(MemoryRegion
, 1);
909 mmio_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 1);
910 memory_region_init_alias(mmio_alias
, OBJECT(dev
), "pcie-mmio",
911 mmio_reg
, base_mmio
, size_mmio
);
912 memory_region_add_subregion(get_system_memory(), base_mmio
, mmio_alias
);
915 /* Map high MMIO space */
916 MemoryRegion
*high_mmio_alias
= g_new0(MemoryRegion
, 1);
918 memory_region_init_alias(high_mmio_alias
, OBJECT(dev
), "pcie-mmio-high",
919 mmio_reg
, base_mmio_high
, size_mmio_high
);
920 memory_region_add_subregion(get_system_memory(), base_mmio_high
,
924 /* Map IO port space */
925 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 2, base_pio
);
927 for (i
= 0; i
< GPEX_NUM_IRQS
; i
++) {
928 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
931 pci
= PCI_HOST_BRIDGE(dev
);
933 for (i
= 0; i
< nb_nics
; i
++) {
934 NICInfo
*nd
= &nd_table
[i
];
937 nd
->model
= g_strdup("virtio");
940 pci_nic_init_nofail(nd
, pci
->bus
, nd
->model
, NULL
);
944 nodename
= g_strdup_printf("/pcie@%" PRIx64
, base
);
945 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
946 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
947 "compatible", "pci-host-ecam-generic");
948 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "device_type", "pci");
949 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#address-cells", 3);
950 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#size-cells", 2);
951 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "bus-range", 0,
954 if (vbi
->v2m_phandle
) {
955 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "msi-parent",
959 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
960 2, base_ecam
, 2, size_ecam
);
963 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "ranges",
964 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
965 2, base_pio
, 2, size_pio
,
966 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
967 2, base_mmio
, 2, size_mmio
,
968 1, FDT_PCI_RANGE_MMIO_64BIT
,
970 2, base_mmio_high
, 2, size_mmio_high
);
972 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "ranges",
973 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
974 2, base_pio
, 2, size_pio
,
975 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
976 2, base_mmio
, 2, size_mmio
);
979 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#interrupt-cells", 1);
980 create_pcie_irq_map(vbi
, vbi
->gic_phandle
, irq
, nodename
);
985 static void create_platform_bus(VirtBoardInfo
*vbi
, qemu_irq
*pic
)
990 ARMPlatformBusFDTParams
*fdt_params
= g_new(ARMPlatformBusFDTParams
, 1);
991 MemoryRegion
*sysmem
= get_system_memory();
993 platform_bus_params
.platform_bus_base
= vbi
->memmap
[VIRT_PLATFORM_BUS
].base
;
994 platform_bus_params
.platform_bus_size
= vbi
->memmap
[VIRT_PLATFORM_BUS
].size
;
995 platform_bus_params
.platform_bus_first_irq
= vbi
->irqmap
[VIRT_PLATFORM_BUS
];
996 platform_bus_params
.platform_bus_num_irqs
= PLATFORM_BUS_NUM_IRQS
;
998 fdt_params
->system_params
= &platform_bus_params
;
999 fdt_params
->binfo
= &vbi
->bootinfo
;
1000 fdt_params
->intc
= "/intc";
1002 * register a machine init done notifier that creates the device tree
1003 * nodes of the platform bus and its children dynamic sysbus devices
1005 arm_register_platform_bus_fdt_creator(fdt_params
);
1007 dev
= qdev_create(NULL
, TYPE_PLATFORM_BUS_DEVICE
);
1008 dev
->id
= TYPE_PLATFORM_BUS_DEVICE
;
1009 qdev_prop_set_uint32(dev
, "num_irqs",
1010 platform_bus_params
.platform_bus_num_irqs
);
1011 qdev_prop_set_uint32(dev
, "mmio_size",
1012 platform_bus_params
.platform_bus_size
);
1013 qdev_init_nofail(dev
);
1014 s
= SYS_BUS_DEVICE(dev
);
1016 for (i
= 0; i
< platform_bus_params
.platform_bus_num_irqs
; i
++) {
1017 int irqn
= platform_bus_params
.platform_bus_first_irq
+ i
;
1018 sysbus_connect_irq(s
, i
, pic
[irqn
]);
1021 memory_region_add_subregion(sysmem
,
1022 platform_bus_params
.platform_bus_base
,
1023 sysbus_mmio_get_region(s
, 0));
1026 static void create_secure_ram(VirtBoardInfo
*vbi
, MemoryRegion
*secure_sysmem
)
1028 MemoryRegion
*secram
= g_new(MemoryRegion
, 1);
1030 hwaddr base
= vbi
->memmap
[VIRT_SECURE_MEM
].base
;
1031 hwaddr size
= vbi
->memmap
[VIRT_SECURE_MEM
].size
;
1033 memory_region_init_ram(secram
, NULL
, "virt.secure-ram", size
, &error_fatal
);
1034 vmstate_register_ram_global(secram
