target-arm: Implements the ARM PMCCNTR register
[qemu/cris-port.git] / target-arm / cpu.h
blob0a7edfe6cb38e1c43e18f0eda36157ca5679883a
1 /*
2 * ARM virtual CPU header
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #ifndef CPU_ARM_H
20 #define CPU_ARM_H
22 #include "config.h"
24 #include "kvm-consts.h"
26 #if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28 # define TARGET_LONG_BITS 64
29 # define ELF_MACHINE EM_AARCH64
30 #else
31 # define TARGET_LONG_BITS 32
32 # define ELF_MACHINE EM_ARM
33 #endif
35 #define CPUArchState struct CPUARMState
37 #include "qemu-common.h"
38 #include "exec/cpu-defs.h"
40 #include "fpu/softfloat.h"
42 #define TARGET_HAS_ICE 1
44 #define EXCP_UDEF 1 /* undefined instruction */
45 #define EXCP_SWI 2 /* software interrupt */
46 #define EXCP_PREFETCH_ABORT 3
47 #define EXCP_DATA_ABORT 4
48 #define EXCP_IRQ 5
49 #define EXCP_FIQ 6
50 #define EXCP_BKPT 7
51 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
52 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
53 #define EXCP_STREX 10
55 #define ARMV7M_EXCP_RESET 1
56 #define ARMV7M_EXCP_NMI 2
57 #define ARMV7M_EXCP_HARD 3
58 #define ARMV7M_EXCP_MEM 4
59 #define ARMV7M_EXCP_BUS 5
60 #define ARMV7M_EXCP_USAGE 6
61 #define ARMV7M_EXCP_SVC 11
62 #define ARMV7M_EXCP_DEBUG 12
63 #define ARMV7M_EXCP_PENDSV 14
64 #define ARMV7M_EXCP_SYSTICK 15
66 /* ARM-specific interrupt pending bits. */
67 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
69 /* The usual mapping for an AArch64 system register to its AArch32
70 * counterpart is for the 32 bit world to have access to the lower
71 * half only (with writes leaving the upper half untouched). It's
72 * therefore useful to be able to pass TCG the offset of the least
73 * significant half of a uint64_t struct member.
75 #ifdef HOST_WORDS_BIGENDIAN
76 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
77 #define offsetofhigh32(S, M) offsetof(S, M)
78 #else
79 #define offsetoflow32(S, M) offsetof(S, M)
80 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
81 #endif
83 /* Meanings of the ARMCPU object's two inbound GPIO lines */
84 #define ARM_CPU_IRQ 0
85 #define ARM_CPU_FIQ 1
87 typedef void ARMWriteCPFunc(void *opaque, int cp_info,
88 int srcreg, int operand, uint32_t value);
89 typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
90 int dstreg, int operand);
92 struct arm_boot_info;
94 #define NB_MMU_MODES 2
96 /* We currently assume float and double are IEEE single and double
97 precision respectively.
98 Doing runtime conversions is tricky because VFP registers may contain
99 integer values (eg. as the result of a FTOSI instruction).
100 s<2n> maps to the least significant half of d<n>
101 s<2n+1> maps to the most significant half of d<n>
104 /* CPU state for each instance of a generic timer (in cp15 c14) */
105 typedef struct ARMGenericTimer {
106 uint64_t cval; /* Timer CompareValue register */
107 uint64_t ctl; /* Timer Control register */
108 } ARMGenericTimer;
110 #define GTIMER_PHYS 0
111 #define GTIMER_VIRT 1
112 #define NUM_GTIMERS 2
114 /* Scale factor for generic timers, ie number of ns per tick.
115 * This gives a 62.5MHz timer.
117 #define GTIMER_SCALE 16
119 typedef struct CPUARMState {
120 /* Regs for current mode. */
121 uint32_t regs[16];
123 /* 32/64 switch only happens when taking and returning from
124 * exceptions so the overlap semantics are taken care of then
125 * instead of having a complicated union.
127 /* Regs for A64 mode. */
128 uint64_t xregs[32];
129 uint64_t pc;
130 /* PSTATE isn't an architectural register for ARMv8. However, it is
131 * convenient for us to assemble the underlying state into a 32 bit format
132 * identical to the architectural format used for the SPSR. (This is also
133 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
134 * 'pstate' register are.) Of the PSTATE bits:
135 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
136 * semantics as for AArch32, as described in the comments on each field)
137 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
138 * DAIF (exception masks) are kept in env->daif
139 * all other bits are stored in their correct places in env->pstate
141 uint32_t pstate;
142 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
144 /* Frequently accessed CPSR bits are stored separately for efficiency.
