vhost: don't assume opaque is a fd, use backend cleanup
[qemu/cris-port.git] / hw / net / e1000e_core.c
blobbadb1feb7dd13bda42077514b92f26c03296e55d
1 /*
2 * Core code for QEMU e1000e emulation
4 * Software developer's manuals:
5 * http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
7 * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
8 * Developed by Daynix Computing LTD (http://www.daynix.com)
10 * Authors:
11 * Dmitry Fleytman <dmitry@daynix.com>
12 * Leonid Bloch <leonid@daynix.com>
13 * Yan Vugenfirer <yan@daynix.com>
15 * Based on work done by:
16 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
17 * Copyright (c) 2008 Qumranet
18 * Based on work done by:
19 * Copyright (c) 2007 Dan Aloni
20 * Copyright (c) 2004 Antony T Curtis
22 * This library is free software; you can redistribute it and/or
23 * modify it under the terms of the GNU Lesser General Public
24 * License as published by the Free Software Foundation; either
25 * version 2 of the License, or (at your option) any later version.
27 * This library is distributed in the hope that it will be useful,
28 * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
30 * Lesser General Public License for more details.
32 * You should have received a copy of the GNU Lesser General Public
33 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
36 #include "qemu/osdep.h"
37 #include "sysemu/sysemu.h"
38 #include "net/net.h"
39 #include "net/tap.h"
40 #include "hw/pci/msi.h"
41 #include "hw/pci/msix.h"
43 #include "net_tx_pkt.h"
44 #include "net_rx_pkt.h"
46 #include "e1000x_common.h"
47 #include "e1000e_core.h"
49 #include "trace.h"
51 #define E1000E_MIN_XITR (500) /* No more then 7813 interrupts per
52 second according to spec 10.2.4.2 */
53 #define E1000E_MAX_TX_FRAGS (64)
55 static void
56 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val);
58 static inline void
59 e1000e_process_ts_option(E1000ECore *core, struct e1000_tx_desc *dp)
61 if (le32_to_cpu(dp->upper.data) & E1000_TXD_EXTCMD_TSTAMP) {
62 trace_e1000e_wrn_no_ts_support();
66 static inline void
67 e1000e_process_snap_option(E1000ECore *core, uint32_t cmd_and_length)
69 if (cmd_and_length & E1000_TXD_CMD_SNAP) {
70 trace_e1000e_wrn_no_snap_support();
74 static inline void
75 e1000e_raise_legacy_irq(E1000ECore *core)
77 trace_e1000e_irq_legacy_notify(true);
78 e1000x_inc_reg_if_not_full(core->mac, IAC);
79 pci_set_irq(core->owner, 1);
82 static inline void
83 e1000e_lower_legacy_irq(E1000ECore *core)
85 trace_e1000e_irq_legacy_notify(false);
86 pci_set_irq(core->owner, 0);
89 static inline void
90 e1000e_intrmgr_rearm_timer(E1000IntrDelayTimer *timer)
92 int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] *
93 timer->delay_resolution_ns;
95 trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns);
97 timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns);
99 timer->running = true;
102 static void
103 e1000e_intmgr_timer_resume(E1000IntrDelayTimer *timer)
105 if (timer->running) {
106 e1000e_intrmgr_rearm_timer(timer);
110 static void
111 e1000e_intmgr_timer_pause(E1000IntrDelayTimer *timer)
113 if (timer->running) {
114 timer_del(timer->timer);
118 static inline void
119 e1000e_intrmgr_stop_timer(E1000IntrDelayTimer *timer)
121 if (timer->running) {
122 timer_del(timer->timer);
123 timer->running = false;
127 static inline void
128 e1000e_intrmgr_fire_delayed_interrupts(E1000ECore *core)
130 trace_e1000e_irq_fire_delayed_interrupts();
131 e1000e_set_interrupt_cause(core, 0);
134 static void
135 e1000e_intrmgr_on_timer(void *opaque)
137 E1000IntrDelayTimer *timer = opaque;
139 trace_e1000e_irq_throttling_timer(timer->delay_reg << 2);
141 timer->running = false;
142 e1000e_intrmgr_fire_delayed_interrupts(timer->core);
145 static void
146 e1000e_intrmgr_on_throttling_timer(void *opaque)
148 E1000IntrDelayTimer *timer = opaque;
150 assert(!msix_enabled(timer->core->owner));
152 timer->running = false;
154 if (!timer->core->itr_intr_pending) {
155 trace_e1000e_irq_throttling_no_pending_interrupts();
156 return;
159 if (msi_enabled(timer->core->owner)) {
160 trace_e1000e_irq_msi_notify_postponed();
161 e1000e_set_interrupt_cause(timer->core, 0);
162 } else {
163 trace_e1000e_irq_legacy_notify_postponed();
164 e1000e_set_interrupt_cause(timer->core, 0);
168 static void
169 e1000e_intrmgr_on_msix_throttling_timer(void *opaque)
171 E1000IntrDelayTimer *timer = opaque;
172 int idx = timer - &timer->core->eitr[0];
174 assert(msix_enabled(timer->core->owner));
176 timer->running = false;
178 if (!timer->core->eitr_intr_pending[idx]) {
179 trace_e1000e_irq_throttling_no_pending_vec(idx);
180 return;
183 trace_e1000e_irq_msix_notify_postponed_vec(idx);
184 msix_notify(timer->core->owner, idx);
187 static void
188 e1000e_intrmgr_initialize_all_timers(E1000ECore *core, bool create)
190 int i;
192 core->radv.delay_reg = RADV;
193 core->rdtr.delay_reg = RDTR;
194 core->raid.delay_reg = RAID;
195 core->tadv.delay_reg = TADV;
196 core->tidv.delay_reg = TIDV;
198 core->radv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
199 core->rdtr.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
200 core->raid.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
201 core->tadv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
202 core->tidv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
204 core->radv.core = core;
205 core->rdtr.core = core;
206 core->raid.core = core;
207 core->tadv.core = core;
208 core->tidv.core = core;
210 core->itr.core = core;
211 core->itr.delay_reg = ITR;
212 core->itr.delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
214 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
215 core->eitr[i].core = core;
216 core->eitr[i].delay_reg = EITR + i;
217 core->eitr[i].delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
220 if (!create) {
221 return;
224 core->radv.timer =
225 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->radv);
226 core->rdtr.timer =
227 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->rdtr);
228 core->raid.timer =
229 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->raid);
231 core->tadv.timer =
232 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tadv);
233 core->tidv.timer =
234 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tidv);
236 core->itr.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
237 e1000e_intrmgr_on_throttling_timer,
238 &core->itr);
240 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
241 core->eitr[i].timer =
242 timer_new_ns(QEMU_CLOCK_VIRTUAL,
243 e1000e_intrmgr_on_msix_throttling_timer,
244 &core->eitr[i]);
248 static inline void
249 e1000e_intrmgr_stop_delay_timers(E1000ECore *core)
251 e1000e_intrmgr_stop_timer(&core->radv);
252 e1000e_intrmgr_stop_timer(&core->rdtr);
253 e1000e_intrmgr_stop_timer(&core->raid);
254 e1000e_intrmgr_stop_timer(&core->tidv);
255 e1000e_intrmgr_stop_timer(&core->tadv);
258 static bool
259 e1000e_intrmgr_delay_rx_causes(E1000ECore *core, uint32_t *causes)
261 uint32_t delayable_causes;
262 uint32_t rdtr = core->mac[RDTR];
263 uint32_t radv = core->mac[RADV];
264 uint32_t raid = core->mac[RAID];
266 if (msix_enabled(core->owner)) {
267 return false;
270 delayable_causes = E1000_ICR_RXQ0 |
271 E1000_ICR_RXQ1 |
272 E1000_ICR_RXT0;
274 if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS)) {
275 delayable_causes |= E1000_ICR_ACK;
278 /* Clean up all causes that may be delayed */
279 core->delayed_causes |= *causes & delayable_causes;
280 *causes &= ~delayable_causes;
282 /* Check if delayed RX interrupts disabled by client
283 or if there are causes that cannot be delayed */
284 if ((rdtr == 0) || (*causes != 0)) {
285 return false;
288 /* Check if delayed RX ACK interrupts disabled by client
289 and there is an ACK packet received */
290 if ((raid == 0) && (core->delayed_causes & E1000_ICR_ACK)) {
291 return false;
294 /* All causes delayed */
295 e1000e_intrmgr_rearm_timer(&core->rdtr);
297 if (!core->radv.running && (radv != 0)) {
298 e1000e_intrmgr_rearm_timer(&core->radv);
301 if (!core->raid.running && (core->delayed_causes & E1000_ICR_ACK)) {
302 e1000e_intrmgr_rearm_timer(&core->raid);
305 return true;
308 static bool
309 e1000e_intrmgr_delay_tx_causes(E1000ECore *core, uint32_t *causes)
311 static const uint32_t delayable_causes = E1000_ICR_TXQ0 |
312 E1000_ICR_TXQ1 |
313 E1000_ICR_TXQE |
314 E1000_ICR_TXDW;
316 if (msix_enabled(core->owner)) {
317 return false;
320 /* Clean up all causes that may be delayed */
321 core->delayed_causes |= *causes & delayable_causes;
322 *causes &= ~delayable_causes;
324 /* If there are causes that cannot be delayed */
325 if (*causes != 0) {
326 return false;
329 /* All causes delayed */
330 e1000e_intrmgr_rearm_timer(&core->tidv);
332 if (!core->tadv.running && (core->mac[TADV] != 0)) {
333 e1000e_intrmgr_rearm_timer(&core->tadv);
336 return true;
339 static uint32_t
340 e1000e_intmgr_collect_delayed_causes(E1000ECore *core)
342 uint32_t res;
344 if (msix_enabled(core->owner)) {
345 assert(core->delayed_causes == 0);
346 return 0;
349 res = core->delayed_causes;
350 core->delayed_causes = 0;
352 e1000e_intrmgr_stop_delay_timers(core);
354 return res;
357 static void
358 e1000e_intrmgr_fire_all_timers(E1000ECore *core)
360 int i;
361 uint32_t val = e1000e_intmgr_collect_delayed_causes(core);
363 trace_e1000e_irq_adding_delayed_causes(val, core->mac[ICR]);
364 core->mac[ICR] |= val;
366 if (core->itr.running) {
367 timer_del(core->itr.timer);
368 e1000e_intrmgr_on_throttling_timer(&core->itr);
371 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
372 if (core->eitr[i].running) {
373 timer_del(core->eitr[i].timer);
374 e1000e_intrmgr_on_msix_throttling_timer(&core->eitr[i]);
379 static void
380 e1000e_intrmgr_resume(E1000ECore *core)
382 int i;
384 e1000e_intmgr_timer_resume(&core->radv);
385 e1000e_intmgr_timer_resume(&core->rdtr);
386 e1000e_intmgr_timer_resume(&core->raid);
387 e1000e_intmgr_timer_resume(&core->tidv);
388 e1000e_intmgr_timer_resume(&core->tadv);
390 e1000e_intmgr_timer_resume(&core->itr);
392 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
393 e1000e_intmgr_timer_resume(&core->eitr[i]);
397 static void
398 e1000e_intrmgr_pause(E1000ECore *core)
400 int i;
402 e1000e_intmgr_timer_pause(&core->radv);
403 e1000e_intmgr_timer_pause(&core->rdtr);
404 e1000e_intmgr_timer_pause(&core->raid);
405 e1000e_intmgr_timer_pause(&core->tidv);
406 e1000e_intmgr_timer_pause(&core->tadv);
408 e1000e_intmgr_timer_pause(&core->itr);
410 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
411 e1000e_intmgr_timer_pause(&core->eitr[i]);
415 static void
416 e1000e_intrmgr_reset(E1000ECore *core)
418 int i;
420 core->delayed_causes = 0;
422 e1000e_intrmgr_stop_delay_timers(core);
424 e1000e_intrmgr_stop_timer(&core->itr);
426 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
427 e1000e_intrmgr_stop_timer(&core->eitr[i]);
431 static void
432 e1000e_intrmgr_pci_unint(E1000ECore *core)
434 int i;
436 timer_del(core->radv.timer);
437 timer_free(core->radv.timer);
438 timer_del(core->rdtr.timer);
439 timer_free(core->rdtr.timer);
440 timer_del(core->raid.timer);
441 timer_free(core->raid.timer);
443 timer_del(core->tadv.timer);
444 timer_free(core->tadv.timer);
445 timer_del(core->tidv.timer);
446 timer_free(core->tidv.timer);
448 timer_del(core->itr.timer);
449 timer_free(core->itr.timer);
451 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
452 timer_del(core->eitr[i].timer);
453 timer_free(core->eitr[i].timer);
457 static void
458 e1000e_intrmgr_pci_realize(E1000ECore *core)
460 e1000e_intrmgr_initialize_all_timers(core, true);
463 static inline bool
464 e1000e_rx_csum_enabled(E1000ECore *core)
466 return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true;
469 static inline bool
470 e1000e_rx_use_legacy_descriptor(E1000ECore *core)
472 return (core->mac[RFCTL] & E1000_RFCTL_EXTEN) ? false : true;
475 static inline bool
476 e1000e_rx_use_ps_descriptor(E1000ECore *core)
478 return !e1000e_rx_use_legacy_descriptor(core) &&
479 (core->mac[RCTL] & E1000_RCTL_DTYP_PS);
482 static inline bool
483 e1000e_rss_enabled(E1000ECore *core)
485 return E1000_MRQC_ENABLED(core->mac[MRQC]) &&
486 !e1000e_rx_csum_enabled(core) &&
487 !e1000e_rx_use_legacy_descriptor(core);
490 typedef struct E1000E_RSSInfo_st {
491 bool enabled;
492 uint32_t hash;
493 uint32_t queue;
494 uint32_t type;
495 } E1000E_RSSInfo;
497 static uint32_t
498 e1000e_rss_get_hash_type(E1000ECore *core, struct NetRxPkt *pkt)
500 bool isip4, isip6, isudp, istcp;
502 assert(e1000e_rss_enabled(core));
504 net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
506 if (isip4) {
507 bool fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
509 trace_e1000e_rx_rss_ip4(fragment, istcp, core->mac[MRQC],
510 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]),
511 E1000_MRQC_EN_IPV4(core->mac[MRQC]));
513 if (!fragment && istcp && E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) {
514 return E1000_MRQ_RSS_TYPE_IPV4TCP;
517 if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) {
518 return E1000_MRQ_RSS_TYPE_IPV4;
520 } else if (isip6) {
521 eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt);
523 bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS;
524 bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS;
527 * Following two traces must not be combined because resulting
528 * event will have 11 arguments totally and some trace backends
529 * (at least "ust") have limitation of maximum 10 arguments per
530 * event. Events with more arguments fail to compile for
531 * backends like these.
