4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
31 /* This check must be after config-host.h is included */
33 #include <sys/eventfd.h>
36 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
37 #define PAGE_SIZE TARGET_PAGE_SIZE
42 #define DPRINTF(fmt, ...) \
43 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
45 #define DPRINTF(fmt, ...) \
49 typedef struct KVMSlot
51 target_phys_addr_t start_addr
;
52 ram_addr_t memory_size
;
53 ram_addr_t phys_offset
;
58 typedef struct kvm_dirty_log KVMDirtyLog
;
66 #ifdef KVM_CAP_COALESCED_MMIO
67 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
69 int broken_set_mem_region
;
72 int robust_singlestep
;
74 #ifdef KVM_CAP_SET_GUEST_DEBUG
75 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
77 int irqchip_in_kernel
;
83 static KVMState
*kvm_state
;
85 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
89 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
90 /* KVM private memory slots */
93 if (s
->slots
[i
].memory_size
== 0)
97 fprintf(stderr
, "%s: no free slot available\n", __func__
);
101 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
102 target_phys_addr_t start_addr
,
103 target_phys_addr_t end_addr
)
107 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
108 KVMSlot
*mem
= &s
->slots
[i
];
110 if (start_addr
== mem
->start_addr
&&
111 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
120 * Find overlapping slot with lowest start address
122 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
123 target_phys_addr_t start_addr
,
124 target_phys_addr_t end_addr
)
126 KVMSlot
*found
= NULL
;
129 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
130 KVMSlot
*mem
= &s
->slots
[i
];
132 if (mem
->memory_size
== 0 ||
133 (found
&& found
->start_addr
< mem
->start_addr
)) {
137 if (end_addr
> mem
->start_addr
&&
138 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
146 int kvm_physical_memory_addr_from_ram(KVMState
*s
, ram_addr_t ram_addr
,
147 target_phys_addr_t
*phys_addr
)
151 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
152 KVMSlot
*mem
= &s
->slots
[i
];
154 if (ram_addr
>= mem
->phys_offset
&&
155 ram_addr
< mem
->phys_offset
+ mem
->memory_size
) {
156 *phys_addr
= mem
->start_addr
+ (ram_addr
- mem
->phys_offset
);
164 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
166 struct kvm_userspace_memory_region mem
;
168 mem
.slot
= slot
->slot
;
169 mem
.guest_phys_addr
= slot
->start_addr
;
170 mem
.memory_size
= slot
->memory_size
;
171 mem
.userspace_addr
= (unsigned long)qemu_safe_ram_ptr(slot
->phys_offset
);
172 mem
.flags
= slot
->flags
;
173 if (s
->migration_log
) {
174 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
176 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
179 static void kvm_reset_vcpu(void *opaque
)
181 CPUState
*env
= opaque
;
183 kvm_arch_reset_vcpu(env
);
186 int kvm_irqchip_in_kernel(void)
188 return kvm_state
->irqchip_in_kernel
;
191 int kvm_pit_in_kernel(void)
193 return kvm_state
->pit_in_kernel
;
197 int kvm_init_vcpu(CPUState
*env
)
199 KVMState
*s
= kvm_state
;
203 DPRINTF("kvm_init_vcpu\n");
205 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, env
->cpu_index
);
207 DPRINTF("kvm_create_vcpu failed\n");
214 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
216 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
220 env
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
222 if (env
->kvm_run
== MAP_FAILED
) {
224 DPRINTF("mmap'ing vcpu state failed\n");
228 #ifdef KVM_CAP_COALESCED_MMIO
229 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
)
230 s
->coalesced_mmio_ring
= (void *) env
->kvm_run
+
231 s
->coalesced_mmio
* PAGE_SIZE
;
234 ret
= kvm_arch_init_vcpu(env
);
236 qemu_register_reset(kvm_reset_vcpu
, env
);
237 kvm_arch_reset_vcpu(env
);
244 * dirty pages logging control
246 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr
,
247 ram_addr_t size
, int flags
, int mask
)
249 KVMState
*s
= kvm_state
;
250 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
254 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
255 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
256 (target_phys_addr_t
)(phys_addr
+ size
- 1));
260 old_flags
= mem
->flags
;
262 flags
= (mem
->flags
& ~mask
) | flags
;
265 /* If nothing changed effectively, no need to issue ioctl */
266 if (s
->migration_log
) {
267 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
269 if (flags
== old_flags
) {
273 return kvm_set_user_memory_region(s
, mem
);
276 int kvm_log_start(target_phys_addr_t phys_addr
, ram_addr_t size
)
278 return kvm_dirty_pages_log_change(phys_addr
, size
,
279 KVM_MEM_LOG_DIRTY_PAGES
,
280 KVM_MEM_LOG_DIRTY_PAGES
);
283 int kvm_log_stop(target_phys_addr_t phys_addr
, ram_addr_t size
)
285 return kvm_dirty_pages_log_change(phys_addr
, size
,
287 KVM_MEM_LOG_DIRTY_PAGES
);
290 static int kvm_set_migration_log(int enable
)
292 KVMState
*s
= kvm_state
;
296 s
->migration_log
= enable
;
298 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
301 if (!mem
->memory_size
) {
304 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
307 err
= kvm_set_user_memory_region(s
, mem
);
315 /* get kvm's dirty pages bitmap and update qemu's */
316 static int kvm_get_dirty_pages_log_range(unsigned long start_addr
,
317 unsigned long *bitmap
,
318 unsigned long offset
,
319 unsigned long mem_size
)
322 unsigned long page_number
, addr
, addr1
, c
;
324 unsigned int len
= ((mem_size
/ TARGET_PAGE_SIZE
) + HOST_LONG_BITS
- 1) /
328 * bitmap-traveling is faster than memory-traveling (for addr...)
