configure: Enable KVM for aarch64 host/target combination
[qemu/cris-port.git] / target-arm / helper.c
blobcfbb14cbf3aa185134ffe573a0a242329250e6d1
1 #include "cpu.h"
2 #include "exec/gdbstub.h"
3 #include "helper.h"
4 #include "qemu/host-utils.h"
5 #include "sysemu/arch_init.h"
6 #include "sysemu/sysemu.h"
7 #include "qemu/bitops.h"
9 #ifndef CONFIG_USER_ONLY
10 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
11 int access_type, int is_user,
12 hwaddr *phys_ptr, int *prot,
13 target_ulong *page_size);
14 #endif
16 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
18 int nregs;
20 /* VFP data registers are always little-endian. */
21 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
22 if (reg < nregs) {
23 stfq_le_p(buf, env->vfp.regs[reg]);
24 return 8;
26 if (arm_feature(env, ARM_FEATURE_NEON)) {
27 /* Aliases for Q regs. */
28 nregs += 16;
29 if (reg < nregs) {
30 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
31 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
32 return 16;
35 switch (reg - nregs) {
36 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
37 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
38 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
40 return 0;
43 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
45 int nregs;
47 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
48 if (reg < nregs) {
49 env->vfp.regs[reg] = ldfq_le_p(buf);
50 return 8;
52 if (arm_feature(env, ARM_FEATURE_NEON)) {
53 nregs += 16;
54 if (reg < nregs) {
55 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
56 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
57 return 16;
60 switch (reg - nregs) {
61 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
62 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
63 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
65 return 0;
68 static int raw_read(CPUARMState *env, const ARMCPRegInfo *ri,
69 uint64_t *value)
71 if (ri->type & ARM_CP_64BIT) {
72 *value = CPREG_FIELD64(env, ri);
73 } else {
74 *value = CPREG_FIELD32(env, ri);
76 return 0;
79 static int raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
80 uint64_t value)
82 if (ri->type & ARM_CP_64BIT) {
83 CPREG_FIELD64(env, ri) = value;
84 } else {
85 CPREG_FIELD32(env, ri) = value;
87 return 0;
90 static bool read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
91 uint64_t *v)
93 /* Raw read of a coprocessor register (as needed for migration, etc)
94 * return true on success, false if the read is impossible for some reason.
96 if (ri->type & ARM_CP_CONST) {
97 *v = ri->resetvalue;
98 } else if (ri->raw_readfn) {
99 return (ri->raw_readfn(env, ri, v) == 0);
100 } else if (ri->readfn) {
101 return (ri->readfn(env, ri, v) == 0);
102 } else {
103 if (ri->type & ARM_CP_64BIT) {
104 *v = CPREG_FIELD64(env, ri);
105 } else {
106 *v = CPREG_FIELD32(env, ri);
109 return true;
112 static bool write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
113 int64_t v)
115 /* Raw write of a coprocessor register (as needed for migration, etc).
116 * Return true on success, false if the write is impossible for some reason.
117 * Note that constant registers are treated as write-ignored; the
118 * caller should check for success by whether a readback gives the
119 * value written.
121 if (ri->type & ARM_CP_CONST) {
122 return true;
123 } else if (ri->raw_writefn) {
124 return (ri->raw_writefn(env, ri, v) == 0);
125 } else if (ri->writefn) {
126 return (ri->writefn(env, ri, v) == 0);
127 } else {
128 if (ri->type & ARM_CP_64BIT) {
129 CPREG_FIELD64(env, ri) = v;
130 } else {
131 CPREG_FIELD32(env, ri) = v;
134 return true;
137 bool write_cpustate_to_list(ARMCPU *cpu)
139 /* Write the coprocessor state from cpu->env to the (index,value) list. */
140 int i;
141 bool ok = true;
143 for (i = 0; i < cpu->cpreg_array_len; i++) {
144 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
145 const ARMCPRegInfo *ri;
146 uint64_t v;
147 ri = get_arm_cp_reginfo(cpu, regidx);
148 if (!ri) {
149 ok = false;
150 continue;
152 if (ri->type & ARM_CP_NO_MIGRATE) {
153 continue;
155 if (!read_raw_cp_reg(&cpu->env, ri, &v)) {
156 ok = false;
157 continue;
159 cpu->cpreg_values[i] = v;
161 return ok;
164 bool write_list_to_cpustate(ARMCPU *cpu)
166 int i;
167 bool ok = true;
169 for (i = 0; i < cpu->cpreg_array_len; i++) {
170 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
171 uint64_t v = cpu->cpreg_values[i];
172 uint64_t readback;
173 const ARMCPRegInfo *ri;
175 ri = get_arm_cp_reginfo(cpu, regidx);
176 if (!ri) {
177 ok = false;
178 continue;
180 if (ri->type & ARM_CP_NO_MIGRATE) {
181 continue;
183 /* Write value and confirm it reads back as written
184 * (to catch read-only registers and partially read-only
185 * registers where the incoming migration value doesn't match)
187 if (!write_raw_cp_reg(&cpu->env, ri, v) ||
188 !read_raw_cp_reg(&cpu->env, ri, &readback) ||
189 readback != v) {
190 ok = false;
193 return ok;
196 static void add_cpreg_to_list(gpointer key, gpointer opaque)
198 ARMCPU *cpu = opaque;
199 uint64_t regidx;
200 const ARMCPRegInfo *ri;
202 regidx = *(uint32_t *)key;
203 ri = get_arm_cp_reginfo(cpu, regidx);
205 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
206 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
207 /* The value array need not be initialized at this point */
208 cpu->cpreg_array_len++;
212 static void count_cpreg(gpointer key, gpointer opaque)
214 ARMCPU *cpu = opaque;
215 uint64_t regidx;
216 const ARMCPRegInfo *ri;
218 regidx = *(uint32_t *)key;
219 ri = get_arm_cp_reginfo(cpu, regidx);
221 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
222 cpu->cpreg_array_len++;
226 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
228 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
229 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
231 if (aidx > bidx) {
232 return 1;
234 if (aidx < bidx) {
235 return -1;
237 return 0;
240 static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata)
242 GList **plist = udata;
244 *plist = g_list_prepend(*plist, key);
247 void init_cpreg_list(ARMCPU *cpu)
249 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
250 * Note that we require cpreg_tuples[] to be sorted by key ID.
252 GList *keys = NULL;
253 int arraylen;
255 g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys);
257 keys = g_list_sort(keys, cpreg_key_compare);
259 cpu->cpreg_array_len = 0;
261 g_list_foreach(keys, count_cpreg, cpu);
263 arraylen = cpu->cpreg_array_len;
264 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
265 cpu->cpreg_values = g_new(uint64_t, arraylen);
266 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
267 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
268 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
269 cpu->cpreg_array_len = 0;
271 g_list_foreach(keys, add_cpreg_to_list, cpu);
273 assert(cpu->cpreg_array_len == arraylen);
275 g_list_free(keys);
278 static int dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
280 env->cp15.c3 = value;
281 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
282 return 0;
285 static int fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
287 if (env->cp15.c13_fcse != value) {
288 /* Unlike real hardware the qemu TLB uses virtual addresses,
289 * not modified virtual addresses, so this causes a TLB flush.
291 tlb_flush(env, 1);
292 env->cp15.c13_fcse = value;
294 return 0;
296 static int contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
297 uint64_t value)
299 if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) {
300 /* For VMSA (when not using the LPAE long descriptor page table
301 * format) this register includes the ASID, so do a TLB flush.
302 * For PMSA it is purely a process ID and no action is needed.
304 tlb_flush(env, 1);
306 env->cp15.c13_context = value;
307 return 0;
310 static int tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
311 uint64_t value)
313 /* Invalidate all (TLBIALL) */
314 tlb_flush(env, 1);
315 return 0;
318 static int tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
319 uint64_t value)
321 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
322 tlb_flush_page(env, value & TARGET_PAGE_MASK);
323 return 0;
326 static int tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
327 uint64_t value)
329 /* Invalidate by ASID (TLBIASID) */
330 tlb_flush(env, value == 0);
331 return 0;
334 static int tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
335 uint64_t value)
337 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
338 tlb_flush_page(env, value & TARGET_PAGE_MASK);
339 return 0;
342 static const ARMCPRegInfo cp_reginfo[] = {
343 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
344 * version" bits will read as a reserved value, which should cause
345 * Linux to not try to use the debug hardware.
347 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
348 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
349 /* MMU Domain access control / MPU write buffer control */
350 { .name = "DACR", .cp = 15,
351 .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
352 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
353 .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
354 { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
355 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
356 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
357 { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
358 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
359 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
360 /* ??? This covers not just the impdef TLB lockdown registers but also
361 * some v7VMSA registers relating to TEX remap, so it is overly broad.
363 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
364 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
365 /* MMU TLB control. Note that the wildcarding means we cover not just
366 * the unified TLB ops but also the dside/iside/inner-shareable variants.
368 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
369 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
370 .type = ARM_CP_NO_MIGRATE },
371 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
372 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
373 .type = ARM_CP_NO_MIGRATE },
374 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
375 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
376 .type = ARM_CP_NO_MIGRATE },
377 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
378 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
379 .type = ARM_CP_NO_MIGRATE },
380 /* Cache maintenance ops; some of this space may be overridden later. */
381 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
382 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
383 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
384 REGINFO_SENTINEL
387 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
388 /* Not all pre-v6 cores implemented this WFI, so this is slightly
389 * over-broad.
391 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
392 .access = PL1_W, .type = ARM_CP_WFI },
393 REGINFO_SENTINEL
396 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
397 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
398 * is UNPREDICTABLE; we choose to NOP as most implementations do).
400 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
401 .access = PL1_W, .type = ARM_CP_WFI },
402 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
403 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
404 * OMAPCP will override this space.
406 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
407 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
408 .resetvalue = 0 },
409 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
410 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
411 .resetvalue = 0 },
412 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
413 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
414 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
415 .resetvalue = 0 },
416 REGINFO_SENTINEL
419 static int cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
421 if (env->cp15.c1_coproc != value) {
422 env->cp15.c1_coproc = value;
423 /* ??? Is this safe when called from within a TB? */
424 tb_flush(env);
426 return 0;
429 static const ARMCPRegInfo v6_cp_reginfo[] = {
430 /* prefetch by MVA in v6, NOP in v7 */
431 { .name = "MVA_prefetch",
432 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
433 .access = PL1_W, .type = ARM_CP_NOP },
434 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
435 .access = PL0_W, .type = ARM_CP_NOP },
436 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
437 .access = PL0_W, .type = ARM_CP_NOP },
438 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
439 .access = PL0_W, .type = ARM_CP_NOP },
440 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
441 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
442 .resetvalue = 0, },
443 /* Watchpoint Fault Address Register : should actually only be present
444 * for 1136, 1176, 11MPCore.
446 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
447 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
448 { .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
449 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
450 .resetvalue = 0, .writefn = cpacr_write },
451 REGINFO_SENTINEL
455 static int pmreg_read(CPUARMState *env, const ARMCPRegInfo *ri,
456 uint64_t *value)
458 /* Generic performance monitor register read function for where
459 * user access may be allowed by PMUSERENR.
461 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
462 return EXCP_UDEF;
464 *value = CPREG_FIELD32(env, ri);
465 return 0;
468 static int pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
469 uint64_t value)
471 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
472 return EXCP_UDEF;
474 /* only the DP, X, D and E bits are writable */
475 env->cp15.c9_pmcr &= ~0x39;
476 env->cp15.c9_pmcr |= (value & 0x39);
477 return 0;
480 static int pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
481 uint64_t value)
483 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
484 return EXCP_UDEF;
486 value &= (1 << 31);
487 env->cp15.c9_pmcnten |= value;
488 return 0;
491 static int pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
492 uint64_t value)
494 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
495 return EXCP_UDEF;
497 value &= (1 << 31);
498 env->cp15.c9_pmcnten &= ~value;
499 return 0;
502 static int pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
503 uint64_t value)
505 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
506 return EXCP_UDEF;
508 env->cp15.c9_pmovsr &= ~value;
509 return 0;
512 static int pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
513 uint64_t value)
515 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
516 return EXCP_UDEF;
518 env->cp15.c9_pmxevtyper = value & 0xff;
519 return 0;
522 static int pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
523 uint64_t value)
525 env->cp15.c9_pmuserenr = value & 1;
526 return 0;
529 static int pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
530 uint64_t value)
532 /* We have no event counters so only the C bit can be changed */
533 value &= (1 << 31);
534 env->cp15.c9_pminten |= value;
535 return 0;
538 static int pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
539 uint64_t value)
541 value &= (1 << 31);
542 env->cp15.c9_pminten &= ~value;
543 return 0;
546 static int vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
547 uint64_t value)
549 env->cp15.c12_vbar = value & ~0x1Ful;
550 return 0;
553 static int ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
554 uint64_t *value)
556 ARMCPU *cpu = arm_env_get_cpu(env);
557 *value = cpu->ccsidr[env->cp15.c0_cssel];
558 return 0;
561 static int csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
562 uint64_t value)
564 env->cp15.c0_cssel = value & 0xf;
565 return 0;
568 static const ARMCPRegInfo v7_cp_reginfo[] = {
569 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
570 * debug components
572 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
573 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
574 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
575 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
576 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
577 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
578 .access = PL1_W, .type = ARM_CP_NOP },
579 /* Performance monitors are implementation defined in v7,
580 * but with an ARM recommended set of registers, which we
581 * follow (although we don't actually implement any counters)
583 * Performance registers fall into three categories:
584 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
585 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
586 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
587 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
588 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
590 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
591 .access = PL0_RW, .resetvalue = 0,
592 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
593 .readfn = pmreg_read, .writefn = pmcntenset_write,
594 .raw_readfn = raw_read, .raw_writefn = raw_write },
595 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
596 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
597 .readfn = pmreg_read, .writefn = pmcntenclr_write,
598 .type = ARM_CP_NO_MIGRATE },
599 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
600 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
601 .readfn = pmreg_read, .writefn = pmovsr_write,
602 .raw_readfn = raw_read, .raw_writefn = raw_write },
603 /* Unimplemented so WI. Strictly speaking write accesses in PL0 should
604 * respect PMUSERENR.