);
1035 memory_region_add_subregion(secure_sysmem
, base
, secram
);
1037 nodename
= g_strdup_printf("/secram@%" PRIx64
, base
);
1038 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
1039 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "device_type", "memory");
1040 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg", 2, base
, 2, size
);
1041 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "status", "disabled");
1042 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "secure-status", "okay");
1047 static void *machvirt_dtb(const struct arm_boot_info
*binfo
, int *fdt_size
)
1049 const VirtBoardInfo
*board
= (const VirtBoardInfo
*)binfo
;
1051 *fdt_size
= board
->fdt_size
;
1055 static void virt_build_smbios(VirtGuestInfo
*guest_info
)
1057 FWCfgState
*fw_cfg
= guest_info
->fw_cfg
;
1058 uint8_t *smbios_tables
, *smbios_anchor
;
1059 size_t smbios_tables_len
, smbios_anchor_len
;
1060 const char *product
= "QEMU Virtual Machine";
1066 if (kvm_enabled()) {
1067 product
= "KVM Virtual Machine";
1070 smbios_set_defaults("QEMU", product
,
1071 "1.0", false, true, SMBIOS_ENTRY_POINT_30
);
1073 smbios_get_tables(NULL
, 0, &smbios_tables
, &smbios_tables_len
,
1074 &smbios_anchor
, &smbios_anchor_len
);
1076 if (smbios_anchor
) {
1077 fw_cfg_add_file(fw_cfg
, "etc/smbios/smbios-tables",
1078 smbios_tables
, smbios_tables_len
);
1079 fw_cfg_add_file(fw_cfg
, "etc/smbios/smbios-anchor",
1080 smbios_anchor
, smbios_anchor_len
);
1085 void virt_guest_info_machine_done(Notifier
*notifier
, void *data
)
1087 VirtGuestInfoState
*guest_info_state
= container_of(notifier
,
1088 VirtGuestInfoState
, machine_done
);
1089 virt_acpi_setup(&guest_info_state
->info
);
1090 virt_build_smbios(&guest_info_state
->info
);
1093 static void machvirt_init(MachineState
*machine
)
1095 VirtMachineState
*vms
= VIRT_MACHINE(machine
);
1096 qemu_irq pic
[NUM_IRQS
];
1097 MemoryRegion
*sysmem
= get_system_memory();
1098 MemoryRegion
*secure_sysmem
= NULL
;
1099 int gic_version
= vms
->gic_version
;
1100 int n
, virt_max_cpus
;
1101 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
1102 const char *cpu_model
= machine
->cpu_model
;
1104 VirtGuestInfoState
*guest_info_state
= g_malloc0(sizeof *guest_info_state
);
1105 VirtGuestInfo
*guest_info
= &guest_info_state
->info
;
1107 bool firmware_loaded
= bios_name
|| drive_get(IF_PFLASH
, 0, 0);
1110 cpu_model
= "cortex-a15";
1113 /* We can probe only here because during property set
1114 * KVM is not available yet
1117 gic_version
= kvm_arm_vgic_probe();
1119 error_report("Unable to determine GIC version supported by host");
1120 error_printf("KVM acceleration is probably not supported\n");
1125 /* Separate the actual CPU model name from any appended features */
1126 cpustr
= g_strsplit(cpu_model
, ",", 2);
1128 vbi
= find_machine_info(cpustr
[0]);
1131 error_report("mach-virt: CPU %s not supported", cpustr
[0]);
1135 /* If we have an EL3 boot ROM then the assumption is that it will
1136 * implement PSCI itself, so disable QEMU's internal implementation
1137 * so it doesn't get in the way. Instead of starting secondary
1138 * CPUs in PSCI powerdown state we will start them all running and
1139 * let the boot ROM sort them out.
1140 * The usual case is that we do use QEMU's PSCI implementation.
1142 vbi
->using_psci
= !(vms
->secure
&& firmware_loaded
);
1144 /* The maximum number of CPUs depends on the GIC version, or on how
1145 * many redistributors we can fit into the memory map.
1147 if (gic_version
== 3) {
1148 virt_max_cpus
= vbi
->memmap
[VIRT_GIC_REDIST
].size
/ 0x20000;
1150 virt_max_cpus
= GIC_NCPU
;
1153 if (max_cpus
> virt_max_cpus
) {
1154 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1155 "supported by machine 'mach-virt' (%d)",
1156 max_cpus
, virt_max_cpus
);
1160 vbi
->smp_cpus
= smp_cpus
;
1162 if (machine
->ram_size
> vbi
->memmap
[VIRT_MEM
].size
) {
1163 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB
);
1168 if (kvm_enabled()) {
1169 error_report("mach-virt: KVM does not support Security extensions");
1173 /* The Secure view of the world is the same as the NonSecure,
1174 * but with a few extra devices. Create it as a container region
1175 * containing the system memory at low priority; any secure-only
1176 * devices go in at higher priority and take precedence.