329 * especially when most of the memory is not dirty.
331 for (i
= 0; i
< len
; i
++) {
332 if (bitmap
[i
] != 0) {
333 c
= leul_to_cpu(bitmap
[i
]);
337 page_number
= i
* HOST_LONG_BITS
+ j
;
338 addr1
= page_number
* TARGET_PAGE_SIZE
;
339 addr
= offset
+ addr1
;
340 ram_addr
= cpu_get_physical_page_desc(addr
);
341 cpu_physical_memory_set_dirty(ram_addr
);
348 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
351 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
352 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
353 * This means all bits are set to dirty.
355 * @start_add: start of logged region.
356 * @end_addr: end of logged region.
358 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
,
359 target_phys_addr_t end_addr
)
361 KVMState
*s
= kvm_state
;
362 unsigned long size
, allocated_size
= 0;
367 d
.dirty_bitmap
= NULL
;
368 while (start_addr
< end_addr
) {
369 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
374 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
), HOST_LONG_BITS
) / 8;
375 if (!d
.dirty_bitmap
) {
376 d
.dirty_bitmap
= qemu_malloc(size
);
377 } else if (size
> allocated_size
) {
378 d
.dirty_bitmap
= qemu_realloc(d
.dirty_bitmap
, size
);
380 allocated_size
= size
;
381 memset(d
.dirty_bitmap
, 0, allocated_size
);
385 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
386 DPRINTF("ioctl failed %d\n", errno
);
391 kvm_get_dirty_pages_log_range(mem
->start_addr
, d
.dirty_bitmap
,
392 mem
->start_addr
, mem
->memory_size
);
393 start_addr
= mem
->start_addr
+ mem
->memory_size
;
395 qemu_free(d
.dirty_bitmap
);
400 int kvm_coalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
403 #ifdef KVM_CAP_COALESCED_MMIO
404 KVMState
*s
= kvm_state
;
406 if (s
->coalesced_mmio
) {
407 struct kvm_coalesced_mmio_zone zone
;
412 ret
= kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
419 int kvm_uncoalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
422 #ifdef KVM_CAP_COALESCED_MMIO
423 KVMState
*s
= kvm_state
;
425 if (s
->coalesced_mmio
) {
426 struct kvm_coalesced_mmio_zone zone
;
431 ret
= kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
438 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
442 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
450 static int kvm_check_many_ioeventfds(void)
452 /* Older kernels have a 6 device limit on the KVM io bus. Find out so we
453 * can avoid creating too many ioeventfds.