145 This contains all the other bits. Use cpsr_{read,write} to access
146 the whole CPSR. */
147 uint32_t uncached_cpsr;
148 uint32_t spsr;
150 /* Banked registers. */
151 uint32_t banked_spsr[6];
152 uint32_t banked_r13[6];
153 uint32_t banked_r14[6];
155 /* These hold r8-r12. */
156 uint32_t usr_regs[5];
157 uint32_t fiq_regs[5];
159 /* cpsr flag cache for faster execution */
160 uint32_t CF; /* 0 or 1 */
161 uint32_t VF; /* V is the bit 31. All other bits are undefined */
162 uint32_t NF; /* N is bit 31. All other bits are undefined. */
163 uint32_t ZF; /* Z set if zero. */
164 uint32_t QF; /* 0 or 1 */
165 uint32_t GE; /* cpsr[19:16] */
166 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
167 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
168 uint32_t daif; /* exception masks, in the bits they are in in PSTATE */
170 /* System control coprocessor (cp15) */
171 struct {
172 uint32_t c0_cpuid;
173 uint64_t c0_cssel; /* Cache size selection. */
174 uint64_t c1_sys; /* System control register. */
175 uint64_t c1_coproc; /* Coprocessor access register. */
176 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
177 uint32_t c1_scr; /* secure config register. */
178 uint64_t ttbr0_el1; /* MMU translation table base 0. */
179 uint64_t ttbr1_el1; /* MMU translation table base 1. */
180 uint64_t c2_control; /* MMU translation table base control. */
181 uint32_t c2_mask; /* MMU translation table base selection mask. */
182 uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
183 uint32_t c2_data; /* MPU data cachable bits. */
184 uint32_t c2_insn; /* MPU instruction cachable bits. */
185 uint32_t c3; /* MMU domain access control register
186 MPU write buffer control. */
187 uint32_t c5_insn; /* Fault status registers. */
188 uint32_t c5_data;
189 uint32_t c6_region[8]; /* MPU base/size registers. */
190 uint32_t c6_insn; /* Fault address registers. */
191 uint32_t c6_data;
192 uint32_t c7_par; /* Translation result. */
193 uint32_t c7_par_hi; /* Translation result, high 32 bits */
194 uint32_t c9_insn; /* Cache lockdown registers. */
195 uint32_t c9_data;
196 uint32_t c9_pmcr; /* performance monitor control register */
197 uint32_t c9_pmcnten; /* perf monitor counter enables */
198 uint32_t c9_pmovsr; /* perf monitor overflow status */
199 uint32_t c9_pmxevtyper; /* perf monitor event type */
200 uint32_t c9_pmuserenr; /* perf monitor user enable */
201 uint32_t c9_pminten; /* perf monitor interrupt enables */
202 uint64_t mair_el1;
203 uint64_t c12_vbar; /* vector base address register */
204 uint32_t c13_fcse; /* FCSE PID. */
205 uint32_t c13_context; /* Context ID. */
206 uint64_t tpidr_el0; /* User RW Thread register. */
207 uint64_t tpidrro_el0; /* User RO Thread register. */
208 uint64_t tpidr_el1; /* Privileged Thread register. */
209 uint64_t c14_cntfrq; /* Counter Frequency register */
210 uint64_t c14_cntkctl; /* Timer Control register */
211 ARMGenericTimer c14_timer[NUM_GTIMERS];
212 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
213 uint32_t c15_ticonfig; /* TI925T configuration byte. */
214 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
215 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
216 uint32_t c15_threadid; /* TI debugger thread-ID. */
217 uint32_t c15_config_base_address; /* SCU base address. */
218 uint32_t c15_diagnostic; /* diagnostic register */
219 uint32_t c15_power_diagnostic;
220 uint32_t c15_power_control; /* power control */
221 uint64_t dbgbvr[16]; /* breakpoint value registers */
222 uint64_t dbgbcr[16]; /* breakpoint control registers */
223 uint64_t dbgwvr[16]; /* watchpoint value registers */
224 uint64_t dbgwcr[16]; /* watchpoint control registers */
225 /* If the counter is enabled, this stores the last time the counter
226 * was reset. Otherwise it stores the counter value
228 uint32_t c15_ccnt;
229 } cp15;
231 struct {
232 uint32_t other_sp;
233 uint32_t vecbase;
234 uint32_t basepri;
235 uint32_t control;
236 int current_sp;
237 int exception;
238 int pending_exception;
239 } v7m;
241 /* Thumb-2 EE state. */
242 uint32_t teecr;
243 uint32_t teehbr;
245 /* VFP coprocessor state. */
246 struct {
247 /* VFP/Neon register state. Note that the mapping between S, D and Q
248 * views of the register bank differs between AArch64 and AArch32:
249 * In AArch32:
250 * Qn = regs[2n+1]:regs[2n]
251 * Dn = regs[n]
252 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
253 * (and regs[32] to regs[63] are inaccessible)
254 * In AArch64:
255 * Qn = regs[2n+1]:regs[2n]
256 * Dn = regs[2n]
257 * Sn = regs[2n] bits 31..0
258 * This corresponds to the architecturally defined mapping between
259 * the two execution states, and means we do not need to explicitly
260 * map these registers when changing states.
262 float64 regs[64];
264 uint32_t xregs[16];
265 /* We store these fpcsr fields separately for convenience. */
266 int vec_len;
267 int vec_stride;
269 /* scratch space when Tn are not sufficient. */
270 uint32_t scratch[8];
272 /* fp_status is the "normal" fp status. standard_fp_status retains
273 * values corresponding to the ARM "Standard FPSCR Value", ie
274 * default-NaN, flush-to-zero, round-to-nearest and is used by
275 * any operations (generally Neon) which the architecture defines
276 * as controlled by the standard FPSCR value rather than the FPSCR.
