virtio-serial-bus.c: drop virtio_ids.h
[qemu/cris-port.git] / target-xtensa / op_helper.c
blob49e86343ed14f445e2d37a7c5d9f5ff3729539d2
1 /*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #include "cpu.h"
29 #include "exec/helper-proto.h"
30 #include "qemu/host-utils.h"
31 #include "exec/cpu_ldst.h"
32 #include "exec/address-spaces.h"
33 #include "qemu/timer.h"
35 void xtensa_cpu_do_unaligned_access(CPUState *cs,
36 vaddr addr, int is_write, int is_user, uintptr_t retaddr)
38 XtensaCPU *cpu = XTENSA_CPU(cs);
39 CPUXtensaState *env = &cpu->env;
41 if (xtensa_option_enabled(env->config, XTENSA_OPTION_UNALIGNED_EXCEPTION) &&
42 !xtensa_option_enabled(env->config, XTENSA_OPTION_HW_ALIGNMENT)) {
43 cpu_restore_state(CPU(cpu), retaddr);
44 HELPER(exception_cause_vaddr)(env,
45 env->pc, LOAD_STORE_ALIGNMENT_CAUSE, addr);
49 void tlb_fill(CPUState *cs,
50 target_ulong vaddr, int is_write, int mmu_idx, uintptr_t retaddr)
52 XtensaCPU *cpu = XTENSA_CPU(cs);
53 CPUXtensaState *env = &cpu->env;
54 uint32_t paddr;
55 uint32_t page_size;
56 unsigned access;
57 int ret = xtensa_get_physical_addr(env, true, vaddr, is_write, mmu_idx,
58 &paddr, &page_size, &access);
60 qemu_log("%s(%08x, %d, %d) -> %08x, ret = %d\n", __func__,
61 vaddr, is_write, mmu_idx, paddr, ret);
63 if (ret == 0) {
64 tlb_set_page(cs,
65 vaddr & TARGET_PAGE_MASK,
66 paddr & TARGET_PAGE_MASK,
67 access, mmu_idx, page_size);
68 } else {
69 cpu_restore_state(cs, retaddr);
70 HELPER(exception_cause_vaddr)(env, env->pc, ret, vaddr);
74 static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr)
76 uint32_t paddr;
77 uint32_t page_size;
78 unsigned access;
79 int ret = xtensa_get_physical_addr(env, false, vaddr, 2, 0,
80 &paddr, &page_size, &access);
81 if (ret == 0) {
82 tb_invalidate_phys_addr(&address_space_memory, paddr);
86 void HELPER(exception)(CPUXtensaState *env, uint32_t excp)
88 CPUState *cs = CPU(xtensa_env_get_cpu(env));
90 cs->exception_index = excp;
91 if (excp == EXCP_DEBUG) {
92 env->exception_taken = 0;
94 cpu_loop_exit(cs);
97 void HELPER(exception_cause)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
99 uint32_t vector;
101 env->pc = pc;
102 if (env->sregs[PS] & PS_EXCM) {
103 if (env->config->ndepc) {
104 env->sregs[DEPC] = pc;
105 } else {
106 env->sregs[EPC1] = pc;
108 vector = EXC_DOUBLE;
109 } else {
110 env->sregs[EPC1] = pc;
111 vector = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
114 env->sregs[EXCCAUSE] = cause;
115 env->sregs[PS] |= PS_EXCM;
117 HELPER(exception)(env, vector);
120 void HELPER(exception_cause_vaddr)(CPUXtensaState *env,
121 uint32_t pc, uint32_t cause, uint32_t vaddr)
123 env->sregs[EXCVADDR] = vaddr;
124 HELPER(exception_cause)(env, pc, cause);
127 void debug_exception_env(CPUXtensaState *env, uint32_t cause)
129 if (xtensa_get_cintlevel(env) < env->config->debug_level) {
130 HELPER(debug_exception)(env, env->pc, cause);
134 void HELPER(debug_exception)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
136 unsigned level = env->config->debug_level;
138 env->pc = pc;
139 env->sregs[DEBUGCAUSE] = cause;
140 env->sregs[EPC1 + level - 1] = pc;
141 env->sregs[EPS2 + level - 2] = env->sregs[PS];