533 trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]);
534 trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, istcp,
535 ip6info->has_ext_hdrs,
536 ip6info->rss_ex_dst_valid,
537 ip6info->rss_ex_src_valid,
538 core->mac[MRQC],
539 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC]),
540 E1000_MRQC_EN_IPV6EX(core->mac[MRQC]),
541 E1000_MRQC_EN_IPV6(core->mac[MRQC]));
543 if ((!ex_dis || !ip6info->has_ext_hdrs) &&
544 (!new_ex_dis || !(ip6info->rss_ex_dst_valid ||
545 ip6info->rss_ex_src_valid))) {
547 if (istcp && !ip6info->fragment &&
548 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC])) {
549 return E1000_MRQ_RSS_TYPE_IPV6TCP;
552 if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) {
553 return E1000_MRQ_RSS_TYPE_IPV6EX;
558 if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) {
559 return E1000_MRQ_RSS_TYPE_IPV6;
564 return E1000_MRQ_RSS_TYPE_NONE;
567 static uint32_t
568 e1000e_rss_calc_hash(E1000ECore *core,
569 struct NetRxPkt *pkt,
570 E1000E_RSSInfo *info)
572 NetRxPktRssType type;
574 assert(e1000e_rss_enabled(core));
576 switch (info->type) {
577 case E1000_MRQ_RSS_TYPE_IPV4:
578 type = NetPktRssIpV4;
579 break;
580 case E1000_MRQ_RSS_TYPE_IPV4TCP:
581 type = NetPktRssIpV4Tcp;
582 break;
583 case E1000_MRQ_RSS_TYPE_IPV6TCP:
584 type = NetPktRssIpV6Tcp;
585 break;
586 case E1000_MRQ_RSS_TYPE_IPV6:
587 type = NetPktRssIpV6;
588 break;
589 case E1000_MRQ_RSS_TYPE_IPV6EX:
590 type = NetPktRssIpV6Ex;
591 break;
592 default:
593 assert(false);
594 return 0;
597 return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]);
600 static void
601 e1000e_rss_parse_packet(E1000ECore *core,
602 struct NetRxPkt *pkt,
603 E1000E_RSSInfo *info)
605 trace_e1000e_rx_rss_started();
607 if (!e1000e_rss_enabled(core)) {
608 info->enabled = false;
609 info->hash = 0;
610 info->queue = 0;
611 info->type = 0;
612 trace_e1000e_rx_rss_disabled();
613 return;
616 info->enabled = true;
618 info->type = e1000e_rss_get_hash_type(core, pkt);
620 trace_e1000e_rx_rss_type(info->type);
622 if (info->type == E1000_MRQ_RSS_TYPE_NONE) {
623 info->hash = 0;
624 info->queue = 0;
625 return;
628 info->hash = e1000e_rss_calc_hash(core, pkt, info);
629 info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash);
632 static void
633 e1000e_setup_tx_offloads(E1000ECore *core, struct e1000e_tx *tx)
635 if (tx->props.tse && tx->props.cptse) {
636 net_tx_pkt_build_vheader(tx->tx_pkt, true, true, tx->props.mss);
637 net_tx_pkt_update_ip_checksums(tx->tx_pkt);
638 e1000x_inc_reg_if_not_full(core->mac, TSCTC);
639 return;
642 if (tx->props.sum_needed & E1000_TXD_POPTS_TXSM) {
643 net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0);
646 if (tx->props.sum_needed & E1000_TXD_POPTS_IXSM) {
647 net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt);
651 static bool
652 e1000e_tx_pkt_send(E1000ECore *core, struct e1000e_tx *tx, int queue_index)
654 int target_queue = MIN(core->max_queue_num, queue_index);
655 NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue);
657 e1000e_setup_tx_offloads(core, tx);
659 net_tx_pkt_dump(tx->tx_pkt);
661 if ((core->phy[0][PHY_CTRL] & MII_CR_LOOPBACK) ||
662 ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) {
663 return net_tx_pkt_send_loopback(tx->tx_pkt, queue);
664 } else {
665 return net_tx_pkt_send(tx->tx_pkt, queue);
669 static void
670 e1000e_on_tx_done_update_stats(E1000ECore *core, struct NetTxPkt *tx_pkt)
672 static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
673 PTC1023, PTC1522 };
675 size_t tot_len = net_tx_pkt_get_total_len(tx_pkt);
677 e1000x_increase_size_stats(core->mac, PTCregs, tot_len);
678 e1000x_inc_reg_if_not_full(core->mac, TPT);
679 e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len);
681 switch (net_tx_pkt_get_packet_type(tx_pkt)) {
682 case ETH_PKT_BCAST:
683 e1000x_inc_reg_if_not_full(core->mac, BPTC);
684 break;
685 case ETH_PKT_MCAST:
686 e1000x_inc_reg_if_not_full(core->mac, MPTC);
687 break;
688 case ETH_PKT_UCAST:
689 break;
690 default:
691 g_assert_not_reached();
694 core->mac[GPTC] = core->mac[TPT];
695 core->mac[GOTCL] = core->mac[TOTL];
696 core->mac[GOTCH] = core->mac[TOTH];
699 static void
700 e1000e_process_tx_desc(E1000ECore *core,
701 struct e1000e_tx *tx,
702 struct e1000_tx_desc *dp,
703 int queue_index)
705 uint32_t txd_lower = le32_to_cpu(dp->lower.data);
706 uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
707 unsigned int split_size = txd_lower & 0xffff;
708 uint64_t addr;
709 struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
710 bool eop = txd_lower & E1000_TXD_CMD_EOP;
712 if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */
713 e1000x_read_tx_ctx_descr(xp, &tx->props);
714 e1000e_process_snap_option(core, le32_to_cpu(xp->cmd_and_length));
715 return;
716 } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
717 /* data descriptor */
718 tx->props.sum_needed = le32_to_cpu(dp->upper.data) >> 8;
719 tx->props.cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0;
720 e1000e_process_ts_option(core, dp);
721 } else {
722 /* legacy descriptor */
723 e1000e_process_ts_option(core, dp);
724 tx->props.cptse = 0;
727 addr = le64_to_cpu(dp->buffer_addr);
729 if (!tx->skip_cp) {
730 if (!net_tx_pkt_add_raw_fragment(tx->tx_pkt, addr, split_size)) {
731 tx->skip_cp = true;
735 if (eop) {
736 if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) {
737 if (e1000x_vlan_enabled(core->mac) &&
738 e1000x_is_vlan_txd(txd_lower)) {
739 net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt,
740 le16_to_cpu(dp->upper.fields.special), core->vet);
742 if (e1000e_tx_pkt_send(core, tx, queue_index)) {
743 e1000e_on_tx_done_update_stats(core, tx->tx_pkt);
747 tx->skip_cp = false;
748 net_tx_pkt_reset(tx->tx_pkt);
750 tx->props.sum_needed = 0;
751 tx->props.cptse = 0;
755 static inline uint32_t
756 e1000e_tx_wb_interrupt_cause(E1000ECore *core, int queue_idx)
758 if (!msix_enabled(core->owner)) {
759 return E1000_ICR_TXDW;
762 return (queue_idx == 0) ? E1000_ICR_TXQ0 : E1000_ICR_TXQ1;
765 static inline uint32_t
766 e1000e_rx_wb_interrupt_cause(E1000ECore *core, int queue_idx,
767 bool min_threshold_hit)
769 if (!msix_enabled(core->owner)) {
770 return E1000_ICS_RXT0 | (min_threshold_hit ? E1000_ICS_RXDMT0 : 0);
773 return (queue_idx == 0) ? E1000_ICR_RXQ0 : E1000_ICR_RXQ1;
776 static uint32_t
777 e1000e_txdesc_writeback(E1000ECore *core, dma_addr_t base,
778 struct e1000_tx_desc *dp, bool *ide, int queue_idx)
780 uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
782 if (!(txd_lower & E1000_TXD_CMD_RS) &&
783 !(core->mac[IVAR] & E1000_IVAR_TX_INT_EVERY_WB)) {
784 return 0;
787 *ide = (txd_lower & E1000_TXD_CMD_IDE) ? true : false;
789 txd_upper = le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD;
791 dp->upper.data = cpu_to_le32(txd_upper);
792 pci_dma_write(core->owner, base + ((char *)&dp->upper - (char *)dp),
793 &dp->upper, sizeof(dp->upper));
794 return e1000e_tx_wb_interrupt_cause(core, queue_idx);
797 typedef struct E1000E_RingInfo_st {
798 int dbah;
799 int dbal;
800 int dlen;
801 int dh;
802 int dt;
803 int idx;
804 } E1000E_RingInfo;
806 static inline bool
807 e1000e_ring_empty(E1000ECore *core, const E1000E_RingInfo *r)
809 return core->mac[r->dh] == core->mac[r->dt];
812 static inline uint64_t
813 e1000e_ring_base(E1000ECore *core, const E1000E_RingInfo *r)
815 uint64_t bah = core->mac[r->dbah];
816 uint64_t bal = core->mac[r->dbal];
818 return (bah << 32) + bal;
821 static inline uint64_t
822 e1000e_ring_head_descr(E1000ECore *core, const E1000E_RingInfo *r)
824 return e1000e_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh];
827 static inline void
828 e1000e_ring_advance(E1000ECore *core, const E1000E_RingInfo *r, uint32_t count)
830 core->mac[r->dh] += count;
832 if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) {
833 core->mac[r->dh] = 0;
837 static inline uint32_t
838 e1000e_ring_free_descr_num(E1000ECore *core, const E1000E_RingInfo *r)
840 trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen],
841 core->mac[r->dh], core->mac[r->dt]);
843 if (core->mac[r->dh] <= core->mac[r->dt]) {
844 return core->mac[r->dt] - core->mac[r->dh];
847 if (core->mac[r->dh] > core->mac[r->dt]) {
848 return core->mac[r->dlen] / E1000_RING_DESC_LEN +
849 core->mac[r->dt] - core->mac[r->dh];
852 g_assert_not_reached();
853 return 0;
856 static inline bool
857 e1000e_ring_enabled(E1000ECore *core, const E1000E_RingInfo *r)
859 return core->mac[r->dlen] > 0;
862 static inline uint32_t
863 e1000e_ring_len(E1000ECore *core, const E1000E_RingInfo *r)
865 return core->mac[r->dlen];
868 typedef struct E1000E_TxRing_st {
869 const E1000E_RingInfo *i;
870 struct e1000e_tx *tx;
871 } E1000E_TxRing;
873 static inline int
874 e1000e_mq_queue_idx(int base_reg_idx, int reg_idx)
876 return (reg_idx - base_reg_idx) / (0x100 >> 2);
879 static inline void
880 e1000e_tx_ring_init(E1000ECore *core, E1000E_TxRing *txr, int idx)
882 static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
883 { TDBAH, TDBAL, TDLEN, TDH, TDT, 0 },
884 { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 }
887 assert(idx < ARRAY_SIZE(i));
889 txr->i = &i[idx];
890 txr->tx = &core->tx[idx];
893 typedef struct E1000E_RxRing_st {
894 const E1000E_RingInfo *i;
895 } E1000E_RxRing;
897 static inline void
898 e1000e_rx_ring_init(E1000ECore *core, E1000E_RxRing *rxr, int idx)
900 static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
901 { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 },
902 { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 }
905 assert(idx < ARRAY_SIZE(i));
907 rxr->i = &i[idx];
910 static void
911 e1000e_start_xmit(E1000ECore *core, const E1000E_TxRing *txr)
913 dma_addr_t base;
914 struct e1000_tx_desc desc;
915 bool ide = false;
916 const E1000E_RingInfo *txi = txr->i;
917 uint32_t cause = E1000_ICS_TXQE;
919 if (!(core->mac[TCTL] & E1000_TCTL_EN)) {
920 trace_e1000e_tx_disabled();
921 return;
924 while (!e1000e_ring_empty(core, txi)) {
925 base = e1000e_ring_head_descr(core, txi);
927 pci_dma_read(core->owner, base, &desc, sizeof(desc));
929 trace_e1000e_tx_descr((void *)(intptr_t)desc.buffer_addr,
930 desc.lower.data, desc.upper.data);
932 e1000e_process_tx_desc(core, txr->tx, &desc, txi->idx);
933 cause |= e1000e_txdesc_writeback(core, base, &desc, &ide, txi->idx);
935 e1000e_ring_advance(core, txi, 1);
938 if (!ide || !e1000e_intrmgr_delay_tx_causes(core, &cause)) {
939 e1000e_set_interrupt_cause(core, cause);
943 static bool
944 e1000e_has_rxbufs(E1000ECore *core, const E1000E_RingInfo *r,
945 size_t total_size)
947 uint32_t bufs = e1000e_ring_free_descr_num(core, r);
949 trace_e1000e_rx_has_buffers(r->idx, bufs, total_size,
950 core->rx_desc_buf_size);
952 return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) *
953 core->rx_desc_buf_size;
956 static inline void
957 e1000e_start_recv(E1000ECore *core)
959 int i;
961 trace_e1000e_rx_start_recv();
963 for (i = 0; i <= core->max_queue_num; i++) {
964 qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i));
969 e1000e_can_receive(E1000ECore *core)
971 int i;
973 if (!e1000x_rx_ready(core->owner, core->mac)) {
974 return false;
977 for (i = 0; i < E1000E_NUM_QUEUES; i++) {
978 E1000E_RxRing rxr;
980 e1000e_rx_ring_init(core, &rxr, i);
981 if (e1000e_ring_enabled(core, rxr.i) &&
982 e1000e_has_rxbufs(core, rxr.i, 1)) {
983 trace_e1000e_rx_can_recv();
984 return true;
988 trace_e1000e_rx_can_recv_rings_full();
989 return false;
992 ssize_t