606 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
607 .access = PL0_W, .type = ARM_CP_NOP },
608 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
609 * We choose to RAZ/WI. XXX should respect PMUSERENR.
611 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
612 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
613 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
614 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
615 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
616 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
617 .access = PL0_RW,
618 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
619 .readfn = pmreg_read, .writefn = pmxevtyper_write,
620 .raw_readfn = raw_read, .raw_writefn = raw_write },
621 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
622 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
623 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
624 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
625 .access = PL0_R | PL1_RW,
626 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
627 .resetvalue = 0,
628 .writefn = pmuserenr_write, .raw_writefn = raw_write },
629 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
630 .access = PL1_RW,
631 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
632 .resetvalue = 0,
633 .writefn = pmintenset_write, .raw_writefn = raw_write },
634 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
635 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
636 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
637 .resetvalue = 0, .writefn = pmintenclr_write, },
638 { .name = "VBAR", .cp = 15, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
639 .access = PL1_RW, .writefn = vbar_write,
640 .fieldoffset = offsetof(CPUARMState, cp15.c12_vbar),
641 .resetvalue = 0 },
642 { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
643 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
644 .resetvalue = 0, },
645 { .name = "CCSIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
646 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE },
647 { .name = "CSSELR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
648 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
649 .writefn = csselr_write, .resetvalue = 0 },
650 /* Auxiliary ID register: this actually has an IMPDEF value but for now
651 * just RAZ for all cores:
653 { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7,
654 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
655 REGINFO_SENTINEL
658 static int teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
660 value &= 1;
661 env->teecr = value;
662 return 0;
665 static int teehbr_read(CPUARMState *env, const ARMCPRegInfo *ri,
666 uint64_t *value)
668 /* This is a helper function because the user access rights
669 * depend on the value of the TEECR.
671 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
672 return EXCP_UDEF;
674 *value = env->teehbr;
675 return 0;
678 static int teehbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
679 uint64_t value)
681 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
682 return EXCP_UDEF;
684 env->teehbr = value;
685 return 0;
688 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
689 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
690 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
691 .resetvalue = 0,
692 .writefn = teecr_write },
693 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
694 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
695 .resetvalue = 0, .raw_readfn = raw_read, .raw_writefn = raw_write,
696 .readfn = teehbr_read, .writefn = teehbr_write },
697 REGINFO_SENTINEL
700 static const ARMCPRegInfo v6k_cp_reginfo[] = {
701 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
702 .access = PL0_RW,
703 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls1),
704 .resetvalue = 0 },
705 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
706 .access = PL0_R|PL1_W,
707 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls2),
708 .resetvalue = 0 },
709 { .name = "TPIDRPRW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 4,
710 .access = PL1_RW,
711 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls3),
712 .resetvalue = 0 },
713 REGINFO_SENTINEL
716 #ifndef CONFIG_USER_ONLY
718 static uint64_t gt_get_countervalue(CPUARMState *env)
720 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
723 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
725 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
727 if (gt->ctl & 1) {
728 /* Timer enabled: calculate and set current ISTATUS, irq, and
729 * reset timer to when ISTATUS next has to change
731 uint64_t count = gt_get_countervalue(&cpu->env);
732 /* Note that this must be unsigned 64 bit arithmetic: */
733 int istatus = count >= gt->cval;
734 uint64_t nexttick;
736 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
737 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
738 (istatus && !(gt->ctl & 2)));
739 if (istatus) {
740 /* Next transition is when count rolls back over to zero */
741 nexttick = UINT64_MAX;
742 } else {
743 /* Next transition is when we hit cval */
744 nexttick = gt->cval;
746 /* Note that the desired next expiry time might be beyond the
747 * signed-64-bit range of a QEMUTimer -- in this case we just
748 * set the timer for as far in the future as possible. When the
749 * timer expires we will reset the timer for any remaining period.
751 if (nexttick > INT64_MAX / GTIMER_SCALE) {
752 nexttick = INT64_MAX / GTIMER_SCALE;
754 timer_mod(cpu->gt_timer[timeridx], nexttick);
755 } else {
756 /* Timer disabled: ISTATUS and timer output always clear */
757 gt->ctl &= ~4;
758 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
759 timer_del(cpu->gt_timer[timeridx]);
763 static int gt_cntfrq_read(CPUARMState *env, const ARMCPRegInfo *ri,
764 uint64_t *value)
766 /* Not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
767 if (arm_current_pl(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
768 return EXCP_UDEF;
770 *value = env->cp15.c14_cntfrq;
771 return 0;
774 static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri)
776 ARMCPU *cpu = arm_env_get_cpu(env);
777 int timeridx = ri->opc1 & 1;
779 timer_del(cpu->gt_timer[timeridx]);
782 static int gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri,
783 uint64_t *value)
785 int timeridx = ri->opc1 & 1;
787 if (arm_current_pl(env) == 0 &&
788 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
789 return EXCP_UDEF;
791 *value = gt_get_countervalue(env);
792 return 0;
795 static int gt_cval_read(CPUARMState *env, const ARMCPRegInfo *ri,
796 uint64_t *value)
798 int timeridx = ri->opc1 & 1;
800 if (arm_current_pl(env) == 0 &&
801 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
802 return EXCP_UDEF;
804 *value = env->cp15.c14_timer[timeridx].cval;
805 return 0;
808 static int gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
809 uint64_t value)
811 int timeridx = ri->opc1 & 1;
813 env->cp15.c14_timer[timeridx].cval = value;
814 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
815 return 0;
817 static int gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
818 uint64_t *value)
820 int timeridx = ri->crm & 1;
822 if (arm_current_pl(env) == 0 &&
823 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
824 return EXCP_UDEF;
826 *value = (uint32_t)(env->cp15.c14_timer[timeridx].cval -
827 gt_get_countervalue(env));
828 return 0;
831 static int gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
832 uint64_t value)
834 int timeridx = ri->crm & 1;
836 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) +
837 + sextract64(value, 0, 32);
838 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
839 return 0;
842 static int gt_ctl_read(CPUARMState *env, const ARMCPRegInfo *ri,
843 uint64_t *value)
845 int timeridx = ri->crm & 1;
847 if (arm_current_pl(env) == 0 &&
848 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
849 return EXCP_UDEF;
851 *value = env->cp15.c14_timer[timeridx].ctl;
852 return 0;
855 static int gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
856 uint64_t value)
858 ARMCPU *cpu = arm_env_get_cpu(env);
859 int timeridx = ri->crm & 1;
860 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
862 env->cp15.c14_timer[timeridx].ctl = value & 3;
863 if ((oldval ^ value) & 1) {
864 /* Enable toggled */
865 gt_recalc_timer(cpu, timeridx);
866 } else if ((oldval & value) & 2) {
867 /* IMASK toggled: don't need to recalculate,
868 * just set the interrupt line based on ISTATUS
870 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
871 (oldval & 4) && (value & 2));
873 return 0;
876 void arm_gt_ptimer_cb(void *opaque)
878 ARMCPU *cpu = opaque;
880 gt_recalc_timer(cpu, GTIMER_PHYS);
883 void arm_gt_vtimer_cb(void *opaque)
885 ARMCPU *cpu = opaque;
887 gt_recalc_timer(cpu, GTIMER_VIRT);
890 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
891 /* Note that CNTFRQ is purely reads-as-written for the benefit
892 * of software; writing it doesn't actually change the timer frequency.
893 * Our reset value matches the fixed frequency we implement the timer at.
895 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
896 .access = PL1_RW | PL0_R,
897 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
898 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
899 .readfn = gt_cntfrq_read, .raw_readfn = raw_read,
901 /* overall control: mostly access permissions */
902 { .name = "CNTKCTL", .cp = 15, .crn = 14, .crm = 1, .opc1 = 0, .opc2 = 0,
903 .access = PL1_RW,
904 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
905 .resetvalue = 0,
907 /* per-timer control */
908 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
909 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
910 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
911 .resetvalue = 0,
912 .readfn = gt_ctl_read, .writefn = gt_ctl_write,
913 .raw_readfn = raw_read, .raw_writefn = raw_write,
915 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
916 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
917 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
918 .resetvalue = 0,
919 .readfn = gt_ctl_read, .writefn = gt_ctl_write,
920 .raw_readfn = raw_read, .raw_writefn = raw_write,
922 /* TimerValue views: a 32 bit downcounting view of the underlying state */
923 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
924 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
925 .readfn = gt_tval_read, .writefn = gt_tval_write,
927 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
928 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
929 .readfn = gt_tval_read, .writefn = gt_tval_write,
931 /* The counter itself */
932 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
933 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
934 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
936 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
937 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
938 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
940 /* Comparison value, indicating when the timer goes off */
941 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
942 .access = PL1_RW | PL0_R,
943 .type = ARM_CP_64BIT | ARM_CP_IO,
944 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
945 .resetvalue = 0,
946 .readfn = gt_cval_read, .writefn = gt_cval_write,
947 .raw_readfn = raw_read, .raw_writefn = raw_write,
949 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
950 .access = PL1_RW | PL0_R,
951 .type = ARM_CP_64BIT | ARM_CP_IO,
952 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
953 .resetvalue = 0,
954 .readfn = gt_cval_read, .writefn = gt_cval_write,
955 .raw_readfn = raw_read, .raw_writefn = raw_write,
957 REGINFO_SENTINEL
960 #else
961 /* In user-mode none of the generic timer registers are accessible,
962 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
963 * so instead just don't register any of them.
965 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
966 REGINFO_SENTINEL
969 #endif
971 static int par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
973 if (arm_feature(env, ARM_FEATURE_LPAE)) {
974 env->cp15.c7_par = value;
975 } else if (arm_feature(env, ARM_FEATURE_V7)) {
976 env->cp15.c7_par = value & 0xfffff6ff;
977 } else {
978 env->cp15.c7_par = value & 0xfffff1ff;
980 return 0;
983 #ifndef CONFIG_USER_ONLY
984 /* get_phys_addr() isn't present for user-mode-only targets */
986 /* Return true if extended addresses are enabled, ie this is an
987 * LPAE implementation and we are using the long-descriptor translation
988 * table format because the TTBCR EAE bit is set.
990 static inline bool extended_addresses_enabled(CPUARMState *env)
992 return arm_feature(env, ARM_FEATURE_LPAE)
993 && (env->cp15.c2_control & (1U << 31));
996 static int ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
998 hwaddr phys_addr;
999 target_ulong page_size;
1000 int prot;
1001 int ret, is_user = ri->opc2 & 2;
1002 int access_type = ri->opc2 & 1;
1004 if (ri->opc2 & 4) {
1005 /* Other states are only available with TrustZone */
1006 return EXCP_UDEF;
1008 ret = get_phys_addr(env, value, access_type, is_user,
1009 &phys_addr, &prot, &page_size);
1010 if (extended_addresses_enabled(env)) {
1011 /* ret is a DFSR/IFSR value for the long descriptor
1012 * translation table format, but with WnR always clear.
1013 * Convert it to a 64-bit PAR.
1015 uint64_t par64 = (1 << 11); /* LPAE bit always set */
1016 if (ret == 0) {
1017 par64 |= phys_addr & ~0xfffULL;
1018 /* We don't set the ATTR or SH fields in the PAR. */
1019 } else {
1020 par64 |= 1; /* F */
1021 par64 |= (ret & 0x3f) << 1; /* FS */
1022 /* Note that S2WLK and FSTAGE are always zero, because we don't
1023 * implement virtualization and therefore there can't be a stage 2
1024 * fault.
1027 env->cp15.c7_par = par64;
1028 env->cp15.c7_par_hi = par64 >> 32;
1029 } else {
1030 /* ret is a DFSR/IFSR value for the short descriptor
1031 * translation table format (with WnR always clear).
1032 * Convert it to a 32-bit PAR.
