qom: Add error handler for object alias property
[qemu/cris-port.git] / hw / arm / virt.c
blob8c6b1714143e564ce625be2c1b098061447a2107
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "hw/sysbus.h"
32 #include "hw/arm/arm.h"
33 #include "hw/arm/primecell.h"
34 #include "hw/devices.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/sysemu.h"
38 #include "sysemu/kvm.h"
39 #include "hw/boards.h"
40 #include "hw/loader.h"
41 #include "exec/address-spaces.h"
42 #include "qemu/bitops.h"
43 #include "qemu/error-report.h"
45 #define NUM_VIRTIO_TRANSPORTS 32
47 /* Number of external interrupt lines to configure the GIC with */
48 #define NUM_IRQS 128
50 #define GIC_FDT_IRQ_TYPE_SPI 0
51 #define GIC_FDT_IRQ_TYPE_PPI 1
53 #define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1
54 #define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2
55 #define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4
56 #define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8
58 #define GIC_FDT_IRQ_PPI_CPU_START 8
59 #define GIC_FDT_IRQ_PPI_CPU_WIDTH 8
61 enum {
62 VIRT_FLASH,
63 VIRT_MEM,
64 VIRT_CPUPERIPHS,
65 VIRT_GIC_DIST,
66 VIRT_GIC_CPU,
67 VIRT_UART,
68 VIRT_MMIO,
69 VIRT_RTC,
72 typedef struct MemMapEntry {
73 hwaddr base;
74 hwaddr size;
75 } MemMapEntry;
77 typedef struct VirtBoardInfo {
78 struct arm_boot_info bootinfo;
79 const char *cpu_model;
80 const MemMapEntry *memmap;
81 const int *irqmap;
82 int smp_cpus;
83 void *fdt;
84 int fdt_size;
85 uint32_t clock_phandle;
86 } VirtBoardInfo;
88 /* Addresses and sizes of our components.
89 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
90 * 128MB..256MB is used for miscellaneous device I/O.
91 * 256MB..1GB is reserved for possible future PCI support (ie where the
92 * PCI memory window will go if we add a PCI host controller).
93 * 1GB and up is RAM (which may happily spill over into the
94 * high memory region beyond 4GB).
95 * This represents a compromise between how much RAM can be given to
96 * a 32 bit VM and leaving space for expansion and in particular for PCI.
97 * Note that devices should generally be placed at multiples of 0x10000,
98 * to accommodate guests using 64K pages.
100 static const MemMapEntry a15memmap[] = {
101 /* Space up to 0x8000000 is reserved for a boot ROM */
102 [VIRT_FLASH] = { 0, 0x08000000 },
103 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
104 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
105 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
106 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
107 [VIRT_UART] = { 0x09000000, 0x00001000 },
108 [VIRT_RTC] = { 0x09010000, 0x00001000 },
109 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
110 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
111 /* 0x10000000 .. 0x40000000 reserved for PCI */
112 [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
115 static const int a15irqmap[] = {
116 [VIRT_UART] = 1,
117 [VIRT_RTC] = 2,
118 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
121 static VirtBoardInfo machines[] = {
123 .cpu_model = "cortex-a15",
124 .memmap = a15memmap,
125 .irqmap = a15irqmap,
128 .cpu_model = "cortex-a57",
129 .memmap = a15memmap,
130 .irqmap = a15irqmap,
133 .cpu_model = "host",
134 .memmap = a15memmap,
135 .irqmap = a15irqmap,
139 static VirtBoardInfo *find_machine_info(const char *cpu)
141 int i;
143 for (i = 0; i < ARRAY_SIZE(machines); i++) {
144 if (strcmp(cpu, machines[i].cpu_model) == 0) {
145 return &machines[i];
148 return NULL;
151 static void create_fdt(VirtBoardInfo *vbi)
153 void *fdt = create_device_tree(&vbi->fdt_size);
155 if (!fdt) {
156 error_report("create_device_tree() failed");
157 exit(1);
160 vbi->fdt = fdt;
162 /* Header */
163 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
164 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
165 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
168 * /chosen and /memory nodes must exist for load_dtb
169 * to fill in necessary properties later
171 qemu_fdt_add_subnode(fdt, "/chosen");
172 qemu_fdt_add_subnode(fdt, "/memory");
173 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
175 /* Clock node, for the benefit of the UART. The kernel device tree
176 * binding documentation claims the PL011 node clock properties are
177 * optional but in practice if you omit them the kernel refuses to
178 * probe for the device.