993 e1000e_receive(E1000ECore *core, const uint8_t *buf, size_t size)
995 const struct iovec iov = {
996 .iov_base = (uint8_t *)buf,
997 .iov_len = size
1000 return e1000e_receive_iov(core, &iov, 1);
1003 static inline bool
1004 e1000e_rx_l3_cso_enabled(E1000ECore *core)
1006 return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD);
1009 static inline bool
1010 e1000e_rx_l4_cso_enabled(E1000ECore *core)
1012 return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD);
1015 static bool
1016 e1000e_receive_filter(E1000ECore *core, const uint8_t *buf, int size)
1018 uint32_t rctl = core->mac[RCTL];
1020 if (e1000x_is_vlan_packet(buf, core->vet) &&
1021 e1000x_vlan_rx_filter_enabled(core->mac)) {
1022 uint16_t vid = lduw_be_p(buf + 14);
1023 uint32_t vfta = ldl_le_p((uint32_t *)(core->mac + VFTA) +
1024 ((vid >> 5) & 0x7f));
1025 if ((vfta & (1 << (vid & 0x1f))) == 0) {
1026 trace_e1000e_rx_flt_vlan_mismatch(vid);
1027 return false;
1028 } else {
1029 trace_e1000e_rx_flt_vlan_match(vid);
1033 switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
1034 case ETH_PKT_UCAST:
1035 if (rctl & E1000_RCTL_UPE) {
1036 return true; /* promiscuous ucast */
1038 break;
1040 case ETH_PKT_BCAST:
1041 if (rctl & E1000_RCTL_BAM) {
1042 return true; /* broadcast enabled */
1044 break;
1046 case ETH_PKT_MCAST:
1047 if (rctl & E1000_RCTL_MPE) {
1048 return true; /* promiscuous mcast */
1050 break;
1052 default:
1053 g_assert_not_reached();
1056 return e1000x_rx_group_filter(core->mac, buf);
1059 static inline void
1060 e1000e_read_lgcy_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr)
1062 struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc;
1063 *buff_addr = le64_to_cpu(d->buffer_addr);
1066 static inline void
1067 e1000e_read_ext_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr)
1069 union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc;
1070 *buff_addr = le64_to_cpu(d->read.buffer_addr);
1073 static inline void
1074 e1000e_read_ps_rx_descr(E1000ECore *core, uint8_t *desc,
1075 hwaddr (*buff_addr)[MAX_PS_BUFFERS])
1077 int i;
1078 union e1000_rx_desc_packet_split *d =
1079 (union e1000_rx_desc_packet_split *) desc;
1081 for (i = 0; i < MAX_PS_BUFFERS; i++) {
1082 (*buff_addr)[i] = le64_to_cpu(d->read.buffer_addr[i]);
1085 trace_e1000e_rx_desc_ps_read((*buff_addr)[0], (*buff_addr)[1],
1086 (*buff_addr)[2], (*buff_addr)[3]);
1089 static inline void
1090 e1000e_read_rx_descr(E1000ECore *core, uint8_t *desc,
1091 hwaddr (*buff_addr)[MAX_PS_BUFFERS])
1093 if (e1000e_rx_use_legacy_descriptor(core)) {
1094 e1000e_read_lgcy_rx_descr(core, desc, &(*buff_addr)[0]);
1095 (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0;
1096 } else {
1097 if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1098 e1000e_read_ps_rx_descr(core, desc, buff_addr);
1099 } else {
1100 e1000e_read_ext_rx_descr(core, desc, &(*buff_addr)[0]);
1101 (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0;
1106 static void
1107 e1000e_verify_csum_in_sw(E1000ECore *core,
1108 struct NetRxPkt *pkt,
1109 uint32_t *status_flags,
1110 bool istcp, bool isudp)
1112 bool csum_valid;
1113 uint32_t csum_error;
1115 if (e1000e_rx_l3_cso_enabled(core)) {
1116 if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) {
1117 trace_e1000e_rx_metadata_l3_csum_validation_failed();
1118 } else {
1119 csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE;
1120 *status_flags |= E1000_RXD_STAT_IPCS | csum_error;
1122 } else {
1123 trace_e1000e_rx_metadata_l3_cso_disabled();
1126 if (!e1000e_rx_l4_cso_enabled(core)) {
1127 trace_e1000e_rx_metadata_l4_cso_disabled();
1128 return;
1131 if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) {
1132 trace_e1000e_rx_metadata_l4_csum_validation_failed();
1133 return;
1136 csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE;
1138 if (istcp) {
1139 *status_flags |= E1000_RXD_STAT_TCPCS |
1140 csum_error;
1141 } else if (isudp) {
1142 *status_flags |= E1000_RXD_STAT_TCPCS |
1143 E1000_RXD_STAT_UDPCS |
1144 csum_error;
1148 static inline bool
1149 e1000e_is_tcp_ack(E1000ECore *core, struct NetRxPkt *rx_pkt)
1151 if (!net_rx_pkt_is_tcp_ack(rx_pkt)) {
1152 return false;
1155 if (core->mac[RFCTL] & E1000_RFCTL_ACK_DATA_DIS) {
1156 return !net_rx_pkt_has_tcp_data(rx_pkt);
1159 return true;
1162 static void
1163 e1000e_build_rx_metadata(E1000ECore *core,
1164 struct NetRxPkt *pkt,
1165 bool is_eop,
1166 const E1000E_RSSInfo *rss_info,
1167 uint32_t *rss, uint32_t *mrq,
1168 uint32_t *status_flags,
1169 uint16_t *ip_id,
1170 uint16_t *vlan_tag)
1172 struct virtio_net_hdr *vhdr;
1173 bool isip4, isip6, istcp, isudp;
1174 uint32_t pkt_type;
1176 *status_flags = E1000_RXD_STAT_DD;
1178 /* No additional metadata needed for non-EOP descriptors */
1179 if (!is_eop) {
1180 goto func_exit;
1183 *status_flags |= E1000_RXD_STAT_EOP;
1185 net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
1186 trace_e1000e_rx_metadata_protocols(isip4, isip6, isudp, istcp);
1188 /* VLAN state */
1189 if (net_rx_pkt_is_vlan_stripped(pkt)) {
1190 *status_flags |= E1000_RXD_STAT_VP;
1191 *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt));
1192 trace_e1000e_rx_metadata_vlan(*vlan_tag);
1195 /* Packet parsing results */
1196 if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) {
1197 if (rss_info->enabled) {
1198 *rss = cpu_to_le32(rss_info->hash);
1199 *mrq = cpu_to_le32(rss_info->type | (rss_info->queue << 8));
1200 trace_e1000e_rx_metadata_rss(*rss, *mrq);
1202 } else if (isip4) {
1203 *status_flags |= E1000_RXD_STAT_IPIDV;
1204 *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt));
1205 trace_e1000e_rx_metadata_ip_id(*ip_id);
1208 if (istcp && e1000e_is_tcp_ack(core, pkt)) {
1209 *status_flags |= E1000_RXD_STAT_ACK;
1210 trace_e1000e_rx_metadata_ack();
1213 if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) {
1214 trace_e1000e_rx_metadata_ipv6_filtering_disabled();
1215 pkt_type = E1000_RXD_PKT_MAC;
1216 } else if (istcp || isudp) {
1217 pkt_type = isip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP;
1218 } else if (isip4 || isip6) {
1219 pkt_type = isip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6;
1220 } else {
1221 pkt_type = E1000_RXD_PKT_MAC;
1224 *status_flags |= E1000_RXD_PKT_TYPE(pkt_type);
1225 trace_e1000e_rx_metadata_pkt_type(pkt_type);
1227 /* RX CSO information */
1228 if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) {
1229 trace_e1000e_rx_metadata_ipv6_sum_disabled();
1230 goto func_exit;
1233 if (!net_rx_pkt_has_virt_hdr(pkt)) {
1234 trace_e1000e_rx_metadata_no_virthdr();
1235 e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp);
1236 goto func_exit;
1239 vhdr = net_rx_pkt_get_vhdr(pkt);
1241 if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) &&
1242 !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) {
1243 trace_e1000e_rx_metadata_virthdr_no_csum_info();
1244 e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp);
1245 goto func_exit;
1248 if (e1000e_rx_l3_cso_enabled(core)) {
1249 *status_flags |= isip4 ? E1000_RXD_STAT_IPCS : 0;
1250 } else {
1251 trace_e1000e_rx_metadata_l3_cso_disabled();
1254 if (e1000e_rx_l4_cso_enabled(core)) {
1255 if (istcp) {
1256 *status_flags |= E1000_RXD_STAT_TCPCS;
1257 } else if (isudp) {
1258 *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS;
1260 } else {
1261 trace_e1000e_rx_metadata_l4_cso_disabled();
1264 trace_e1000e_rx_metadata_status_flags(*status_flags);
1266 func_exit:
1267 *status_flags = cpu_to_le32(*status_flags);
1270 static inline void
1271 e1000e_write_lgcy_rx_descr(E1000ECore *core, uint8_t *desc,
1272 struct NetRxPkt *pkt,
1273 const E1000E_RSSInfo *rss_info,
1274 uint16_t length)
1276 uint32_t status_flags, rss, mrq;
1277 uint16_t ip_id;
1279 struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc;
1281 memset(d, 0, sizeof(*d));
1283 assert(!rss_info->enabled);
1285 d->length = cpu_to_le16(length);
1287 e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1288 rss_info,
1289 &rss, &mrq,
1290 &status_flags, &ip_id,
1291 &d->special);
1292 d->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24);
1293 d->status = (uint8_t) le32_to_cpu(status_flags);
1296 static inline void
1297 e1000e_write_ext_rx_descr(E1000ECore *core, uint8_t *desc,
1298 struct NetRxPkt *pkt,
1299 const E1000E_RSSInfo *rss_info,
1300 uint16_t length)
1302 union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc;
1304 memset(d, 0, sizeof(*d));
1306 d->wb.upper.length = cpu_to_le16(length);
1308 e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1309 rss_info,
1310 &d->wb.lower.hi_dword.rss,
1311 &d->wb.lower.mrq,
1312 &d->wb.upper.status_error,
1313 &d->wb.lower.hi_dword.csum_ip.ip_id,
1314 &d->wb.upper.vlan);
1317 static inline void
1318 e1000e_write_ps_rx_descr(E1000ECore *core, uint8_t *desc,
1319 struct NetRxPkt *pkt,
1320 const E1000E_RSSInfo *rss_info,
1321 size_t ps_hdr_len,
1322 uint16_t(*written)[MAX_PS_BUFFERS])
1324 int i;
1325 union e1000_rx_desc_packet_split *d =
1326 (union e1000_rx_desc_packet_split *) desc;
1328 memset(d, 0, sizeof(*d));
1330 d->wb.middle.length0 = cpu_to_le16((*written)[0]);
1332 for (i = 0; i < PS_PAGE_BUFFERS; i++) {
1333 d->wb.upper.length[i] = cpu_to_le16((*written)[i + 1]);
1336 e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1337 rss_info,
1338 &d->wb.lower.hi_dword.rss,
1339 &d->wb.lower.mrq,
1340 &d->wb.middle.status_error,
1341 &d->wb.lower.hi_dword.csum_ip.ip_id,
1342 &d->wb.middle.vlan);
1344 d->wb.upper.header_status =
1345 cpu_to_le16(ps_hdr_len | (ps_hdr_len ? E1000_RXDPS_HDRSTAT_HDRSP : 0));
1347 trace_e1000e_rx_desc_ps_write((*written)[0], (*written)[1],
1348 (*written)[2], (*written)[3]);
1351 static inline void
1352 e1000e_write_rx_descr(E1000ECore *core, uint8_t *desc,
1353 struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info,
1354 size_t ps_hdr_len, uint16_t(*written)[MAX_PS_BUFFERS])
1356 if (e1000e_rx_use_legacy_descriptor(core)) {
1357 assert(ps_hdr_len == 0);
1358 e1000e_write_lgcy_rx_descr(core, desc, pkt, rss_info, (*written)[0]);
1359 } else {
1360 if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1361 e1000e_write_ps_rx_descr(core, desc, pkt, rss_info,
1362 ps_hdr_len, written);
1363 } else {
1364 assert(ps_hdr_len == 0);
1365 e1000e_write_ext_rx_descr(core, desc, pkt, rss_info,
1366 (*written)[0]);
1371 typedef struct e1000e_ba_state_st {
1372 uint16_t written[MAX_PS_BUFFERS];
1373 uint8_t cur_idx;
1374 } e1000e_ba_state;
1376 static inline void
1377 e1000e_write_hdr_to_rx_buffers(E1000ECore *core,
1378 hwaddr (*ba)[MAX_PS_BUFFERS],
1379 e1000e_ba_state *bastate,
1380 const char *data,
1381 dma_addr_t data_len)
1383 assert(data_len <= core->rxbuf_sizes[0] - bastate->written[0]);
1385 pci_dma_write(core->owner, (*ba)[0] + bastate->written[0], data, data_len);
1386 bastate->written[0] += data_len;
1388 bastate->cur_idx = 1;
1391 static void
1392 e1000e_write_to_rx_buffers(E1000ECore *core,
1393 hwaddr (*ba)[MAX_PS_BUFFERS],
1394 e1000e_ba_state *bastate,
1395 const char *data,
1396 dma_addr_t data_len)
1398 while (data_len > 0) {
1399 uint32_t cur_buf_len = core->rxbuf_sizes[bastate->cur_idx];
1400 uint32_t cur_buf_bytes_left = cur_buf_len -
1401 bastate->written[bastate->cur_idx];
1402 uint32_t bytes_to_write = MIN(data_len, cur_buf_bytes_left);
1404 trace_e1000e_rx_desc_buff_write(bastate->cur_idx,
1405 (*ba)[bastate->cur_idx],
1406 bastate->written[bastate->cur_idx],
1407 data,
1408 bytes_to_write);
1410 pci_dma_write(core->owner,