278 * To avoid having to transfer exception bits around, we simply
279 * say that the FPSCR cumulative exception flags are the logical
280 * OR of the flags in the two fp statuses. This relies on the
281 * only thing which needs to read the exception flags being
282 * an explicit FPSCR read.
284 float_status fp_status;
285 float_status standard_fp_status;
286 } vfp;
287 uint64_t exclusive_addr;
288 uint64_t exclusive_val;
289 uint64_t exclusive_high;
290 #if defined(CONFIG_USER_ONLY)
291 uint64_t exclusive_test;
292 uint32_t exclusive_info;
293 #endif
295 /* iwMMXt coprocessor state. */
296 struct {
297 uint64_t regs[16];
298 uint64_t val;
300 uint32_t cregs[16];
301 } iwmmxt;
303 /* For mixed endian mode. */
304 bool bswap_code;
306 #if defined(CONFIG_USER_ONLY)
307 /* For usermode syscall translation. */
308 int eabi;
309 #endif
311 CPU_COMMON
313 /* These fields after the common ones so they are preserved on reset. */
315 /* Internal CPU feature flags. */
316 uint64_t features;
318 void *nvic;
319 const struct arm_boot_info *boot_info;
320 } CPUARMState;
322 #include "cpu-qom.h"
324 ARMCPU *cpu_arm_init(const char *cpu_model);
325 void arm_translate_init(void);
326 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
327 int cpu_arm_exec(CPUARMState *s);
328 int bank_number(int mode);
329 void switch_mode(CPUARMState *, int);
330 uint32_t do_arm_semihosting(CPUARMState *env);
332 static inline bool is_a64(CPUARMState *env)
334 return env->aarch64;
337 /* you can call this signal handler from your SIGBUS and SIGSEGV
338 signal handlers to inform the virtual CPU of exceptions. non zero
339 is returned if the signal was handled by the virtual CPU. */
340 int cpu_arm_signal_handler(int host_signum, void *pinfo,
341 void *puc);
342 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
343 int mmu_idx);
344 #define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault
346 /* SCTLR bit meanings. Several bits have been reused in newer
347 * versions of the architecture; in that case we define constants
348 * for both old and new bit meanings. Code which tests against those
349 * bits should probably check or otherwise arrange that the CPU
350 * is the architectural version it expects.
352 #define SCTLR_M (1U << 0)
353 #define SCTLR_A (1U << 1)
354 #define SCTLR_C (1U << 2)
355 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
356 #define SCTLR_SA (1U << 3)
357 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
358 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
359 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
360 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
361 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
362 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
363 #define SCTLR_ITD (1U << 7) /* v8 onward */
364 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
365 #define SCTLR_SED (1U << 8) /* v8 onward */
366 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
367 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
368 #define SCTLR_F (1U << 10) /* up to v6 */
369 #define SCTLR_SW (1U << 10) /* v7 onward */
370 #define SCTLR_Z (1U << 11)
371 #define SCTLR_I (1U << 12)
372 #define SCTLR_V (1U << 13)
373 #define SCTLR_RR (1U << 14) /* up to v7 */
374 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
375 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
376 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
377 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
378 #define SCTLR_nTWI (1U << 16) /* v8 onward */
379 #define SCTLR_HA (1U << 17)
380 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
381 #define SCTLR_nTWE (1U << 18) /* v8 onward */
382 #define SCTLR_WXN (1U << 19)
383 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
384 #define SCTLR_UWXN (1U << 20) /* v7 onward */
385 #define SCTLR_FI (1U << 21)
386 #define SCTLR_U (1U << 22)
387 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
388 #define SCTLR_VE (1U << 24) /* up to v7 */
389 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
390 #define SCTLR_EE (1U << 25)
391 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
392 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
393 #define SCTLR_NMFI (1U << 27)
394 #define SCTLR_TRE (1U << 28)
395 #define SCTLR_AFE (1U << 29)
396 #define SCTLR_TE (1U << 30)
398 #define CPSR_M (0x1fU)
399 #define CPSR_T (1U << 5)
400 #define CPSR_F (1U << 6)
401 #define CPSR_I (1U << 7)
402 #define CPSR_A (1U << 8)
403 #define CPSR_E (1U << 9)
404 #define CPSR_IT_2_7 (0xfc00U)
405 #define CPSR_GE (0xfU << 16)
406 #define CPSR_RESERVED (0xfU << 20)
407 #define CPSR_J (1U << 24)
408 #define CPSR_IT_0_1 (3U << 25)
409 #define CPSR_Q (1U << 27)
410 #define CPSR_V (1U << 28)
411 #define CPSR_C (1U << 29)
412 #define CPSR_Z (1U << 30)
413 #define CPSR_N (1U << 31)
414 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
415 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
417 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
418 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
419 | CPSR_NZCV)
420 /* Bits writable in user mode. */
421 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
422 /* Execution state bits. MRS read as zero, MSR writes ignored. */
423 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
425 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
426 * Only these are valid when in AArch64 mode; in
427 * AArch32 mode SPSRs are basically CPSR-format.