142 env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | PS_EXCM |
143 (level << PS_INTLEVEL_SHIFT);
144 HELPER(exception)(env, EXC_DEBUG);
147 uint32_t HELPER(nsa)(uint32_t v)
149 if (v & 0x80000000) {
150 v = ~v;
152 return v ? clz32(v) - 1 : 31;
155 uint32_t HELPER(nsau)(uint32_t v)
157 return v ? clz32(v) : 32;
160 static void copy_window_from_phys(CPUXtensaState *env,
161 uint32_t window, uint32_t phys, uint32_t n)
163 assert(phys < env->config->nareg);
164 if (phys + n <= env->config->nareg) {
165 memcpy(env->regs + window, env->phys_regs + phys,
166 n * sizeof(uint32_t));
167 } else {
168 uint32_t n1 = env->config->nareg - phys;
169 memcpy(env->regs + window, env->phys_regs + phys,
170 n1 * sizeof(uint32_t));
171 memcpy(env->regs + window + n1, env->phys_regs,
172 (n - n1) * sizeof(uint32_t));
176 static void copy_phys_from_window(CPUXtensaState *env,
177 uint32_t phys, uint32_t window, uint32_t n)
179 assert(phys < env->config->nareg);
180 if (phys + n <= env->config->nareg) {
181 memcpy(env->phys_regs + phys, env->regs + window,
182 n * sizeof(uint32_t));
183 } else {
184 uint32_t n1 = env->config->nareg - phys;
185 memcpy(env->phys_regs + phys, env->regs + window,
186 n1 * sizeof(uint32_t));
187 memcpy(env->phys_regs, env->regs + window + n1,
188 (n - n1) * sizeof(uint32_t));
193 static inline unsigned windowbase_bound(unsigned a, const CPUXtensaState *env)
195 return a & (env->config->nareg / 4 - 1);
198 static inline unsigned windowstart_bit(unsigned a, const CPUXtensaState *env)
200 return 1 << windowbase_bound(a, env);
203 void xtensa_sync_window_from_phys(CPUXtensaState *env)
205 copy_window_from_phys(env, 0, env->sregs[WINDOW_BASE] * 4, 16);
208 void xtensa_sync_phys_from_window(CPUXtensaState *env)
210 copy_phys_from_window(env, env->sregs[WINDOW_BASE] * 4, 0, 16);
213 static void rotate_window_abs(CPUXtensaState *env, uint32_t position)
215 xtensa_sync_phys_from_window(env);
216 env->sregs[WINDOW_BASE] = windowbase_bound(position, env);
217 xtensa_sync_window_from_phys(env);
220 static void rotate_window(CPUXtensaState *env, uint32_t delta)
222 rotate_window_abs(env, env->sregs[WINDOW_BASE] + delta);
225 void HELPER(wsr_windowbase)(CPUXtensaState *env, uint32_t v)
227 rotate_window_abs(env, v);
230 void HELPER(entry)(CPUXtensaState *env, uint32_t pc, uint32_t s, uint32_t imm)
232 int callinc = (env->sregs[PS] & PS_CALLINC) >> PS_CALLINC_SHIFT;
233 if (s > 3 || ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
234 qemu_log("Illegal entry instruction(pc = %08x), PS = %08x\n",
235 pc, env->sregs[PS]);
236 HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
237 } else {
238 uint32_t windowstart = xtensa_replicate_windowstart(env) >>
239 (env->sregs[WINDOW_BASE] + 1);
241 if (windowstart & ((1 << callinc) - 1)) {
242 HELPER(window_check)(env, pc, callinc);
244 env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - (imm << 3);
245 rotate_window(env, callinc);
246 env->sregs[WINDOW_START] |=
247 windowstart_bit(env->sregs[WINDOW_BASE], env);
251 void HELPER(window_check)(CPUXtensaState *env, uint32_t pc, uint32_t w)
253 uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
254 uint32_t windowstart = xtensa_replicate_windowstart(env) >>
