2 * ARM implementation of KVM hooks
4 * Copyright Christoffer Dall 2009-2010
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
15 #include <linux/kvm.h>
17 #include "qemu-common.h"
18 #include "qemu/timer.h"
19 #include "qemu/error-report.h"
20 #include "sysemu/sysemu.h"
21 #include "sysemu/kvm.h"
24 #include "internals.h"
25 #include "hw/arm/arm.h"
26 #include "exec/memattrs.h"
27 #include "hw/boards.h"
30 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
34 static bool cap_has_mp_state
;
36 int kvm_arm_vcpu_init(CPUState
*cs
)
38 ARMCPU
*cpu
= ARM_CPU(cs
);
39 struct kvm_vcpu_init init
;
41 init
.target
= cpu
->kvm_target
;
42 memcpy(init
.features
, cpu
->kvm_init_features
, sizeof(init
.features
));
44 return kvm_vcpu_ioctl(cs
, KVM_ARM_VCPU_INIT
, &init
);
47 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try
,
49 struct kvm_vcpu_init
*init
)
51 int ret
, kvmfd
= -1, vmfd
= -1, cpufd
= -1;
53 kvmfd
= qemu_open("/dev/kvm", O_RDWR
);
57 vmfd
= ioctl(kvmfd
, KVM_CREATE_VM
, 0);
61 cpufd
= ioctl(vmfd
, KVM_CREATE_VCPU
, 0);
67 /* Caller doesn't want the VCPU to be initialized, so skip it */
71 ret
= ioctl(vmfd
, KVM_ARM_PREFERRED_TARGET
, init
);
73 ret
= ioctl(cpufd
, KVM_ARM_VCPU_INIT
, init
);
77 } else if (cpus_to_try
) {
78 /* Old kernel which doesn't know about the
79 * PREFERRED_TARGET ioctl: we know it will only support
80 * creating one kind of guest CPU which is its preferred
83 while (*cpus_to_try
!= QEMU_KVM_ARM_TARGET_NONE
) {
84 init
->target
= *cpus_to_try
++;
85 memset(init
->features
, 0, sizeof(init
->features
));
86 ret
= ioctl(cpufd
, KVM_ARM_VCPU_INIT
, init
);
95 /* Treat a NULL cpus_to_try argument the same as an empty
96 * list, which means we will fail the call since this must
97 * be an old kernel which doesn't support PREFERRED_TARGET.
123 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray
)
127 for (i
= 2; i
>= 0; i
--) {
132 static void kvm_arm_host_cpu_class_init(ObjectClass
*oc
, void *data
)
134 ARMHostCPUClass
*ahcc
= ARM_HOST_CPU_CLASS(oc
);
136 /* All we really need to set up for the 'host' CPU
137 * is the feature bits -- we rely on the fact that the
138 * various ID register values in ARMCPU are only used for
141 if (!kvm_arm_get_host_cpu_features(ahcc
)) {
142 fprintf(stderr
, "Failed to retrieve host CPU features!\n");
147 static void kvm_arm_host_cpu_initfn(Object
*obj
)
149 ARMHostCPUClass
*ahcc
= ARM_HOST_CPU_GET_CLASS(obj
);
150 ARMCPU
*cpu
= ARM_CPU(obj
);
151 CPUARMState
*env
= &cpu
->env
;
153 cpu
->kvm_target
= ahcc
->target
;
154 cpu
->dtb_compatible
= ahcc
->dtb_compatible
;
155 env
->features
= ahcc
->features
;
158 static const TypeInfo host_arm_cpu_type_info
= {
159 .name
= TYPE_ARM_HOST_CPU
,
160 #ifdef TARGET_AARCH64
161 .parent
= TYPE_AARCH64_CPU
,
163 .parent
= TYPE_ARM_CPU
,
165 .instance_init
= kvm_arm_host_cpu_initfn
,
166 .class_init
= kvm_arm_host_cpu_class_init
,
167 .class_size
= sizeof(ARMHostCPUClass
),
170 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
172 /* For ARM interrupt delivery is always asynchronous,
173 * whether we are using an in-kernel VGIC or not.