1034 if (ret == 0) {
1035 /* We do not set any attribute bits in the PAR */
1036 if (page_size == (1 << 24)
1037 && arm_feature(env, ARM_FEATURE_V7)) {
1038 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
1039 } else {
1040 env->cp15.c7_par = phys_addr & 0xfffff000;
1042 } else {
1043 env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
1044 ((ret & (12 << 1)) >> 6) |
1045 ((ret & 0xf) << 1) | 1;
1047 env->cp15.c7_par_hi = 0;
1049 return 0;
1051 #endif
1053 static const ARMCPRegInfo vapa_cp_reginfo[] = {
1054 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
1055 .access = PL1_RW, .resetvalue = 0,
1056 .fieldoffset = offsetof(CPUARMState, cp15.c7_par),
1057 .writefn = par_write },
1058 #ifndef CONFIG_USER_ONLY
1059 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
1060 .access = PL1_W, .writefn = ats_write, .type = ARM_CP_NO_MIGRATE },
1061 #endif
1062 REGINFO_SENTINEL
1065 /* Return basic MPU access permission bits. */
1066 static uint32_t simple_mpu_ap_bits(uint32_t val)
1068 uint32_t ret;
1069 uint32_t mask;
1070 int i;
1071 ret = 0;
1072 mask = 3;
1073 for (i = 0; i < 16; i += 2) {
1074 ret |= (val >> i) & mask;
1075 mask <<= 2;
1077 return ret;
1080 /* Pad basic MPU access permission bits to extended format. */
1081 static uint32_t extended_mpu_ap_bits(uint32_t val)
1083 uint32_t ret;
1084 uint32_t mask;
1085 int i;
1086 ret = 0;
1087 mask = 3;
1088 for (i = 0; i < 16; i += 2) {
1089 ret |= (val & mask) << i;
1090 mask <<= 2;
1092 return ret;
1095 static int pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1096 uint64_t value)
1098 env->cp15.c5_data = extended_mpu_ap_bits(value);
1099 return 0;
1102 static int pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
1103 uint64_t *value)
1105 *value = simple_mpu_ap_bits(env->cp15.c5_data);
1106 return 0;
1109 static int pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1110 uint64_t value)
1112 env->cp15.c5_insn = extended_mpu_ap_bits(value);
1113 return 0;
1116 static int pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
1117 uint64_t *value)
1119 *value = simple_mpu_ap_bits(env->cp15.c5_insn);
1120 return 0;
1123 static int arm946_prbs_read(CPUARMState *env, const ARMCPRegInfo *ri,
1124 uint64_t *value)
1126 if (ri->crm >= 8) {
1127 return EXCP_UDEF;
1129 *value = env->cp15.c6_region[ri->crm];
1130 return 0;
1133 static int arm946_prbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
1134 uint64_t value)
1136 if (ri->crm >= 8) {
1137 return EXCP_UDEF;
1139 env->cp15.c6_region[ri->crm] = value;
1140 return 0;
1143 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
1144 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1145 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1146 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
1147 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
1148 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1149 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1150 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
1151 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
1152 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
1153 .access = PL1_RW,
1154 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1155 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
1156 .access = PL1_RW,
1157 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
1158 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1159 .access = PL1_RW,
1160 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
1161 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1162 .access = PL1_RW,
1163 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
1164 /* Protection region base and size registers */
1165 { .name = "946_PRBS", .cp = 15, .crn = 6, .crm = CP_ANY, .opc1 = 0,
1166 .opc2 = CP_ANY, .access = PL1_RW,
1167 .readfn = arm946_prbs_read, .writefn = arm946_prbs_write, },
1168 REGINFO_SENTINEL
1171 static int vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
1172 uint64_t value)
1174 int maskshift = extract32(value, 0, 3);
1176 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & (1 << 31))) {
1177 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
1178 } else {
1179 value &= 7;
1181 /* Note that we always calculate c2_mask and c2_base_mask, but
1182 * they are only used for short-descriptor tables (ie if EAE is 0);
1183 * for long-descriptor tables the TTBCR fields are used differently
1184 * and the c2_mask and c2_base_mask values are meaningless.
1186 env->cp15.c2_control = value;
1187 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift);
1188 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift);
1189 return 0;
1192 static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1193 uint64_t value)
1195 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1196 /* With LPAE the TTBCR could result in a change of ASID
1197 * via the TTBCR.A1 bit, so do a TLB flush.
1199 tlb_flush(env, 1);
1201 return vmsa_ttbcr_raw_write(env, ri, value);
1204 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1206 env->cp15.c2_base_mask = 0xffffc000u;
1207 env->cp15.c2_control = 0;
1208 env->cp15.c2_mask = 0;
1211 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
1212 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1213 .access = PL1_RW,
1214 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1215 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1216 .access = PL1_RW,
1217 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
1218 { .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1219 .access = PL1_RW,
1220 .fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, },
1221 { .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1222 .access = PL1_RW,
1223 .fieldoffset = offsetof(CPUARMState, cp15.c2_base1), .resetvalue = 0, },
1224 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1225 .access = PL1_RW, .writefn = vmsa_ttbcr_write,
1226 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
1227 .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
1228 { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
1229 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
1230 .resetvalue = 0, },
1231 REGINFO_SENTINEL
1234 static int omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
1235 uint64_t value)
1237 env->cp15.c15_ticonfig = value & 0xe7;
1238 /* The OS_TYPE bit in this register changes the reported CPUID! */
1239 env->cp15.c0_cpuid = (value & (1 << 5)) ?
1240 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1241 return 0;
1244 static int omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
1245 uint64_t value)
1247 env->cp15.c15_threadid = value & 0xffff;
1248 return 0;
1251 static int omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
1252 uint64_t value)
1254 /* Wait-for-interrupt (deprecated) */
1255 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1256 return 0;
1259 static int omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
1260 uint64_t value)
1262 /* On OMAP there are registers indicating the max/min index of dcache lines
1263 * containing a dirty line; cache flush operations have to reset these.
1265 env->cp15.c15_i_max = 0x000;
1266 env->cp15.c15_i_min = 0xff0;
1267 return 0;
1270 static const ARMCPRegInfo omap_cp_reginfo[] = {
1271 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
1272 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
1273 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1274 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1275 .access = PL1_RW, .type = ARM_CP_NOP },
1276 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1277 .access = PL1_RW,
1278 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
1279 .writefn = omap_ticonfig_write },
1280 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
1281 .access = PL1_RW,
1282 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
1283 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
1284 .access = PL1_RW, .resetvalue = 0xff0,
1285 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
1286 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
1287 .access = PL1_RW,
1288 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
1289 .writefn = omap_threadid_write },
1290 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
1291 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1292 .type = ARM_CP_NO_MIGRATE,
1293 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
1294 /* TODO: Peripheral port remap register:
1295 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1296 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1297 * when MMU is off.
1299 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
1300 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
1301 .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE,
1302 .writefn = omap_cachemaint_write },
1303 { .name = "C9", .cp = 15, .crn = 9,
1304 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
1305 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1306 REGINFO_SENTINEL
1309 static int xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1310 uint64_t value)
1312 value &= 0x3fff;
1313 if (env->cp15.c15_cpar != value) {
1314 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1315 tb_flush(env);
1316 env->cp15.c15_cpar = value;
1318 return 0;
1321 static const ARMCPRegInfo xscale_cp_reginfo[] = {
1322 { .name = "XSCALE_CPAR",
1323 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1324 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
1325 .writefn = xscale_cpar_write, },
1326 { .name = "XSCALE_AUXCR",
1327 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
1328 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
1329 .resetvalue = 0, },
1330 REGINFO_SENTINEL
1333 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
1334 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1335 * implementation of this implementation-defined space.
1336 * Ideally this should eventually disappear in favour of actually
1337 * implementing the correct behaviour for all cores.
1339 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
1340 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1341 .access = PL1_RW,
1342 .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE | ARM_CP_OVERRIDE,
1343 .resetvalue = 0 },
1344 REGINFO_SENTINEL
1347 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
1348 /* Cache status: RAZ because we have no cache so it's always clean */
1349 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
1350 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1351 .resetvalue = 0 },
1352 REGINFO_SENTINEL
1355 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
1356 /* We never have a a block transfer operation in progress */
1357 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
1358 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1359 .resetvalue = 0 },
1360 /* The cache ops themselves: these all NOP for QEMU */
1361 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
1362 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1363 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
1364 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1365 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
1366 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1367 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
1368 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1369 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
1370 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1371 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
1372 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1373 REGINFO_SENTINEL
1376 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
1377 /* The cache test-and-clean instructions always return (1 << 30)
1378 * to indicate that there are no dirty cache lines.
1380 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
1381 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1382 .resetvalue = (1 << 30) },
1383 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
1384 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1385 .resetvalue = (1 << 30) },
1386 REGINFO_SENTINEL
1389 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
1390 /* Ignore ReadBuffer accesses */
1391 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
1392 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1393 .access = PL1_RW, .resetvalue = 0,
1394 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE },
1395 REGINFO_SENTINEL
1398 static int mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1399 uint64_t *value)
1401 CPUState *cs = CPU(arm_env_get_cpu(env));
1402 uint32_t mpidr = cs->cpu_index;
1403 /* We don't support setting cluster ID ([8..11])
1404 * so these bits always RAZ.
1406 if (arm_feature(env, ARM_FEATURE_V7MP)) {
1407 mpidr |= (1U << 31);
1408 /* Cores which are uniprocessor (non-coherent)
1409 * but still implement the MP extensions set
1410 * bit 30. (For instance, A9UP.) However we do
1411 * not currently model any of those cores.
1414 *value = mpidr;
1415 return 0;
1418 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
1419 { .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
1420 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE },
1421 REGINFO_SENTINEL
1424 static int par64_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
1426 *value = ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par;
1427 return 0;
1430 static int par64_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1432 env->cp15.c7_par_hi = value >> 32;
1433 env->cp15.c7_par = value;
1434 return 0;
1437 static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1439 env->cp15.c7_par_hi = 0;
1440 env->cp15.c7_par = 0;
1443 static int ttbr064_read(CPUARMState *env, const ARMCPRegInfo *ri,
1444 uint64_t *value)
1446 *value = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
1447 return 0;
1450 static int ttbr064_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
1451 uint64_t value)
1453 env->cp15.c2_base0_hi = value >> 32;
1454 env->cp15.c2_base0 = value;
1455 return 0;
1458 static int ttbr064_write(CPUARMState *env, const ARMCPRegInfo *ri,
1459 uint64_t value)
1461 /* Writes to the 64 bit format TTBRs may change the ASID */
1462 tlb_flush(env, 1);
1463 return ttbr064_raw_write(env, ri, value);
1466 static void ttbr064_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1468 env->cp15.c2_base0_hi = 0;
1469 env->cp15.c2_base0 = 0;
1472 static int ttbr164_read(CPUARMState *env, const ARMCPRegInfo *ri,
1473 uint64_t *value)
1475 *value = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
1476 return 0;
1479 static int ttbr164_write(CPUARMState *env, const ARMCPRegInfo *ri,
1480 uint64_t value)
1482 env->cp15.c2_base1_hi = value >> 32;
1483 env->cp15.c2_base1 = value;
1484 return 0;
1487 static void ttbr164_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1489 env->cp15.c2_base1_hi = 0;
1490 env->cp15.c2_base1 = 0;
1493 static const ARMCPRegInfo lpae_cp_reginfo[] = {
1494 /* NOP AMAIR0/1: the override is because these clash with the rather
1495 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
1497 { .name = "AMAIR0", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
1498 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1499 .resetvalue = 0 },
1500 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
1501 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1502 .resetvalue = 0 },
1503 /* 64 bit access versions of the (dummy) debug registers */
1504 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
1505 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1506 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
1507 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1508 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
1509 .access = PL1_RW, .type = ARM_CP_64BIT,
1510 .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset },
1511 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
1512 .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr064_read,
1513 .writefn = ttbr064_write, .raw_writefn = ttbr064_raw_write,
1514 .resetfn = ttbr064_reset },
1515 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
1516 .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr164_read,
1517 .writefn = ttbr164_write, .resetfn = ttbr164_reset },
1518 REGINFO_SENTINEL
1521 static int sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1523 env->cp15.c1_sys = value;
1524 /* ??? Lots of these bits are not implemented. */
1525 /* This may enable/disable the MMU, so do a TLB flush. */
1526 tlb_flush(env, 1);
1527 return 0;
1530 void register_cp_regs_for_features(ARMCPU *cpu)
1532 /* Register all the coprocessor registers based on feature bits */
1533 CPUARMState *env = &cpu->env;
1534 if (arm_feature(env, ARM_FEATURE_M)) {
1535 /* M profile has no coprocessor registers */
1536 return;
1539 define_arm_cp_regs(cpu, cp_reginfo);
1540 if (arm_feature(env, ARM_FEATURE_V6)) {
1541 /* The ID registers all have impdef reset values */
1542 ARMCPRegInfo v6_idregs[] = {
1543 { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1,
1544 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1545 .resetvalue = cpu->id_pfr0 },
1546 { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1,
1547 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1548 .resetvalue = cpu->id_pfr1 },
1549 { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1,
1550 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1551 .resetvalue = cpu->id_dfr0 },
1552 { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1,
1553 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1554 .resetvalue = cpu->id_afr0 },
1555 { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1,
1556 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1557 .resetvalue = cpu->id_mmfr0 },
1558 { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1,
1559 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1560 .resetvalue = cpu->id_mmfr1 },
1561 { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1,
1562 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1563 .resetvalue = cpu->id_mmfr2 },
1564 { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1,
1565 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1566 .resetvalue = cpu->id_mmfr3 },
1567 { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2,
1568 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1569 .resetvalue = cpu->id_isar0 },
1570 { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2,
1571 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1572 .resetvalue = cpu->id_isar1 },
1573 { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2,
1574 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1575 .resetvalue = cpu->id_isar2 },
1576 { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2,
1577 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1578 .resetvalue = cpu->id_isar3 },
1579 { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2,
1580 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1581 .resetvalue = cpu->id_isar4 },
1582 { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2,
1583 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1584 .resetvalue = cpu->id_isar5 },
1585 /* 6..7 are as yet unallocated and must RAZ */
1586 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
1587 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1588 .resetvalue = 0 },
1589 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
1590 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1591 .resetvalue = 0 },
1592 REGINFO_SENTINEL
1594 define_arm_cp_regs(cpu, v6_idregs);
1595 define_arm_cp_regs(cpu, v6_cp_reginfo);
1596 } else {
1597 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
1599 if (arm_feature(env, ARM_FEATURE_V6K)) {
1600 define_arm_cp_regs(cpu, v6k_cp_reginfo);
1602 if (arm_feature(env, ARM_FEATURE_V7)) {
1603 /* v7 performance monitor control register: same implementor
1604 * field as main ID register, and we implement no event counters.
1606 ARMCPRegInfo pmcr = {
1607 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
1608 .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
1609 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
1610 .readfn = pmreg_read, .writefn = pmcr_write,
1611 .raw_readfn = raw_read, .raw_writefn = raw_write,
1613 ARMCPRegInfo clidr = {
1614 .name = "CLIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
1615 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
1617 define_one_arm_cp_reg(cpu, &pmcr);
1618 define_one_arm_cp_reg(cpu, &clidr);
1619 define_arm_cp_regs(cpu, v7_cp_reginfo);
1620 } else {
1621 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
1623 if (arm_feature(env, ARM_FEATURE_MPU)) {
1624 /* These are the MPU registers prior to PMSAv6. Any new
1625 * PMSA core later than the ARM946 will require that we
1626 * implement the PMSAv6 or PMSAv7 registers, which are
1627 * completely different.