1178 secure_sysmem
= g_new(MemoryRegion
, 1);
1179 memory_region_init(secure_sysmem
, OBJECT(machine
), "secure-memory",
1181 memory_region_add_subregion_overlap(secure_sysmem
, 0, sysmem
, -1);
1186 for (n
= 0; n
< smp_cpus
; n
++) {
1187 ObjectClass
*oc
= cpu_class_by_name(TYPE_ARM_CPU
, cpustr
[0]);
1188 CPUClass
*cc
= CPU_CLASS(oc
);
1191 char *cpuopts
= g_strdup(cpustr
[1]);
1194 error_report("Unable to find CPU definition");
1197 cpuobj
= object_new(object_class_get_name(oc
));
1199 /* Handle any CPU options specified by the user */
1200 cc
->parse_features(CPU(cpuobj
), cpuopts
, &err
);
1203 error_report_err(err
);
1208 object_property_set_bool(cpuobj
, false, "has_el3", NULL
);
1211 if (vbi
->using_psci
) {
1212 object_property_set_int(cpuobj
, QEMU_PSCI_CONDUIT_HVC
,
1213 "psci-conduit", NULL
);
1215 /* Secondary CPUs start in PSCI powered-down state */
1217 object_property_set_bool(cpuobj
, true,
1218 "start-powered-off", NULL
);
1222 if (object_property_find(cpuobj
, "reset-cbar", NULL
)) {
1223 object_property_set_int(cpuobj
, vbi
->memmap
[VIRT_CPUPERIPHS
].base
,
1224 "reset-cbar", &error_abort
);
1227 object_property_set_link(cpuobj
, OBJECT(sysmem
), "memory",
1230 object_property_set_link(cpuobj
, OBJECT(secure_sysmem
),
1231 "secure-memory", &error_abort
);
1234 object_property_set_bool(cpuobj
, true, "realized", NULL
);
1237 fdt_add_timer_nodes(vbi
, gic_version
);
1238 fdt_add_cpu_nodes(vbi
);
1239 fdt_add_psci_node(vbi
);
1241 memory_region_allocate_system_memory(ram
, NULL
, "mach-virt.ram",
1243 memory_region_add_subregion(sysmem
, vbi
->memmap
[VIRT_MEM
].base
, ram
);
1245 create_flash(vbi
, sysmem
, secure_sysmem
? secure_sysmem
: sysmem
);
1247 create_gic(vbi
, pic
, gic_version
, vms
->secure
);
1249 create_uart(vbi
, pic
, VIRT_UART
, sysmem
);
1252 create_secure_ram(vbi
, secure_sysmem
);
1253 create_uart(vbi
, pic
, VIRT_SECURE_UART
, secure_sysmem
);
1256 create_rtc(vbi
, pic
);
1258 create_pcie(vbi
, pic
, vms
->highmem
);
1260 create_gpio(vbi
, pic
);
1262 /* Create mmio transports, so the user can create virtio backends
1263 * (which will be automatically plugged in to the transports). If
1264 * no backend is created the transport will just sit harmlessly idle.
1266 create_virtio_devices(vbi
, pic
);
1268 create_fw_cfg(vbi
, &address_space_memory
);
1269 rom_set_fw(fw_cfg_find());
1271 guest_info
->smp_cpus
= smp_cpus
;
1272 guest_info
->fw_cfg
= fw_cfg_find();
1273 guest_info
->memmap
= vbi
->memmap
;
1274 guest_info
->irqmap
= vbi
->irqmap
;
1275 guest_info
->use_highmem
= vms
->highmem
;
1276 guest_info
->gic_version
= gic_version
;
1277 guest_info_state
->machine_done
.notify
= virt_guest_info_machine_done
;
1278 qemu_add_machine_init_done_notifier(&guest_info_state
->machine_done
);
1280 vbi
->bootinfo
.ram_size
= machine
->ram_size
;
1281 vbi
->bootinfo
.kernel_filename
= machine
->kernel_filename
;
1282 vbi
->bootinfo
.kernel_cmdline
= machine
->kernel_cmdline
;
1283 vbi
->bootinfo
.initrd_filename
= machine
->initrd_filename
;
1284 vbi
->bootinfo
.nb_cpus
= smp_cpus
;
1285 vbi
->bootinfo
.board_id
= -1;
1286 vbi
->bootinfo
.loader_start
= vbi
->memmap
[VIRT_MEM
].base
;
1287 vbi
->bootinfo
.get_dtb
= machvirt_dtb
;
1288 vbi
->bootinfo
.firmware_loaded
= firmware_loaded
;
1289 arm_load_kernel(ARM_CPU(first_cpu
), &vbi
->bootinfo
);
1292 * arm_load_kernel machine init done notifier registration must
1293 * happen before the platform_bus_create call. In this latter,
1294 * another notifier is registered which adds platform bus nodes.