180 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
181 qemu_fdt_add_subnode(fdt, "/apb-pclk");
182 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
183 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
184 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
185 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
186 "clk24mhz");
187 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
191 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
193 void *fdt = vbi->fdt;
194 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
196 /* No PSCI for TCG yet */
197 if (kvm_enabled()) {
198 uint32_t cpu_suspend_fn;
199 uint32_t cpu_off_fn;
200 uint32_t cpu_on_fn;
201 uint32_t migrate_fn;
203 qemu_fdt_add_subnode(fdt, "/psci");
204 if (armcpu->psci_version == 2) {
205 const char comp[] = "arm,psci-0.2\0arm,psci";
206 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
208 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
209 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
210 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
211 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
212 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
213 } else {
214 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
215 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
216 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
218 } else {
219 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
221 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
222 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
223 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
224 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
227 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
229 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
230 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
231 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
232 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
236 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi)
238 /* Note that on A15 h/w these interrupts are level-triggered,
239 * but for the GIC implementation provided by both QEMU and KVM
240 * they are edge-triggered.
242 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
244 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
245 GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1);
247 qemu_fdt_add_subnode(vbi->fdt, "/timer");
248 qemu_fdt_setprop_string(vbi->fdt, "/timer",
249 "compatible", "arm,armv7-timer");
250 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
251 GIC_FDT_IRQ_TYPE_PPI, 13, irqflags,
252 GIC_FDT_IRQ_TYPE_PPI, 14, irqflags,
253 GIC_FDT_IRQ_TYPE_PPI, 11, irqflags,
254 GIC_FDT_IRQ_TYPE_PPI, 10, irqflags);
257 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
259 int cpu;
261 qemu_fdt_add_subnode(vbi->fdt, "/cpus");
262 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1);
263 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
265 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
266 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
267 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
269 qemu_fdt_add_subnode(vbi->fdt, nodename);
270 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
271 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
272 armcpu->dtb_compatible);
274 if (vbi->smp_cpus > 1) {
275 qemu_fdt_setprop_string(vbi->fdt, nodename,
276 "enable-method", "psci");
279 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", cpu);
280 g_free(nodename);
284 static void fdt_add_gic_node(const VirtBoardInfo *vbi)
286 uint32_t gic_phandle;
288 gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
289 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", gic_phandle);
291 qemu_fdt_add_subnode(vbi->fdt, "/intc");
292 /* 'cortex-a15-gic' means 'GIC v2' */
293 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
294 "arm,cortex-a15-gic");
295 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
296 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
297 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
298 2, vbi->memmap[VIRT_GIC_DIST].base,
299 2, vbi->memmap[VIRT_GIC_DIST].size,
300 2, vbi->memmap[VIRT_GIC_CPU].base,
301 2, vbi->memmap[VIRT_GIC_CPU].size);
302 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", gic_phandle);
305 static void create_gic(const VirtBoardInfo *vbi, qemu_irq *pic)
307 /* We create a standalone GIC v2 */
308 DeviceState *gicdev;
309 SysBusDevice *gicbusdev;
310 const char *gictype = "arm_gic";
311 int i;
313 if (kvm_irqchip_in_kernel()) {
314 gictype = "kvm-arm-gic";
317 gicdev = qdev_create(NULL, gictype);
318 qdev_prop_set_uint32(gicdev, "revision", 2);
319 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
320 /* Note that the num-irq property counts both internal and external
321 * interrupts; there are always 32 of the former (mandated by GIC spec).
323 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
324 qdev_init_nofail(gicdev);
325 gicbusdev = SYS_BUS_DEVICE(gicdev);
326 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
327 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
329 /* Wire the outputs from each CPU's generic timer to the
330 * appropriate GIC PPI inputs, and the GIC's IRQ output to
331 * the CPU's IRQ input.
333 for (i = 0; i < smp_cpus; i++) {
334 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
335 int ppibase = NUM_IRQS + i * 32;
336 /* physical timer; we wire it up to the non-secure timer's ID,
337 * since a real A15 always has TrustZone but QEMU doesn't.