1629 assert(!arm_feature(env, ARM_FEATURE_V6));
1630 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
1631 } else {
1632 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
1634 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
1635 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
1637 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1638 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
1640 if (arm_feature(env, ARM_FEATURE_VAPA)) {
1641 define_arm_cp_regs(cpu, vapa_cp_reginfo);
1643 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
1644 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
1646 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
1647 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
1649 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
1650 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
1652 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1653 define_arm_cp_regs(cpu, omap_cp_reginfo);
1655 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
1656 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
1658 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1659 define_arm_cp_regs(cpu, xscale_cp_reginfo);
1661 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
1662 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
1664 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1665 define_arm_cp_regs(cpu, lpae_cp_reginfo);
1667 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
1668 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
1669 * be read-only (ie write causes UNDEF exception).
1672 ARMCPRegInfo id_cp_reginfo[] = {
1673 /* Note that the MIDR isn't a simple constant register because
1674 * of the TI925 behaviour where writes to another register can
1675 * cause the MIDR value to change.
1677 * Unimplemented registers in the c15 0 0 0 space default to
1678 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
1679 * and friends override accordingly.
1681 { .name = "MIDR",
1682 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
1683 .access = PL1_R, .resetvalue = cpu->midr,
1684 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
1685 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
1686 .type = ARM_CP_OVERRIDE },
1687 { .name = "CTR",
1688 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
1689 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
1690 { .name = "TCMTR",
1691 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
1692 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1693 { .name = "TLBTR",
1694 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
1695 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1696 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
1697 { .name = "DUMMY",
1698 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
1699 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1700 { .name = "DUMMY",
1701 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
1702 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1703 { .name = "DUMMY",
1704 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
1705 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1706 { .name = "DUMMY",
1707 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
1708 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1709 { .name = "DUMMY",
1710 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
1711 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1712 REGINFO_SENTINEL
1714 ARMCPRegInfo crn0_wi_reginfo = {
1715 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
1716 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
1717 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
1719 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
1720 arm_feature(env, ARM_FEATURE_STRONGARM)) {
1721 ARMCPRegInfo *r;
1722 /* Register the blanket "writes ignored" value first to cover the
1723 * whole space. Then update the specific ID registers to allow write
1724 * access, so that they ignore writes rather than causing them to
1725 * UNDEF.
1727 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
1728 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
1729 r->access = PL1_RW;
1732 define_arm_cp_regs(cpu, id_cp_reginfo);
1735 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
1736 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
1739 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
1740 ARMCPRegInfo auxcr = {
1741 .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1,
1742 .access = PL1_RW, .type = ARM_CP_CONST,
1743 .resetvalue = cpu->reset_auxcr
1745 define_one_arm_cp_reg(cpu, &auxcr);
1748 if (arm_feature(env, ARM_FEATURE_CBAR)) {
1749 ARMCPRegInfo cbar = {
1750 .name = "CBAR", .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
1751 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
1752 .fieldoffset = offsetof(CPUARMState, cp15.c15_config_base_address)
1754 define_one_arm_cp_reg(cpu, &cbar);
1757 /* Generic registers whose values depend on the implementation */
1759 ARMCPRegInfo sctlr = {
1760 .name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
1761 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
1762 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
1763 .raw_writefn = raw_write,
1765 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1766 /* Normally we would always end the TB on an SCTLR write, but Linux
1767 * arch/arm/mach-pxa/sleep.S expects two instructions following
1768 * an MMU enable to execute from cache. Imitate this behaviour.
1770 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
1772 define_one_arm_cp_reg(cpu, &sctlr);
1776 ARMCPU *cpu_arm_init(const char *cpu_model)
1778 ARMCPU *cpu;
1779 ObjectClass *oc;
1781 oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
1782 if (!oc) {
1783 return NULL;
1785 cpu = ARM_CPU(object_new(object_class_get_name(oc)));
1787 /* TODO this should be set centrally, once possible */
1788 object_property_set_bool(OBJECT(cpu), true, "realized", NULL);
1790 return cpu;
1793 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
1795 CPUState *cs = CPU(cpu);
1796 CPUARMState *env = &cpu->env;
1798 if (arm_feature(env, ARM_FEATURE_NEON)) {
1799 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
1800 51, "arm-neon.xml", 0);
1801 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
1802 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
1803 35, "arm-vfp3.xml", 0);
1804 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
1805 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
1806 19, "arm-vfp.xml", 0);
1810 /* Sort alphabetically by type name, except for "any". */
1811 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
1813 ObjectClass *class_a = (ObjectClass *)a;
1814 ObjectClass *class_b = (ObjectClass *)b;
1815 const char *name_a, *name_b;
1817 name_a = object_class_get_name(class_a);
1818 name_b = object_class_get_name(class_b);
1819 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
1820 return 1;
1821 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
1822 return -1;
1823 } else {
1824 return strcmp(name_a, name_b);
1828 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
1830 ObjectClass *oc = data;
1831 CPUListState *s = user_data;
1832 const char *typename;
1833 char *name;
1835 typename = object_class_get_name(oc);
1836 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
1837 (*s->cpu_fprintf)(s->file, " %s\n",
1838 name);
1839 g_free(name);
1842 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
1844 CPUListState s = {
1845 .file = f,
1846 .cpu_fprintf = cpu_fprintf,
1848 GSList *list;
1850 list = object_class_get_list(TYPE_ARM_CPU, false);
1851 list = g_slist_sort(list, arm_cpu_list_compare);
1852 (*cpu_fprintf)(f, "Available CPUs:\n");
1853 g_slist_foreach(list, arm_cpu_list_entry, &s);
1854 g_slist_free(list);
1855 #ifdef CONFIG_KVM
1856 /* The 'host' CPU type is dynamically registered only if KVM is
1857 * enabled, so we have to special-case it here:
1859 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
1860 #endif
1863 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
1865 ObjectClass *oc = data;
1866 CpuDefinitionInfoList **cpu_list = user_data;
1867 CpuDefinitionInfoList *entry;
1868 CpuDefinitionInfo *info;
1869 const char *typename;
1871 typename = object_class_get_name(oc);
1872 info = g_malloc0(sizeof(*info));
1873 info->name = g_strndup(typename,
1874 strlen(typename) - strlen("-" TYPE_ARM_CPU));
1876 entry = g_malloc0(sizeof(*entry));
1877 entry->value = info;
1878 entry->next = *cpu_list;
1879 *cpu_list = entry;
1882 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
1884 CpuDefinitionInfoList *cpu_list = NULL;
1885 GSList *list;
1887 list = object_class_get_list(TYPE_ARM_CPU, false);
1888 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
1889 g_slist_free(list);
1891 return cpu_list;
1894 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1895 const ARMCPRegInfo *r, void *opaque)
1897 /* Define implementations of coprocessor registers.
1898 * We store these in a hashtable because typically
1899 * there are less than 150 registers in a space which
1900 * is 16*16*16*8*8 = 262144 in size.
1901 * Wildcarding is supported for the crm, opc1 and opc2 fields.
1902 * If a register is defined twice then the second definition is
1903 * used, so this can be used to define some generic registers and
1904 * then override them with implementation specific variations.
1905 * At least one of the original and the second definition should
1906 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
1907 * against accidental use.
1909 int crm, opc1, opc2;
1910 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
1911 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
1912 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
1913 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
1914 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
1915 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
1916 /* 64 bit registers have only CRm and Opc1 fields */
1917 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
1918 /* Check that the register definition has enough info to handle
1919 * reads and writes if they are permitted.
1921 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
1922 if (r->access & PL3_R) {
1923 assert(r->fieldoffset || r->readfn);
1925 if (r->access & PL3_W) {
1926 assert(r->fieldoffset || r->writefn);
1929 /* Bad type field probably means missing sentinel at end of reg list */
1930 assert(cptype_valid(r->type));
1931 for (crm = crmmin; crm <= crmmax; crm++) {
1932 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
1933 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
1934 uint32_t *key = g_new(uint32_t, 1);
1935 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
1936 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
1937 *key = ENCODE_CP_REG(r->cp, is64, r->crn, crm, opc1, opc2);
1938 if (opaque) {
1939 r2->opaque = opaque;
1941 /* Make sure reginfo passed to helpers for wildcarded regs
1942 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
1944 r2->crm = crm;
1945 r2->opc1 = opc1;
1946 r2->opc2 = opc2;
1947 /* By convention, for wildcarded registers only the first
1948 * entry is used for migration; the others are marked as
1949 * NO_MIGRATE so we don't try to transfer the register
1950 * multiple times. Special registers (ie NOP/WFI) are
1951 * never migratable.
1953 if ((r->type & ARM_CP_SPECIAL) ||
1954 ((r->crm == CP_ANY) && crm != 0) ||
1955 ((r->opc1 == CP_ANY) && opc1 != 0) ||
1956 ((r->opc2 == CP_ANY) && opc2 != 0)) {
1957 r2->type |= ARM_CP_NO_MIGRATE;
1960 /* Overriding of an existing definition must be explicitly
1961 * requested.
1963 if (!(r->type & ARM_CP_OVERRIDE)) {
1964 ARMCPRegInfo *oldreg;
1965 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
1966 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
1967 fprintf(stderr, "Register redefined: cp=%d %d bit "
1968 "crn=%d crm=%d opc1=%d opc2=%d, "
1969 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
1970 r2->crn, r2->crm, r2->opc1, r2->opc2,
1971 oldreg->name, r2->name);
1972 g_assert_not_reached();
1975 g_hash_table_insert(cpu->cp_regs, key, r2);
1981 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1982 const ARMCPRegInfo *regs, void *opaque)
1984 /* Define a whole list of registers */
1985 const ARMCPRegInfo *r;
1986 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
1987 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
1991 const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp)
1993 return g_hash_table_lookup(cpu->cp_regs, &encoded_cp);
1996 int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1997 uint64_t value)
1999 /* Helper coprocessor write function for write-ignore registers */
2000 return 0;
2003 int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
2005 /* Helper coprocessor write function for read-as-zero registers */
2006 *value = 0;
2007 return 0;
2010 static int bad_mode_switch(CPUARMState *env, int mode)
2012 /* Return true if it is not valid for us to switch to
2013 * this CPU mode (ie all the UNPREDICTABLE cases in
2014 * the ARM ARM CPSRWriteByInstr pseudocode).
2016 switch (mode) {
2017 case ARM_CPU_MODE_USR:
2018 case ARM_CPU_MODE_SYS:
2019 case ARM_CPU_MODE_SVC:
2020 case ARM_CPU_MODE_ABT:
2021 case ARM_CPU_MODE_UND:
2022 case ARM_CPU_MODE_IRQ:
2023 case ARM_CPU_MODE_FIQ:
2024 return 0;
2025 default:
2026 return 1;
2030 uint32_t cpsr_read(CPUARMState *env)
2032 int ZF;
2033 ZF = (env->ZF == 0);
2034 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2035 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
2036 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
2037 | ((env->condexec_bits & 0xfc) << 8)
2038 | (env->GE << 16);
2041 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
2043 if (mask & CPSR_NZCV) {
2044 env->ZF = (~val) & CPSR_Z;
2045 env->NF = val;
2046 env->CF = (val >> 29) & 1;
2047 env->VF = (val << 3) & 0x80000000;
2049 if (mask & CPSR_Q)
2050 env->QF = ((val & CPSR_Q) != 0);
2051 if (mask & CPSR_T)
2052 env->thumb = ((val & CPSR_T) != 0);
2053 if (mask & CPSR_IT_0_1) {
2054 env->condexec_bits &= ~3;
2055 env->condexec_bits |= (val >> 25) & 3;
2057 if (mask & CPSR_IT_2_7) {
2058 env->condexec_bits &= 3;
2059 env->condexec_bits |= (val >> 8) & 0xfc;
2061 if (mask & CPSR_GE) {
2062 env->GE = (val >> 16) & 0xf;
2065 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
2066 if (bad_mode_switch(env, val & CPSR_M)) {
2067 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
2068 * We choose to ignore the attempt and leave the CPSR M field
2069 * untouched.