255 (env->sregs[WINDOW_BASE] + 1);
256 uint32_t n = ctz32(windowstart) + 1;
258 assert(n <= w);
260 rotate_window(env, n);
261 env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
262 (windowbase << PS_OWB_SHIFT) | PS_EXCM;
263 env->sregs[EPC1] = env->pc = pc;
265 switch (ctz32(windowstart >> n)) {
266 case 0:
267 HELPER(exception)(env, EXC_WINDOW_OVERFLOW4);
268 break;
269 case 1:
270 HELPER(exception)(env, EXC_WINDOW_OVERFLOW8);
271 break;
272 default:
273 HELPER(exception)(env, EXC_WINDOW_OVERFLOW12);
274 break;
278 uint32_t HELPER(retw)(CPUXtensaState *env, uint32_t pc)
280 int n = (env->regs[0] >> 30) & 0x3;
281 int m = 0;
282 uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
283 uint32_t windowstart = env->sregs[WINDOW_START];
284 uint32_t ret_pc = 0;
286 if (windowstart & windowstart_bit(windowbase - 1, env)) {
287 m = 1;
288 } else if (windowstart & windowstart_bit(windowbase - 2, env)) {
289 m = 2;
290 } else if (windowstart & windowstart_bit(windowbase - 3, env)) {
291 m = 3;
294 if (n == 0 || (m != 0 && m != n) ||
295 ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
296 qemu_log("Illegal retw instruction(pc = %08x), "
297 "PS = %08x, m = %d, n = %d\n",
298 pc, env->sregs[PS], m, n);
299 HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
300 } else {
301 int owb = windowbase;
303 ret_pc = (pc & 0xc0000000) | (env->regs[0] & 0x3fffffff);
305 rotate_window(env, -n);
306 if (windowstart & windowstart_bit(env->sregs[WINDOW_BASE], env)) {
307 env->sregs[WINDOW_START] &= ~windowstart_bit(owb, env);
308 } else {
309 /* window underflow */
310 env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
311 (windowbase << PS_OWB_SHIFT) | PS_EXCM;
312 env->sregs[EPC1] = env->pc = pc;
314 if (n == 1) {
315 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW4);
316 } else if (n == 2) {
317 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW8);
318 } else if (n == 3) {
319 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW12);
323 return ret_pc;
326 void HELPER(rotw)(CPUXtensaState *env, uint32_t imm4)
328 rotate_window(env, imm4);
331 void HELPER(restore_owb)(CPUXtensaState *env)
333 rotate_window_abs(env, (env->sregs[PS] & PS_OWB) >> PS_OWB_SHIFT);
336 void HELPER(movsp)(CPUXtensaState *env, uint32_t pc)
338 if ((env->sregs[WINDOW_START] &
339 (windowstart_bit(env->sregs[WINDOW_BASE] - 3, env) |
340 windowstart_bit(env->sregs[WINDOW_BASE] - 2, env) |
341 windowstart_bit(env->sregs[WINDOW_BASE] - 1, env))) == 0) {
342 HELPER(exception_cause)(env, pc, ALLOCA_CAUSE);
346 void HELPER(wsr_lbeg)(CPUXtensaState *env, uint32_t v)
348 if (env->sregs[LBEG] != v) {
349 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
350 env->sregs[LBEG] = v;
354 void HELPER(wsr_lend)(CPUXtensaState *env, uint32_t v)
356 if (env->sregs[LEND] != v) {
357 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
358 env->sregs[LEND] = v;
359 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
363 void HELPER(dump_state)(CPUXtensaState *env)
365 XtensaCPU *cpu = xtensa_env_get_cpu(env);
367 cpu_dump_state(CPU(cpu), stderr, fprintf, 0);
370 void HELPER(waiti)(CPUXtensaState *env, uint32_t pc, uint32_t intlevel)