429 #define PSTATE_M (0xFU)
430 #define PSTATE_nRW (1U << 4)
431 #define PSTATE_F (1U << 6)
432 #define PSTATE_I (1U << 7)
433 #define PSTATE_A (1U << 8)
434 #define PSTATE_D (1U << 9)
435 #define PSTATE_IL (1U << 20)
436 #define PSTATE_SS (1U << 21)
437 #define PSTATE_V (1U << 28)
438 #define PSTATE_C (1U << 29)
439 #define PSTATE_Z (1U << 30)
440 #define PSTATE_N (1U << 31)
441 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
442 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
443 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
444 /* Mode values for AArch64 */
445 #define PSTATE_MODE_EL3h 13
446 #define PSTATE_MODE_EL3t 12
447 #define PSTATE_MODE_EL2h 9
448 #define PSTATE_MODE_EL2t 8
449 #define PSTATE_MODE_EL1h 5
450 #define PSTATE_MODE_EL1t 4
451 #define PSTATE_MODE_EL0t 0
453 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
454 * interprocessing, so we don't attempt to sync with the cpsr state used by
455 * the 32 bit decoder.
457 static inline uint32_t pstate_read(CPUARMState *env)
459 int ZF;
461 ZF = (env->ZF == 0);
462 return (env->NF & 0x80000000) | (ZF << 30)
463 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
464 | env->pstate | env->daif;
467 static inline void pstate_write(CPUARMState *env, uint32_t val)
469 env->ZF = (~val) & PSTATE_Z;
470 env->NF = val;
471 env->CF = (val >> 29) & 1;
472 env->VF = (val << 3) & 0x80000000;
473 env->daif = val & PSTATE_DAIF;
474 env->pstate = val & ~CACHED_PSTATE_BITS;
477 /* Return the current CPSR value. */
478 uint32_t cpsr_read(CPUARMState *env);
479 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
480 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
482 /* Return the current xPSR value. */
483 static inline uint32_t xpsr_read(CPUARMState *env)
485 int ZF;
486 ZF = (env->ZF == 0);
487 return (env->NF & 0x80000000) | (ZF << 30)
488 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
489 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
490 | ((env->condexec_bits & 0xfc) << 8)
491 | env->v7m.exception;
494 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
495 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
497 if (mask & CPSR_NZCV) {
498 env->ZF = (~val) & CPSR_Z;
499 env->NF = val;
500 env->CF = (val >> 29) & 1;
501 env->VF = (val << 3) & 0x80000000;
503 if (mask & CPSR_Q)
504 env->QF = ((val & CPSR_Q) != 0);
505 if (mask & (1 << 24))
506 env->thumb = ((val & (1 << 24)) != 0);
507 if (mask & CPSR_IT_0_1) {
508 env->condexec_bits &= ~3;
509 env->condexec_bits |= (val >> 25) & 3;
511 if (mask & CPSR_IT_2_7) {
512 env->condexec_bits &= 3;
513 env->condexec_bits |= (val >> 8) & 0xfc;
515 if (mask & 0x1ff) {
516 env->v7m.exception = val & 0x1ff;
520 /* Return the current FPSCR value. */
521 uint32_t vfp_get_fpscr(CPUARMState *env);
522 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
524 /* For A64 the FPSCR is split into two logically distinct registers,
525 * FPCR and FPSR. However since they still use non-overlapping bits
526 * we store the underlying state in fpscr and just mask on read/write.
528 #define FPSR_MASK 0xf800009f
529 #define FPCR_MASK 0x07f79f00
530 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
532 return vfp_get_fpscr(env) & FPSR_MASK;
535 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
537 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
538 vfp_set_fpscr(env, new_fpscr);
541 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
543 return vfp_get_fpscr(env) & FPCR_MASK;
546 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
548 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
549 vfp_set_fpscr(env, new_fpscr);
552 enum arm_fprounding {
553 FPROUNDING_TIEEVEN,
554 FPROUNDING_POSINF,
555 FPROUNDING_NEGINF,
556 FPROUNDING_ZERO,
557 FPROUNDING_TIEAWAY,
558 FPROUNDING_ODD
561 int arm_rmode_to_sf(int rmode);
563 enum arm_cpu_mode {
564 ARM_CPU_MODE_USR = 0x10,
565 ARM_CPU_MODE_FIQ = 0x11,
566 ARM_CPU_MODE_IRQ = 0x12,
567 ARM_CPU_MODE_SVC = 0x13,
568 ARM_CPU_MODE_ABT = 0x17,
569 ARM_CPU_MODE_UND = 0x1b,
570 ARM_CPU_MODE_SYS = 0x1f
573 /* VFP system registers. */
574 #define ARM_VFP_FPSID 0
575 #define ARM_VFP_FPSCR 1
576 #define ARM_VFP_MVFR1 6
577 #define ARM_VFP_MVFR0 7
578 #define ARM_VFP_FPEXC 8
579 #define ARM_VFP_FPINST 9
580 #define ARM_VFP_FPINST2 10
582 /* iwMMXt coprocessor control registers. */
583 #define ARM_IWMMXT_wCID 0
584 #define ARM_IWMMXT_wCon 1
585 #define ARM_IWMMXT_wCSSF 2
586 #define ARM_IWMMXT_wCASF 3
587 #define ARM_IWMMXT_wCGR0 8
588 #define ARM_IWMMXT_wCGR1 9
589 #define ARM_IWMMXT_wCGR2 10
590 #define ARM_IWMMXT_wCGR3 11
592 /* If adding a feature bit which corresponds to a Linux ELF
593 * HWCAP bit, remember to update the feature-bit-to-hwcap
594 * mapping in linux-user/elfload.c:get_elf_hwcap().