2071 mask &= ~CPSR_M;
2072 } else {
2073 switch_mode(env, val & CPSR_M);
2076 mask &= ~CACHED_CPSR_BITS;
2077 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
2080 /* Sign/zero extend */
2081 uint32_t HELPER(sxtb16)(uint32_t x)
2083 uint32_t res;
2084 res = (uint16_t)(int8_t)x;
2085 res |= (uint32_t)(int8_t)(x >> 16) << 16;
2086 return res;
2089 uint32_t HELPER(uxtb16)(uint32_t x)
2091 uint32_t res;
2092 res = (uint16_t)(uint8_t)x;
2093 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
2094 return res;
2097 uint32_t HELPER(clz)(uint32_t x)
2099 return clz32(x);
2102 int32_t HELPER(sdiv)(int32_t num, int32_t den)
2104 if (den == 0)
2105 return 0;
2106 if (num == INT_MIN && den == -1)
2107 return INT_MIN;
2108 return num / den;
2111 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
2113 if (den == 0)
2114 return 0;
2115 return num / den;
2118 uint32_t HELPER(rbit)(uint32_t x)
2120 x = ((x & 0xff000000) >> 24)
2121 | ((x & 0x00ff0000) >> 8)
2122 | ((x & 0x0000ff00) << 8)
2123 | ((x & 0x000000ff) << 24);
2124 x = ((x & 0xf0f0f0f0) >> 4)
2125 | ((x & 0x0f0f0f0f) << 4);
2126 x = ((x & 0x88888888) >> 3)
2127 | ((x & 0x44444444) >> 1)
2128 | ((x & 0x22222222) << 1)
2129 | ((x & 0x11111111) << 3);
2130 return x;
2133 #if defined(CONFIG_USER_ONLY)
2135 void arm_cpu_do_interrupt(CPUState *cs)
2137 ARMCPU *cpu = ARM_CPU(cs);
2138 CPUARMState *env = &cpu->env;
2140 env->exception_index = -1;
2143 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
2144 int mmu_idx)
2146 if (rw == 2) {
2147 env->exception_index = EXCP_PREFETCH_ABORT;
2148 env->cp15.c6_insn = address;
2149 } else {
2150 env->exception_index = EXCP_DATA_ABORT;
2151 env->cp15.c6_data = address;
2153 return 1;
2156 /* These should probably raise undefined insn exceptions. */
2157 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
2159 cpu_abort(env, "v7m_mrs %d\n", reg);
2162 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2164 cpu_abort(env, "v7m_mrs %d\n", reg);
2165 return 0;
2168 void switch_mode(CPUARMState *env, int mode)
2170 if (mode != ARM_CPU_MODE_USR)
2171 cpu_abort(env, "Tried to switch out of user mode\n");
2174 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
2176 cpu_abort(env, "banked r13 write\n");
2179 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
2181 cpu_abort(env, "banked r13 read\n");
2182 return 0;
2185 #else
2187 /* Map CPU modes onto saved register banks. */
2188 int bank_number(int mode)
2190 switch (mode) {
2191 case ARM_CPU_MODE_USR:
2192 case ARM_CPU_MODE_SYS:
2193 return 0;
2194 case ARM_CPU_MODE_SVC:
2195 return 1;
2196 case ARM_CPU_MODE_ABT:
2197 return 2;
2198 case ARM_CPU_MODE_UND:
2199 return 3;
2200 case ARM_CPU_MODE_IRQ:
2201 return 4;
2202 case ARM_CPU_MODE_FIQ:
2203 return 5;
2205 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
2208 void switch_mode(CPUARMState *env, int mode)
2210 int old_mode;
2211 int i;
2213 old_mode = env->uncached_cpsr & CPSR_M;
2214 if (mode == old_mode)
2215 return;
2217 if (old_mode == ARM_CPU_MODE_FIQ) {
2218 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
2219 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
2220 } else if (mode == ARM_CPU_MODE_FIQ) {
2221 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
2222 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
2225 i = bank_number(old_mode);
2226 env->banked_r13[i] = env->regs[13];
2227 env->banked_r14[i] = env->regs[14];
2228 env->banked_spsr[i] = env->spsr;
2230 i = bank_number(mode);
2231 env->regs[13] = env->banked_r13[i];
2232 env->regs[14] = env->banked_r14[i];
2233 env->spsr = env->banked_spsr[i];
2236 static void v7m_push(CPUARMState *env, uint32_t val)
2238 env->regs[13] -= 4;
2239 stl_phys(env->regs[13], val);
2242 static uint32_t v7m_pop(CPUARMState *env)
2244 uint32_t val;
2245 val = ldl_phys(env->regs[13]);
2246 env->regs[13] += 4;
2247 return val;
2250 /* Switch to V7M main or process stack pointer. */
2251 static void switch_v7m_sp(CPUARMState *env, int process)
2253 uint32_t tmp;
2254 if (env->v7m.current_sp != process) {
2255 tmp = env->v7m.other_sp;
2256 env->v7m.other_sp = env->regs[13];
2257 env->regs[13] = tmp;
2258 env->v7m.current_sp = process;
2262 static void do_v7m_exception_exit(CPUARMState *env)
2264 uint32_t type;
2265 uint32_t xpsr;
2267 type = env->regs[15];
2268 if (env->v7m.exception != 0)
2269 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
2271 /* Switch to the target stack. */
2272 switch_v7m_sp(env, (type & 4) != 0);
2273 /* Pop registers. */
2274 env->regs[0] = v7m_pop(env);
2275 env->regs[1] = v7m_pop(env);
2276 env->regs[2] = v7m_pop(env);
2277 env->regs[3] = v7m_pop(env);
2278 env->regs[12] = v7m_pop(env);
2279 env->regs[14] = v7m_pop(env);
2280 env->regs[15] = v7m_pop(env);
2281 xpsr = v7m_pop(env);
2282 xpsr_write(env, xpsr, 0xfffffdff);
2283 /* Undo stack alignment. */
2284 if (xpsr & 0x200)
2285 env->regs[13] |= 4;
2286 /* ??? The exception return type specifies Thread/Handler mode. However
2287 this is also implied by the xPSR value. Not sure what to do
2288 if there is a mismatch. */
2289 /* ??? Likewise for mismatches between the CONTROL register and the stack
2290 pointer. */
2293 /* Exception names for debug logging; note that not all of these
2294 * precisely correspond to architectural exceptions.
2296 static const char * const excnames[] = {
2297 [EXCP_UDEF] = "Undefined Instruction",
2298 [EXCP_SWI] = "SVC",
2299 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
2300 [EXCP_DATA_ABORT] = "Data Abort",
2301 [EXCP_IRQ] = "IRQ",
2302 [EXCP_FIQ] = "FIQ",
2303 [EXCP_BKPT] = "Breakpoint",
2304 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
2305 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
2306 [EXCP_STREX] = "QEMU intercept of STREX",
2309 static inline void arm_log_exception(int idx)
2311 if (qemu_loglevel_mask(CPU_LOG_INT)) {
2312 const char *exc = NULL;
2314 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
2315 exc = excnames[idx];
2317 if (!exc) {
2318 exc = "unknown";
2320 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
2324 void arm_v7m_cpu_do_interrupt(CPUState *cs)
2326 ARMCPU *cpu = ARM_CPU(cs);
2327 CPUARMState *env = &cpu->env;
2328 uint32_t xpsr = xpsr_read(env);
2329 uint32_t lr;
2330 uint32_t addr;
2332 arm_log_exception(env->exception_index);
2334 lr = 0xfffffff1;
2335 if (env->v7m.current_sp)
2336 lr |= 4;
2337 if (env->v7m.exception == 0)
2338 lr |= 8;
2340 /* For exceptions we just mark as pending on the NVIC, and let that
2341 handle it. */
2342 /* TODO: Need to escalate if the current priority is higher than the
2343 one we're raising. */
2344 switch (env->exception_index) {
2345 case EXCP_UDEF:
2346 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
2347 return;
2348 case EXCP_SWI:
2349 /* The PC already points to the next instruction. */
2350 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
2351 return;
2352 case EXCP_PREFETCH_ABORT:
2353 case EXCP_DATA_ABORT:
2354 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
2355 return;
2356 case EXCP_BKPT:
2357 if (semihosting_enabled) {
2358 int nr;
2359 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
2360 if (nr == 0xab) {
2361 env->regs[15] += 2;
2362 env->regs[0] = do_arm_semihosting(env);
2363 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
2364 return;
2367 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
2368 return;
2369 case EXCP_IRQ:
2370 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
2371 break;
2372 case EXCP_EXCEPTION_EXIT:
2373 do_v7m_exception_exit(env);
2374 return;
2375 default:
2376 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
2377 return; /* Never happens. Keep compiler happy. */
2380 /* Align stack pointer. */
2381 /* ??? Should only do this if Configuration Control Register
2382 STACKALIGN bit is set. */
2383 if (env->regs[13] & 4) {
2384 env->regs[13] -= 4;
2385 xpsr |= 0x200;
2387 /* Switch to the handler mode. */
2388 v7m_push(env, xpsr);
2389 v7m_push(env, env->regs[15]);
2390 v7m_push(env, env->regs[14]);
2391 v7m_push(env, env->regs[12]);
2392 v7m_push(env, env->regs[3]);
2393 v7m_push(env, env->regs[2]);
2394 v7m_push(env, env->regs[1]);
2395 v7m_push(env, env->regs[0]);
2396 switch_v7m_sp(env, 0);
2397 /* Clear IT bits */
2398 env->condexec_bits = 0;
2399 env->regs[14] = lr;
2400 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
2401 env->regs[15] = addr & 0xfffffffe;
2402 env->thumb = addr & 1;
2405 /* Handle a CPU exception. */
2406 void arm_cpu_do_interrupt(CPUState *cs)
2408 ARMCPU *cpu = ARM_CPU(cs);
2409 CPUARMState *env = &cpu->env;
2410 uint32_t addr;
2411 uint32_t mask;
2412 int new_mode;
2413 uint32_t offset;
2415 assert(!IS_M(env));
2417 arm_log_exception(env->exception_index);
2419 /* TODO: Vectored interrupt controller. */
2420 switch (env->exception_index) {
2421 case EXCP_UDEF:
2422 new_mode = ARM_CPU_MODE_UND;
2423 addr = 0x04;
2424 mask = CPSR_I;
2425 if (env->thumb)
2426 offset = 2;
2427 else
2428 offset = 4;
2429 break;
2430 case EXCP_SWI:
2431 if (semihosting_enabled) {
2432 /* Check for semihosting interrupt. */
2433 if (env->thumb) {
2434 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
2435 & 0xff;
2436 } else {
2437 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
2438 & 0xffffff;
2440 /* Only intercept calls from privileged modes, to provide some
2441 semblance of security. */
2442 if (((mask == 0x123456 && !env->thumb)
2443 || (mask == 0xab && env->thumb))
2444 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
2445 env->regs[0] = do_arm_semihosting(env);
2446 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
2447 return;
2450 new_mode = ARM_CPU_MODE_SVC;
2451 addr = 0x08;
2452 mask = CPSR_I;
2453 /* The PC already points to the next instruction. */
2454 offset = 0;
2455 break;
2456 case EXCP_BKPT:
2457 /* See if this is a semihosting syscall. */
2458 if (env->thumb && semihosting_enabled) {
2459 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
2460 if (mask == 0xab
2461 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
2462 env->regs[15] += 2;
2463 env->regs[0] = do_arm_semihosting(env);
2464 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
2465 return;
2468 env->cp15.c5_insn = 2;
2469 /* Fall through to prefetch abort. */
2470 case EXCP_PREFETCH_ABORT:
2471 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
2472 env->cp15.c5_insn, env->cp15.c6_insn);
2473 new_mode = ARM_CPU_MODE_ABT;
2474 addr = 0x0c;
2475 mask = CPSR_A | CPSR_I;
2476 offset = 4;
2477 break;
2478 case EXCP_DATA_ABORT:
2479 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
2480 env->cp15.c5_data, env->cp15.c6_data);
2481 new_mode = ARM_CPU_MODE_ABT;
2482 addr = 0x10;
2483 mask = CPSR_A | CPSR_I;
2484 offset = 8;
2485 break;
2486 case EXCP_IRQ:
2487 new_mode = ARM_CPU_MODE_IRQ;
2488 addr = 0x18;
2489 /* Disable IRQ and imprecise data aborts. */
2490 mask = CPSR_A | CPSR_I;
2491 offset = 4;
2492 break;
2493 case EXCP_FIQ:
2494 new_mode = ARM_CPU_MODE_FIQ;
2495 addr = 0x1c;
2496 /* Disable FIQ, IRQ and imprecise data aborts. */
2497 mask = CPSR_A | CPSR_I | CPSR_F;
2498 offset = 4;
2499 break;
2500 default:
2501 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
2502 return; /* Never happens. Keep compiler happy. */
2504 /* High vectors. */
2505 if (env->cp15.c1_sys & (1 << 13)) {
2506 /* when enabled, base address cannot be remapped. */
2507 addr += 0xffff0000;
2508 } else {
2509 /* ARM v7 architectures provide a vector base address register to remap
2510 * the interrupt vector table.
2511 * This register is only followed in non-monitor mode, and has a secure
2512 * and un-secure copy. Since the cpu is always in a un-secure operation
2513 * and is never in monitor mode this feature is always active.
2514 * Note: only bits 31:5 are valid.
2516 addr += env->cp15.c12_vbar;
2518 switch_mode (env, new_mode);
2519 env->spsr = cpsr_read(env);
2520 /* Clear IT bits. */
2521 env->condexec_bits = 0;
2522 /* Switch to the new mode, and to the correct instruction set. */
2523 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
2524 env->uncached_cpsr |= mask;
2525 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
2526 * and we should just guard the thumb mode on V4 */
2527 if (arm_feature(env, ARM_FEATURE_V4T)) {
2528 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
2530 env->regs[14] = env->regs[15] + offset;
2531 env->regs[15] = addr;
2532 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
2535 /* Check section/page access permissions.