1295 * Notifiers are executed in registration reverse order.
1297 create_platform_bus(vbi
, pic
);
1300 static bool virt_get_secure(Object
*obj
, Error
**errp
)
1302 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1307 static void virt_set_secure(Object
*obj
, bool value
, Error
**errp
)
1309 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1311 vms
->secure
= value
;
1314 static bool virt_get_highmem(Object
*obj
, Error
**errp
)
1316 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1318 return vms
->highmem
;
1321 static void virt_set_highmem(Object
*obj
, bool value
, Error
**errp
)
1323 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1325 vms
->highmem
= value
;
1328 static char *virt_get_gic_version(Object
*obj
, Error
**errp
)
1330 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1331 const char *val
= vms
->gic_version
== 3 ? "3" : "2";
1333 return g_strdup(val
);
1336 static void virt_set_gic_version(Object
*obj
, const char *value
, Error
**errp
)
1338 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1340 if (!strcmp(value
, "3")) {
1341 vms
->gic_version
= 3;
1342 } else if (!strcmp(value
, "2")) {
1343 vms
->gic_version
= 2;
1344 } else if (!strcmp(value
, "host")) {
1345 vms
->gic_version
= 0; /* Will probe later */
1347 error_setg(errp
, "Invalid gic-version value");
1348 error_append_hint(errp
, "Valid values are 3, 2, host.\n");
1352 static void virt_machine_class_init(ObjectClass
*oc
, void *data
)
1354 MachineClass
*mc
= MACHINE_CLASS(oc
);
1356 mc
->init
= machvirt_init
;
1357 /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1358 * it later in machvirt_init, where we have more information about the
1359 * configuration of the particular instance.
1361 mc
->max_cpus
= MAX_CPUMASK_BITS
;
1362 mc
->has_dynamic_sysbus
= true;
1363 mc
->block_default_type
= IF_VIRTIO
;
1365 mc
->pci_allow_0_address
= true;
1368 static const TypeInfo virt_machine_info
= {
1369 .name
= TYPE_VIRT_MACHINE
,
1370 .parent
= TYPE_MACHINE
,
1372 .instance_size
= sizeof(VirtMachineState
),
1373 .class_size
= sizeof(VirtMachineClass
),
1374 .class_init
= virt_machine_class_init
,
1377 static void virt_2_6_instance_init(Object
*obj
)
1379 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1381 /* EL3 is disabled by default on virt: this makes us consistent
1382 * between KVM and TCG for this board, and it also allows us to
1383 * boot UEFI blobs which assume no TrustZone support.
1385 vms
->secure
= false;
1386 object_property_add_bool(obj
, "secure", virt_get_secure
,
1387 virt_set_secure
, NULL
);
1388 object_property_set_description(obj
, "secure",
1389 "Set on/off to enable/disable the ARM "
1390 "Security Extensions (TrustZone)",
1393 /* High memory is enabled by default */
1394 vms
->highmem
= true;
1395 object_property_add_bool(obj
, "highmem", virt_get_highmem
,
1396 virt_set_highmem
, NULL
);
1397 object_property_set_description(obj
, "highmem",
1398 "Set on/off to enable/disable using "
1399 "physical address space above 32 bits",
1401 /* Default GIC type is v2 */
1402 vms
->gic_version
= 2;
1403 object_property_add_str(obj
, "gic-version", virt_get_gic_version
,
1404 virt_set_gic_version
, NULL
);
1405 object_property_set_description(obj
, "gic-version",
1407 "Valid values are 2, 3 and host", NULL
);
1410 static void virt_2_6_class_init(ObjectClass
*oc
, void *data
)
1412 MachineClass
*mc
= MACHINE_CLASS(oc
);
1413 static GlobalProperty compat_props
[] = {
1414 { /* end of list */ }
1417 mc
->desc
= "QEMU 2.6 ARM Virtual Machine";
1419 mc
->compat_props
= compat_props
;
1422 static const TypeInfo machvirt_info
= {
1423 .name
= MACHINE_TYPE_NAME("virt-2.6"),
1424 .parent
= TYPE_VIRT_MACHINE
,
1425 .instance_init
= virt_2_6_instance_init
,
1426 .class_init
= virt_2_6_class_init
,
1429 static void machvirt_machine_init(void)
1431 type_register_static(&virt_machine_info
);
1432 type_register_static(&machvirt_info
);
1435 type_init(machvirt_machine_init
);