596 enum arm_features {
597 ARM_FEATURE_VFP,
598 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
599 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
600 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
601 ARM_FEATURE_V6,
602 ARM_FEATURE_V6K,
603 ARM_FEATURE_V7,
604 ARM_FEATURE_THUMB2,
605 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
606 ARM_FEATURE_VFP3,
607 ARM_FEATURE_VFP_FP16,
608 ARM_FEATURE_NEON,
609 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
610 ARM_FEATURE_M, /* Microcontroller profile. */
611 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
612 ARM_FEATURE_THUMB2EE,
613 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
614 ARM_FEATURE_V4T,
615 ARM_FEATURE_V5,
616 ARM_FEATURE_STRONGARM,
617 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
618 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
619 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
620 ARM_FEATURE_GENERIC_TIMER,
621 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
622 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
623 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
624 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
625 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
626 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
627 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
628 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
629 ARM_FEATURE_V8,
630 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
631 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
632 ARM_FEATURE_CBAR, /* has cp15 CBAR */
633 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
636 static inline int arm_feature(CPUARMState *env, int feature)
638 return (env->features & (1ULL << feature)) != 0;
641 /* Return true if the specified exception level is running in AArch64 state. */
642 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
644 /* We don't currently support EL2 or EL3, and this isn't valid for EL0
645 * (if we're in EL0, is_a64() is what you want, and if we're not in EL0
646 * then the state of EL0 isn't well defined.)
648 assert(el == 1);
649 /* AArch64-capable CPUs always run with EL1 in AArch64 mode. This
650 * is a QEMU-imposed simplification which we may wish to change later.
651 * If we in future support EL2 and/or EL3, then the state of lower
652 * exception levels is controlled by the HCR.RW and SCR.RW bits.
654 return arm_feature(env, ARM_FEATURE_AARCH64);
657 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
659 /* Interface between CPU and Interrupt controller. */
660 void armv7m_nvic_set_pending(void *opaque, int irq);
661 int armv7m_nvic_acknowledge_irq(void *opaque);
662 void armv7m_nvic_complete_irq(void *opaque, int irq);
664 /* Interface for defining coprocessor registers.
665 * Registers are defined in tables of arm_cp_reginfo structs
666 * which are passed to define_arm_cp_regs().
669 /* When looking up a coprocessor register we look for it
670 * via an integer which encodes all of:
671 * coprocessor number
672 * Crn, Crm, opc1, opc2 fields
673 * 32 or 64 bit register (ie is it accessed via MRC/MCR
674 * or via MRRC/MCRR?)
675 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
676 * (In this case crn and opc2 should be zero.)
677 * For AArch64, there is no 32/64 bit size distinction;
678 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
679 * and 4 bit CRn and CRm. The encoding patterns are chosen
680 * to be easy to convert to and from the KVM encodings, and also
681 * so that the hashtable can contain both AArch32 and AArch64
682 * registers (to allow for interprocessing where we might run
683 * 32 bit code on a 64 bit core).
685 /* This bit is private to our hashtable cpreg; in KVM register
686 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
687 * in the upper bits of the 64 bit ID.
689 #define CP_REG_AA64_SHIFT 28
690 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
692 #define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2) \
693 (((cp) << 16) | ((is64) << 15) | ((crn) << 11) | \
694 ((crm) << 7) | ((opc1) << 3) | (opc2))
696 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
697 (CP_REG_AA64_MASK | \
698 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
699 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
700 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
701 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
702 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
703 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
705 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
706 * version used as a key for the coprocessor register hashtable
708 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
710 uint32_t cpregid = kvmid;
711 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
712 cpregid |= CP_REG_AA64_MASK;
713 } else if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
714 cpregid |= (1 << 15);
716 return cpregid;
719 /* Convert a truncated 32 bit hashtable key into the full
720 * 64 bit KVM register ID.
722 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
724 uint64_t kvmid;
726 if (cpregid & CP_REG_AA64_MASK) {
727 kvmid = cpregid & ~CP_REG_AA64_MASK;
728 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
729 } else {
730 kvmid = cpregid & ~(1 << 15);
731 if (cpregid & (1 << 15)) {
732 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
733 } else {
734 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
737 return kvmid;
740 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
741 * special-behaviour cp reg and bits [15..8] indicate what behaviour
742 * it has. Otherwise it is a simple cp reg, where CONST indicates that
743 * TCG can assume the value to be constant (ie load at translate time)
744 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
745 * indicates that the TB should not be ended after a write to this register
746 * (the default is that the TB ends after cp writes). OVERRIDE permits
747 * a register definition to override a previous definition for the
748 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
749 * old must have the OVERRIDE bit set.
