qcow2: Add corrupt bit
[qemu/cris-port.git] / migration-rdma.c
blob3d1266f40a7fdbe3b7a66fccc6fe394b13af5901
1 /*
2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
6 * Authors:
7 * Michael R. Hines <mrhines@us.ibm.com>
8 * Jiuxing Liu <jl@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or
11 * later. See the COPYING file in the top-level directory.
14 #include "qemu-common.h"
15 #include "migration/migration.h"
16 #include "migration/qemu-file.h"
17 #include "exec/cpu-common.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/sockets.h"
20 #include "qemu/bitmap.h"
21 #include "block/coroutine.h"
22 #include <stdio.h>
23 #include <sys/types.h>
24 #include <sys/socket.h>
25 #include <netdb.h>
26 #include <arpa/inet.h>
27 #include <string.h>
28 #include <rdma/rdma_cma.h>
30 //#define DEBUG_RDMA
31 //#define DEBUG_RDMA_VERBOSE
32 //#define DEBUG_RDMA_REALLY_VERBOSE
34 #ifdef DEBUG_RDMA
35 #define DPRINTF(fmt, ...) \
36 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define DPRINTF(fmt, ...) \
39 do { } while (0)
40 #endif
42 #ifdef DEBUG_RDMA_VERBOSE
43 #define DDPRINTF(fmt, ...) \
44 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
45 #else
46 #define DDPRINTF(fmt, ...) \
47 do { } while (0)
48 #endif
50 #ifdef DEBUG_RDMA_REALLY_VERBOSE
51 #define DDDPRINTF(fmt, ...) \
52 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
53 #else
54 #define DDDPRINTF(fmt, ...) \
55 do { } while (0)
56 #endif
59 * Print and error on both the Monitor and the Log file.
61 #define ERROR(errp, fmt, ...) \
62 do { \
63 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
64 if (errp && (*(errp) == NULL)) { \
65 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
66 } \
67 } while (0)
69 #define RDMA_RESOLVE_TIMEOUT_MS 10000
71 /* Do not merge data if larger than this. */
72 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
73 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
75 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
78 * This is only for non-live state being migrated.
79 * Instead of RDMA_WRITE messages, we use RDMA_SEND
80 * messages for that state, which requires a different
81 * delivery design than main memory.
83 #define RDMA_SEND_INCREMENT 32768
86 * Maximum size infiniband SEND message
88 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
89 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
91 #define RDMA_CONTROL_VERSION_CURRENT 1
93 * Capabilities for negotiation.
95 #define RDMA_CAPABILITY_PIN_ALL 0x01
98 * Add the other flags above to this list of known capabilities
99 * as they are introduced.
101 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
103 #define CHECK_ERROR_STATE() \
104 do { \
105 if (rdma->error_state) { \
106 if (!rdma->error_reported) { \
107 fprintf(stderr, "RDMA is in an error state waiting migration" \
108 " to abort!\n"); \
109 rdma->error_reported = 1; \
111 return rdma->error_state; \
113 } while (0);
116 * A work request ID is 64-bits and we split up these bits
117 * into 3 parts:
119 * bits 0-15 : type of control message, 2^16
120 * bits 16-29: ram block index, 2^14
121 * bits 30-63: ram block chunk number, 2^34
123 * The last two bit ranges are only used for RDMA writes,
124 * in order to track their completion and potentially
125 * also track unregistration status of the message.
127 #define RDMA_WRID_TYPE_SHIFT 0UL
128 #define RDMA_WRID_BLOCK_SHIFT 16UL
129 #define RDMA_WRID_CHUNK_SHIFT 30UL
131 #define RDMA_WRID_TYPE_MASK \
132 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
134 #define RDMA_WRID_BLOCK_MASK \
135 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
137 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
140 * RDMA migration protocol:
141 * 1. RDMA Writes (data messages, i.e. RAM)
142 * 2. IB Send/Recv (control channel messages)
144 enum {
145 RDMA_WRID_NONE = 0,
146 RDMA_WRID_RDMA_WRITE = 1,
147 RDMA_WRID_SEND_CONTROL = 2000,
148 RDMA_WRID_RECV_CONTROL = 4000,
151 const char *wrid_desc[] = {
152 [RDMA_WRID_NONE] = "NONE",
153 [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
154 [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
155 [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
159 * Work request IDs for IB SEND messages only (not RDMA writes).
160 * This is used by the migration protocol to transmit
161 * control messages (such as device state and registration commands)
163 * We could use more WRs, but we have enough for now.
165 enum {
166 RDMA_WRID_READY = 0,
167 RDMA_WRID_DATA,
168 RDMA_WRID_CONTROL,
169 RDMA_WRID_MAX,
173 * SEND/RECV IB Control Messages.
175 enum {
176 RDMA_CONTROL_NONE = 0,
177 RDMA_CONTROL_ERROR,
178 RDMA_CONTROL_READY, /* ready to receive */
179 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */
180 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */
181 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */
182 RDMA_CONTROL_COMPRESS, /* page contains repeat values */
183 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */
184 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */
185 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */
186 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */
187 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
190 const char *control_desc[] = {
191 [RDMA_CONTROL_NONE] = "NONE",
192 [RDMA_CONTROL_ERROR] = "ERROR",
193 [RDMA_CONTROL_READY] = "READY",
194 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
195 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
196 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
197 [RDMA_CONTROL_COMPRESS] = "COMPRESS",
198 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
199 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
200 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
201 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
202 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
206 * Memory and MR structures used to represent an IB Send/Recv work request.