455 #ifdef CONFIG_EVENTFD
458 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
459 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
460 if (ioeventfds
[i
] < 0) {
463 ret
= kvm_set_ioeventfd_pio_word(ioeventfds
[i
], 0, i
, true);
465 close(ioeventfds
[i
]);
470 /* Decide whether many devices are supported or not */
471 ret
= i
== ARRAY_SIZE(ioeventfds
);
474 kvm_set_ioeventfd_pio_word(ioeventfds
[i
], 0, i
, false);
475 close(ioeventfds
[i
]);
483 static void kvm_set_phys_mem(target_phys_addr_t start_addr
,
485 ram_addr_t phys_offset
)
487 KVMState
*s
= kvm_state
;
488 ram_addr_t flags
= phys_offset
& ~TARGET_PAGE_MASK
;
492 /* kvm works in page size chunks, but the function may be called
493 with sub-page size and unaligned start address. */
494 size
= TARGET_PAGE_ALIGN(size
);
495 start_addr
= TARGET_PAGE_ALIGN(start_addr
);
497 /* KVM does not support read-only slots */
498 phys_offset
&= ~IO_MEM_ROM
;
501 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
506 if (flags
< IO_MEM_UNASSIGNED
&& start_addr
>= mem
->start_addr
&&
507 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
508 (phys_offset
- start_addr
== mem
->phys_offset
- mem
->start_addr
)) {
509 /* The new slot fits into the existing one and comes with
510 * identical parameters - nothing to be done. */
516 /* unregister the overlapping slot */
517 mem
->memory_size
= 0;
518 err
= kvm_set_user_memory_region(s
, mem
);
520 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
521 __func__
, strerror(-err
));
525 /* Workaround for older KVM versions: we can't join slots, even not by
526 * unregistering the previous ones and then registering the larger
527 * slot. We have to maintain the existing fragmentation. Sigh.
529 * This workaround assumes that the new slot starts at the same
530 * address as the first existing one. If not or if some overlapping
531 * slot comes around later, we will fail (not seen in practice so far)
532 * - and actually require a recent KVM version. */
533 if (s
->broken_set_mem_region
&&
534 old
.start_addr
== start_addr
&& old
.memory_size
< size
&&
535 flags
< IO_MEM_UNASSIGNED
) {
536 mem
= kvm_alloc_slot(s
);
537 mem
->memory_size
= old
.memory_size
;
538 mem
->start_addr
= old
.start_addr
;
539 mem
->phys_offset
= old
.phys_offset
;
542 err
= kvm_set_user_memory_region(s
, mem
);
544 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
549 start_addr
+= old
.memory_size
;
550 phys_offset
+= old
.memory_size
;
551 size
-= old
.memory_size
;
555 /* register prefix slot */
556 if (old
.start_addr
< start_addr
) {
557 mem
= kvm_alloc_slot(s
);
558 mem
->memory_size
= start_addr
- old
.start_addr
;
559 mem
->start_addr
= old
.start_addr
;
560 mem
->phys_offset
= old
.phys_offset
;
563 err
= kvm_set_user_memory_region(s
, mem
);
565 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
566 __func__
, strerror(-err
));
571 /* register suffix slot */
572 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
573 ram_addr_t size_delta
;
575 mem
= kvm_alloc_slot(s
);
576 mem
->start_addr
= start_addr
+ size
;
577 size_delta
= mem
->start_addr
- old
.start_addr
;
578 mem
->memory_size
= old
.memory_size
- size_delta
;
579 mem
->phys_offset
= old
.phys_offset
+ size_delta
;
582 err
= kvm_set_user_memory_region(s
, mem
);
584 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
585 __func__
, strerror(-err
));
591 /* in case the KVM bug workaround already "consumed" the new slot */
595 /* KVM does not need to know about this memory */
596 if (flags
>= IO_MEM_UNASSIGNED
)
599 mem
= kvm_alloc_slot(s
);
600 mem
->memory_size
= size
;
601 mem
->start_addr
= start_addr
;
602 mem
->phys_offset
= phys_offset
;
605 err
= kvm_set_user_memory_region(s
, mem
);
607 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
613 static void kvm_client_set_memory(struct CPUPhysMemoryClient
*client
,
614 target_phys_addr_t start_addr
,
616 ram_addr_t phys_offset
)
618 kvm_set_phys_mem(start_addr
, size
, phys_offset
);
621 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient
*client
,
622 target_phys_addr_t start_addr
,
623 target_phys_addr_t end_addr
)
625 return kvm_physical_sync_dirty_bitmap(start_addr
, end_addr
);
628 static int kvm_client_migration_log(struct CPUPhysMemoryClient
*client
,
631 return kvm_set_migration_log(enable
);
634 static CPUPhysMemoryClient kvm_cpu_phys_memory_client
= {
635 .set_memory
= kvm_client_set_memory
,
636 .sync_dirty_bitmap
= kvm_client_sync_dirty_bitmap
,
637 .migration_log
= kvm_client_migration_log
,
640 int kvm_init(int smp_cpus
)
642 static const char upgrade_note
[] =
643 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
644 "(see http://sourceforge.net/projects/kvm).\n";
649 s
= qemu_mallocz(sizeof(KVMState
));
651 #ifdef KVM_CAP_SET_GUEST_DEBUG
652 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
654 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++)
655 s
->slots
[i
].slot
= i
;
658 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
660 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
665 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
666 if (ret
< KVM_API_VERSION
) {
669 fprintf(stderr
, "kvm version too old\n");
673 if (ret
> KVM_API_VERSION
) {
675 fprintf(stderr
, "kvm version not supported\n");
679 s
->vmfd
= kvm_ioctl(s
, KVM_CREATE_VM
, 0);
682 fprintf(stderr
, "Please add the 'switch_amode' kernel parameter to "
683 "your host kernel command line\n");
688 /* initially, KVM allocated its own memory and we had to jump through
689 * hooks to make phys_ram_base point to this. Modern versions of KVM
690 * just use a user allocated buffer so we can use regular pages
691 * unmodified. Make sure we have a sufficiently modern version of KVM.