1411 (*ba)[bastate->cur_idx] + bastate->written[bastate->cur_idx],
1412 data, bytes_to_write);
1414 bastate->written[bastate->cur_idx] += bytes_to_write;
1415 data += bytes_to_write;
1416 data_len -= bytes_to_write;
1418 if (bastate->written[bastate->cur_idx] == cur_buf_len) {
1419 bastate->cur_idx++;
1422 assert(bastate->cur_idx < MAX_PS_BUFFERS);
1426 static void
1427 e1000e_update_rx_stats(E1000ECore *core,
1428 size_t data_size,
1429 size_t data_fcs_size)
1431 e1000x_update_rx_total_stats(core->mac, data_size, data_fcs_size);
1433 switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
1434 case ETH_PKT_BCAST:
1435 e1000x_inc_reg_if_not_full(core->mac, BPRC);
1436 break;
1438 case ETH_PKT_MCAST:
1439 e1000x_inc_reg_if_not_full(core->mac, MPRC);
1440 break;
1442 default:
1443 break;
1447 static inline bool
1448 e1000e_rx_descr_threshold_hit(E1000ECore *core, const E1000E_RingInfo *rxi)
1450 return e1000e_ring_free_descr_num(core, rxi) ==
1451 e1000e_ring_len(core, rxi) >> core->rxbuf_min_shift;
1454 static bool
1455 e1000e_do_ps(E1000ECore *core, struct NetRxPkt *pkt, size_t *hdr_len)
1457 bool isip4, isip6, isudp, istcp;
1458 bool fragment;
1460 if (!e1000e_rx_use_ps_descriptor(core)) {
1461 return false;
1464 net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
1466 if (isip4) {
1467 fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
1468 } else if (isip6) {
1469 fragment = net_rx_pkt_get_ip6_info(pkt)->fragment;
1470 } else {
1471 return false;
1474 if (fragment && (core->mac[RFCTL] & E1000_RFCTL_IPFRSP_DIS)) {
1475 return false;
1478 if (!fragment && (isudp || istcp)) {
1479 *hdr_len = net_rx_pkt_get_l5_hdr_offset(pkt);
1480 } else {
1481 *hdr_len = net_rx_pkt_get_l4_hdr_offset(pkt);
1484 if ((*hdr_len > core->rxbuf_sizes[0]) ||
1485 (*hdr_len > net_rx_pkt_get_total_len(pkt))) {
1486 return false;
1489 return true;
1492 static void
1493 e1000e_write_packet_to_guest(E1000ECore *core, struct NetRxPkt *pkt,
1494 const E1000E_RxRing *rxr,
1495 const E1000E_RSSInfo *rss_info)
1497 PCIDevice *d = core->owner;
1498 dma_addr_t base;
1499 uint8_t desc[E1000_MAX_RX_DESC_LEN];
1500 size_t desc_size;
1501 size_t desc_offset = 0;
1502 size_t iov_ofs = 0;
1504 struct iovec *iov = net_rx_pkt_get_iovec(pkt);
1505 size_t size = net_rx_pkt_get_total_len(pkt);
1506 size_t total_size = size + e1000x_fcs_len(core->mac);
1507 const E1000E_RingInfo *rxi;
1508 size_t ps_hdr_len = 0;
1509 bool do_ps = e1000e_do_ps(core, pkt, &ps_hdr_len);
1511 rxi = rxr->i;
1513 do {
1514 hwaddr ba[MAX_PS_BUFFERS];
1515 e1000e_ba_state bastate = { { 0 } };
1516 bool is_last = false;
1517 bool is_first = true;
1519 desc_size = total_size - desc_offset;
1521 if (desc_size > core->rx_desc_buf_size) {
1522 desc_size = core->rx_desc_buf_size;
1525 base = e1000e_ring_head_descr(core, rxi);
1527 pci_dma_read(d, base, &desc, core->rx_desc_len);
1529 trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len);
1531 e1000e_read_rx_descr(core, desc, &ba);
1533 if (ba[0]) {
1534 if (desc_offset < size) {
1535 static const uint32_t fcs_pad;
1536 size_t iov_copy;
1537 size_t copy_size = size - desc_offset;
1538 if (copy_size > core->rx_desc_buf_size) {
1539 copy_size = core->rx_desc_buf_size;
1542 /* For PS mode copy the packet header first */
1543 if (do_ps) {
1544 if (is_first) {
1545 size_t ps_hdr_copied = 0;
1546 do {
1547 iov_copy = MIN(ps_hdr_len - ps_hdr_copied,
1548 iov->iov_len - iov_ofs);
1550 e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate,
1551 iov->iov_base, iov_copy);
1553 copy_size -= iov_copy;
1554 ps_hdr_copied += iov_copy;
1556 iov_ofs += iov_copy;
1557 if (iov_ofs == iov->iov_len) {
1558 iov++;
1559 iov_ofs = 0;
1561 } while (ps_hdr_copied < ps_hdr_len);
1563 is_first = false;
1564 } else {
1565 /* Leave buffer 0 of each descriptor except first */
1566 /* empty as per spec 7.1.5.1 */
1567 e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate,
1568 NULL, 0);
1572 /* Copy packet payload */
1573 while (copy_size) {
1574 iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
1576 e1000e_write_to_rx_buffers(core, &ba, &bastate,
1577 iov->iov_base + iov_ofs, iov_copy);
1579 copy_size -= iov_copy;
1580 iov_ofs += iov_copy;
1581 if (iov_ofs == iov->iov_len) {
1582 iov++;
1583 iov_ofs = 0;
1587 if (desc_offset + desc_size >= total_size) {
1588 /* Simulate FCS checksum presence in the last descriptor */
1589 e1000e_write_to_rx_buffers(core, &ba, &bastate,
1590 (const char *) &fcs_pad, e1000x_fcs_len(core->mac));
1593 desc_offset += desc_size;
1594 if (desc_offset >= total_size) {
1595 is_last = true;
1597 } else { /* as per intel docs; skip descriptors with null buf addr */
1598 trace_e1000e_rx_null_descriptor();
1601 e1000e_write_rx_descr(core, desc, is_last ? core->rx_pkt : NULL,
1602 rss_info, do_ps ? ps_hdr_len : 0, &bastate.written);
1603 pci_dma_write(d, base, &desc, core->rx_desc_len);
1605 e1000e_ring_advance(core, rxi,
1606 core->rx_desc_len / E1000_MIN_RX_DESC_LEN);
1608 } while (desc_offset < total_size);
1610 e1000e_update_rx_stats(core, size, total_size);
1613 static inline void
1614 e1000e_rx_fix_l4_csum(E1000ECore *core, struct NetRxPkt *pkt)
1616 if (net_rx_pkt_has_virt_hdr(pkt)) {
1617 struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt);
1619 if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
1620 net_rx_pkt_fix_l4_csum(pkt);
1625 ssize_t
1626 e1000e_receive_iov(E1000ECore *core, const struct iovec *iov, int iovcnt)
1628 static const int maximum_ethernet_hdr_len = (14 + 4);
1629 /* Min. octets in an ethernet frame sans FCS */
1630 static const int min_buf_size = 60;
1632 uint32_t n = 0;
1633 uint8_t min_buf[min_buf_size];
1634 struct iovec min_iov;
1635 uint8_t *filter_buf;
1636 size_t size, orig_size;
1637 size_t iov_ofs = 0;
1638 E1000E_RxRing rxr;
1639 E1000E_RSSInfo rss_info;
1640 size_t total_size;
1641 ssize_t retval;
1642 bool rdmts_hit;
1644 trace_e1000e_rx_receive_iov(iovcnt);
1646 if (!e1000x_hw_rx_enabled(core->mac)) {
1647 return -1;
1650 /* Pull virtio header in */
1651 if (core->has_vnet) {
1652 net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt);
1653 iov_ofs = sizeof(struct virtio_net_hdr);
1656 filter_buf = iov->iov_base + iov_ofs;
1657 orig_size = iov_size(iov, iovcnt);
1658 size = orig_size - iov_ofs;
1660 /* Pad to minimum Ethernet frame length */
1661 if (size < sizeof(min_buf)) {
1662 iov_to_buf(iov, iovcnt, iov_ofs, min_buf, size);
1663 memset(&min_buf[size], 0, sizeof(min_buf) - size);
1664 e1000x_inc_reg_if_not_full(core->mac, RUC);
1665 min_iov.iov_base = filter_buf = min_buf;
1666 min_iov.iov_len = size = sizeof(min_buf);
1667 iovcnt = 1;
1668 iov = &min_iov;
1669 iov_ofs = 0;
1670 } else if (iov->iov_len < maximum_ethernet_hdr_len) {
1671 /* This is very unlikely, but may happen. */
1672 iov_to_buf(iov, iovcnt, iov_ofs, min_buf, maximum_ethernet_hdr_len);
1673 filter_buf = min_buf;
1676 /* Discard oversized packets if !LPE and !SBP. */
1677 if (e1000x_is_oversized(core->mac, size)) {
1678 return orig_size;
1681 net_rx_pkt_set_packet_type(core->rx_pkt,
1682 get_eth_packet_type(PKT_GET_ETH_HDR(filter_buf)));
1684 if (!e1000e_receive_filter(core, filter_buf, size)) {
1685 trace_e1000e_rx_flt_dropped();
1686 return orig_size;
1689 net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs,
1690 e1000x_vlan_enabled(core->mac), core->vet);
1692 e1000e_rss_parse_packet(core, core->rx_pkt, &rss_info);
1693 e1000e_rx_ring_init(core, &rxr, rss_info.queue);
1695 trace_e1000e_rx_rss_dispatched_to_queue(rxr.i->idx);
1697 total_size = net_rx_pkt_get_total_len(core->rx_pkt) +
1698 e1000x_fcs_len(core->mac);
1700 if (e1000e_has_rxbufs(core, rxr.i, total_size)) {
1701 e1000e_rx_fix_l4_csum(core, core->rx_pkt);
1703 e1000e_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info);
1705 retval = orig_size;
1707 /* Perform small receive detection (RSRPD) */
1708 if (total_size < core->mac[RSRPD]) {
1709 n |= E1000_ICS_SRPD;
1712 /* Perform ACK receive detection */
1713 if (e1000e_is_tcp_ack(core, core->rx_pkt)) {
1714 n |= E1000_ICS_ACK;
1717 /* Check if receive descriptor minimum threshold hit */
1718 rdmts_hit = e1000e_rx_descr_threshold_hit(core, rxr.i);
1719 n |= e1000e_rx_wb_interrupt_cause(core, rxr.i->idx, rdmts_hit);
1721 trace_e1000e_rx_written_to_guest(n);
1722 } else {
1723 n |= E1000_ICS_RXO;
1724 retval = 0;
1726 trace_e1000e_rx_not_written_to_guest(n);
1729 if (!e1000e_intrmgr_delay_rx_causes(core, &n)) {
1730 trace_e1000e_rx_interrupt_set(n);
1731 e1000e_set_interrupt_cause(core, n);
1732 } else {
1733 trace_e1000e_rx_interrupt_delayed(n);
1736 return retval;
1739 static inline bool
1740 e1000e_have_autoneg(E1000ECore *core)
1742 return core->phy[0][PHY_CTRL] & MII_CR_AUTO_NEG_EN;
1745 static void e1000e_update_flowctl_status(E1000ECore *core)
1747 if (e1000e_have_autoneg(core) &&
1748 core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE) {
1749 trace_e1000e_link_autoneg_flowctl(true);
1750 core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE;
1751 } else {
1752 trace_e1000e_link_autoneg_flowctl(false);
1756 static inline void
1757 e1000e_link_down(E1000ECore *core)
1759 e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1760 e1000e_update_flowctl_status(core);
1763 static inline void
1764 e1000e_set_phy_ctrl(E1000ECore *core, int index, uint16_t val)
1766 /* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */
1767 core->phy[0][PHY_CTRL] = val & ~(0x3f |
1768 MII_CR_RESET |
1769 MII_CR_RESTART_AUTO_NEG);
1771 if ((val & MII_CR_RESTART_AUTO_NEG) &&
1772 e1000e_have_autoneg(core)) {
1773 e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1777 static void
1778 e1000e_set_phy_oem_bits(E1000ECore *core, int index, uint16_t val)
1780 core->phy[0][PHY_OEM_BITS] = val & ~BIT(10);
1782 if (val & BIT(10)) {
1783 e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1787 static void
1788 e1000e_set_phy_page(E1000ECore *core, int index, uint16_t val)
1790 core->phy[0][PHY_PAGE] = val & PHY_PAGE_RW_MASK;
1793 void
1794 e1000e_core_set_link_status(E1000ECore *core)
1796 NetClientState *nc = qemu_get_queue(core->owner_nic);
1797 uint32_t old_status = core->mac[STATUS];
1799 trace_e1000e_link_status_changed(nc->link_down ? false : true);
1801 if (nc->link_down) {
1802 e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1803 } else {
1804 if (e1000e_have_autoneg(core) &&
1805 !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
1806 e1000x_restart_autoneg(core->mac, core->phy[0],
1807 core->autoneg_timer);
1808 } else {
1809 e1000x_update_regs_on_link_up(core->mac, core->phy[0]);
1813 if (core->mac[STATUS] != old_status) {
1814 e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
1818 static void
1819 e1000e_set_ctrl(E1000ECore *core, int index, uint32_t val)
1821 trace_e1000e_core_ctrl_write(index, val);
1823 /* RST is self clearing */
1824 core->mac[CTRL] = val & ~E1000_CTRL_RST;
1825 core->mac[CTRL_DUP] = core->mac[CTRL];
1827 trace_e1000e_link_set_params(
1828 !!(val & E1000_CTRL_ASDE),
1829 (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
1830 !!(val & E1000_CTRL_FRCSPD),
1831 !!(val & E1000_CTRL_FRCDPX),
1832 !!(val & E1000_CTRL_RFCE),
1833 !!(val & E1000_CTRL_TFCE));
1835 if (val & E1000_CTRL_RST) {
1836 trace_e1000e_core_ctrl_sw_reset();
1837 e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
1840 if (val & E1000_CTRL_PHY_RST) {
1841 trace_e1000e_core_ctrl_phy_reset();
1842 core->mac[STATUS] |= E1000_STATUS_PHYRA;
1846 static void
1847 e1000e_set_rfctl(E1000ECore *core, int index, uint32_t val)