372 CPUState *cpu;
374 env->pc = pc;
375 env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) |
376 (intlevel << PS_INTLEVEL_SHIFT);
377 check_interrupts(env);
378 if (env->pending_irq_level) {
379 cpu_loop_exit(CPU(xtensa_env_get_cpu(env)));
380 return;
383 cpu = CPU(xtensa_env_get_cpu(env));
384 env->halt_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
385 cpu->halted = 1;
386 if (xtensa_option_enabled(env->config, XTENSA_OPTION_TIMER_INTERRUPT)) {
387 xtensa_rearm_ccompare_timer(env);
389 HELPER(exception)(env, EXCP_HLT);
392 void HELPER(timer_irq)(CPUXtensaState *env, uint32_t id, uint32_t active)
394 xtensa_timer_irq(env, id, active);
397 void HELPER(advance_ccount)(CPUXtensaState *env, uint32_t d)
399 xtensa_advance_ccount(env, d);
402 void HELPER(check_interrupts)(CPUXtensaState *env)
404 check_interrupts(env);
407 void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
409 get_page_addr_code(env, vaddr);
413 * Check vaddr accessibility/cache attributes and raise an exception if
414 * specified by the ATOMCTL SR.
416 * Note: local memory exclusion is not implemented
418 void HELPER(check_atomctl)(CPUXtensaState *env, uint32_t pc, uint32_t vaddr)
420 uint32_t paddr, page_size, access;
421 uint32_t atomctl = env->sregs[ATOMCTL];
422 int rc = xtensa_get_physical_addr(env, true, vaddr, 1,
423 xtensa_get_cring(env), &paddr, &page_size, &access);
426 * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
427 * see opcode description in the ISA
429 if (rc == 0 &&
430 (access & (PAGE_READ | PAGE_WRITE)) != (PAGE_READ | PAGE_WRITE)) {
431 rc = STORE_PROHIBITED_CAUSE;
434 if (rc) {
435 HELPER(exception_cause_vaddr)(env, pc, rc, vaddr);
439 * When data cache is not configured use ATOMCTL bypass field.
440 * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
441 * under the Conditional Store Option.
443 if (!xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
444 access = PAGE_CACHE_BYPASS;
447 switch (access & PAGE_CACHE_MASK) {
448 case PAGE_CACHE_WB:
449 atomctl >>= 2;
450 /* fall through */
451 case PAGE_CACHE_WT:
452 atomctl >>= 2;
453 /* fall through */
454 case PAGE_CACHE_BYPASS:
455 if ((atomctl & 0x3) == 0) {
456 HELPER(exception_cause_vaddr)(env, pc,
457 LOAD_STORE_ERROR_CAUSE, vaddr);
459 break;
461 case PAGE_CACHE_ISOLATE:
462 HELPER(exception_cause_vaddr)(env, pc,
463 LOAD_STORE_ERROR_CAUSE, vaddr);
464 break;
466 default:
467 break;
471 void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
473 XtensaCPU *cpu = xtensa_env_get_cpu(env);
475 v = (v & 0xffffff00) | 0x1;
476 if (v != env->sregs[RASID]) {
477 env->sregs[RASID] = v;
478 tlb_flush(CPU(cpu), 1);
482 static uint32_t get_page_size(const CPUXtensaState *env, bool dtlb, uint32_t way)
484 uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
486 switch (way) {
487 case 4:
488 return (tlbcfg >> 16) & 0x3;
490 case 5:
491 return (tlbcfg >> 20) & 0x1;
493 case 6:
494 return (tlbcfg >> 24) & 0x1;
496 default:
497 return 0;
502 * Get bit mask for the virtual address bits translated by the TLB way
504 uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
506 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
507 bool varway56 = dtlb ?