750 * NO_MIGRATE indicates that this register should be ignored for migration;
751 * (eg because any state is accessed via some other coprocessor register).
752 * IO indicates that this register does I/O and therefore its accesses
753 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
754 * registers which implement clocks or timers require this.
756 #define ARM_CP_SPECIAL 1
757 #define ARM_CP_CONST 2
758 #define ARM_CP_64BIT 4
759 #define ARM_CP_SUPPRESS_TB_END 8
760 #define ARM_CP_OVERRIDE 16
761 #define ARM_CP_NO_MIGRATE 32
762 #define ARM_CP_IO 64
763 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
764 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
765 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
766 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
767 #define ARM_LAST_SPECIAL ARM_CP_CURRENTEL
768 /* Used only as a terminator for ARMCPRegInfo lists */
769 #define ARM_CP_SENTINEL 0xffff
770 /* Mask of only the flag bits in a type field */
771 #define ARM_CP_FLAG_MASK 0x7f
773 /* Valid values for ARMCPRegInfo state field, indicating which of
774 * the AArch32 and AArch64 execution states this register is visible in.
775 * If the reginfo doesn't explicitly specify then it is AArch32 only.
776 * If the reginfo is declared to be visible in both states then a second
777 * reginfo is synthesised for the AArch32 view of the AArch64 register,
778 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
779 * Note that we rely on the values of these enums as we iterate through
780 * the various states in some places.
782 enum {
783 ARM_CP_STATE_AA32 = 0,
784 ARM_CP_STATE_AA64 = 1,
785 ARM_CP_STATE_BOTH = 2,
788 /* Return true if cptype is a valid type field. This is used to try to
789 * catch errors where the sentinel has been accidentally left off the end
790 * of a list of registers.
792 static inline bool cptype_valid(int cptype)
794 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
795 || ((cptype & ARM_CP_SPECIAL) &&
796 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
799 /* Access rights:
800 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
801 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
802 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
803 * (ie any of the privileged modes in Secure state, or Monitor mode).
804 * If a register is accessible in one privilege level it's always accessible
805 * in higher privilege levels too. Since "Secure PL1" also follows this rule
806 * (ie anything visible in PL2 is visible in S-PL1, some things are only
807 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
808 * terminology a little and call this PL3.
809 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
810 * with the ELx exception levels.
812 * If access permissions for a register are more complex than can be
813 * described with these bits, then use a laxer set of restrictions, and
814 * do the more restrictive/complex check inside a helper function.
816 #define PL3_R 0x80
817 #define PL3_W 0x40
818 #define PL2_R (0x20 | PL3_R)
819 #define PL2_W (0x10 | PL3_W)
820 #define PL1_R (0x08 | PL2_R)
821 #define PL1_W (0x04 | PL2_W)
822 #define PL0_R (0x02 | PL1_R)
823 #define PL0_W (0x01 | PL1_W)
825 #define PL3_RW (PL3_R | PL3_W)
826 #define PL2_RW (PL2_R | PL2_W)
827 #define PL1_RW (PL1_R | PL1_W)
828 #define PL0_RW (PL0_R | PL0_W)
830 static inline int arm_current_pl(CPUARMState *env)
832 if (env->aarch64) {
833 return extract32(env->pstate, 2, 2);
836 if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
837 return 0;
839 /* We don't currently implement the Virtualization or TrustZone
840 * extensions, so PL2 and PL3 don't exist for us.
842 return 1;
845 typedef struct ARMCPRegInfo ARMCPRegInfo;
847 typedef enum CPAccessResult {
848 /* Access is permitted */
849 CP_ACCESS_OK = 0,
850 /* Access fails due to a configurable trap or enable which would
851 * result in a categorized exception syndrome giving information about
852 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
853 * 0xc or 0x18).
855 CP_ACCESS_TRAP = 1,
856 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
857 * Note that this is not a catch-all case -- the set of cases which may
858 * result in this failure is specifically defined by the architecture.
860 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
861 } CPAccessResult;
863 /* Access functions for coprocessor registers. These cannot fail and
864 * may not raise exceptions.
866 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
867 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
868 uint64_t value);
869 /* Access permission check functions for coprocessor registers. */
870 typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque);
871 /* Hook function for register reset */
872 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
874 #define CP_ANY 0xff
876 /* Definition of an ARM coprocessor register */
877 struct ARMCPRegInfo {
878 /* Name of register (useful mainly for debugging, need not be unique) */
879 const char *name;
880 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
881 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
882 * 'wildcard' field -- any value of that field in the MRC/MCR insn
883 * will be decoded to this register. The register read and write
884 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
885 * used by the program, so it is possible to register a wildcard and
886 * then behave differently on read/write if necessary.
887 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
888 * must both be zero.
889 * For AArch64-visible registers, opc0 is also used.