1849 trace_e1000e_rx_set_rfctl(val);
1851 if (!(val & E1000_RFCTL_ISCSI_DIS)) {
1852 trace_e1000e_wrn_iscsi_filtering_not_supported();
1855 if (!(val & E1000_RFCTL_NFSW_DIS)) {
1856 trace_e1000e_wrn_nfsw_filtering_not_supported();
1859 if (!(val & E1000_RFCTL_NFSR_DIS)) {
1860 trace_e1000e_wrn_nfsr_filtering_not_supported();
1863 core->mac[RFCTL] = val;
1866 static void
1867 e1000e_calc_per_desc_buf_size(E1000ECore *core)
1869 int i;
1870 core->rx_desc_buf_size = 0;
1872 for (i = 0; i < ARRAY_SIZE(core->rxbuf_sizes); i++) {
1873 core->rx_desc_buf_size += core->rxbuf_sizes[i];
1877 static void
1878 e1000e_parse_rxbufsize(E1000ECore *core)
1880 uint32_t rctl = core->mac[RCTL];
1882 memset(core->rxbuf_sizes, 0, sizeof(core->rxbuf_sizes));
1884 if (rctl & E1000_RCTL_DTYP_MASK) {
1885 uint32_t bsize;
1887 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE0_MASK;
1888 core->rxbuf_sizes[0] = (bsize >> E1000_PSRCTL_BSIZE0_SHIFT) * 128;
1890 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE1_MASK;
1891 core->rxbuf_sizes[1] = (bsize >> E1000_PSRCTL_BSIZE1_SHIFT) * 1024;
1893 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE2_MASK;
1894 core->rxbuf_sizes[2] = (bsize >> E1000_PSRCTL_BSIZE2_SHIFT) * 1024;
1896 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE3_MASK;
1897 core->rxbuf_sizes[3] = (bsize >> E1000_PSRCTL_BSIZE3_SHIFT) * 1024;
1898 } else if (rctl & E1000_RCTL_FLXBUF_MASK) {
1899 int flxbuf = rctl & E1000_RCTL_FLXBUF_MASK;
1900 core->rxbuf_sizes[0] = (flxbuf >> E1000_RCTL_FLXBUF_SHIFT) * 1024;
1901 } else {
1902 core->rxbuf_sizes[0] = e1000x_rxbufsize(rctl);
1905 trace_e1000e_rx_desc_buff_sizes(core->rxbuf_sizes[0], core->rxbuf_sizes[1],
1906 core->rxbuf_sizes[2], core->rxbuf_sizes[3]);
1908 e1000e_calc_per_desc_buf_size(core);
1911 static void
1912 e1000e_calc_rxdesclen(E1000ECore *core)
1914 if (e1000e_rx_use_legacy_descriptor(core)) {
1915 core->rx_desc_len = sizeof(struct e1000_rx_desc);
1916 } else {
1917 if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1918 core->rx_desc_len = sizeof(union e1000_rx_desc_packet_split);
1919 } else {
1920 core->rx_desc_len = sizeof(union e1000_rx_desc_extended);
1923 trace_e1000e_rx_desc_len(core->rx_desc_len);
1926 static void
1927 e1000e_set_rx_control(E1000ECore *core, int index, uint32_t val)
1929 core->mac[RCTL] = val;
1930 trace_e1000e_rx_set_rctl(core->mac[RCTL]);
1932 if (val & E1000_RCTL_EN) {
1933 e1000e_parse_rxbufsize(core);
1934 e1000e_calc_rxdesclen(core);
1935 core->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1 +
1936 E1000_RING_DESC_LEN_SHIFT;
1938 e1000e_start_recv(core);
1942 static
1943 void(*e1000e_phyreg_writeops[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE])
1944 (E1000ECore *, int, uint16_t) = {
1945 [0] = {
1946 [PHY_CTRL] = e1000e_set_phy_ctrl,
1947 [PHY_PAGE] = e1000e_set_phy_page,
1948 [PHY_OEM_BITS] = e1000e_set_phy_oem_bits
1952 static inline void
1953 e1000e_clear_ims_bits(E1000ECore *core, uint32_t bits)
1955 trace_e1000e_irq_clear_ims(bits, core->mac[IMS], core->mac[IMS] & ~bits);
1956 core->mac[IMS] &= ~bits;
1959 static inline bool
1960 e1000e_postpone_interrupt(bool *interrupt_pending,
1961 E1000IntrDelayTimer *timer)
1963 if (timer->running) {
1964 trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2);
1966 *interrupt_pending = true;
1967 return true;
1970 if (timer->core->mac[timer->delay_reg] != 0) {
1971 e1000e_intrmgr_rearm_timer(timer);
1974 return false;
1977 static inline bool
1978 e1000e_itr_should_postpone(E1000ECore *core)
1980 return e1000e_postpone_interrupt(&core->itr_intr_pending, &core->itr);
1983 static inline bool
1984 e1000e_eitr_should_postpone(E1000ECore *core, int idx)
1986 return e1000e_postpone_interrupt(&core->eitr_intr_pending[idx],
1987 &core->eitr[idx]);
1990 static void
1991 e1000e_msix_notify_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
1993 uint32_t effective_eiac;
1995 if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
1996 uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
1997 if (vec < E1000E_MSIX_VEC_NUM) {
1998 if (!e1000e_eitr_should_postpone(core, vec)) {
1999 trace_e1000e_irq_msix_notify_vec(vec);
2000 msix_notify(core->owner, vec);
2002 } else {
2003 trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2005 } else {
2006 trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2009 if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_EIAME) {
2010 trace_e1000e_irq_ims_clear_eiame(core->mac[IAM], cause);
2011 e1000e_clear_ims_bits(core, core->mac[IAM] & cause);
2014 trace_e1000e_irq_icr_clear_eiac(core->mac[ICR], core->mac[EIAC]);
2016 if (core->mac[EIAC] & E1000_ICR_OTHER) {
2017 effective_eiac = (core->mac[EIAC] & E1000_EIAC_MASK) |
2018 E1000_ICR_OTHER_CAUSES;
2019 } else {
2020 effective_eiac = core->mac[EIAC] & E1000_EIAC_MASK;
2022 core->mac[ICR] &= ~effective_eiac;
2025 static void
2026 e1000e_msix_notify(E1000ECore *core, uint32_t causes)
2028 if (causes & E1000_ICR_RXQ0) {
2029 e1000e_msix_notify_one(core, E1000_ICR_RXQ0,
2030 E1000_IVAR_RXQ0(core->mac[IVAR]));
2033 if (causes & E1000_ICR_RXQ1) {
2034 e1000e_msix_notify_one(core, E1000_ICR_RXQ1,
2035 E1000_IVAR_RXQ1(core->mac[IVAR]));
2038 if (causes & E1000_ICR_TXQ0) {
2039 e1000e_msix_notify_one(core, E1000_ICR_TXQ0,
2040 E1000_IVAR_TXQ0(core->mac[IVAR]));
2043 if (causes & E1000_ICR_TXQ1) {
2044 e1000e_msix_notify_one(core, E1000_ICR_TXQ1,
2045 E1000_IVAR_TXQ1(core->mac[IVAR]));
2048 if (causes & E1000_ICR_OTHER) {
2049 e1000e_msix_notify_one(core, E1000_ICR_OTHER,
2050 E1000_IVAR_OTHER(core->mac[IVAR]));
2054 static void
2055 e1000e_msix_clear_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
2057 if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
2058 uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
2059 if (vec < E1000E_MSIX_VEC_NUM) {
2060 trace_e1000e_irq_msix_pending_clearing(cause, int_cfg, vec);
2061 msix_clr_pending(core->owner, vec);
2062 } else {
2063 trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2065 } else {
2066 trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2070 static void
2071 e1000e_msix_clear(E1000ECore *core, uint32_t causes)
2073 if (causes & E1000_ICR_RXQ0) {
2074 e1000e_msix_clear_one(core, E1000_ICR_RXQ0,
2075 E1000_IVAR_RXQ0(core->mac[IVAR]));
2078 if (causes & E1000_ICR_RXQ1) {
2079 e1000e_msix_clear_one(core, E1000_ICR_RXQ1,
2080 E1000_IVAR_RXQ1(core->mac[IVAR]));
2083 if (causes & E1000_ICR_TXQ0) {
2084 e1000e_msix_clear_one(core, E1000_ICR_TXQ0,
2085 E1000_IVAR_TXQ0(core->mac[IVAR]));
2088 if (causes & E1000_ICR_TXQ1) {
2089 e1000e_msix_clear_one(core, E1000_ICR_TXQ1,
2090 E1000_IVAR_TXQ1(core->mac[IVAR]));
2093 if (causes & E1000_ICR_OTHER) {
2094 e1000e_msix_clear_one(core, E1000_ICR_OTHER,
2095 E1000_IVAR_OTHER(core->mac[IVAR]));
2099 static inline void
2100 e1000e_fix_icr_asserted(E1000ECore *core)
2102 core->mac[ICR] &= ~E1000_ICR_ASSERTED;
2103 if (core->mac[ICR]) {
2104 core->mac[ICR] |= E1000_ICR_ASSERTED;
2107 trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]);
2110 static void
2111 e1000e_send_msi(E1000ECore *core, bool msix)
2113 uint32_t causes = core->mac[ICR] & core->mac[IMS] & ~E1000_ICR_ASSERTED;
2115 if (msix) {
2116 e1000e_msix_notify(core, causes);
2117 } else {
2118 if (!e1000e_itr_should_postpone(core)) {
2119 trace_e1000e_irq_msi_notify(causes);
2120 msi_notify(core->owner, 0);
2125 static void
2126 e1000e_update_interrupt_state(E1000ECore *core)
2128 bool interrupts_pending;
2129 bool is_msix = msix_enabled(core->owner);
2131 /* Set ICR[OTHER] for MSI-X */
2132 if (is_msix) {
2133 if (core->mac[ICR] & core->mac[IMS] & E1000_ICR_OTHER_CAUSES) {
2134 core->mac[ICR] |= E1000_ICR_OTHER;
2135 trace_e1000e_irq_add_msi_other(core->mac[ICR]);
2139 e1000e_fix_icr_asserted(core);
2142 * Make sure ICR and ICS registers have the same value.
2143 * The spec says that the ICS register is write-only. However in practice,
2144 * on real hardware ICS is readable, and for reads it has the same value as
2145 * ICR (except that ICS does not have the clear on read behaviour of ICR).
2147 * The VxWorks PRO/1000 driver uses this behaviour.
2149 core->mac[ICS] = core->mac[ICR];
2151 interrupts_pending = (core->mac[IMS] & core->mac[ICR]) ? true : false;
2153 trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
2154 core->mac[ICR], core->mac[IMS]);
2156 if (is_msix || msi_enabled(core->owner)) {
2157 if (interrupts_pending) {
2158 e1000e_send_msi(core, is_msix);
2160 } else {
2161 if (interrupts_pending) {
2162 if (!e1000e_itr_should_postpone(core)) {
2163 e1000e_raise_legacy_irq(core);
2165 } else {
2166 e1000e_lower_legacy_irq(core);
2171 static inline void
2172 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val)
2174 trace_e1000e_irq_set_cause_entry(val, core->mac[ICR]);
2176 val |= e1000e_intmgr_collect_delayed_causes(core);
2177 core->mac[ICR] |= val;
2179 trace_e1000e_irq_set_cause_exit(val, core->mac[ICR]);
2181 e1000e_update_interrupt_state(core);
2184 static inline void
2185 e1000e_autoneg_timer(void *opaque)
2187 E1000ECore *core = opaque;
2188 if (!qemu_get_queue(core->owner_nic)->link_down) {
2189 e1000x_update_regs_on_autoneg_done(core->mac, core->phy[0]);
2190 e1000e_update_flowctl_status(core);
2191 /* signal link status change to the guest */
2192 e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
2196 static inline uint16_t
2197 e1000e_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr)
2199 uint16_t index = (addr & 0x1ffff) >> 2;
2200 return index + (mac_reg_access[index] & 0xfffe);
2203 static const char e1000e_phy_regcap[E1000E_PHY_PAGES][0x20] = {
2204 [0] = {
2205 [PHY_CTRL] = PHY_ANYPAGE | PHY_RW,
2206 [PHY_STATUS] = PHY_ANYPAGE | PHY_R,
2207 [PHY_ID1] = PHY_ANYPAGE | PHY_R,
2208 [PHY_ID2] = PHY_ANYPAGE | PHY_R,
2209 [PHY_AUTONEG_ADV] = PHY_ANYPAGE | PHY_RW,
2210 [PHY_LP_ABILITY] = PHY_ANYPAGE | PHY_R,
2211 [PHY_AUTONEG_EXP] = PHY_ANYPAGE | PHY_R,
2212 [PHY_NEXT_PAGE_TX] = PHY_ANYPAGE | PHY_RW,
2213 [PHY_LP_NEXT_PAGE] = PHY_ANYPAGE | PHY_R,
2214 [PHY_1000T_CTRL] = PHY_ANYPAGE | PHY_RW,
2215 [PHY_1000T_STATUS] = PHY_ANYPAGE | PHY_R,
2216 [PHY_EXT_STATUS] = PHY_ANYPAGE | PHY_R,
2217 [PHY_PAGE] = PHY_ANYPAGE | PHY_RW,
2219 [PHY_COPPER_CTRL1] = PHY_RW,
2220 [PHY_COPPER_STAT1] = PHY_R,
2221 [PHY_COPPER_CTRL3] = PHY_RW,
2222 [PHY_RX_ERR_CNTR] = PHY_R,
2223 [PHY_OEM_BITS] = PHY_RW,
2224 [PHY_BIAS_1] = PHY_RW,
2225 [PHY_BIAS_2] = PHY_RW,
2226 [PHY_COPPER_INT_ENABLE] = PHY_RW,
2227 [PHY_COPPER_STAT2] = PHY_R,
2228 [PHY_COPPER_CTRL2] = PHY_RW
2230 [2] = {
2231 [PHY_MAC_CTRL1] = PHY_RW,
2232 [PHY_MAC_INT_ENABLE] = PHY_RW,
2233 [PHY_MAC_STAT] = PHY_R,
2234 [PHY_MAC_CTRL2] = PHY_RW
2236 [3] = {
2237 [PHY_LED_03_FUNC_CTRL1] = PHY_RW,
2238 [PHY_LED_03_POL_CTRL] = PHY_RW,
2239 [PHY_LED_TIMER_CTRL] = PHY_RW,
2240 [PHY_LED_45_CTRL] = PHY_RW
2242 [5] = {
2243 [PHY_1000T_SKEW] = PHY_R,
2244 [PHY_1000T_SWAP] = PHY_R
2246 [6] = {
2247 [PHY_CRC_COUNTERS] = PHY_R
2251 static bool
2252 e1000e_phy_reg_check_cap(E1000ECore *core, uint32_t addr,
2253 char cap, uint8_t *page)
2255 *page =
2256 (e1000e_phy_regcap[0][addr] & PHY_ANYPAGE) ? 0
2257 : core->phy[0][PHY_PAGE];
2259 if (*page >= E1000E_PHY_PAGES) {
2260 return false;
2263 return e1000e_phy_regcap[*page][addr] & cap;
2266 static void
2267 e1000e_phy_reg_write(E1000ECore *core, uint8_t page,
2268 uint32_t addr, uint16_t data)
2270 assert(page < E1000E_PHY_PAGES);
2271 assert(addr < E1000E_PHY_PAGE_SIZE);
2273 if (e1000e_phyreg_writeops[page][addr]) {