175 kvm_async_interrupts_allowed
= true;
177 cap_has_mp_state
= kvm_check_extension(s
, KVM_CAP_MP_STATE
);
179 type_register_static(&host_arm_cpu_type_info
);
184 unsigned long kvm_arch_vcpu_id(CPUState
*cpu
)
186 return cpu
->cpu_index
;
189 /* We track all the KVM devices which need their memory addresses
190 * passing to the kernel in a list of these structures.
191 * When board init is complete we run through the list and
192 * tell the kernel the base addresses of the memory regions.
193 * We use a MemoryListener to track mapping and unmapping of
194 * the regions during board creation, so the board models don't
195 * need to do anything special for the KVM case.
197 typedef struct KVMDevice
{
198 struct kvm_arm_device_addr kda
;
199 struct kvm_device_attr kdattr
;
201 QSLIST_ENTRY(KVMDevice
) entries
;
205 static QSLIST_HEAD(kvm_devices_head
, KVMDevice
) kvm_devices_head
;
207 static void kvm_arm_devlistener_add(MemoryListener
*listener
,
208 MemoryRegionSection
*section
)
212 QSLIST_FOREACH(kd
, &kvm_devices_head
, entries
) {
213 if (section
->mr
== kd
->mr
) {
214 kd
->kda
.addr
= section
->offset_within_address_space
;
219 static void kvm_arm_devlistener_del(MemoryListener
*listener
,
220 MemoryRegionSection
*section
)
224 QSLIST_FOREACH(kd
, &kvm_devices_head
, entries
) {
225 if (section
->mr
== kd
->mr
) {
231 static MemoryListener devlistener
= {
232 .region_add
= kvm_arm_devlistener_add
,
233 .region_del
= kvm_arm_devlistener_del
,
236 static void kvm_arm_set_device_addr(KVMDevice
*kd
)
238 struct kvm_device_attr
*attr
= &kd
->kdattr
;
241 /* If the device control API is available and we have a device fd on the
242 * KVMDevice struct, let's use the newer API
244 if (kd
->dev_fd
>= 0) {
245 uint64_t addr
= kd
->kda
.addr
;
246 attr
->addr
= (uintptr_t)&addr
;
247 ret
= kvm_device_ioctl(kd
->dev_fd
, KVM_SET_DEVICE_ATTR
, attr
);
249 ret
= kvm_vm_ioctl(kvm_state
, KVM_ARM_SET_DEVICE_ADDR
, &kd
->kda
);
253 fprintf(stderr
, "Failed to set device address: %s\n",
259 static void kvm_arm_machine_init_done(Notifier
*notifier
, void *data
)
263 memory_listener_unregister(&devlistener
);
264 QSLIST_FOREACH_SAFE(kd
, &kvm_devices_head
, entries
, tkd
) {
265 if (kd
->kda
.addr
!= -1) {
266 kvm_arm_set_device_addr(kd
);
268 memory_region_unref(kd
->mr
);
273 static Notifier notify
= {
274 .notify
= kvm_arm_machine_init_done
,
277 void kvm_arm_register_device(MemoryRegion
*mr
, uint64_t devid
, uint64_t group
,
278 uint64_t attr
, int dev_fd
)
282 if (!kvm_irqchip_in_kernel()) {
286 if (QSLIST_EMPTY(&kvm_devices_head
)) {
287 memory_listener_register(&devlistener
, NULL
);
288 qemu_add_machine_init_done_notifier(¬ify
);
290 kd
= g_new0(KVMDevice
, 1);
294 kd
->kdattr
.flags
= 0;
295 kd
->kdattr
.group
= group
;
296 kd
->kdattr
.attr
= attr
;
298 QSLIST_INSERT_HEAD(&kvm_devices_head
, kd
, entries
);
299 memory_region_ref(kd
->mr
);
302 static int compare_u64(const void *a
, const void *b
)
304 if (*(uint64_t *)a
> *(uint64_t *)b
) {
307 if (*(uint64_t *)a
< *(uint64_t *)b
) {
313 /* Initialize the CPUState's cpreg list according to the kernel's
314 * definition of what CPU registers it knows about (and throw away
315 * the previous TCG-created cpreg list).