2536 Returns the page protection flags, or zero if the access is not
2537 permitted. */
2538 static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
2539 int access_type, int is_user)
2541 int prot_ro;
2543 if (domain_prot == 3) {
2544 return PAGE_READ | PAGE_WRITE;
2547 if (access_type == 1)
2548 prot_ro = 0;
2549 else
2550 prot_ro = PAGE_READ;
2552 switch (ap) {
2553 case 0:
2554 if (access_type == 1)
2555 return 0;
2556 switch ((env->cp15.c1_sys >> 8) & 3) {
2557 case 1:
2558 return is_user ? 0 : PAGE_READ;
2559 case 2:
2560 return PAGE_READ;
2561 default:
2562 return 0;
2564 case 1:
2565 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
2566 case 2:
2567 if (is_user)
2568 return prot_ro;
2569 else
2570 return PAGE_READ | PAGE_WRITE;
2571 case 3:
2572 return PAGE_READ | PAGE_WRITE;
2573 case 4: /* Reserved. */
2574 return 0;
2575 case 5:
2576 return is_user ? 0 : prot_ro;
2577 case 6:
2578 return prot_ro;
2579 case 7:
2580 if (!arm_feature (env, ARM_FEATURE_V6K))
2581 return 0;
2582 return prot_ro;
2583 default:
2584 abort();
2588 static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
2590 uint32_t table;
2592 if (address & env->cp15.c2_mask)
2593 table = env->cp15.c2_base1 & 0xffffc000;
2594 else
2595 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
2597 table |= (address >> 18) & 0x3ffc;
2598 return table;
2601 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
2602 int is_user, hwaddr *phys_ptr,
2603 int *prot, target_ulong *page_size)
2605 int code;
2606 uint32_t table;
2607 uint32_t desc;
2608 int type;
2609 int ap;
2610 int domain;
2611 int domain_prot;
2612 hwaddr phys_addr;
2614 /* Pagetable walk. */
2615 /* Lookup l1 descriptor. */
2616 table = get_level1_table_address(env, address);
2617 desc = ldl_phys(table);
2618 type = (desc & 3);
2619 domain = (desc >> 5) & 0x0f;
2620 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
2621 if (type == 0) {
2622 /* Section translation fault. */
2623 code = 5;
2624 goto do_fault;
2626 if (domain_prot == 0 || domain_prot == 2) {
2627 if (type == 2)
2628 code = 9; /* Section domain fault. */
2629 else
2630 code = 11; /* Page domain fault. */
2631 goto do_fault;
2633 if (type == 2) {
2634 /* 1Mb section. */
2635 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2636 ap = (desc >> 10) & 3;
2637 code = 13;
2638 *page_size = 1024 * 1024;
2639 } else {
2640 /* Lookup l2 entry. */
2641 if (type == 1) {
2642 /* Coarse pagetable. */
2643 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2644 } else {
2645 /* Fine pagetable. */
2646 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
2648 desc = ldl_phys(table);
2649 switch (desc & 3) {
2650 case 0: /* Page translation fault. */
2651 code = 7;
2652 goto do_fault;
2653 case 1: /* 64k page. */
2654 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2655 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
2656 *page_size = 0x10000;
2657 break;
2658 case 2: /* 4k page. */
2659 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2660 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
2661 *page_size = 0x1000;
2662 break;
2663 case 3: /* 1k page. */
2664 if (type == 1) {
2665 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2666 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2667 } else {
2668 /* Page translation fault. */
2669 code = 7;
2670 goto do_fault;
2672 } else {
2673 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
2675 ap = (desc >> 4) & 3;
2676 *page_size = 0x400;
2677 break;
2678 default:
2679 /* Never happens, but compiler isn't smart enough to tell. */
2680 abort();
2682 code = 15;
2684 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2685 if (!*prot) {
2686 /* Access permission fault. */
2687 goto do_fault;
2689 *prot |= PAGE_EXEC;
2690 *phys_ptr = phys_addr;
2691 return 0;
2692 do_fault:
2693 return code | (domain << 4);
2696 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
2697 int is_user, hwaddr *phys_ptr,
2698 int *prot, target_ulong *page_size)
2700 int code;
2701 uint32_t table;
2702 uint32_t desc;
2703 uint32_t xn;
2704 uint32_t pxn = 0;
2705 int type;
2706 int ap;
2707 int domain = 0;
2708 int domain_prot;
2709 hwaddr phys_addr;
2711 /* Pagetable walk. */
2712 /* Lookup l1 descriptor. */
2713 table = get_level1_table_address(env, address);
2714 desc = ldl_phys(table);
2715 type = (desc & 3);
2716 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
2717 /* Section translation fault, or attempt to use the encoding
2718 * which is Reserved on implementations without PXN.
2720 code = 5;
2721 goto do_fault;
2723 if ((type == 1) || !(desc & (1 << 18))) {
2724 /* Page or Section. */
2725 domain = (desc >> 5) & 0x0f;
2727 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
2728 if (domain_prot == 0 || domain_prot == 2) {
2729 if (type != 1) {
2730 code = 9; /* Section domain fault. */
2731 } else {
2732 code = 11; /* Page domain fault. */
2734 goto do_fault;
2736 if (type != 1) {
2737 if (desc & (1 << 18)) {
2738 /* Supersection. */
2739 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
2740 *page_size = 0x1000000;
2741 } else {
2742 /* Section. */
2743 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2744 *page_size = 0x100000;
2746 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
2747 xn = desc & (1 << 4);
2748 pxn = desc & 1;
2749 code = 13;
2750 } else {
2751 if (arm_feature(env, ARM_FEATURE_PXN)) {
2752 pxn = (desc >> 2) & 1;
2754 /* Lookup l2 entry. */
2755 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2756 desc = ldl_phys(table);
2757 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
2758 switch (desc & 3) {
2759 case 0: /* Page translation fault. */
2760 code = 7;
2761 goto do_fault;
2762 case 1: /* 64k page. */
2763 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2764 xn = desc & (1 << 15);
2765 *page_size = 0x10000;
2766 break;
2767 case 2: case 3: /* 4k page. */
2768 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2769 xn = desc & 1;
2770 *page_size = 0x1000;
2771 break;
2772 default:
2773 /* Never happens, but compiler isn't smart enough to tell. */
2774 abort();
2776 code = 15;
2778 if (domain_prot == 3) {
2779 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2780 } else {
2781 if (pxn && !is_user) {
2782 xn = 1;
2784 if (xn && access_type == 2)
2785 goto do_fault;
2787 /* The simplified model uses AP[0] as an access control bit. */
2788 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
2789 /* Access flag fault. */
2790 code = (code == 15) ? 6 : 3;
2791 goto do_fault;
2793 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2794 if (!*prot) {
2795 /* Access permission fault. */
2796 goto do_fault;
2798 if (!xn) {
2799 *prot |= PAGE_EXEC;
2802 *phys_ptr = phys_addr;
2803 return 0;
2804 do_fault:
2805 return code | (domain << 4);
2808 /* Fault type for long-descriptor MMU fault reporting; this corresponds
2809 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
2811 typedef enum {
2812 translation_fault = 1,
2813 access_fault = 2,
2814 permission_fault = 3,
2815 } MMUFaultType;
2817 static int get_phys_addr_lpae(CPUARMState *env, uint32_t address,
2818 int access_type, int is_user,
2819 hwaddr *phys_ptr, int *prot,
2820 target_ulong *page_size_ptr)
2822 /* Read an LPAE long-descriptor translation table. */
2823 MMUFaultType fault_type = translation_fault;
2824 uint32_t level = 1;
2825 uint32_t epd;
2826 uint32_t tsz;
2827 uint64_t ttbr;
2828 int ttbr_select;
2829 int n;
2830 hwaddr descaddr;
2831 uint32_t tableattrs;
2832 target_ulong page_size;
2833 uint32_t attrs;
2835 /* Determine whether this address is in the region controlled by
2836 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
2837 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
2838 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
2840 uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3);
2841 uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3);
2842 if (t0sz && !extract32(address, 32 - t0sz, t0sz)) {
2843 /* there is a ttbr0 region and we are in it (high bits all zero) */
2844 ttbr_select = 0;
2845 } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) {
2846 /* there is a ttbr1 region and we are in it (high bits all one) */
2847 ttbr_select = 1;
2848 } else if (!t0sz) {
2849 /* ttbr0 region is "everything not in the ttbr1 region" */
2850 ttbr_select = 0;
2851 } else if (!t1sz) {
2852 /* ttbr1 region is "everything not in the ttbr0 region" */
2853 ttbr_select = 1;
2854 } else {
2855 /* in the gap between the two regions, this is a Translation fault */
2856 fault_type = translation_fault;
2857 goto do_fault;
2860 /* Note that QEMU ignores shareability and cacheability attributes,
2861 * so we don't need to do anything with the SH, ORGN, IRGN fields
2862 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
2863 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
2864 * implement any ASID-like capability so we can ignore it (instead
2865 * we will always flush the TLB any time the ASID is changed).
2867 if (ttbr_select == 0) {
2868 ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
2869 epd = extract32(env->cp15.c2_control, 7, 1);
2870 tsz = t0sz;
2871 } else {
2872 ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
2873 epd = extract32(env->cp15.c2_control, 23, 1);
2874 tsz = t1sz;
2877 if (epd) {
2878 /* Translation table walk disabled => Translation fault on TLB miss */
2879 goto do_fault;
2882 /* If the region is small enough we will skip straight to a 2nd level
2883 * lookup. This affects the number of bits of the address used in
2884 * combination with the TTBR to find the first descriptor. ('n' here
2885 * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are
2886 * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero).
2888 if (tsz > 1) {
2889 level = 2;
2890 n = 14 - tsz;
2891 } else {
2892 n = 5 - tsz;
2895 /* Clear the vaddr bits which aren't part of the within-region address,
2896 * so that we don't have to special case things when calculating the
2897 * first descriptor address.
2899 address &= (0xffffffffU >> tsz);
2901 /* Now we can extract the actual base address from the TTBR */
2902 descaddr = extract64(ttbr, 0, 40);
2903 descaddr &= ~((1ULL << n) - 1);
2905 tableattrs = 0;
2906 for (;;) {
2907 uint64_t descriptor;
2909 descaddr |= ((address >> (9 * (4 - level))) & 0xff8);
2910 descriptor = ldq_phys(descaddr);
2911 if (!(descriptor & 1) ||
2912 (!(descriptor & 2) && (level == 3))) {
2913 /* Invalid, or the Reserved level 3 encoding */
2914 goto do_fault;
2916 descaddr = descriptor & 0xfffffff000ULL;
2918 if ((descriptor & 2) && (level < 3)) {
2919 /* Table entry. The top five bits are attributes which may
2920 * propagate down through lower levels of the table (and
2921 * which are all arranged so that 0 means "no effect", so
2922 * we can gather them up by ORing in the bits at each level).
2924 tableattrs |= extract64(descriptor, 59, 5);
2925 level++;
2926 continue;
2928 /* Block entry at level 1 or 2, or page entry at level 3.
2929 * These are basically the same thing, although the number
2930 * of bits we pull in from the vaddr varies.
2932 page_size = (1 << (39 - (9 * level)));
2933 descaddr |= (address & (page_size - 1));
2934 /* Extract attributes from the descriptor and merge with table attrs */
2935 attrs = extract64(descriptor, 2, 10)
2936 | (extract64(descriptor, 52, 12) << 10);
2937 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
2938 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
2939 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
2940 * means "force PL1 access only", which means forcing AP[1] to 0.
2942 if (extract32(tableattrs, 2, 1)) {
2943 attrs &= ~(1 << 4);
2945 /* Since we're always in the Non-secure state, NSTable is ignored. */
2946 break;
2948 /* Here descaddr is the final physical address, and attributes
2949 * are all in attrs.
2951 fault_type = access_fault;
2952 if ((attrs & (1 << 8)) == 0) {
2953 /* Access flag */
2954 goto do_fault;
2956 fault_type = permission_fault;
2957 if (is_user && !(attrs & (1 << 4))) {
2958 /* Unprivileged access not enabled */
2959 goto do_fault;
2961 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2962 if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) {
2963 /* XN or PXN */
2964 if (access_type == 2) {
2965 goto do_fault;
2967 *prot &= ~PAGE_EXEC;
2969 if (attrs & (1 << 5)) {
2970 /* Write access forbidden */
2971 if (access_type == 1) {
2972 goto do_fault;
2974 *prot &= ~PAGE_WRITE;
2977 *phys_ptr = descaddr;
2978 *page_size_ptr = page_size;
2979 return 0;
2981 do_fault:
2982 /* Long-descriptor format IFSR/DFSR value */
2983 return (1 << 9) | (fault_type << 2) | level;
2986 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
2987 int access_type, int is_user,
2988 hwaddr *phys_ptr, int *prot)
2990 int n;
2991 uint32_t mask;
2992 uint32_t base;
2994 *phys_ptr = address;
2995 for (n = 7; n >= 0; n--) {
2996 base = env->cp15.c6_region[n];
2997 if ((base & 1) == 0)
2998 continue;
2999 mask = 1 << ((base >> 1) & 0x1f);
3000 /* Keep this shift separate from the above to avoid an
3001 (undefined) << 32. */
3002 mask = (mask << 1) - 1;
3003 if (((base ^ address) & ~mask) == 0)
3004 break;
3006 if (n < 0)
3007 return 2;
3009 if (access_type == 2) {
3010 mask = env->cp15.c5_insn;
3011 } else {
3012 mask = env->cp15.c5_data;
3014 mask = (mask >> (n * 4)) & 0xf;
3015 switch (mask) {
3016 case 0:
3017 return 1;
3018 case 1:
3019 if (is_user)
3020 return 1;
3021 *prot = PAGE_READ | PAGE_WRITE;
3022 break;
3023 case 2:
3024 *prot = PAGE_READ;
3025 if (!is_user)
3026 *prot |= PAGE_WRITE;
3027 break;
3028 case 3:
3029 *prot = PAGE_READ | PAGE_WRITE;
3030 break;
3031 case 5:
3032 if (is_user)
3033 return 1;
3034 *prot = PAGE_READ;
3035 break;
3036 case 6:
3037 *prot = PAGE_READ;
3038 break;
3039 default:
3040 /* Bad permission. */
3041 return 1;
3043 *prot |= PAGE_EXEC;
3044 return 0;
3047 /* get_phys_addr - get the physical address for this virtual address
3049 * Find the physical address corresponding to the given virtual address,
3050 * by doing a translation table walk on MMU based systems or using the
3051 * MPU state on MPU based systems.
3053 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
3054 * prot and page_size are not filled in, and the return value provides
3055 * information on why the translation aborted, in the format of a
3056 * DFSR/IFSR fault register, with the following caveats:
3057 * * we honour the short vs long DFSR format differences.
3058 * * the WnR bit is never set (the caller must do this).
3059 * * for MPU based systems we don't bother to return a full FSR format
3060 * value.