2274 e1000e_phyreg_writeops[page][addr](core, addr, data);
2275 } else {
2276 core->phy[page][addr] = data;
2280 static void
2281 e1000e_set_mdic(E1000ECore *core, int index, uint32_t val)
2283 uint32_t data = val & E1000_MDIC_DATA_MASK;
2284 uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
2285 uint8_t page;
2287 if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */
2288 val = core->mac[MDIC] | E1000_MDIC_ERROR;
2289 } else if (val & E1000_MDIC_OP_READ) {
2290 if (!e1000e_phy_reg_check_cap(core, addr, PHY_R, &page)) {
2291 trace_e1000e_core_mdic_read_unhandled(page, addr);
2292 val |= E1000_MDIC_ERROR;
2293 } else {
2294 val = (val ^ data) | core->phy[page][addr];
2295 trace_e1000e_core_mdic_read(page, addr, val);
2297 } else if (val & E1000_MDIC_OP_WRITE) {
2298 if (!e1000e_phy_reg_check_cap(core, addr, PHY_W, &page)) {
2299 trace_e1000e_core_mdic_write_unhandled(page, addr);
2300 val |= E1000_MDIC_ERROR;
2301 } else {
2302 trace_e1000e_core_mdic_write(page, addr, data);
2303 e1000e_phy_reg_write(core, page, addr, data);
2306 core->mac[MDIC] = val | E1000_MDIC_READY;
2308 if (val & E1000_MDIC_INT_EN) {
2309 e1000e_set_interrupt_cause(core, E1000_ICR_MDAC);
2313 static void
2314 e1000e_set_rdt(E1000ECore *core, int index, uint32_t val)
2316 core->mac[index] = val & 0xffff;
2317 trace_e1000e_rx_set_rdt(e1000e_mq_queue_idx(RDT0, index), val);
2318 e1000e_start_recv(core);
2321 static void
2322 e1000e_set_status(E1000ECore *core, int index, uint32_t val)
2324 if ((val & E1000_STATUS_PHYRA) == 0) {
2325 core->mac[index] &= ~E1000_STATUS_PHYRA;
2329 static void
2330 e1000e_set_ctrlext(E1000ECore *core, int index, uint32_t val)
2332 trace_e1000e_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK),
2333 !!(val & E1000_CTRL_EXT_SPD_BYPS));
2335 /* Zero self-clearing bits */
2336 val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST);
2337 core->mac[CTRL_EXT] = val;
2340 static void
2341 e1000e_set_pbaclr(E1000ECore *core, int index, uint32_t val)
2343 int i;
2345 core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK;
2347 if (msix_enabled(core->owner)) {
2348 return;
2351 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
2352 if (core->mac[PBACLR] & BIT(i)) {
2353 msix_clr_pending(core->owner, i);
2358 static void
2359 e1000e_set_fcrth(E1000ECore *core, int index, uint32_t val)
2361 core->mac[FCRTH] = val & 0xFFF8;
2364 static void
2365 e1000e_set_fcrtl(E1000ECore *core, int index, uint32_t val)
2367 core->mac[FCRTL] = val & 0x8000FFF8;
2370 static inline void
2371 e1000e_set_16bit(E1000ECore *core, int index, uint32_t val)
2373 core->mac[index] = val & 0xffff;
2376 static void
2377 e1000e_set_12bit(E1000ECore *core, int index, uint32_t val)
2379 core->mac[index] = val & 0xfff;
2382 static void
2383 e1000e_set_vet(E1000ECore *core, int index, uint32_t val)
2385 core->mac[VET] = val & 0xffff;
2386 core->vet = le16_to_cpu(core->mac[VET]);
2387 trace_e1000e_vlan_vet(core->vet);
2390 static void
2391 e1000e_set_dlen(E1000ECore *core, int index, uint32_t val)
2393 core->mac[index] = val & E1000_XDLEN_MASK;
2396 static void
2397 e1000e_set_dbal(E1000ECore *core, int index, uint32_t val)
2399 core->mac[index] = val & E1000_XDBAL_MASK;
2402 static void
2403 e1000e_set_tctl(E1000ECore *core, int index, uint32_t val)
2405 E1000E_TxRing txr;
2406 core->mac[index] = val;
2408 if (core->mac[TARC0] & E1000_TARC_ENABLE) {
2409 e1000e_tx_ring_init(core, &txr, 0);
2410 e1000e_start_xmit(core, &txr);
2413 if (core->mac[TARC1] & E1000_TARC_ENABLE) {
2414 e1000e_tx_ring_init(core, &txr, 1);
2415 e1000e_start_xmit(core, &txr);
2419 static void
2420 e1000e_set_tdt(E1000ECore *core, int index, uint32_t val)
2422 E1000E_TxRing txr;
2423 int qidx = e1000e_mq_queue_idx(TDT, index);
2424 uint32_t tarc_reg = (qidx == 0) ? TARC0 : TARC1;
2426 core->mac[index] = val & 0xffff;
2428 if (core->mac[tarc_reg] & E1000_TARC_ENABLE) {
2429 e1000e_tx_ring_init(core, &txr, qidx);
2430 e1000e_start_xmit(core, &txr);
2434 static void
2435 e1000e_set_ics(E1000ECore *core, int index, uint32_t val)
2437 trace_e1000e_irq_write_ics(val);
2438 e1000e_set_interrupt_cause(core, val);
2441 static void
2442 e1000e_set_icr(E1000ECore *core, int index, uint32_t val)
2444 if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2445 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2446 trace_e1000e_irq_icr_process_iame();
2447 e1000e_clear_ims_bits(core, core->mac[IAM]);
2450 trace_e1000e_irq_icr_write(val, core->mac[ICR], core->mac[ICR] & ~val);
2451 core->mac[ICR] &= ~val;
2452 e1000e_update_interrupt_state(core);
2455 static void
2456 e1000e_set_imc(E1000ECore *core, int index, uint32_t val)
2458 trace_e1000e_irq_ims_clear_set_imc(val);
2459 e1000e_clear_ims_bits(core, val);
2460 e1000e_update_interrupt_state(core);
2463 static void
2464 e1000e_set_ims(E1000ECore *core, int index, uint32_t val)
2466 static const uint32_t ims_ext_mask =
2467 E1000_IMS_RXQ0 | E1000_IMS_RXQ1 |
2468 E1000_IMS_TXQ0 | E1000_IMS_TXQ1 |
2469 E1000_IMS_OTHER;
2471 static const uint32_t ims_valid_mask =
2472 E1000_IMS_TXDW | E1000_IMS_TXQE | E1000_IMS_LSC |
2473 E1000_IMS_RXDMT0 | E1000_IMS_RXO | E1000_IMS_RXT0 |
2474 E1000_IMS_MDAC | E1000_IMS_TXD_LOW | E1000_IMS_SRPD |
2475 E1000_IMS_ACK | E1000_IMS_MNG | E1000_IMS_RXQ0 |
2476 E1000_IMS_RXQ1 | E1000_IMS_TXQ0 | E1000_IMS_TXQ1 |
2477 E1000_IMS_OTHER;
2479 uint32_t valid_val = val & ims_valid_mask;
2481 trace_e1000e_irq_set_ims(val, core->mac[IMS], core->mac[IMS] | valid_val);
2482 core->mac[IMS] |= valid_val;
2484 if ((valid_val & ims_ext_mask) &&
2485 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PBA_CLR) &&
2486 msix_enabled(core->owner)) {
2487 e1000e_msix_clear(core, valid_val);
2490 if ((valid_val == ims_valid_mask) &&
2491 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_INT_TIMERS_CLEAR_ENA)) {
2492 trace_e1000e_irq_fire_all_timers(val);
2493 e1000e_intrmgr_fire_all_timers(core);
2496 e1000e_update_interrupt_state(core);
2499 static void
2500 e1000e_set_rdtr(E1000ECore *core, int index, uint32_t val)
2502 e1000e_set_16bit(core, index, val);
2504 if ((val & E1000_RDTR_FPD) && (core->rdtr.running)) {
2505 trace_e1000e_irq_rdtr_fpd_running();
2506 e1000e_intrmgr_fire_delayed_interrupts(core);
2507 } else {
2508 trace_e1000e_irq_rdtr_fpd_not_running();
2512 static void
2513 e1000e_set_tidv(E1000ECore *core, int index, uint32_t val)
2515 e1000e_set_16bit(core, index, val);
2517 if ((val & E1000_TIDV_FPD) && (core->tidv.running)) {
2518 trace_e1000e_irq_tidv_fpd_running();
2519 e1000e_intrmgr_fire_delayed_interrupts(core);
2520 } else {
2521 trace_e1000e_irq_tidv_fpd_not_running();
2525 static uint32_t
2526 e1000e_mac_readreg(E1000ECore *core, int index)
2528 return core->mac[index];
2531 static uint32_t
2532 e1000e_mac_ics_read(E1000ECore *core, int index)
2534 trace_e1000e_irq_read_ics(core->mac[ICS]);
2535 return core->mac[ICS];
2538 static uint32_t
2539 e1000e_mac_ims_read(E1000ECore *core, int index)
2541 trace_e1000e_irq_read_ims(core->mac[IMS]);
2542 return core->mac[IMS];
2545 #define E1000E_LOW_BITS_READ_FUNC(num) \
2546 static uint32_t \
2547 e1000e_mac_low##num##_read(E1000ECore *core, int index) \
2549 return core->mac[index] & (BIT(num) - 1); \
2552 #define E1000E_LOW_BITS_READ(num) \
2553 e1000e_mac_low##num##_read
2555 E1000E_LOW_BITS_READ_FUNC(4);
2556 E1000E_LOW_BITS_READ_FUNC(6);
2557 E1000E_LOW_BITS_READ_FUNC(11);
2558 E1000E_LOW_BITS_READ_FUNC(13);
2559 E1000E_LOW_BITS_READ_FUNC(16);
2561 static uint32_t
2562 e1000e_mac_swsm_read(E1000ECore *core, int index)
2564 uint32_t val = core->mac[SWSM];
2565 core->mac[SWSM] = val | 1;
2566 return val;
2569 static uint32_t
2570 e1000e_mac_itr_read(E1000ECore *core, int index)
2572 return core->itr_guest_value;
2575 static uint32_t
2576 e1000e_mac_eitr_read(E1000ECore *core, int index)
2578 return core->eitr_guest_value[index - EITR];
2581 static uint32_t
2582 e1000e_mac_icr_read(E1000ECore *core, int index)
2584 uint32_t ret = core->mac[ICR];
2585 trace_e1000e_irq_icr_read_entry(ret);
2587 if (core->mac[IMS] == 0) {
2588 trace_e1000e_irq_icr_clear_zero_ims();
2589 core->mac[ICR] = 0;
2592 if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2593 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2594 trace_e1000e_irq_icr_clear_iame();
2595 core->mac[ICR] = 0;
2596 trace_e1000e_irq_icr_process_iame();
2597 e1000e_clear_ims_bits(core, core->mac[IAM]);
2600 trace_e1000e_irq_icr_read_exit(core->mac[ICR]);
2601 e1000e_update_interrupt_state(core);
2602 return ret;
2605 static uint32_t
2606 e1000e_mac_read_clr4(E1000ECore *core, int index)
2608 uint32_t ret = core->mac[index];
2610 core->mac[index] = 0;
2611 return ret;
2614 static uint32_t
2615 e1000e_mac_read_clr8(E1000ECore *core, int index)
2617 uint32_t ret = core->mac[index];
2619 core->mac[index] = 0;
2620 core->mac[index - 1] = 0;
2621 return ret;
2624 static uint32_t
2625 e1000e_get_ctrl(E1000ECore *core, int index)
2627 uint32_t val = core->mac[CTRL];
2629 trace_e1000e_link_read_params(
2630 !!(val & E1000_CTRL_ASDE),
2631 (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
2632 !!(val & E1000_CTRL_FRCSPD),
2633 !!(val & E1000_CTRL_FRCDPX),
2634 !!(val & E1000_CTRL_RFCE),
2635 !!(val & E1000_CTRL_TFCE));
2637 return val;
2640 static uint32_t
2641 e1000e_get_status(E1000ECore *core, int index)
2643 uint32_t res = core->mac[STATUS];
2645 if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE)) {
2646 res |= E1000_STATUS_GIO_MASTER_ENABLE;
2649 if (core->mac[CTRL] & E1000_CTRL_FRCDPX) {
2650 res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0;
2651 } else {
2652 res |= E1000_STATUS_FD;
2655 if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) ||
2656 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) {
2657 switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) {
2658 case E1000_CTRL_SPD_10:
2659 res |= E1000_STATUS_SPEED_10;
2660 break;
2661 case E1000_CTRL_SPD_100:
2662 res |= E1000_STATUS_SPEED_100;
2663 break;
2664 case E1000_CTRL_SPD_1000:
2665 default:
2666 res |= E1000_STATUS_SPEED_1000;
2667 break;
2669 } else {
2670 res |= E1000_STATUS_SPEED_1000;
2673 trace_e1000e_link_status(
2674 !!(res & E1000_STATUS_LU),
2675 !!(res & E1000_STATUS_FD),
2676 (res & E1000_STATUS_SPEED_MASK) >> E1000_STATUS_SPEED_SHIFT,
2677 (res & E1000_STATUS_ASDV) >> E1000_STATUS_ASDV_SHIFT);
2679 return res;
2682 static uint32_t
2683 e1000e_get_tarc(E1000ECore *core, int index)
2685 return core->mac[index] & ((BIT(11) - 1) |
2686 BIT(27) |
2687 BIT(28) |
2688 BIT(29) |
2689 BIT(30));
2692 static void
2693 e1000e_mac_writereg(E1000ECore *core, int index, uint32_t val)
2695 core->mac[index] = val;
2698 static void
2699 e1000e_mac_setmacaddr(E1000ECore *core, int index, uint32_t val)
2701 uint32_t macaddr[2];
2703 core->mac[index] = val;
2705 macaddr[0] = cpu_to_le32(core->mac[RA]);
2706 macaddr[1] = cpu_to_le32(core->mac[RA + 1]);
2707 qemu_format_nic_info_str(qemu_get_queue(core->owner_nic),
2708 (uint8_t *) macaddr);
2710 trace_e1000e_mac_set_sw(MAC_ARG(macaddr));
2713 static void
2714 e1000e_set_eecd(E1000ECore *core, int index, uint32_t val)
2716 static const uint32_t ro_bits = E1000_EECD_PRES |
2717 E1000_EECD_AUTO_RD |
2718 E1000_EECD_SIZE_EX_MASK;
2720 core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits);
2723 static void
2724 e1000e_set_eerd(E1000ECore *core, int index, uint32_t val)
2726 uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2727 uint32_t flags = 0;