339 qdev_connect_gpio_out(cpudev, 0,
340 qdev_get_gpio_in(gicdev, ppibase + 30));
341 /* virtual timer */
342 qdev_connect_gpio_out(cpudev, 1,
343 qdev_get_gpio_in(gicdev, ppibase + 27));
345 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
348 for (i = 0; i < NUM_IRQS; i++) {
349 pic[i] = qdev_get_gpio_in(gicdev, i);
352 fdt_add_gic_node(vbi);
355 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
357 char *nodename;
358 hwaddr base = vbi->memmap[VIRT_UART].base;
359 hwaddr size = vbi->memmap[VIRT_UART].size;
360 int irq = vbi->irqmap[VIRT_UART];
361 const char compat[] = "arm,pl011\0arm,primecell";
362 const char clocknames[] = "uartclk\0apb_pclk";
364 sysbus_create_simple("pl011", base, pic[irq]);
366 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
367 qemu_fdt_add_subnode(vbi->fdt, nodename);
368 /* Note that we can't use setprop_string because of the embedded NUL */
369 qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
370 compat, sizeof(compat));
371 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
372 2, base, 2, size);
373 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
374 GIC_FDT_IRQ_TYPE_SPI, irq,
375 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
376 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
377 vbi->clock_phandle, vbi->clock_phandle);
378 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
379 clocknames, sizeof(clocknames));
381 qemu_fdt_setprop_string(vbi->fdt, "/chosen", "linux,stdout-path", nodename);
382 g_free(nodename);
385 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
387 char *nodename;
388 hwaddr base = vbi->memmap[VIRT_RTC].base;
389 hwaddr size = vbi->memmap[VIRT_RTC].size;
390 int irq = vbi->irqmap[VIRT_RTC];
391 const char compat[] = "arm,pl031\0arm,primecell";
393 sysbus_create_simple("pl031", base, pic[irq]);
395 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
396 qemu_fdt_add_subnode(vbi->fdt, nodename);
397 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
398 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
399 2, base, 2, size);
400 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
401 GIC_FDT_IRQ_TYPE_SPI, irq,
402 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
403 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
404 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
405 g_free(nodename);
408 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
410 int i;
411 hwaddr size = vbi->memmap[VIRT_MMIO].size;
413 /* Note that we have to create the transports in forwards order
414 * so that command line devices are inserted lowest address first,
415 * and then add dtb nodes in reverse order so that they appear in
416 * the finished device tree lowest address first.
418 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
419 int irq = vbi->irqmap[VIRT_MMIO] + i;
420 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
422 sysbus_create_simple("virtio-mmio", base, pic[irq]);
425 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
426 char *nodename;
427 int irq = vbi->irqmap[VIRT_MMIO] + i;
428 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
430 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
431 qemu_fdt_add_subnode(vbi->fdt, nodename);
432 qemu_fdt_setprop_string(vbi->fdt, nodename,
433 "compatible", "virtio,mmio");
434 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
435 2, base, 2, size);
436 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
437 GIC_FDT_IRQ_TYPE_SPI, irq,
438 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
439 g_free(nodename);
443 static void create_one_flash(const char *name, hwaddr flashbase,
444 hwaddr flashsize)
446 /* Create and map a single flash device. We use the same
447 * parameters as the flash devices on the Versatile Express board.
449 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
450 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
451 const uint64_t sectorlength = 256 * 1024;
453 if (dinfo && qdev_prop_set_drive(dev, "drive", dinfo->bdrv)) {
454 abort();
457 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
458 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
459 qdev_prop_set_uint8(dev, "width", 4);
460 qdev_prop_set_uint8(dev, "device-width", 2);
461 qdev_prop_set_uint8(dev, "big-endian", 0);
462 qdev_prop_set_uint16(dev, "id0", 0x89);
463 qdev_prop_set_uint16(dev, "id1", 0x18);
464 qdev_prop_set_uint16(dev, "id2", 0x00);
465 qdev_prop_set_uint16(dev, "id3", 0x00);
466 qdev_prop_set_string(dev, "name", name);
467 qdev_init_nofail(dev);
469 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase);
472 static void create_flash(const VirtBoardInfo *vbi)
474 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
475 * Any file passed via -bios goes in the first of these.