3062 * @env: CPUARMState
3063 * @address: virtual address to get physical address for
3064 * @access_type: 0 for read, 1 for write, 2 for execute
3065 * @is_user: 0 for privileged access, 1 for user
3066 * @phys_ptr: set to the physical address corresponding to the virtual address
3067 * @prot: set to the permissions for the page containing phys_ptr
3068 * @page_size: set to the size of the page containing phys_ptr
3070 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
3071 int access_type, int is_user,
3072 hwaddr *phys_ptr, int *prot,
3073 target_ulong *page_size)
3075 /* Fast Context Switch Extension. */
3076 if (address < 0x02000000)
3077 address += env->cp15.c13_fcse;
3079 if ((env->cp15.c1_sys & 1) == 0) {
3080 /* MMU/MPU disabled. */
3081 *phys_ptr = address;
3082 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3083 *page_size = TARGET_PAGE_SIZE;
3084 return 0;
3085 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
3086 *page_size = TARGET_PAGE_SIZE;
3087 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
3088 prot);
3089 } else if (extended_addresses_enabled(env)) {
3090 return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
3091 prot, page_size);
3092 } else if (env->cp15.c1_sys & (1 << 23)) {
3093 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
3094 prot, page_size);
3095 } else {
3096 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
3097 prot, page_size);
3101 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
3102 int access_type, int mmu_idx)
3104 hwaddr phys_addr;
3105 target_ulong page_size;
3106 int prot;
3107 int ret, is_user;
3109 is_user = mmu_idx == MMU_USER_IDX;
3110 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
3111 &page_size);
3112 if (ret == 0) {
3113 /* Map a single [sub]page. */
3114 phys_addr &= ~(hwaddr)0x3ff;
3115 address &= ~(uint32_t)0x3ff;
3116 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
3117 return 0;
3120 if (access_type == 2) {
3121 env->cp15.c5_insn = ret;
3122 env->cp15.c6_insn = address;
3123 env->exception_index = EXCP_PREFETCH_ABORT;
3124 } else {
3125 env->cp15.c5_data = ret;
3126 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
3127 env->cp15.c5_data |= (1 << 11);
3128 env->cp15.c6_data = address;
3129 env->exception_index = EXCP_DATA_ABORT;
3131 return 1;
3134 hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
3136 ARMCPU *cpu = ARM_CPU(cs);
3137 hwaddr phys_addr;
3138 target_ulong page_size;
3139 int prot;
3140 int ret;
3142 ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size);
3144 if (ret != 0) {
3145 return -1;
3148 return phys_addr;
3151 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
3153 if ((env->uncached_cpsr & CPSR_M) == mode) {
3154 env->regs[13] = val;
3155 } else {
3156 env->banked_r13[bank_number(mode)] = val;
3160 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
3162 if ((env->uncached_cpsr & CPSR_M) == mode) {
3163 return env->regs[13];
3164 } else {
3165 return env->banked_r13[bank_number(mode)];
3169 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
3171 switch (reg) {
3172 case 0: /* APSR */
3173 return xpsr_read(env) & 0xf8000000;
3174 case 1: /* IAPSR */
3175 return xpsr_read(env) & 0xf80001ff;
3176 case 2: /* EAPSR */
3177 return xpsr_read(env) & 0xff00fc00;
3178 case 3: /* xPSR */
3179 return xpsr_read(env) & 0xff00fdff;
3180 case 5: /* IPSR */
3181 return xpsr_read(env) & 0x000001ff;
3182 case 6: /* EPSR */
3183 return xpsr_read(env) & 0x0700fc00;
3184 case 7: /* IEPSR */
3185 return xpsr_read(env) & 0x0700edff;
3186 case 8: /* MSP */
3187 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
3188 case 9: /* PSP */
3189 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
3190 case 16: /* PRIMASK */
3191 return (env->uncached_cpsr & CPSR_I) != 0;
3192 case 17: /* BASEPRI */
3193 case 18: /* BASEPRI_MAX */
3194 return env->v7m.basepri;
3195 case 19: /* FAULTMASK */
3196 return (env->uncached_cpsr & CPSR_F) != 0;
3197 case 20: /* CONTROL */
3198 return env->v7m.control;
3199 default:
3200 /* ??? For debugging only. */
3201 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
3202 return 0;
3206 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
3208 switch (reg) {
3209 case 0: /* APSR */
3210 xpsr_write(env, val, 0xf8000000);
3211 break;
3212 case 1: /* IAPSR */
3213 xpsr_write(env, val, 0xf8000000);
3214 break;
3215 case 2: /* EAPSR */
3216 xpsr_write(env, val, 0xfe00fc00);
3217 break;
3218 case 3: /* xPSR */
3219 xpsr_write(env, val, 0xfe00fc00);
3220 break;
3221 case 5: /* IPSR */
3222 /* IPSR bits are readonly. */
3223 break;
3224 case 6: /* EPSR */
3225 xpsr_write(env, val, 0x0600fc00);
3226 break;
3227 case 7: /* IEPSR */
3228 xpsr_write(env, val, 0x0600fc00);
3229 break;
3230 case 8: /* MSP */
3231 if (env->v7m.current_sp)
3232 env->v7m.other_sp = val;
3233 else
3234 env->regs[13] = val;
3235 break;
3236 case 9: /* PSP */
3237 if (env->v7m.current_sp)
3238 env->regs[13] = val;
3239 else
3240 env->v7m.other_sp = val;
3241 break;
3242 case 16: /* PRIMASK */
3243 if (val & 1)
3244 env->uncached_cpsr |= CPSR_I;
3245 else
3246 env->uncached_cpsr &= ~CPSR_I;
3247 break;
3248 case 17: /* BASEPRI */
3249 env->v7m.basepri = val & 0xff;
3250 break;
3251 case 18: /* BASEPRI_MAX */
3252 val &= 0xff;
3253 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
3254 env->v7m.basepri = val;
3255 break;
3256 case 19: /* FAULTMASK */
3257 if (val & 1)
3258 env->uncached_cpsr |= CPSR_F;
3259 else
3260 env->uncached_cpsr &= ~CPSR_F;
3261 break;
3262 case 20: /* CONTROL */
3263 env->v7m.control = val & 3;
3264 switch_v7m_sp(env, (val & 2) != 0);
3265 break;
3266 default:
3267 /* ??? For debugging only. */
3268 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
3269 return;
3273 #endif
3275 /* Note that signed overflow is undefined in C. The following routines are
3276 careful to use unsigned types where modulo arithmetic is required.
3277 Failure to do so _will_ break on newer gcc. */
3279 /* Signed saturating arithmetic. */
3281 /* Perform 16-bit signed saturating addition. */
3282 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
3284 uint16_t res;
3286 res = a + b;
3287 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
3288 if (a & 0x8000)
3289 res = 0x8000;
3290 else
3291 res = 0x7fff;
3293 return res;
3296 /* Perform 8-bit signed saturating addition. */
3297 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
3299 uint8_t res;
3301 res = a + b;
3302 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
3303 if (a & 0x80)
3304 res = 0x80;
3305 else
3306 res = 0x7f;
3308 return res;
3311 /* Perform 16-bit signed saturating subtraction. */
3312 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
3314 uint16_t res;
3316 res = a - b;
3317 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
3318 if (a & 0x8000)
3319 res = 0x8000;
3320 else
3321 res = 0x7fff;
3323 return res;
3326 /* Perform 8-bit signed saturating subtraction. */
3327 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
3329 uint8_t res;
3331 res = a - b;
3332 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
3333 if (a & 0x80)
3334 res = 0x80;
3335 else
3336 res = 0x7f;
3338 return res;
3341 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
3342 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
3343 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
3344 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
3345 #define PFX q
3347 #include "op_addsub.h"
3349 /* Unsigned saturating arithmetic. */
3350 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
3352 uint16_t res;
3353 res = a + b;
3354 if (res < a)
3355 res = 0xffff;
3356 return res;
3359 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
3361 if (a > b)
3362 return a - b;
3363 else
3364 return 0;
3367 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
3369 uint8_t res;
3370 res = a + b;
3371 if (res < a)
3372 res = 0xff;
3373 return res;
3376 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
3378 if (a > b)
3379 return a - b;
3380 else
3381 return 0;
3384 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
3385 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
3386 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
3387 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
3388 #define PFX uq
3390 #include "op_addsub.h"
3392 /* Signed modulo arithmetic. */
3393 #define SARITH16(a, b, n, op) do { \
3394 int32_t sum; \
3395 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
3396 RESULT(sum, n, 16); \
3397 if (sum >= 0) \
3398 ge |= 3 << (n * 2); \
3399 } while(0)
3401 #define SARITH8(a, b, n, op) do { \
3402 int32_t sum; \
3403 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
3404 RESULT(sum, n, 8); \
3405 if (sum >= 0) \
3406 ge |= 1 << n; \
3407 } while(0)
3410 #define ADD16(a, b, n) SARITH16(a, b, n, +)
3411 #define SUB16(a, b, n) SARITH16(a, b, n, -)
3412 #define ADD8(a, b, n) SARITH8(a, b, n, +)
3413 #define SUB8(a, b, n) SARITH8(a, b, n, -)
3414 #define PFX s
3415 #define ARITH_GE
3417 #include "op_addsub.h"
3419 /* Unsigned modulo arithmetic. */
3420 #define ADD16(a, b, n) do { \
3421 uint32_t sum; \
3422 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
3423 RESULT(sum, n, 16); \
3424 if ((sum >> 16) == 1) \
3425 ge |= 3 << (n * 2); \
3426 } while(0)
3428 #define ADD8(a, b, n) do { \
3429 uint32_t sum; \
3430 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
3431 RESULT(sum, n, 8); \
3432 if ((sum >> 8) == 1) \
3433 ge |= 1 << n; \
3434 } while(0)
3436 #define SUB16(a, b, n) do { \
3437 uint32_t sum; \
3438 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
3439 RESULT(sum, n, 16); \
3440 if ((sum >> 16) == 0) \
3441 ge |= 3 << (n * 2); \
3442 } while(0)
3444 #define SUB8(a, b, n) do { \
3445 uint32_t sum; \
3446 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
3447 RESULT(sum, n, 8); \
3448 if ((sum >> 8) == 0) \
3449 ge |= 1 << n; \
3450 } while(0)
3452 #define PFX u
3453 #define ARITH_GE
3455 #include "op_addsub.h"
3457 /* Halved signed arithmetic. */
3458 #define ADD16(a, b, n) \
3459 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
3460 #define SUB16(a, b, n) \
3461 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
3462 #define ADD8(a, b, n) \
3463 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
3464 #define SUB8(a, b, n) \
3465 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
3466 #define PFX sh
3468 #include "op_addsub.h"
3470 /* Halved unsigned arithmetic. */
3471 #define ADD16(a, b, n) \
3472 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
3473 #define SUB16(a, b, n) \
3474 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
3475 #define ADD8(a, b, n) \
3476 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
3477 #define SUB8(a, b, n) \
3478 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
3479 #define PFX uh
3481 #include "op_addsub.h"
3483 static inline uint8_t do_usad(uint8_t a, uint8_t b)
3485 if (a > b)
3486 return a - b;
3487 else
3488 return b - a;
3491 /* Unsigned sum of absolute byte differences. */
3492 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
3494 uint32_t sum;
3495 sum = do_usad(a, b);
3496 sum += do_usad(a >> 8, b >> 8);
3497 sum += do_usad(a >> 16, b >>16);
3498 sum += do_usad(a >> 24, b >> 24);
3499 return sum;
3502 /* For ARMv6 SEL instruction. */
3503 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
3505 uint32_t mask;
3507 mask = 0;
3508 if (flags & 1)
3509 mask |= 0xff;
3510 if (flags & 2)
3511 mask |= 0xff00;
3512 if (flags & 4)
3513 mask |= 0xff0000;
3514 if (flags & 8)
3515 mask |= 0xff000000;
3516 return (a & mask) | (b & ~mask);
3519 /* VFP support. We follow the convention used for VFP instructions:
3520 Single precision routines have a "s" suffix, double precision a
3521 "d" suffix. */
3523 /* Convert host exception flags to vfp form. */
3524 static inline int vfp_exceptbits_from_host(int host_bits)
3526 int target_bits = 0;
3528 if (host_bits & float_flag_invalid)
3529 target_bits |= 1;
3530 if (host_bits & float_flag_divbyzero)
3531 target_bits |= 2;
3532 if (host_bits & float_flag_overflow)
3533 target_bits |= 4;
3534 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
3535 target_bits |= 8;
3536 if (host_bits & float_flag_inexact)
3537 target_bits |= 0x10;
3538 if (host_bits & float_flag_input_denormal)
3539 target_bits |= 0x80;
3540 return target_bits;
3543 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
3545 int i;
3546 uint32_t fpscr;
3548 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
3549 | (env->vfp.vec_len << 16)
3550 | (env->vfp.vec_stride << 20);
3551 i = get_float_exception_flags(&env->vfp.fp_status);
3552 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
3553 fpscr |= vfp_exceptbits_from_host(i);
3554 return fpscr;
3557 uint32_t vfp_get_fpscr(CPUARMState *env)
3559 return HELPER(vfp_get_fpscr)(env);
3562 /* Convert vfp exception flags to target form. */
3563 static inline int vfp_exceptbits_to_host(int target_bits)
3565 int host_bits = 0;
3567 if (target_bits & 1)
3568 host_bits |= float_flag_invalid;
3569 if (target_bits & 2)
3570 host_bits |= float_flag_divbyzero;
3571 if (target_bits & 4)
3572 host_bits |= float_flag_overflow;
3573 if (target_bits & 8)
3574 host_bits |= float_flag_underflow;
3575 if (target_bits & 0x10)
3576 host_bits |= float_flag_inexact;
3577 if (target_bits & 0x80)
3578 host_bits |= float_flag_input_denormal;
3579 return host_bits;
3582 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
3584 int i;
3585 uint32_t changed;
3587 changed = env->vfp.xregs[ARM_VFP_FPSCR];
3588 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
3589 env->vfp.vec_len = (val >> 16) & 7;
3590 env->vfp.vec_stride = (val >> 20) & 3;
3592 changed ^= val;
3593 if (changed & (3 << 22)) {
3594 i = (val >> 22) & 3;
3595 switch (i) {
3596 case 0:
3597 i = float_round_nearest_even;
3598 break;
3599 case 1:
3600 i = float_round_up;
3601 break;
3602 case 2:
3603 i = float_round_down;
3604 break;
3605 case 3:
3606 i = float_round_to_zero;
3607 break;
3609 set_float_rounding_mode(i, &env->vfp.fp_status);
3611 if (changed & (1 << 24)) {
3612 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
3613 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
3615 if (changed & (1 << 25))
3616 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
3618 i = vfp_exceptbits_to_host(val);
3619 set_float_exception_flags(i, &env->vfp.fp_status);
3620 set_float_exception_flags(0, &env->vfp.standard_fp_status);
3623 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
3625 HELPER(vfp_set_fpscr)(env, val);
3628 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
3630 #define VFP_BINOP(name) \
3631 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
3633 float_status *fpst = fpstp; \
3634 return float32_ ## name(a, b, fpst); \
3636 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
3638 float_status *fpst = fpstp; \
3639 return float64_ ## name(a, b, fpst); \
3641 VFP_BINOP(add)
3642 VFP_BINOP(sub)
3643 VFP_BINOP(mul)
3644 VFP_BINOP(div)
3645 #undef VFP_BINOP
3647 float32 VFP_HELPER(neg, s)(float32 a)
3649 return float32_chs(a);
3652 float64 VFP_HELPER(neg, d)(float64 a)
3654 return float64_chs(a);
3657 float32 VFP_HELPER(abs, s)(float32 a)
3659 return float32_abs(a);
3662 float64 VFP_HELPER(abs, d)(float64 a)
3664 return float64_abs(a);
3667 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
3669 return float32_sqrt(a, &env->vfp.fp_status);
3672 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
3674 return float64_sqrt(a, &env->vfp.fp_status);
3677 /* XXX: check quiet/signaling case */
3678 #define DO_VFP_cmp(p, type) \
3679 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
3681 uint32_t flags; \
3682 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
3683 case 0: flags = 0x6; break; \
3684 case -1: flags = 0x8; break; \
3685 case 1: flags = 0x2; break; \
3686 default: case 2: flags = 0x3; break; \
3688 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3689 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3691 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
3693 uint32_t flags; \
3694 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
3695 case 0: flags = 0x6; break; \
3696 case -1: flags = 0x8; break; \
3697 case 1: flags = 0x2; break; \
3698 default: case 2: flags = 0x3; break; \
3700 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3701 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3703 DO_VFP_cmp(s, float32)
3704 DO_VFP_cmp(d, float64)
3705 #undef DO_VFP_cmp
3707 /* Integer to float and float to integer conversions */
3709 #define CONV_ITOF(name, fsz, sign) \
3710 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
3712 float_status *fpst = fpstp; \
3713 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
3716 #define CONV_FTOI(name, fsz, sign, round) \
3717 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
3719 float_status *fpst = fpstp; \
3720 if (float##fsz##_is_any_nan(x)) { \
3721 float_raise(float_flag_invalid, fpst); \
3722 return 0; \
3724 return float##fsz##_to_##sign##int32##round(x, fpst); \
3727 #define FLOAT_CONVS(name, p, fsz, sign) \
3728 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
3729 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
3730 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
3732 FLOAT_CONVS(si, s, 32, )
3733 FLOAT_CONVS(si, d, 64, )
3734 FLOAT_CONVS(ui, s, 32, u)
3735 FLOAT_CONVS(ui, d, 64, u)
3737 #undef CONV_ITOF
3738 #undef CONV_FTOI
3739 #undef FLOAT_CONVS
3741 /* floating point conversion */
3742 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
3744 float64 r = float32_to_float64(x, &env->vfp.fp_status);
3745 /* ARM requires that S<->D conversion of any kind of NaN generates
3746 * a quiet NaN by forcing the most significant frac bit to 1.