693 if (!kvm_check_extension(s
, KVM_CAP_USER_MEMORY
)) {
695 fprintf(stderr
, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
700 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
701 * destroyed properly. Since we rely on this capability, refuse to work
702 * with any kernel without this capability. */
703 if (!kvm_check_extension(s
, KVM_CAP_DESTROY_MEMORY_REGION_WORKS
)) {
707 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
712 s
->coalesced_mmio
= 0;
713 #ifdef KVM_CAP_COALESCED_MMIO
714 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
715 s
->coalesced_mmio_ring
= NULL
;
718 s
->broken_set_mem_region
= 1;
719 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
720 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
722 s
->broken_set_mem_region
= 0;
727 #ifdef KVM_CAP_VCPU_EVENTS
728 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
731 s
->robust_singlestep
= 0;
732 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
733 s
->robust_singlestep
=
734 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
738 #ifdef KVM_CAP_DEBUGREGS
739 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
744 s
->xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
749 s
->xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
752 ret
= kvm_arch_init(s
, smp_cpus
);
757 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client
);
759 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
775 static int kvm_handle_io(uint16_t port
, void *data
, int direction
, int size
,
781 for (i
= 0; i
< count
; i
++) {
782 if (direction
== KVM_EXIT_IO_IN
) {
785 stb_p(ptr
, cpu_inb(port
));
788 stw_p(ptr
, cpu_inw(port
));
791 stl_p(ptr
, cpu_inl(port
));
797 cpu_outb(port
, ldub_p(ptr
));
800 cpu_outw(port
, lduw_p(ptr
));
803 cpu_outl(port
, ldl_p(ptr
));
814 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
815 static void kvm_handle_internal_error(CPUState
*env
, struct kvm_run
*run
)
818 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
821 fprintf(stderr
, "KVM internal error. Suberror: %d\n",
822 run
->internal
.suberror
);
824 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
825 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
826 i
, (uint64_t)run
->internal
.data
[i
]);
829 cpu_dump_state(env
, stderr
, fprintf
, 0);
830 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
831 fprintf(stderr
, "emulation failure\n");
832 if (!kvm_arch_stop_on_emulation_error(env
))
835 /* FIXME: Should trigger a qmp message to let management know
836 * something went wrong.