317 int kvm_arm_init_cpreg_list(ARMCPU
*cpu
)
319 struct kvm_reg_list rl
;
320 struct kvm_reg_list
*rlp
;
321 int i
, ret
, arraylen
;
322 CPUState
*cs
= CPU(cpu
);
325 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_REG_LIST
, &rl
);
329 rlp
= g_malloc(sizeof(struct kvm_reg_list
) + rl
.n
* sizeof(uint64_t));
331 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_REG_LIST
, rlp
);
335 /* Sort the list we get back from the kernel, since cpreg_tuples
336 * must be in strictly ascending order.
338 qsort(&rlp
->reg
, rlp
->n
, sizeof(rlp
->reg
[0]), compare_u64
);
340 for (i
= 0, arraylen
= 0; i
< rlp
->n
; i
++) {
341 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp
->reg
[i
])) {
344 switch (rlp
->reg
[i
] & KVM_REG_SIZE_MASK
) {
345 case KVM_REG_SIZE_U32
:
346 case KVM_REG_SIZE_U64
:
349 fprintf(stderr
, "Can't handle size of register in kernel list\n");
357 cpu
->cpreg_indexes
= g_renew(uint64_t, cpu
->cpreg_indexes
, arraylen
);
358 cpu
->cpreg_values
= g_renew(uint64_t, cpu
->cpreg_values
, arraylen
);
359 cpu
->cpreg_vmstate_indexes
= g_renew(uint64_t, cpu
->cpreg_vmstate_indexes
,
361 cpu
->cpreg_vmstate_values
= g_renew(uint64_t, cpu
->cpreg_vmstate_values
,
363 cpu
->cpreg_array_len
= arraylen
;
364 cpu
->cpreg_vmstate_array_len
= arraylen
;
366 for (i
= 0, arraylen
= 0; i
< rlp
->n
; i
++) {
367 uint64_t regidx
= rlp
->reg
[i
];
368 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx
)) {
371 cpu
->cpreg_indexes
[arraylen
] = regidx
;
374 assert(cpu
->cpreg_array_len
== arraylen
);
376 if (!write_kvmstate_to_list(cpu
)) {
377 /* Shouldn't happen unless kernel is inconsistent about
378 * what registers exist.
380 fprintf(stderr
, "Initial read of kernel register state failed\n");
390 bool write_kvmstate_to_list(ARMCPU
*cpu
)
392 CPUState
*cs
= CPU(cpu
);
396 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
397 struct kvm_one_reg r
;
398 uint64_t regidx
= cpu
->cpreg_indexes
[i
];
404 switch (regidx
& KVM_REG_SIZE_MASK
) {
405 case KVM_REG_SIZE_U32
:
406 r
.addr
= (uintptr_t)&v32
;
407 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
409 cpu
->cpreg_values
[i
] = v32
;
412 case KVM_REG_SIZE_U64
:
413 r
.addr
= (uintptr_t)(cpu
->cpreg_values
+ i
);
414 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
426 bool write_list_to_kvmstate(ARMCPU
*cpu
, int level
)
428 CPUState
*cs
= CPU(cpu
);
432 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
433 struct kvm_one_reg r
;
434 uint64_t regidx
= cpu
->cpreg_indexes
[i
];
438 if (kvm_arm_cpreg_level(regidx
) > level
) {
443 switch (regidx
& KVM_REG_SIZE_MASK
) {
444 case KVM_REG_SIZE_U32
:
445 v32
= cpu
->cpreg_values
[i
];
446 r
.addr
= (uintptr_t)&v32
;
448 case KVM_REG_SIZE_U64
:
449 r
.addr
= (uintptr_t)(cpu
->cpreg_values
+ i
);
454 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
456 /* We might fail for "unknown register" and also for
457 * "you tried to set a register which is constant with
458 * a different value from what it actually contains".
466 void kvm_arm_reset_vcpu(ARMCPU
*cpu
)
470 /* Re-init VCPU so that all registers are set to
471 * their respective reset values.