3748 return float64_maybe_silence_nan(r);
3751 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
3753 float32 r = float64_to_float32(x, &env->vfp.fp_status);
3754 /* ARM requires that S<->D conversion of any kind of NaN generates
3755 * a quiet NaN by forcing the most significant frac bit to 1.
3757 return float32_maybe_silence_nan(r);
3760 /* VFP3 fixed point conversion. */
3761 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
3762 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
3763 void *fpstp) \
3765 float_status *fpst = fpstp; \
3766 float##fsz tmp; \
3767 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
3768 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
3770 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
3771 void *fpstp) \
3773 float_status *fpst = fpstp; \
3774 float##fsz tmp; \
3775 if (float##fsz##_is_any_nan(x)) { \
3776 float_raise(float_flag_invalid, fpst); \
3777 return 0; \
3779 tmp = float##fsz##_scalbn(x, shift, fpst); \
3780 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
3783 VFP_CONV_FIX(sh, d, 64, int16, )
3784 VFP_CONV_FIX(sl, d, 64, int32, )
3785 VFP_CONV_FIX(uh, d, 64, uint16, u)
3786 VFP_CONV_FIX(ul, d, 64, uint32, u)
3787 VFP_CONV_FIX(sh, s, 32, int16, )
3788 VFP_CONV_FIX(sl, s, 32, int32, )
3789 VFP_CONV_FIX(uh, s, 32, uint16, u)
3790 VFP_CONV_FIX(ul, s, 32, uint32, u)
3791 #undef VFP_CONV_FIX
3793 /* Half precision conversions. */
3794 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
3796 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
3797 float32 r = float16_to_float32(make_float16(a), ieee, s);
3798 if (ieee) {
3799 return float32_maybe_silence_nan(r);
3801 return r;
3804 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
3806 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
3807 float16 r = float32_to_float16(a, ieee, s);
3808 if (ieee) {
3809 r = float16_maybe_silence_nan(r);
3811 return float16_val(r);
3814 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
3816 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
3819 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
3821 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
3824 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
3826 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
3829 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
3831 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
3834 #define float32_two make_float32(0x40000000)
3835 #define float32_three make_float32(0x40400000)
3836 #define float32_one_point_five make_float32(0x3fc00000)
3838 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
3840 float_status *s = &env->vfp.standard_fp_status;
3841 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
3842 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
3843 if (!(float32_is_zero(a) || float32_is_zero(b))) {
3844 float_raise(float_flag_input_denormal, s);
3846 return float32_two;
3848 return float32_sub(float32_two, float32_mul(a, b, s), s);
3851 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
3853 float_status *s = &env->vfp.standard_fp_status;
3854 float32 product;
3855 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
3856 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
3857 if (!(float32_is_zero(a) || float32_is_zero(b))) {
3858 float_raise(float_flag_input_denormal, s);
3860 return float32_one_point_five;
3862 product = float32_mul(a, b, s);
3863 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
3866 /* NEON helpers. */
3868 /* Constants 256 and 512 are used in some helpers; we avoid relying on
3869 * int->float conversions at run-time. */
3870 #define float64_256 make_float64(0x4070000000000000LL)
3871 #define float64_512 make_float64(0x4080000000000000LL)
3873 /* The algorithm that must be used to calculate the estimate
3874 * is specified by the ARM ARM.
3876 static float64 recip_estimate(float64 a, CPUARMState *env)
3878 /* These calculations mustn't set any fp exception flags,
3879 * so we use a local copy of the fp_status.
3881 float_status dummy_status = env->vfp.standard_fp_status;
3882 float_status *s = &dummy_status;
3883 /* q = (int)(a * 512.0) */
3884 float64 q = float64_mul(float64_512, a, s);
3885 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3887 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
3888 q = int64_to_float64(q_int, s);
3889 q = float64_add(q, float64_half, s);
3890 q = float64_div(q, float64_512, s);
3891 q = float64_div(float64_one, q, s);
3893 /* s = (int)(256.0 * r + 0.5) */
3894 q = float64_mul(q, float64_256, s);
3895 q = float64_add(q, float64_half, s);
3896 q_int = float64_to_int64_round_to_zero(q, s);
3898 /* return (double)s / 256.0 */
3899 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3902 float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
3904 float_status *s = &env->vfp.standard_fp_status;
3905 float64 f64;
3906 uint32_t val32 = float32_val(a);
3908 int result_exp;
3909 int a_exp = (val32 & 0x7f800000) >> 23;
3910 int sign = val32 & 0x80000000;
3912 if (float32_is_any_nan(a)) {
3913 if (float32_is_signaling_nan(a)) {
3914 float_raise(float_flag_invalid, s);
3916 return float32_default_nan;
3917 } else if (float32_is_infinity(a)) {
3918 return float32_set_sign(float32_zero, float32_is_neg(a));
3919 } else if (float32_is_zero_or_denormal(a)) {
3920 if (!float32_is_zero(a)) {
3921 float_raise(float_flag_input_denormal, s);
3923 float_raise(float_flag_divbyzero, s);
3924 return float32_set_sign(float32_infinity, float32_is_neg(a));
3925 } else if (a_exp >= 253) {
3926 float_raise(float_flag_underflow, s);
3927 return float32_set_sign(float32_zero, float32_is_neg(a));
3930 f64 = make_float64((0x3feULL << 52)
3931 | ((int64_t)(val32 & 0x7fffff) << 29));
3933 result_exp = 253 - a_exp;
3935 f64 = recip_estimate(f64, env);
3937 val32 = sign
3938 | ((result_exp & 0xff) << 23)
3939 | ((float64_val(f64) >> 29) & 0x7fffff);
3940 return make_float32(val32);
3943 /* The algorithm that must be used to calculate the estimate
3944 * is specified by the ARM ARM.
3946 static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
3948 /* These calculations mustn't set any fp exception flags,
3949 * so we use a local copy of the fp_status.
3951 float_status dummy_status = env->vfp.standard_fp_status;
3952 float_status *s = &dummy_status;
3953 float64 q;
3954 int64_t q_int;
3956 if (float64_lt(a, float64_half, s)) {
3957 /* range 0.25 <= a < 0.5 */
3959 /* a in units of 1/512 rounded down */
3960 /* q0 = (int)(a * 512.0); */
3961 q = float64_mul(float64_512, a, s);
3962 q_int = float64_to_int64_round_to_zero(q, s);
3964 /* reciprocal root r */
3965 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
3966 q = int64_to_float64(q_int, s);
3967 q = float64_add(q, float64_half, s);
3968 q = float64_div(q, float64_512, s);
3969 q = float64_sqrt(q, s);
3970 q = float64_div(float64_one, q, s);
3971 } else {
3972 /* range 0.5 <= a < 1.0 */
3974 /* a in units of 1/256 rounded down */
3975 /* q1 = (int)(a * 256.0); */
3976 q = float64_mul(float64_256, a, s);
3977 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3979 /* reciprocal root r */
3980 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
3981 q = int64_to_float64(q_int, s);
3982 q = float64_add(q, float64_half, s);
3983 q = float64_div(q, float64_256, s);
3984 q = float64_sqrt(q, s);
3985 q = float64_div(float64_one, q, s);
3987 /* r in units of 1/256 rounded to nearest */
3988 /* s = (int)(256.0 * r + 0.5); */
3990 q = float64_mul(q, float64_256,s );
3991 q = float64_add(q, float64_half, s);
3992 q_int = float64_to_int64_round_to_zero(q, s);
3994 /* return (double)s / 256.0;*/
3995 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3998 float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
4000 float_status *s = &env->vfp.standard_fp_status;
4001 int result_exp;
4002 float64 f64;
4003 uint32_t val;
4004 uint64_t val64;
4006 val = float32_val(a);
4008 if (float32_is_any_nan(a)) {
4009 if (float32_is_signaling_nan(a)) {
4010 float_raise(float_flag_invalid, s);
4012 return float32_default_nan;
4013 } else if (float32_is_zero_or_denormal(a)) {
4014 if (!float32_is_zero(a)) {
4015 float_raise(float_flag_input_denormal, s);
4017 float_raise(float_flag_divbyzero, s);
4018 return float32_set_sign(float32_infinity, float32_is_neg(a));
4019 } else if (float32_is_neg(a)) {
4020 float_raise(float_flag_invalid, s);
4021 return float32_default_nan;
4022 } else if (float32_is_infinity(a)) {
4023 return float32_zero;
4026 /* Normalize to a double-precision value between 0.25 and 1.0,
4027 * preserving the parity of the exponent. */
4028 if ((val & 0x800000) == 0) {
4029 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
4030 | (0x3feULL << 52)
4031 | ((uint64_t)(val & 0x7fffff) << 29));
4032 } else {
4033 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
4034 | (0x3fdULL << 52)
4035 | ((uint64_t)(val & 0x7fffff) << 29));
4038 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
4040 f64 = recip_sqrt_estimate(f64, env);
4042 val64 = float64_val(f64);
4044 val = ((result_exp & 0xff) << 23)
4045 | ((val64 >> 29) & 0x7fffff);
4046 return make_float32(val);
4049 uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
4051 float64 f64;
4053 if ((a & 0x80000000) == 0) {
4054 return 0xffffffff;
4057 f64 = make_float64((0x3feULL << 52)
4058 | ((int64_t)(a & 0x7fffffff) << 21));
4060 f64 = recip_estimate (f64, env);
4062 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4065 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
4067 float64 f64;
4069 if ((a & 0xc0000000) == 0) {
4070 return 0xffffffff;
4073 if (a & 0x80000000) {
4074 f64 = make_float64((0x3feULL << 52)
4075 | ((uint64_t)(a & 0x7fffffff) << 21));
4076 } else { /* bits 31-30 == '01' */
4077 f64 = make_float64((0x3fdULL << 52)
4078 | ((uint64_t)(a & 0x3fffffff) << 22));
4081 f64 = recip_sqrt_estimate(f64, env);
4083 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4086 /* VFPv4 fused multiply-accumulate */
4087 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
4089 float_status *fpst = fpstp;
4090 return float32_muladd(a, b, c, 0, fpst);
4093 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
4095 float_status *fpst = fpstp;
4096 return float64_muladd(a, b, c, 0, fpst);
4099 /* ARMv8 VMAXNM/VMINNM */
4100 float32 VFP_HELPER(maxnm, s)(float32 a, float32 b, void *fpstp)
4102 float_status *fpst = fpstp;
4103 return float32_maxnum(a, b, fpst);
4106 float64 VFP_HELPER(maxnm, d)(float64 a, float64 b, void *fpstp)
4108 float_status *fpst = fpstp;
4109 return float64_maxnum(a, b, fpst);
4112 float32 VFP_HELPER(minnm, s)(float32 a, float32 b, void *fpstp)
4114 float_status *fpst = fpstp;
4115 return float32_minnum(a, b, fpst);
4118 float64 VFP_HELPER(minnm, d)(float64 a, float64 b, void *fpstp)
4120 float_status *fpst = fpstp;
4121 return float64_minnum(a, b, fpst);