842 void kvm_flush_coalesced_mmio_buffer(void)
844 #ifdef KVM_CAP_COALESCED_MMIO
845 KVMState
*s
= kvm_state
;
846 if (s
->coalesced_mmio_ring
) {
847 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
848 while (ring
->first
!= ring
->last
) {
849 struct kvm_coalesced_mmio
*ent
;
851 ent
= &ring
->coalesced_mmio
[ring
->first
];
853 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
855 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
861 static void do_kvm_cpu_synchronize_state(void *_env
)
863 CPUState
*env
= _env
;
865 if (!env
->kvm_vcpu_dirty
) {
866 kvm_arch_get_registers(env
);
867 env
->kvm_vcpu_dirty
= 1;
871 void kvm_cpu_synchronize_state(CPUState
*env
)
873 if (!env
->kvm_vcpu_dirty
)
874 run_on_cpu(env
, do_kvm_cpu_synchronize_state
, env
);
877 void kvm_cpu_synchronize_post_reset(CPUState
*env
)
879 kvm_arch_put_registers(env
, KVM_PUT_RESET_STATE
);
880 env
->kvm_vcpu_dirty
= 0;
883 void kvm_cpu_synchronize_post_init(CPUState
*env
)
885 kvm_arch_put_registers(env
, KVM_PUT_FULL_STATE
);
886 env
->kvm_vcpu_dirty
= 0;
889 int kvm_cpu_exec(CPUState
*env
)
891 struct kvm_run
*run
= env
->kvm_run
;
894 DPRINTF("kvm_cpu_exec()\n");
897 #ifndef CONFIG_IOTHREAD
898 if (env
->exit_request
) {
899 DPRINTF("interrupt exit requested\n");
905 if (kvm_arch_process_irqchip_events(env
)) {
910 if (env
->kvm_vcpu_dirty
) {
911 kvm_arch_put_registers(env
, KVM_PUT_RUNTIME_STATE
);
912 env
->kvm_vcpu_dirty
= 0;
915 kvm_arch_pre_run(env
, run
);
916 cpu_single_env
= NULL
;
917 qemu_mutex_unlock_iothread();
918 ret
= kvm_vcpu_ioctl(env
, KVM_RUN
, 0);
919 qemu_mutex_lock_iothread();
920 cpu_single_env
= env
;
921 kvm_arch_post_run(env
, run
);
923 if (ret
== -EINTR
|| ret
== -EAGAIN
) {
925 DPRINTF("io window exit\n");
931 DPRINTF("kvm run failed %s\n", strerror(-ret
));
935 kvm_flush_coalesced_mmio_buffer();
937 ret
= 0; /* exit loop */
938 switch (run
->exit_reason
) {
940 DPRINTF("handle_io\n");
941 ret
= kvm_handle_io(run
->io
.port
,
942 (uint8_t *)run
+ run
->io
.data_offset
,
948 DPRINTF("handle_mmio\n");
949 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
955 case KVM_EXIT_IRQ_WINDOW_OPEN
:
956 DPRINTF("irq_window_open\n");
958 case KVM_EXIT_SHUTDOWN
:
959 DPRINTF("shutdown\n");
960 qemu_system_reset_request();
963 case KVM_EXIT_UNKNOWN
:
964 DPRINTF("kvm_exit_unknown\n");
966 case KVM_EXIT_FAIL_ENTRY
:
967 DPRINTF("kvm_exit_fail_entry\n");
969 case KVM_EXIT_EXCEPTION
:
970 DPRINTF("kvm_exit_exception\n");
972 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
973 case KVM_EXIT_INTERNAL_ERROR
:
974 kvm_handle_internal_error(env
, run
);
978 DPRINTF("kvm_exit_debug\n");
979 #ifdef KVM_CAP_SET_GUEST_DEBUG
980 if (kvm_arch_debug(&run
->debug
.arch
)) {
981 env
->exception_index
= EXCP_DEBUG
;
984 /* re-enter, this exception was guest-internal */
986 #endif /* KVM_CAP_SET_GUEST_DEBUG */
989 DPRINTF("kvm_arch_handle_exit\n");
990 ret
= kvm_arch_handle_exit(env
, run
);
995 if (env
->exit_request
) {
996 env
->exit_request
= 0;
997 env
->exception_index
= EXCP_INTERRUPT
;
1003 int kvm_ioctl(KVMState
*s
, int type
, ...)
1010 arg
= va_arg(ap
, void *);
1013 ret
= ioctl(s
->fd
, type
, arg
);
1020 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
1027 arg
= va_arg(ap
, void *);
1030 ret
= ioctl(s
->vmfd
, type
, arg
);
1037 int kvm_vcpu_ioctl(CPUState
*env
, int type
, ...)