473 ret
= kvm_arm_vcpu_init(CPU(cpu
));
475 fprintf(stderr
, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret
));
478 if (!write_kvmstate_to_list(cpu
)) {
479 fprintf(stderr
, "write_kvmstate_to_list failed\n");
485 * Update KVM's MP_STATE based on what QEMU thinks it is
487 int kvm_arm_sync_mpstate_to_kvm(ARMCPU
*cpu
)
489 if (cap_has_mp_state
) {
490 struct kvm_mp_state mp_state
= {
492 cpu
->powered_off
? KVM_MP_STATE_STOPPED
: KVM_MP_STATE_RUNNABLE
494 int ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MP_STATE
, &mp_state
);
496 fprintf(stderr
, "%s: failed to set MP_STATE %d/%s\n",
497 __func__
, ret
, strerror(-ret
));
506 * Sync the KVM MP_STATE into QEMU
508 int kvm_arm_sync_mpstate_to_qemu(ARMCPU
*cpu
)
510 if (cap_has_mp_state
) {
511 struct kvm_mp_state mp_state
;
512 int ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MP_STATE
, &mp_state
);
514 fprintf(stderr
, "%s: failed to get MP_STATE %d/%s\n",
515 __func__
, ret
, strerror(-ret
));
518 cpu
->powered_off
= (mp_state
.mp_state
== KVM_MP_STATE_STOPPED
);
524 void kvm_arch_pre_run(CPUState
*cs
, struct kvm_run
*run
)
528 MemTxAttrs
kvm_arch_post_run(CPUState
*cs
, struct kvm_run
*run
)
530 return MEMTXATTRS_UNSPECIFIED
;
534 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
538 switch (run
->exit_reason
) {
540 if (kvm_arm_handle_debug(cs
, &run
->debug
.arch
)) {
542 } /* otherwise return to guest */
545 qemu_log_mask(LOG_UNIMP
, "%s: un-handled exit reason %d\n",
546 __func__
, run
->exit_reason
);
552 bool kvm_arch_stop_on_emulation_error(CPUState
*cs
)
557 int kvm_arch_process_async_events(CPUState
*cs
)
562 int kvm_arch_on_sigbus_vcpu(CPUState
*cs
, int code
, void *addr
)
567 int kvm_arch_on_sigbus(int code
, void *addr
)
572 /* The #ifdef protections are until 32bit headers are imported and can
573 * be removed once both 32 and 64 bit reach feature parity.
575 void kvm_arch_update_guest_debug(CPUState
*cs
, struct kvm_guest_debug
*dbg
)
577 #ifdef KVM_GUESTDBG_USE_SW_BP
578 if (kvm_sw_breakpoints_active(cs
)) {
579 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
582 #ifdef KVM_GUESTDBG_USE_HW
583 if (kvm_arm_hw_debug_active(cs
)) {
584 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW
;
585 kvm_arm_copy_hw_debug_data(&dbg
->arch
);
590 void kvm_arch_init_irq_routing(KVMState
*s
)
594 int kvm_arch_irqchip_create(MachineState
*ms
, KVMState
*s
)
596 if (machine_kernel_irqchip_split(ms
)) {
597 perror("-machine kernel_irqchip=split is not supported on ARM.");
601 /* If we can create the VGIC using the newer device control API, we
602 * let the device do this when it initializes itself, otherwise we
603 * fall back to the old API */
604 return kvm_check_extension(s
, KVM_CAP_DEVICE_CTRL
);
607 int kvm_arm_vgic_probe(void)
609 if (kvm_create_device(kvm_state
,
610 KVM_DEV_TYPE_ARM_VGIC_V3
, true) == 0) {
612 } else if (kvm_create_device(kvm_state
,
613 KVM_DEV_TYPE_ARM_VGIC_V2
, true) == 0) {
620 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
621 uint64_t address
, uint32_t data
, PCIDevice
*dev
)
626 int kvm_arch_msi_data_to_gsi(uint32_t data
)
628 return (data
- 32) & 0xffff;