890 * Since there are no "coprocessors" in AArch64, cp is purely used as a
891 * way to distinguish (for KVM's benefit) guest-visible system registers
892 * from demuxed ones provided to preserve the "no side effects on
893 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
894 * visible (to match KVM's encoding); cp==0 will be converted to
895 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
897 uint8_t cp;
898 uint8_t crn;
899 uint8_t crm;
900 uint8_t opc0;
901 uint8_t opc1;
902 uint8_t opc2;
903 /* Execution state in which this register is visible: ARM_CP_STATE_* */
904 int state;
905 /* Register type: ARM_CP_* bits/values */
906 int type;
907 /* Access rights: PL*_[RW] */
908 int access;
909 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
910 * this register was defined: can be used to hand data through to the
911 * register read/write functions, since they are passed the ARMCPRegInfo*.
913 void *opaque;
914 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
915 * fieldoffset is non-zero, the reset value of the register.
917 uint64_t resetvalue;
918 /* Offset of the field in CPUARMState for this register. This is not
919 * needed if either:
920 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
921 * 2. both readfn and writefn are specified
923 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
924 /* Function for making any access checks for this register in addition to
925 * those specified by the 'access' permissions bits. If NULL, no extra
926 * checks required. The access check is performed at runtime, not at
927 * translate time.
929 CPAccessFn *accessfn;
930 /* Function for handling reads of this register. If NULL, then reads
931 * will be done by loading from the offset into CPUARMState specified
932 * by fieldoffset.
934 CPReadFn *readfn;
935 /* Function for handling writes of this register. If NULL, then writes
936 * will be done by writing to the offset into CPUARMState specified
937 * by fieldoffset.
939 CPWriteFn *writefn;
940 /* Function for doing a "raw" read; used when we need to copy
941 * coprocessor state to the kernel for KVM or out for
942 * migration. This only needs to be provided if there is also a
943 * readfn and it has side effects (for instance clear-on-read bits).
945 CPReadFn *raw_readfn;
946 /* Function for doing a "raw" write; used when we need to copy KVM
947 * kernel coprocessor state into userspace, or for inbound
948 * migration. This only needs to be provided if there is also a
949 * writefn and it masks out "unwritable" bits or has write-one-to-clear
950 * or similar behaviour.
952 CPWriteFn *raw_writefn;
953 /* Function for resetting the register. If NULL, then reset will be done
954 * by writing resetvalue to the field specified in fieldoffset. If
955 * fieldoffset is 0 then no reset will be done.
957 CPResetFn *resetfn;
960 /* Macros which are lvalues for the field in CPUARMState for the
961 * ARMCPRegInfo *ri.
963 #define CPREG_FIELD32(env, ri) \
964 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
965 #define CPREG_FIELD64(env, ri) \
966 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
968 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
970 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
971 const ARMCPRegInfo *regs, void *opaque);
972 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
973 const ARMCPRegInfo *regs, void *opaque);
974 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
976 define_arm_cp_regs_with_opaque(cpu, regs, 0);
978 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
980 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
982 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
984 /* CPWriteFn that can be used to implement writes-ignored behaviour */
985 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
986 uint64_t value);
987 /* CPReadFn that can be used for read-as-zero behaviour */
988 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
990 /* CPResetFn that does nothing, for use if no reset is required even
991 * if fieldoffset is non zero.
993 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
995 /* Return true if this reginfo struct's field in the cpu state struct
996 * is 64 bits wide.
998 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1000 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1003 static inline bool cp_access_ok(int current_pl,
1004 const ARMCPRegInfo *ri, int isread)
1006 return (ri->access >> ((current_pl * 2) + isread)) & 1;
1010 * write_list_to_cpustate
1011 * @cpu: ARMCPU
1013 * For each register listed in the ARMCPU cpreg_indexes list, write
1014 * its value from the cpreg_values list into the ARMCPUState structure.
1015 * This updates TCG's working data structures from KVM data or
1016 * from incoming migration state.
1018 * Returns: true if all register values were updated correctly,
1019 * false if some register was unknown or could not be written.
1020 * Note that we do not stop early on failure -- we will attempt
1021 * writing all registers in the list.
1023 bool write_list_to_cpustate(ARMCPU *cpu);
1026 * write_cpustate_to_list:
1027 * @cpu: ARMCPU
1029 * For each register listed in the ARMCPU cpreg_indexes list, write
1030 * its value from the ARMCPUState structure into the cpreg_values list.
1031 * This is used to copy info from TCG's working data structures into
1032 * KVM or for outbound migration.
1034 * Returns: true if all register values were read correctly,
1035 * false if some register was unknown or could not be read.
1036 * Note that we do not stop early on failure -- we will attempt
1037 * reading all registers in the list.