477 hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
478 hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
479 char *nodename;
481 if (bios_name) {
482 const char *fn;
484 if (drive_get(IF_PFLASH, 0, 0)) {
485 error_report("The contents of the first flash device may be "
486 "specified with -bios or with -drive if=pflash... "
487 "but you cannot use both options at once");
488 exit(1);
490 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
491 if (!fn || load_image_targphys(fn, flashbase, flashsize) < 0) {
492 error_report("Could not load ROM image '%s'", bios_name);
493 exit(1);
497 create_one_flash("virt.flash0", flashbase, flashsize);
498 create_one_flash("virt.flash1", flashbase + flashsize, flashsize);
500 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
501 qemu_fdt_add_subnode(vbi->fdt, nodename);
502 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
503 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
504 2, flashbase, 2, flashsize,
505 2, flashbase + flashsize, 2, flashsize);
506 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
507 g_free(nodename);
510 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
512 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
514 *fdt_size = board->fdt_size;
515 return board->fdt;
518 static void machvirt_init(MachineState *machine)
520 qemu_irq pic[NUM_IRQS];
521 MemoryRegion *sysmem = get_system_memory();
522 int n;
523 MemoryRegion *ram = g_new(MemoryRegion, 1);
524 const char *cpu_model = machine->cpu_model;
525 VirtBoardInfo *vbi;
527 if (!cpu_model) {
528 cpu_model = "cortex-a15";
531 vbi = find_machine_info(cpu_model);
533 if (!vbi) {
534 error_report("mach-virt: CPU %s not supported", cpu_model);
535 exit(1);
538 vbi->smp_cpus = smp_cpus;
541 * Only supported method of starting secondary CPUs is PSCI and
542 * PSCI is not yet supported with TCG, so limit smp_cpus to 1
543 * if we're not using KVM.
545 if (!kvm_enabled() && smp_cpus > 1) {
546 error_report("mach-virt: must enable KVM to use multiple CPUs");
547 exit(1);
550 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
551 error_report("mach-virt: cannot model more than 30GB RAM");
552 exit(1);
555 create_fdt(vbi);
556 fdt_add_timer_nodes(vbi);
558 for (n = 0; n < smp_cpus; n++) {
559 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
560 Object *cpuobj;
562 if (!oc) {
563 fprintf(stderr, "Unable to find CPU definition\n");
564 exit(1);
566 cpuobj = object_new(object_class_get_name(oc));
568 /* Secondary CPUs start in PSCI powered-down state */
569 if (n > 0) {
570 object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
573 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
574 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
575 "reset-cbar", &error_abort);
578 object_property_set_bool(cpuobj, true, "realized", NULL);
580 fdt_add_cpu_nodes(vbi);
581 fdt_add_psci_node(vbi);
583 memory_region_init_ram(ram, NULL, "mach-virt.ram", machine->ram_size,
584 &error_abort);
585 vmstate_register_ram_global(ram);
586 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
588 create_flash(vbi);
590 create_gic(vbi, pic);
592 create_uart(vbi, pic);
594 create_rtc(vbi, pic);
596 /* Create mmio transports, so the user can create virtio backends
597 * (which will be automatically plugged in to the transports). If
598 * no backend is created the transport will just sit harmlessly idle.
600 create_virtio_devices(vbi, pic);
602 vbi->bootinfo.ram_size = machine->ram_size;
603 vbi->bootinfo.kernel_filename = machine->kernel_filename;
604 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
605 vbi->bootinfo.initrd_filename = machine->initrd_filename;
606 vbi->bootinfo.nb_cpus = smp_cpus;
607 vbi->bootinfo.board_id = -1;
608 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
609 vbi->bootinfo.get_dtb = machvirt_dtb;
610 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
613 static QEMUMachine machvirt_a15_machine = {
614 .name = "virt",
615 .desc = "ARM Virtual Machine",
616 .init = machvirt_init,
617 .max_cpus = 8,
620 static void machvirt_machine_init(void)
622 qemu_register_machine(&machvirt_a15_machine);
625 machine_init(machvirt_machine_init);