2728 uint32_t data = 0;
2730 if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2731 data = core->eeprom[addr];
2732 flags = E1000_EERW_DONE;
2735 core->mac[EERD] = flags |
2736 (addr << E1000_EERW_ADDR_SHIFT) |
2737 (data << E1000_EERW_DATA_SHIFT);
2740 static void
2741 e1000e_set_eewr(E1000ECore *core, int index, uint32_t val)
2743 uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2744 uint32_t data = (val >> E1000_EERW_DATA_SHIFT) & E1000_EERW_DATA_MASK;
2745 uint32_t flags = 0;
2747 if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2748 core->eeprom[addr] = data;
2749 flags = E1000_EERW_DONE;
2752 core->mac[EERD] = flags |
2753 (addr << E1000_EERW_ADDR_SHIFT) |
2754 (data << E1000_EERW_DATA_SHIFT);
2757 static void
2758 e1000e_set_rxdctl(E1000ECore *core, int index, uint32_t val)
2760 core->mac[RXDCTL] = core->mac[RXDCTL1] = val;
2763 static void
2764 e1000e_set_itr(E1000ECore *core, int index, uint32_t val)
2766 uint32_t interval = val & 0xffff;
2768 trace_e1000e_irq_itr_set(val);
2770 core->itr_guest_value = interval;
2771 core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2774 static void
2775 e1000e_set_eitr(E1000ECore *core, int index, uint32_t val)
2777 uint32_t interval = val & 0xffff;
2778 uint32_t eitr_num = index - EITR;
2780 trace_e1000e_irq_eitr_set(eitr_num, val);
2782 core->eitr_guest_value[eitr_num] = interval;
2783 core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2786 static void
2787 e1000e_set_psrctl(E1000ECore *core, int index, uint32_t val)
2789 if ((val & E1000_PSRCTL_BSIZE0_MASK) == 0) {
2790 hw_error("e1000e: PSRCTL.BSIZE0 cannot be zero");
2793 if ((val & E1000_PSRCTL_BSIZE1_MASK) == 0) {
2794 hw_error("e1000e: PSRCTL.BSIZE1 cannot be zero");
2797 core->mac[PSRCTL] = val;
2800 static void
2801 e1000e_update_rx_offloads(E1000ECore *core)
2803 int cso_state = e1000e_rx_l4_cso_enabled(core);
2805 trace_e1000e_rx_set_cso(cso_state);
2807 if (core->has_vnet) {
2808 qemu_set_offload(qemu_get_queue(core->owner_nic)->peer,
2809 cso_state, 0, 0, 0, 0);
2813 static void
2814 e1000e_set_rxcsum(E1000ECore *core, int index, uint32_t val)
2816 core->mac[RXCSUM] = val;
2817 e1000e_update_rx_offloads(core);
2820 static void
2821 e1000e_set_gcr(E1000ECore *core, int index, uint32_t val)
2823 uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS;
2824 core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits;
2827 #define e1000e_getreg(x) [x] = e1000e_mac_readreg
2828 static uint32_t (*e1000e_macreg_readops[])(E1000ECore *, int) = {
2829 e1000e_getreg(PBA),
2830 e1000e_getreg(WUFC),
2831 e1000e_getreg(MANC),
2832 e1000e_getreg(TOTL),
2833 e1000e_getreg(RDT0),
2834 e1000e_getreg(RDBAH0),
2835 e1000e_getreg(TDBAL1),
2836 e1000e_getreg(RDLEN0),
2837 e1000e_getreg(RDH1),
2838 e1000e_getreg(LATECOL),
2839 e1000e_getreg(SEC),
2840 e1000e_getreg(XONTXC),
2841 e1000e_getreg(WUS),
2842 e1000e_getreg(GORCL),
2843 e1000e_getreg(MGTPRC),
2844 e1000e_getreg(EERD),
2845 e1000e_getreg(EIAC),
2846 e1000e_getreg(PSRCTL),
2847 e1000e_getreg(MANC2H),
2848 e1000e_getreg(RXCSUM),
2849 e1000e_getreg(GSCL_3),
2850 e1000e_getreg(GSCN_2),
2851 e1000e_getreg(RSRPD),
2852 e1000e_getreg(RDBAL1),
2853 e1000e_getreg(FCAH),
2854 e1000e_getreg(FCRTH),
2855 e1000e_getreg(FLOP),
2856 e1000e_getreg(FLASHT),
2857 e1000e_getreg(RXSTMPH),
2858 e1000e_getreg(TXSTMPL),
2859 e1000e_getreg(TIMADJL),
2860 e1000e_getreg(TXDCTL),
2861 e1000e_getreg(RDH0),
2862 e1000e_getreg(TDT1),
2863 e1000e_getreg(TNCRS),
2864 e1000e_getreg(RJC),
2865 e1000e_getreg(IAM),
2866 e1000e_getreg(GSCL_2),
2867 e1000e_getreg(RDBAH1),
2868 e1000e_getreg(FLSWDATA),
2869 e1000e_getreg(RXSATRH),
2870 e1000e_getreg(TIPG),
2871 e1000e_getreg(FLMNGCTL),
2872 e1000e_getreg(FLMNGCNT),
2873 e1000e_getreg(TSYNCTXCTL),
2874 e1000e_getreg(EXTCNF_SIZE),
2875 e1000e_getreg(EXTCNF_CTRL),
2876 e1000e_getreg(EEMNGDATA),
2877 e1000e_getreg(CTRL_EXT),
2878 e1000e_getreg(SYSTIMH),
2879 e1000e_getreg(EEMNGCTL),
2880 e1000e_getreg(FLMNGDATA),
2881 e1000e_getreg(TSYNCRXCTL),
2882 e1000e_getreg(TDH),
2883 e1000e_getreg(LEDCTL),
2884 e1000e_getreg(STATUS),
2885 e1000e_getreg(TCTL),
2886 e1000e_getreg(TDBAL),
2887 e1000e_getreg(TDLEN),
2888 e1000e_getreg(TDH1),
2889 e1000e_getreg(RADV),
2890 e1000e_getreg(ECOL),
2891 e1000e_getreg(DC),
2892 e1000e_getreg(RLEC),
2893 e1000e_getreg(XOFFTXC),
2894 e1000e_getreg(RFC),
2895 e1000e_getreg(RNBC),
2896 e1000e_getreg(MGTPTC),
2897 e1000e_getreg(TIMINCA),
2898 e1000e_getreg(RXCFGL),
2899 e1000e_getreg(MFUTP01),
2900 e1000e_getreg(FACTPS),
2901 e1000e_getreg(GSCL_1),
2902 e1000e_getreg(GSCN_0),
2903 e1000e_getreg(GCR2),
2904 e1000e_getreg(RDT1),
2905 e1000e_getreg(PBACLR),
2906 e1000e_getreg(FCTTV),
2907 e1000e_getreg(EEWR),
2908 e1000e_getreg(FLSWCTL),
2909 e1000e_getreg(RXDCTL1),
2910 e1000e_getreg(RXSATRL),
2911 e1000e_getreg(SYSTIML),
2912 e1000e_getreg(RXUDP),
2913 e1000e_getreg(TORL),
2914 e1000e_getreg(TDLEN1),
2915 e1000e_getreg(MCC),
2916 e1000e_getreg(WUC),
2917 e1000e_getreg(EECD),
2918 e1000e_getreg(MFUTP23),
2919 e1000e_getreg(RAID),
2920 e1000e_getreg(FCRTV),
2921 e1000e_getreg(TXDCTL1),
2922 e1000e_getreg(RCTL),
2923 e1000e_getreg(TDT),
2924 e1000e_getreg(MDIC),
2925 e1000e_getreg(FCRUC),
2926 e1000e_getreg(VET),
2927 e1000e_getreg(RDBAL0),
2928 e1000e_getreg(TDBAH1),
2929 e1000e_getreg(RDTR),
2930 e1000e_getreg(SCC),
2931 e1000e_getreg(COLC),
2932 e1000e_getreg(CEXTERR),
2933 e1000e_getreg(XOFFRXC),
2934 e1000e_getreg(IPAV),
2935 e1000e_getreg(GOTCL),
2936 e1000e_getreg(MGTPDC),
2937 e1000e_getreg(GCR),
2938 e1000e_getreg(IVAR),
2939 e1000e_getreg(POEMB),
2940 e1000e_getreg(MFVAL),
2941 e1000e_getreg(FUNCTAG),
2942 e1000e_getreg(GSCL_4),
2943 e1000e_getreg(GSCN_3),
2944 e1000e_getreg(MRQC),
2945 e1000e_getreg(RDLEN1),
2946 e1000e_getreg(FCT),
2947 e1000e_getreg(FLA),
2948 e1000e_getreg(FLOL),
2949 e1000e_getreg(RXDCTL),
2950 e1000e_getreg(RXSTMPL),
2951 e1000e_getreg(TXSTMPH),
2952 e1000e_getreg(TIMADJH),
2953 e1000e_getreg(FCRTL),
2954 e1000e_getreg(TDBAH),
2955 e1000e_getreg(TADV),
2956 e1000e_getreg(XONRXC),
2957 e1000e_getreg(TSCTFC),
2958 e1000e_getreg(RFCTL),
2959 e1000e_getreg(GSCN_1),
2960 e1000e_getreg(FCAL),
2961 e1000e_getreg(FLSWCNT),
2963 [TOTH] = e1000e_mac_read_clr8,
2964 [GOTCH] = e1000e_mac_read_clr8,
2965 [PRC64] = e1000e_mac_read_clr4,
2966 [PRC255] = e1000e_mac_read_clr4,
2967 [PRC1023] = e1000e_mac_read_clr4,
2968 [PTC64] = e1000e_mac_read_clr4,
2969 [PTC255] = e1000e_mac_read_clr4,
2970 [PTC1023] = e1000e_mac_read_clr4,
2971 [GPRC] = e1000e_mac_read_clr4,
2972 [TPT] = e1000e_mac_read_clr4,
2973 [RUC] = e1000e_mac_read_clr4,
2974 [BPRC] = e1000e_mac_read_clr4,
2975 [MPTC] = e1000e_mac_read_clr4,
2976 [IAC] = e1000e_mac_read_clr4,
2977 [ICR] = e1000e_mac_icr_read,
2978 [RDFH] = E1000E_LOW_BITS_READ(13),
2979 [RDFHS] = E1000E_LOW_BITS_READ(13),
2980 [RDFPC] = E1000E_LOW_BITS_READ(13),
2981 [TDFH] = E1000E_LOW_BITS_READ(13),
2982 [TDFHS] = E1000E_LOW_BITS_READ(13),
2983 [STATUS] = e1000e_get_status,
2984 [TARC0] = e1000e_get_tarc,
2985 [PBS] = E1000E_LOW_BITS_READ(6),
2986 [ICS] = e1000e_mac_ics_read,
2987 [AIT] = E1000E_LOW_BITS_READ(16),
2988 [TORH] = e1000e_mac_read_clr8,
2989 [GORCH] = e1000e_mac_read_clr8,
2990 [PRC127] = e1000e_mac_read_clr4,
2991 [PRC511] = e1000e_mac_read_clr4,
2992 [PRC1522] = e1000e_mac_read_clr4,
2993 [PTC127] = e1000e_mac_read_clr4,
2994 [PTC511] = e1000e_mac_read_clr4,
2995 [PTC1522] = e1000e_mac_read_clr4,
2996 [GPTC] = e1000e_mac_read_clr4,
2997 [TPR] = e1000e_mac_read_clr4,
2998 [ROC] = e1000e_mac_read_clr4,
2999 [MPRC] = e1000e_mac_read_clr4,
3000 [BPTC] = e1000e_mac_read_clr4,
3001 [TSCTC] = e1000e_mac_read_clr4,
3002 [ITR] = e1000e_mac_itr_read,
3003 [RDFT] = E1000E_LOW_BITS_READ(13),
3004 [RDFTS] = E1000E_LOW_BITS_READ(13),
3005 [TDFPC] = E1000E_LOW_BITS_READ(13),
3006 [TDFT] = E1000E_LOW_BITS_READ(13),
3007 [TDFTS] = E1000E_LOW_BITS_READ(13),
3008 [CTRL] = e1000e_get_ctrl,
3009 [TARC1] = e1000e_get_tarc,
3010 [SWSM] = e1000e_mac_swsm_read,
3011 [IMS] = e1000e_mac_ims_read,
3013 [CRCERRS ... MPC] = e1000e_mac_readreg,
3014 [IP6AT ... IP6AT + 3] = e1000e_mac_readreg,
3015 [IP4AT ... IP4AT + 6] = e1000e_mac_readreg,
3016 [RA ... RA + 31] = e1000e_mac_readreg,
3017 [WUPM ... WUPM + 31] = e1000e_mac_readreg,
3018 [MTA ... MTA + 127] = e1000e_mac_readreg,
3019 [VFTA ... VFTA + 127] = e1000e_mac_readreg,
3020 [FFMT ... FFMT + 254] = E1000E_LOW_BITS_READ(4),
3021 [FFVT ... FFVT + 254] = e1000e_mac_readreg,
3022 [MDEF ... MDEF + 7] = e1000e_mac_readreg,
3023 [FFLT ... FFLT + 10] = E1000E_LOW_BITS_READ(11),
3024 [FTFT ... FTFT + 254] = e1000e_mac_readreg,
3025 [PBM ... PBM + 10239] = e1000e_mac_readreg,
3026 [RETA ... RETA + 31] = e1000e_mac_readreg,
3027 [RSSRK ... RSSRK + 31] = e1000e_mac_readreg,
3028 [MAVTV0 ... MAVTV3] = e1000e_mac_readreg,
3029 [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_mac_eitr_read
3031 enum { E1000E_NREADOPS = ARRAY_SIZE(e1000e_macreg_readops) };
3033 #define e1000e_putreg(x) [x] = e1000e_mac_writereg
3034 static void (*e1000e_macreg_writeops[])(E1000ECore *, int, uint32_t) = {
3035 e1000e_putreg(PBA),
3036 e1000e_putreg(SWSM),
3037 e1000e_putreg(WUFC),
3038 e1000e_putreg(RDBAH1),
3039 e1000e_putreg(TDBAH),
3040 e1000e_putreg(TXDCTL),
3041 e1000e_putreg(RDBAH0),
3042 e1000e_putreg(LEDCTL),
3043 e1000e_putreg(FCAL),
3044 e1000e_putreg(FCRUC),
3045 e1000e_putreg(AIT),
3046 e1000e_putreg(TDFH),
3047 e1000e_putreg(TDFT),
3048 e1000e_putreg(TDFHS),
3049 e1000e_putreg(TDFTS),
3050 e1000e_putreg(TDFPC),
3051 e1000e_putreg(WUC),
3052 e1000e_putreg(WUS),
3053 e1000e_putreg(RDFH),
3054 e1000e_putreg(RDFT),
3055 e1000e_putreg(RDFHS),
3056 e1000e_putreg(RDFTS),
3057 e1000e_putreg(RDFPC),
3058 e1000e_putreg(IPAV),
3059 e1000e_putreg(TDBAH1),
3060 e1000e_putreg(TIMINCA),
3061 e1000e_putreg(IAM),
3062 e1000e_putreg(EIAC),
3063 e1000e_putreg(IVAR),
3064 e1000e_putreg(TARC0),
3065 e1000e_putreg(TARC1),
3066 e1000e_putreg(FLSWDATA),
3067 e1000e_putreg(POEMB),
3068 e1000e_putreg(PBS),
3069 e1000e_putreg(MFUTP01),
3070 e1000e_putreg(MFUTP23),
3071 e1000e_putreg(MANC),
3072 e1000e_putreg(MANC2H),
3073 e1000e_putreg(MFVAL),
3074 e1000e_putreg(EXTCNF_CTRL),
3075 e1000e_putreg(FACTPS),
3076 e1000e_putreg(FUNCTAG),
3077 e1000e_putreg(GSCL_1),
3078 e1000e_putreg(GSCL_2),
3079 e1000e_putreg(GSCL_3),
3080 e1000e_putreg(GSCL_4),
3081 e1000e_putreg(GSCN_0),
3082 e1000e_putreg(GSCN_1),
3083 e1000e_putreg(GSCN_2),
3084 e1000e_putreg(GSCN_3),
3085 e1000e_putreg(GCR2),
3086 e1000e_putreg(MRQC),
3087 e1000e_putreg(FLOP),
3088 e1000e_putreg(FLOL),
3089 e1000e_putreg(FLSWCTL),
3090 e1000e_putreg(FLSWCNT),
3091 e1000e_putreg(FLA),
3092 e1000e_putreg(RXDCTL1),
3093 e1000e_putreg(TXDCTL1),
3094 e1000e_putreg(TIPG),
3095 e1000e_putreg(RXSTMPH),
3096 e1000e_putreg(RXSTMPL),
3097 e1000e_putreg(RXSATRL),
3098 e1000e_putreg(RXSATRH),
3099 e1000e_putreg(TXSTMPL),
3100 e1000e_putreg(TXSTMPH),
3101 e1000e_putreg(SYSTIML),
3102 e1000e_putreg(SYSTIMH),
3103 e1000e_putreg(TIMADJL),
3104 e1000e_putreg(TIMADJH),
3105 e1000e_putreg(RXUDP),
3106 e1000e_putreg(RXCFGL),
3107 e1000e_putreg(TSYNCRXCTL),
3108 e1000e_putreg(TSYNCTXCTL),
3109 e1000e_putreg(FLSWDATA),
3110 e1000e_putreg(EXTCNF_SIZE),
3111 e1000e_putreg(EEMNGCTL),
3112 e1000e_putreg(RA),
3114 [TDH1] = e1000e_set_16bit,
3115 [TDT1] = e1000e_set_tdt,
3116 [TCTL] = e1000e_set_tctl,
3117 [TDT] = e1000e_set_tdt,
3118 [MDIC] = e1000e_set_mdic,
3119 [ICS] = e1000e_set_ics,
3120 [TDH] = e1000e_set_16bit,
3121 [RDH0] = e1000e_set_16bit,