1044 arg
= va_arg(ap
, void *);
1047 ret
= ioctl(env
->kvm_fd
, type
, arg
);
1054 int kvm_has_sync_mmu(void)
1056 #ifdef KVM_CAP_SYNC_MMU
1057 KVMState
*s
= kvm_state
;
1059 return kvm_check_extension(s
, KVM_CAP_SYNC_MMU
);
1065 int kvm_has_vcpu_events(void)
1067 return kvm_state
->vcpu_events
;
1070 int kvm_has_robust_singlestep(void)
1072 return kvm_state
->robust_singlestep
;
1075 int kvm_has_debugregs(void)
1077 return kvm_state
->debugregs
;
1080 int kvm_has_xsave(void)
1082 return kvm_state
->xsave
;
1085 int kvm_has_xcrs(void)
1087 return kvm_state
->xcrs
;
1090 int kvm_has_many_ioeventfds(void)
1092 if (!kvm_enabled()) {
1095 return kvm_state
->many_ioeventfds
;
1098 void kvm_setup_guest_memory(void *start
, size_t size
)
1100 if (!kvm_has_sync_mmu()) {
1101 int ret
= qemu_madvise(start
, size
, QEMU_MADV_DONTFORK
);
1104 perror("qemu_madvise");
1106 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1112 #ifdef KVM_CAP_SET_GUEST_DEBUG
1113 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*env
,
1116 struct kvm_sw_breakpoint
*bp
;
1118 QTAILQ_FOREACH(bp
, &env
->kvm_state
->kvm_sw_breakpoints
, entry
) {
1125 int kvm_sw_breakpoints_active(CPUState
*env
)
1127 return !QTAILQ_EMPTY(&env
->kvm_state
->kvm_sw_breakpoints
);
1130 struct kvm_set_guest_debug_data
{
1131 struct kvm_guest_debug dbg
;
1136 static void kvm_invoke_set_guest_debug(void *data
)
1138 struct kvm_set_guest_debug_data
*dbg_data
= data
;
1139 CPUState
*env
= dbg_data
->env
;
1141 dbg_data
->err
= kvm_vcpu_ioctl(env
, KVM_SET_GUEST_DEBUG
, &dbg_data
->dbg
);
1144 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1146 struct kvm_set_guest_debug_data data
;
1148 data
.dbg
.control
= reinject_trap
;
1150 if (env
->singlestep_enabled
) {
1151 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
1153 kvm_arch_update_guest_debug(env
, &data
.dbg
);
1156 run_on_cpu(env
, kvm_invoke_set_guest_debug
, &data
);
1160 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1161 target_ulong len
, int type
)
1163 struct kvm_sw_breakpoint
*bp
;
1167 if (type
== GDB_BREAKPOINT_SW
) {
1168 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1174 bp
= qemu_malloc(sizeof(struct kvm_sw_breakpoint
));
1180 err
= kvm_arch_insert_sw_breakpoint(current_env
, bp
);
1186 QTAILQ_INSERT_HEAD(¤t_env
->kvm_state
->kvm_sw_breakpoints
,
1189 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
1194 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1195 err
= kvm_update_guest_debug(env
, 0);
1202 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1203 target_ulong len
, int type
)
1205 struct kvm_sw_breakpoint
*bp
;
1209 if (type
== GDB_BREAKPOINT_SW
) {
1210 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1214 if (bp
->use_count
> 1) {
1219 err
= kvm_arch_remove_sw_breakpoint(current_env
, bp
);
1223 QTAILQ_REMOVE(¤t_env
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1226 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
1231 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1232 err
= kvm_update_guest_debug(env
, 0);
1239 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1241 struct kvm_sw_breakpoint
*bp
, *next
;
1242 KVMState
*s
= current_env
->kvm_state
;
1245 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
1246 if (kvm_arch_remove_sw_breakpoint(current_env
, bp
) != 0) {
1247 /* Try harder to find a CPU that currently sees the breakpoint. */
1248 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1249 if (kvm_arch_remove_sw_breakpoint(env
, bp
) == 0)
1254 kvm_arch_remove_all_hw_breakpoints();
1256 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
1257 kvm_update_guest_debug(env
, 0);
1260 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1262 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1267 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1268 target_ulong len
, int type
)
1273 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1274 target_ulong len
, int type
)
1279 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1282 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1284 int kvm_set_signal_mask(CPUState
*env
, const sigset_t
*sigset
)
1286 struct kvm_signal_mask
*sigmask
;
1290 return kvm_vcpu_ioctl(env
, KVM_SET_SIGNAL_MASK
, NULL
);
1292 sigmask
= qemu_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
1295 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
1296 r
= kvm_vcpu_ioctl(env
, KVM_SET_SIGNAL_MASK
, sigmask
);
1302 int kvm_set_ioeventfd_mmio_long(int fd
, uint32_t addr
, uint32_t val
, bool assign
)
1304 #ifdef KVM_IOEVENTFD
1306 struct kvm_ioeventfd iofd
;
1308 iofd
.datamatch
= val
;
1311 iofd
.flags
= KVM_IOEVENTFD_FLAG_DATAMATCH
;
1314 if (!kvm_enabled()) {
1319 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
1322 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
1334 int kvm_set_ioeventfd_pio_word(int fd
, uint16_t addr
, uint16_t val
, bool assign
)
1336 #ifdef KVM_IOEVENTFD
1337 struct kvm_ioeventfd kick
= {
1341 .flags
= KVM_IOEVENTFD_FLAG_DATAMATCH
| KVM_IOEVENTFD_FLAG_PIO
,
1348 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
1349 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);