508 env->config->dtlb.varway56 :
509 env->config->itlb.varway56;
511 switch (way) {
512 case 4:
513 return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
515 case 5:
516 if (varway56) {
517 return 0xf8000000 << get_page_size(env, dtlb, way);
518 } else {
519 return 0xf8000000;
522 case 6:
523 if (varway56) {
524 return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
525 } else {
526 return 0xf0000000;
529 default:
530 return 0xfffff000;
532 } else {
533 return REGION_PAGE_MASK;
538 * Get bit mask for the 'VPN without index' field.
539 * See ISA, 4.6.5.6, data format for RxTLB0
541 static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
543 if (way < 4) {
544 bool is32 = (dtlb ?
545 env->config->dtlb.nrefillentries :
546 env->config->itlb.nrefillentries) == 32;
547 return is32 ? 0xffff8000 : 0xffffc000;
548 } else if (way == 4) {
549 return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
550 } else if (way <= 6) {
551 uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
552 bool varway56 = dtlb ?
553 env->config->dtlb.varway56 :
554 env->config->itlb.varway56;
556 if (varway56) {
557 return mask << (way == 5 ? 2 : 3);
558 } else {
559 return mask << 1;
561 } else {
562 return 0xfffff000;
567 * Split virtual address into VPN (with index) and entry index
568 * for the given TLB way
570 void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v, bool dtlb,
571 uint32_t *vpn, uint32_t wi, uint32_t *ei)
573 bool varway56 = dtlb ?
574 env->config->dtlb.varway56 :
575 env->config->itlb.varway56;
577 if (!dtlb) {
578 wi &= 7;
581 if (wi < 4) {
582 bool is32 = (dtlb ?
583 env->config->dtlb.nrefillentries :
584 env->config->itlb.nrefillentries) == 32;
585 *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
586 } else {
587 switch (wi) {
588 case 4:
590 uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
591 *ei = (v >> eibase) & 0x3;
593 break;
595 case 5:
596 if (varway56) {
597 uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
598 *ei = (v >> eibase) & 0x3;
599 } else {
600 *ei = (v >> 27) & 0x1;
602 break;
604 case 6:
605 if (varway56) {
606 uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
607 *ei = (v >> eibase) & 0x7;
608 } else {
609 *ei = (v >> 28) & 0x1;
611 break;
613 default:
614 *ei = 0;
615 break;
618 *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
622 * Split TLB address into TLB way, entry index and VPN (with index).
623 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
625 static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
626 uint32_t *vpn, uint32_t *wi, uint32_t *ei)
628 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
629 *wi = v & (dtlb ? 0xf : 0x7);
630 split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
631 } else {
632 *vpn = v & REGION_PAGE_MASK;
633 *wi = 0;
634 *ei = (v >> 29) & 0x7;
638 static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
639 uint32_t v, bool dtlb, uint32_t *pwi)
641 uint32_t vpn;
642 uint32_t wi;
643 uint32_t ei;
645 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
646 if (pwi) {
647 *pwi = wi;
649 return xtensa_tlb_get_entry(env, dtlb, wi, ei);
652 uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
654 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
655 uint32_t wi;
656 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
657 return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
658 } else {
659 return v & REGION_PAGE_MASK;
663 uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
665 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
666 return entry->paddr | entry->attr;
669 void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
671 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
672 uint32_t wi;
673 xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
674 if (entry->variable && entry->asid) {
675 tlb_flush_page(CPU(xtensa_env_get_cpu(env)), entry->vaddr);