3122 [RDT0] = e1000e_set_rdt,
3123 [IMC] = e1000e_set_imc,
3124 [IMS] = e1000e_set_ims,
3125 [ICR] = e1000e_set_icr,
3126 [EECD] = e1000e_set_eecd,
3127 [RCTL] = e1000e_set_rx_control,
3128 [CTRL] = e1000e_set_ctrl,
3129 [RDTR] = e1000e_set_rdtr,
3130 [RADV] = e1000e_set_16bit,
3131 [TADV] = e1000e_set_16bit,
3132 [ITR] = e1000e_set_itr,
3133 [EERD] = e1000e_set_eerd,
3134 [GCR] = e1000e_set_gcr,
3135 [PSRCTL] = e1000e_set_psrctl,
3136 [RXCSUM] = e1000e_set_rxcsum,
3137 [RAID] = e1000e_set_16bit,
3138 [RSRPD] = e1000e_set_12bit,
3139 [TIDV] = e1000e_set_tidv,
3140 [TDLEN1] = e1000e_set_dlen,
3141 [TDLEN] = e1000e_set_dlen,
3142 [RDLEN0] = e1000e_set_dlen,
3143 [RDLEN1] = e1000e_set_dlen,
3144 [TDBAL] = e1000e_set_dbal,
3145 [TDBAL1] = e1000e_set_dbal,
3146 [RDBAL0] = e1000e_set_dbal,
3147 [RDBAL1] = e1000e_set_dbal,
3148 [RDH1] = e1000e_set_16bit,
3149 [RDT1] = e1000e_set_rdt,
3150 [STATUS] = e1000e_set_status,
3151 [PBACLR] = e1000e_set_pbaclr,
3152 [CTRL_EXT] = e1000e_set_ctrlext,
3153 [FCAH] = e1000e_set_16bit,
3154 [FCT] = e1000e_set_16bit,
3155 [FCTTV] = e1000e_set_16bit,
3156 [FCRTV] = e1000e_set_16bit,
3157 [FCRTH] = e1000e_set_fcrth,
3158 [FCRTL] = e1000e_set_fcrtl,
3159 [VET] = e1000e_set_vet,
3160 [RXDCTL] = e1000e_set_rxdctl,
3161 [FLASHT] = e1000e_set_16bit,
3162 [EEWR] = e1000e_set_eewr,
3163 [CTRL_DUP] = e1000e_set_ctrl,
3164 [RFCTL] = e1000e_set_rfctl,
3165 [RA + 1] = e1000e_mac_setmacaddr,
3167 [IP6AT ... IP6AT + 3] = e1000e_mac_writereg,
3168 [IP4AT ... IP4AT + 6] = e1000e_mac_writereg,
3169 [RA + 2 ... RA + 31] = e1000e_mac_writereg,
3170 [WUPM ... WUPM + 31] = e1000e_mac_writereg,
3171 [MTA ... MTA + 127] = e1000e_mac_writereg,
3172 [VFTA ... VFTA + 127] = e1000e_mac_writereg,
3173 [FFMT ... FFMT + 254] = e1000e_mac_writereg,
3174 [FFVT ... FFVT + 254] = e1000e_mac_writereg,
3175 [PBM ... PBM + 10239] = e1000e_mac_writereg,
3176 [MDEF ... MDEF + 7] = e1000e_mac_writereg,
3177 [FFLT ... FFLT + 10] = e1000e_mac_writereg,
3178 [FTFT ... FTFT + 254] = e1000e_mac_writereg,
3179 [RETA ... RETA + 31] = e1000e_mac_writereg,
3180 [RSSRK ... RSSRK + 31] = e1000e_mac_writereg,
3181 [MAVTV0 ... MAVTV3] = e1000e_mac_writereg,
3182 [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_set_eitr
3184 enum { E1000E_NWRITEOPS = ARRAY_SIZE(e1000e_macreg_writeops) };
3186 enum { MAC_ACCESS_PARTIAL = 1 };
3188 /* The array below combines alias offsets of the index values for the
3189 * MAC registers that have aliases, with the indication of not fully
3190 * implemented registers (lowest bit). This combination is possible
3191 * because all of the offsets are even. */
3192 static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = {
3193 /* Alias index offsets */
3194 [FCRTL_A] = 0x07fe, [FCRTH_A] = 0x0802,
3195 [RDH0_A] = 0x09bc, [RDT0_A] = 0x09bc, [RDTR_A] = 0x09c6,
3196 [RDFH_A] = 0xe904, [RDFT_A] = 0xe904,
3197 [TDH_A] = 0x0cf8, [TDT_A] = 0x0cf8, [TIDV_A] = 0x0cf8,
3198 [TDFH_A] = 0xed00, [TDFT_A] = 0xed00,
3199 [RA_A ... RA_A + 31] = 0x14f0,
3200 [VFTA_A ... VFTA_A + 127] = 0x1400,
3201 [RDBAL0_A ... RDLEN0_A] = 0x09bc,
3202 [TDBAL_A ... TDLEN_A] = 0x0cf8,
3203 /* Access options */
3204 [RDFH] = MAC_ACCESS_PARTIAL, [RDFT] = MAC_ACCESS_PARTIAL,
3205 [RDFHS] = MAC_ACCESS_PARTIAL, [RDFTS] = MAC_ACCESS_PARTIAL,
3206 [RDFPC] = MAC_ACCESS_PARTIAL,
3207 [TDFH] = MAC_ACCESS_PARTIAL, [TDFT] = MAC_ACCESS_PARTIAL,
3208 [TDFHS] = MAC_ACCESS_PARTIAL, [TDFTS] = MAC_ACCESS_PARTIAL,
3209 [TDFPC] = MAC_ACCESS_PARTIAL, [EECD] = MAC_ACCESS_PARTIAL,
3210 [PBM] = MAC_ACCESS_PARTIAL, [FLA] = MAC_ACCESS_PARTIAL,
3211 [FCAL] = MAC_ACCESS_PARTIAL, [FCAH] = MAC_ACCESS_PARTIAL,
3212 [FCT] = MAC_ACCESS_PARTIAL, [FCTTV] = MAC_ACCESS_PARTIAL,
3213 [FCRTV] = MAC_ACCESS_PARTIAL, [FCRTL] = MAC_ACCESS_PARTIAL,
3214 [FCRTH] = MAC_ACCESS_PARTIAL, [TXDCTL] = MAC_ACCESS_PARTIAL,
3215 [TXDCTL1] = MAC_ACCESS_PARTIAL,
3216 [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL
3219 void
3220 e1000e_core_write(E1000ECore *core, hwaddr addr, uint64_t val, unsigned size)
3222 uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3224 if (index < E1000E_NWRITEOPS && e1000e_macreg_writeops[index]) {
3225 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3226 trace_e1000e_wrn_regs_write_trivial(index << 2);
3228 trace_e1000e_core_write(index << 2, size, val);
3229 e1000e_macreg_writeops[index](core, index, val);
3230 } else if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3231 trace_e1000e_wrn_regs_write_ro(index << 2, size, val);
3232 } else {
3233 trace_e1000e_wrn_regs_write_unknown(index << 2, size, val);
3237 uint64_t
3238 e1000e_core_read(E1000ECore *core, hwaddr addr, unsigned size)
3240 uint64_t val;
3241 uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3243 if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3244 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3245 trace_e1000e_wrn_regs_read_trivial(index << 2);
3247 val = e1000e_macreg_readops[index](core, index);
3248 trace_e1000e_core_read(index << 2, size, val);
3249 return val;
3250 } else {
3251 trace_e1000e_wrn_regs_read_unknown(index << 2, size);
3253 return 0;
3256 static inline void
3257 e1000e_autoneg_pause(E1000ECore *core)
3259 timer_del(core->autoneg_timer);
3262 static void
3263 e1000e_autoneg_resume(E1000ECore *core)
3265 if (e1000e_have_autoneg(core) &&
3266 !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
3267 qemu_get_queue(core->owner_nic)->link_down = false;
3268 timer_mod(core->autoneg_timer,
3269 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
3273 static void
3274 e1000e_vm_state_change(void *opaque, int running, RunState state)
3276 E1000ECore *core = opaque;
3278 if (running) {
3279 trace_e1000e_vm_state_running();
3280 e1000e_intrmgr_resume(core);
3281 e1000e_autoneg_resume(core);
3282 } else {
3283 trace_e1000e_vm_state_stopped();
3284 e1000e_autoneg_pause(core);
3285 e1000e_intrmgr_pause(core);
3289 void
3290 e1000e_core_pci_realize(E1000ECore *core,
3291 const uint16_t *eeprom_templ,
3292 uint32_t eeprom_size,
3293 const uint8_t *macaddr)
3295 int i;
3297 core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
3298 e1000e_autoneg_timer, core);
3299 e1000e_intrmgr_pci_realize(core);
3301 core->vmstate =
3302 qemu_add_vm_change_state_handler(e1000e_vm_state_change, core);
3304 for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3305 net_tx_pkt_init(&core->tx[i].tx_pkt, core->owner,
3306 E1000E_MAX_TX_FRAGS, core->has_vnet);
3309 net_rx_pkt_init(&core->rx_pkt, core->has_vnet);
3311 e1000x_core_prepare_eeprom(core->eeprom,
3312 eeprom_templ,
3313 eeprom_size,
3314 PCI_DEVICE_GET_CLASS(core->owner)->device_id,
3315 macaddr);
3316 e1000e_update_rx_offloads(core);
3319 void
3320 e1000e_core_pci_uninit(E1000ECore *core)
3322 int i;
3324 timer_del(core->autoneg_timer);
3325 timer_free(core->autoneg_timer);
3327 e1000e_intrmgr_pci_unint(core);
3329 qemu_del_vm_change_state_handler(core->vmstate);
3331 for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3332 net_tx_pkt_reset(core->tx[i].tx_pkt);
3333 net_tx_pkt_uninit(core->tx[i].tx_pkt);
3336 net_rx_pkt_uninit(core->rx_pkt);
3339 static const uint16_t
3340 e1000e_phy_reg_init[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE] = {
3341 [0] = {
3342 [PHY_CTRL] = MII_CR_SPEED_SELECT_MSB |
3343 MII_CR_FULL_DUPLEX |
3344 MII_CR_AUTO_NEG_EN,
3346 [PHY_STATUS] = MII_SR_EXTENDED_CAPS |
3347 MII_SR_LINK_STATUS |
3348 MII_SR_AUTONEG_CAPS |
3349 MII_SR_PREAMBLE_SUPPRESS |
3350 MII_SR_EXTENDED_STATUS |
3351 MII_SR_10T_HD_CAPS |
3352 MII_SR_10T_FD_CAPS |
3353 MII_SR_100X_HD_CAPS |
3354 MII_SR_100X_FD_CAPS,
3356 [PHY_ID1] = 0x141,
3357 [PHY_ID2] = E1000_PHY_ID2_82574x,
3358 [PHY_AUTONEG_ADV] = 0xde1,
3359 [PHY_LP_ABILITY] = 0x7e0,
3360 [PHY_AUTONEG_EXP] = BIT(2),
3361 [PHY_NEXT_PAGE_TX] = BIT(0) | BIT(13),
3362 [PHY_1000T_CTRL] = BIT(8) | BIT(9) | BIT(10) | BIT(11),
3363 [PHY_1000T_STATUS] = 0x3c00,
3364 [PHY_EXT_STATUS] = BIT(12) | BIT(13),
3366 [PHY_COPPER_CTRL1] = BIT(5) | BIT(6) | BIT(8) | BIT(9) |
3367 BIT(12) | BIT(13),
3368 [PHY_COPPER_STAT1] = BIT(3) | BIT(10) | BIT(11) | BIT(13) | BIT(15)
3370 [2] = {
3371 [PHY_MAC_CTRL1] = BIT(3) | BIT(7),
3372 [PHY_MAC_CTRL2] = BIT(1) | BIT(2) | BIT(6) | BIT(12)
3374 [3] = {
3375 [PHY_LED_TIMER_CTRL] = BIT(0) | BIT(2) | BIT(14)
3379 static const uint32_t e1000e_mac_reg_init[] = {
3380 [PBA] = 0x00140014,
3381 [LEDCTL] = BIT(1) | BIT(8) | BIT(9) | BIT(15) | BIT(17) | BIT(18),
3382 [EXTCNF_CTRL] = BIT(3),
3383 [EEMNGCTL] = BIT(31),
3384 [FLASHT] = 0x2,
3385 [FLSWCTL] = BIT(30) | BIT(31),
3386 [FLOL] = BIT(0),
3387 [RXDCTL] = BIT(16),
3388 [RXDCTL1] = BIT(16),
3389 [TIPG] = 0x8 | (0x8 << 10) | (0x6 << 20),
3390 [RXCFGL] = 0x88F7,
3391 [RXUDP] = 0x319,
3392 [CTRL] = E1000_CTRL_FD | E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
3393 E1000_CTRL_SPD_1000 | E1000_CTRL_SLU |
3394 E1000_CTRL_ADVD3WUC,
3395 [STATUS] = E1000_STATUS_ASDV_1000 | E1000_STATUS_LU,
3396 [PSRCTL] = (2 << E1000_PSRCTL_BSIZE0_SHIFT) |
3397 (4 << E1000_PSRCTL_BSIZE1_SHIFT) |
3398 (4 << E1000_PSRCTL_BSIZE2_SHIFT),
3399 [TARC0] = 0x3 | E1000_TARC_ENABLE,
3400 [TARC1] = 0x3 | E1000_TARC_ENABLE,
3401 [EECD] = E1000_EECD_AUTO_RD | E1000_EECD_PRES,
3402 [EERD] = E1000_EERW_DONE,
3403 [EEWR] = E1000_EERW_DONE,
3404 [GCR] = E1000_L0S_ADJUST |
3405 E1000_L1_ENTRY_LATENCY_MSB |
3406 E1000_L1_ENTRY_LATENCY_LSB,
3407 [TDFH] = 0x600,
3408 [TDFT] = 0x600,
3409 [TDFHS] = 0x600,
3410 [TDFTS] = 0x600,
3411 [POEMB] = 0x30D,
3412 [PBS] = 0x028,
3413 [MANC] = E1000_MANC_DIS_IP_CHK_ARP,
3414 [FACTPS] = E1000_FACTPS_LAN0_ON | 0x20000000,
3415 [SWSM] = 1,
3416 [RXCSUM] = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD,
3417 [ITR] = E1000E_MIN_XITR,
3418 [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = E1000E_MIN_XITR,
3421 void
3422 e1000e_core_reset(E1000ECore *core)
3424 int i;
3426 timer_del(core->autoneg_timer);
3428 e1000e_intrmgr_reset(core);
3430 memset(core->phy, 0, sizeof core->phy);
3431 memmove(core->phy, e1000e_phy_reg_init, sizeof e1000e_phy_reg_init);
3432 memset(core->mac, 0, sizeof core->mac);
3433 memmove(core->mac, e1000e_mac_reg_init, sizeof e1000e_mac_reg_init);
3435 core->rxbuf_min_shift = 1 + E1000_RING_DESC_LEN_SHIFT;
3437 if (qemu_get_queue(core->owner_nic)->link_down) {
3438 e1000e_link_down(core);
3441 e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
3443 for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3444 net_tx_pkt_reset(core->tx[i].tx_pkt);
3445 memset(&core->tx[i].props, 0, sizeof(core->tx[i].props));
3446 core->tx[i].skip_cp = false;
3450 void e1000e_core_pre_save(E1000ECore *core)
3452 int i;
3453 NetClientState *nc = qemu_get_queue(core->owner_nic);
3456 * If link is down and auto-negotiation is supported and ongoing,
3457 * complete auto-negotiation immediately. This allows us to look
3458 * at MII_SR_AUTONEG_COMPLETE to infer link status on load.
3460 if (nc->link_down && e1000e_have_autoneg(core)) {
3461 core->phy[0][PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE;
3462 e1000e_update_flowctl_status(core);
3465 for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3466 if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) {
3467 core->tx[i].skip_cp = true;
3473 e1000e_core_post_load(E1000ECore *core)
3475 NetClientState *nc = qemu_get_queue(core->owner_nic);
3477 /* nc.link_down can't be migrated, so infer link_down according
3478 * to link status bit in core.mac[STATUS].
3480 nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0;
3482 return 0;