1039 bool write_cpustate_to_list(ARMCPU *cpu);
1041 /* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
1042 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
1043 conventional cores (ie. Application or Realtime profile). */
1045 #define IS_M(env) arm_feature(env, ARM_FEATURE_M)
1047 #define ARM_CPUID_TI915T 0x54029152
1048 #define ARM_CPUID_TI925T 0x54029252
1050 #if defined(CONFIG_USER_ONLY)
1051 #define TARGET_PAGE_BITS 12
1052 #else
1053 /* The ARM MMU allows 1k pages. */
1054 /* ??? Linux doesn't actually use these, and they're deprecated in recent
1055 architecture revisions. Maybe a configure option to disable them. */
1056 #define TARGET_PAGE_BITS 10
1057 #endif
1059 #if defined(TARGET_AARCH64)
1060 # define TARGET_PHYS_ADDR_SPACE_BITS 48
1061 # define TARGET_VIRT_ADDR_SPACE_BITS 64
1062 #else
1063 # define TARGET_PHYS_ADDR_SPACE_BITS 40
1064 # define TARGET_VIRT_ADDR_SPACE_BITS 32
1065 #endif
1067 static inline CPUARMState *cpu_init(const char *cpu_model)
1069 ARMCPU *cpu = cpu_arm_init(cpu_model);
1070 if (cpu) {
1071 return &cpu->env;
1073 return NULL;
1076 #define cpu_exec cpu_arm_exec
1077 #define cpu_gen_code cpu_arm_gen_code
1078 #define cpu_signal_handler cpu_arm_signal_handler
1079 #define cpu_list arm_cpu_list
1081 /* MMU modes definitions */
1082 #define MMU_MODE0_SUFFIX _kernel
1083 #define MMU_MODE1_SUFFIX _user
1084 #define MMU_USER_IDX 1
1085 static inline int cpu_mmu_index (CPUARMState *env)
1087 return arm_current_pl(env) ? 0 : 1;
1090 #include "exec/cpu-all.h"
1092 /* Bit usage in the TB flags field: bit 31 indicates whether we are
1093 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
1095 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
1096 #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
1098 /* Bit usage when in AArch32 state: */
1099 #define ARM_TBFLAG_THUMB_SHIFT 0
1100 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
1101 #define ARM_TBFLAG_VECLEN_SHIFT 1
1102 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
1103 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4
1104 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
1105 #define ARM_TBFLAG_PRIV_SHIFT 6
1106 #define ARM_TBFLAG_PRIV_MASK (1 << ARM_TBFLAG_PRIV_SHIFT)
1107 #define ARM_TBFLAG_VFPEN_SHIFT 7
1108 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
1109 #define ARM_TBFLAG_CONDEXEC_SHIFT 8
1110 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
1111 #define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
1112 #define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
1114 /* Bit usage when in AArch64 state */
1115 #define ARM_TBFLAG_AA64_EL_SHIFT 0
1116 #define ARM_TBFLAG_AA64_EL_MASK (0x3 << ARM_TBFLAG_AA64_EL_SHIFT)
1118 /* some convenience accessor macros */
1119 #define ARM_TBFLAG_AARCH64_STATE(F) \
1120 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
1121 #define ARM_TBFLAG_THUMB(F) \
1122 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
1123 #define ARM_TBFLAG_VECLEN(F) \
1124 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
1125 #define ARM_TBFLAG_VECSTRIDE(F) \
1126 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
1127 #define ARM_TBFLAG_PRIV(F) \
1128 (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
1129 #define ARM_TBFLAG_VFPEN(F) \
1130 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
1131 #define ARM_TBFLAG_CONDEXEC(F) \
1132 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
1133 #define ARM_TBFLAG_BSWAP_CODE(F) \
1134 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
1135 #define ARM_TBFLAG_AA64_EL(F) \
1136 (((F) & ARM_TBFLAG_AA64_EL_MASK) >> ARM_TBFLAG_AA64_EL_SHIFT)
1138 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
1139 target_ulong *cs_base, int *flags)
1141 if (is_a64(env)) {
1142 *pc = env->pc;
1143 *flags = ARM_TBFLAG_AARCH64_STATE_MASK
1144 | (arm_current_pl(env) << ARM_TBFLAG_AA64_EL_SHIFT);
1145 } else {
1146 int privmode;
1147 *pc = env->regs[15];
1148 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
1149 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
1150 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
1151 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
1152 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
1153 if (arm_feature(env, ARM_FEATURE_M)) {
1154 privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
1155 } else {
1156 privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
1158 if (privmode) {
1159 *flags |= ARM_TBFLAG_PRIV_MASK;
1161 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
1162 *flags |= ARM_TBFLAG_VFPEN_MASK;
1166 *cs_base = 0;
1169 static inline bool cpu_has_work(CPUState *cpu)
1171 return cpu->interrupt_request &
1172 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB);
1175 #include "exec/exec-all.h"
1177 static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
1179 if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
1180 env->pc = tb->pc;
1181 } else {
1182 env->regs[15] = tb->pc;
1186 /* Load an instruction and return it in the standard little-endian order */
1187 static inline uint32_t arm_ldl_code(CPUARMState *env, target_ulong addr,
1188 bool do_swap)
1190 uint32_t insn = cpu_ldl_code(env, addr);
1191 if (do_swap) {
1192 return bswap32(insn);
1194 return insn;
1197 /* Ditto, for a halfword (Thumb) instruction */
1198 static inline uint16_t arm_lduw_code(CPUARMState *env, target_ulong addr,
1199 bool do_swap)
1201 uint16_t insn = cpu_lduw_code(env, addr);
1202 if (do_swap) {
1203 return bswap16(insn);
1205 return insn;
1208 #endif