676 entry->asid = 0;
681 uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
683 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
684 uint32_t wi;
685 uint32_t ei;
686 uint8_t ring;
687 int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
689 switch (res) {
690 case 0:
691 if (ring >= xtensa_get_ring(env)) {
692 return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
694 break;
696 case INST_TLB_MULTI_HIT_CAUSE:
697 case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
698 HELPER(exception_cause_vaddr)(env, env->pc, res, v);
699 break;
701 return 0;
702 } else {
703 return (v & REGION_PAGE_MASK) | 0x1;
707 void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
708 xtensa_tlb_entry *entry, bool dtlb,
709 unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
711 entry->vaddr = vpn;
712 entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
713 entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
714 entry->attr = pte & 0xf;
717 void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
718 unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
720 XtensaCPU *cpu = xtensa_env_get_cpu(env);
721 CPUState *cs = CPU(cpu);
722 xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
724 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
725 if (entry->variable) {
726 if (entry->asid) {
727 tlb_flush_page(cs, entry->vaddr);
729 xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
730 tlb_flush_page(cs, entry->vaddr);
731 } else {
732 qemu_log("%s %d, %d, %d trying to set immutable entry\n",
733 __func__, dtlb, wi, ei);
735 } else {
736 tlb_flush_page(cs, entry->vaddr);
737 if (xtensa_option_enabled(env->config,
738 XTENSA_OPTION_REGION_TRANSLATION)) {
739 entry->paddr = pte & REGION_PAGE_MASK;
741 entry->attr = pte & 0xf;
745 void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
747 uint32_t vpn;
748 uint32_t wi;
749 uint32_t ei;
750 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
751 xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
755 void HELPER(wsr_ibreakenable)(CPUXtensaState *env, uint32_t v)
757 uint32_t change = v ^ env->sregs[IBREAKENABLE];
758 unsigned i;
760 for (i = 0; i < env->config->nibreak; ++i) {
761 if (change & (1 << i)) {
762 tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
765 env->sregs[IBREAKENABLE] = v & ((1 << env->config->nibreak) - 1);
768 void HELPER(wsr_ibreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
770 if (env->sregs[IBREAKENABLE] & (1 << i) && env->sregs[IBREAKA + i] != v) {
771 tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
772 tb_invalidate_virtual_addr(env, v);
774 env->sregs[IBREAKA + i] = v;
777 static void set_dbreak(CPUXtensaState *env, unsigned i, uint32_t dbreaka,
778 uint32_t dbreakc)
780 CPUState *cs = CPU(xtensa_env_get_cpu(env));
781 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
782 uint32_t mask = dbreakc | ~DBREAKC_MASK;
784 if (env->cpu_watchpoint[i]) {
785 cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
787 if (dbreakc & DBREAKC_SB) {
788 flags |= BP_MEM_WRITE;
790 if (dbreakc & DBREAKC_LB) {
791 flags |= BP_MEM_READ;
793 /* contiguous mask after inversion is one less than some power of 2 */
794 if ((~mask + 1) & ~mask) {
795 qemu_log("DBREAKC mask is not contiguous: 0x%08x\n", dbreakc);
796 /* cut mask after the first zero bit */
797 mask = 0xffffffff << (32 - clo32(mask));
799 if (cpu_watchpoint_insert(cs, dbreaka & mask, ~mask + 1,
800 flags, &env->cpu_watchpoint[i])) {
801 env->cpu_watchpoint[i] = NULL;
802 qemu_log("Failed to set data breakpoint at 0x%08x/%d\n",
803 dbreaka & mask, ~mask + 1);
807 void HELPER(wsr_dbreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
809 uint32_t dbreakc = env->sregs[DBREAKC + i];
811 if ((dbreakc & DBREAKC_SB_LB) &&
812 env->sregs[DBREAKA + i] != v) {
813 set_dbreak(env, i, v, dbreakc);
815 env->sregs[DBREAKA + i] = v;
818 void HELPER(wsr_dbreakc)(CPUXtensaState *env, uint32_t i, uint32_t v)
820 if ((env->sregs[DBREAKC + i] ^ v) & (DBREAKC_SB_LB | DBREAKC_MASK)) {
821 if (v & DBREAKC_SB_LB) {
822 set_dbreak(env, i, env->sregs[DBREAKA + i], v);
823 } else {
824 if (env->cpu_watchpoint[i]) {
825 CPUState *cs = CPU(xtensa_env_get_cpu(env));
827 cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
828 env->cpu_watchpoint[i] = NULL;
832 env->sregs[DBREAKC + i] = v;
835 void HELPER(wur_fcr)(CPUXtensaState *env, uint32_t v)
837 static const int rounding_mode[] = {
838 float_round_nearest_even,
839 float_round_to_zero,
840 float_round_up,
841 float_round_down,
844 env->uregs[FCR] = v & 0xfffff07f;
845 set_float_rounding_mode(rounding_mode[v & 3], &env->fp_status);
848 float32 HELPER(abs_s)(float32 v)
850 return float32_abs(v);
853 float32 HELPER(neg_s)(float32 v)
855 return float32_chs(v);
858 float32 HELPER(add_s)(CPUXtensaState *env, float32 a, float32 b)
860 return float32_add(a, b, &env->fp_status);
863 float32 HELPER(sub_s)(CPUXtensaState *env, float32 a, float32 b)
865 return float32_sub(a, b, &env->fp_status);
868 float32 HELPER(mul_s)(CPUXtensaState *env, float32 a, float32 b)
870 return float32_mul(a, b, &env->fp_status);
873 float32 HELPER(madd_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
875 return float32_muladd(b, c, a, 0,
876 &env->fp_status);
879 float32 HELPER(msub_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
881 return float32_muladd(b, c, a, float_muladd_negate_product,
882 &env->fp_status);
885 uint32_t HELPER(ftoi)(float32 v, uint32_t rounding_mode, uint32_t scale)
887 float_status fp_status = {0};
889 set_float_rounding_mode(rounding_mode, &fp_status);
890 return float32_to_int32(
891 float32_scalbn(v, scale, &fp_status), &fp_status);
894 uint32_t HELPER(ftoui)(float32 v, uint32_t rounding_mode, uint32_t scale)
896 float_status fp_status = {0};
897 float32 res;
899 set_float_rounding_mode(rounding_mode, &fp_status);
901 res = float32_scalbn(v, scale, &fp_status);
903 if (float32_is_neg(v) && !float32_is_any_nan(v)) {
904 return float32_to_int32(res, &fp_status);
905 } else {
906 return float32_to_uint32(res, &fp_status);
910 float32 HELPER(itof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
912 return float32_scalbn(int32_to_float32(v, &env->fp_status),
913 (int32_t)scale, &env->fp_status);
916 float32 HELPER(uitof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
918 return float32_scalbn(uint32_to_float32(v, &env->fp_status),
919 (int32_t)scale, &env->fp_status);
922 static inline void set_br(CPUXtensaState *env, bool v, uint32_t br)
924 if (v) {
925 env->sregs[BR] |= br;
926 } else {
927 env->sregs[BR] &= ~br;
931 void HELPER(un_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
933 set_br(env, float32_unordered_quiet(a, b, &env->fp_status), br);
936 void HELPER(oeq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
938 set_br(env, float32_eq_quiet(a, b, &env->fp_status), br);
941 void HELPER(ueq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
943 int v = float32_compare_quiet(a, b, &env->fp_status);
944 set_br(env, v == float_relation_equal || v == float_relation_unordered, br);
947 void HELPER(olt_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
949 set_br(env, float32_lt_quiet(a, b, &env->fp_status), br);
952 void HELPER(ult_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
954 int v = float32_compare_quiet(a, b, &env->fp_status);
955 set_br(env, v == float_relation_less || v == float_relation_unordered, br);
958 void HELPER(ole_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
960 set_br(env, float32_le_quiet(a, b, &env->fp_status), br);
963 void HELPER(ule_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
965 int v = float32_compare_quiet(a, b, &env->fp_status);
966 set_br(env, v != float_relation_greater, br);