207 * This is *not* used for RDMA writes, only IB Send/Recv.
209 typedef struct {
210 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
211 struct ibv_mr *control_mr; /* registration metadata */
212 size_t control_len; /* length of the message */
213 uint8_t *control_curr; /* start of unconsumed bytes */
214 } RDMAWorkRequestData;
217 * Negotiate RDMA capabilities during connection-setup time.
219 typedef struct {
220 uint32_t version;
221 uint32_t flags;
222 } RDMACapabilities;
224 static void caps_to_network(RDMACapabilities *cap)
226 cap->version = htonl(cap->version);
227 cap->flags = htonl(cap->flags);
230 static void network_to_caps(RDMACapabilities *cap)
232 cap->version = ntohl(cap->version);
233 cap->flags = ntohl(cap->flags);
237 * Representation of a RAMBlock from an RDMA perspective.
238 * This is not transmitted, only local.
239 * This and subsequent structures cannot be linked lists
240 * because we're using a single IB message to transmit
241 * the information. It's small anyway, so a list is overkill.
243 typedef struct RDMALocalBlock {
244 uint8_t *local_host_addr; /* local virtual address */
245 uint64_t remote_host_addr; /* remote virtual address */
246 uint64_t offset;
247 uint64_t length;
248 struct ibv_mr **pmr; /* MRs for chunk-level registration */
249 struct ibv_mr *mr; /* MR for non-chunk-level registration */
250 uint32_t *remote_keys; /* rkeys for chunk-level registration */
251 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */
252 int index; /* which block are we */
253 bool is_ram_block;
254 int nb_chunks;
255 unsigned long *transit_bitmap;
256 unsigned long *unregister_bitmap;
257 } RDMALocalBlock;
260 * Also represents a RAMblock, but only on the dest.
261 * This gets transmitted by the dest during connection-time
262 * to the source VM and then is used to populate the
263 * corresponding RDMALocalBlock with
264 * the information needed to perform the actual RDMA.
266 typedef struct QEMU_PACKED RDMARemoteBlock {
267 uint64_t remote_host_addr;
268 uint64_t offset;
269 uint64_t length;
270 uint32_t remote_rkey;
271 uint32_t padding;
272 } RDMARemoteBlock;
274 static uint64_t htonll(uint64_t v)
276 union { uint32_t lv[2]; uint64_t llv; } u;
277 u.lv[0] = htonl(v >> 32);
278 u.lv[1] = htonl(v & 0xFFFFFFFFULL);
279 return u.llv;
282 static uint64_t ntohll(uint64_t v) {
283 union { uint32_t lv[2]; uint64_t llv; } u;
284 u.llv = v;
285 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
288 static void remote_block_to_network(RDMARemoteBlock *rb)
290 rb->remote_host_addr = htonll(rb->remote_host_addr);
291 rb->offset = htonll(rb->offset);
292 rb->length = htonll(rb->length);
293 rb->remote_rkey = htonl(rb->remote_rkey);
296 static void network_to_remote_block(RDMARemoteBlock *rb)
298 rb->remote_host_addr = ntohll(rb->remote_host_addr);
299 rb->offset = ntohll(rb->offset);
300 rb->length = ntohll(rb->length);
301 rb->remote_rkey = ntohl(rb->remote_rkey);
305 * Virtual address of the above structures used for transmitting
306 * the RAMBlock descriptions at connection-time.
307 * This structure is *not* transmitted.
309 typedef struct RDMALocalBlocks {
310 int nb_blocks;
311 bool init; /* main memory init complete */
312 RDMALocalBlock *block;
313 } RDMALocalBlocks;
316 * Main data structure for RDMA state.
317 * While there is only one copy of this structure being allocated right now,
318 * this is the place where one would start if you wanted to consider
319 * having more than one RDMA connection open at the same time.
321 typedef struct RDMAContext {
322 char *host;
323 int port;
325 RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
328 * This is used by *_exchange_send() to figure out whether or not
329 * the initial "READY" message has already been received or not.
330 * This is because other functions may potentially poll() and detect
331 * the READY message before send() does, in which case we need to
332 * know if it completed.
334 int control_ready_expected;
336 /* number of outstanding writes */
337 int nb_sent;
339 /* store info about current buffer so that we can
340 merge it with future sends */
341 uint64_t current_addr;
342 uint64_t current_length;
343 /* index of ram block the current buffer belongs to */
344 int current_index;
345 /* index of the chunk in the current ram block */
346 int current_chunk;
348 bool pin_all;
351 * infiniband-specific variables for opening the device
352 * and maintaining connection state and so forth.
354 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
355 * cm_id->verbs, cm_id->channel, and cm_id->qp.
357 struct rdma_cm_id *cm_id; /* connection manager ID */
358 struct rdma_cm_id *listen_id;
360 struct ibv_context *verbs;
361 struct rdma_event_channel *channel;
362 struct ibv_qp *qp; /* queue pair */
363 struct ibv_comp_channel *comp_channel; /* completion channel */
364 struct ibv_pd *pd; /* protection domain */
365 struct ibv_cq *cq; /* completion queue */
368 * If a previous write failed (perhaps because of a failed
369 * memory registration, then do not attempt any future work
370 * and remember the error state.
372 int error_state;
373 int error_reported;
376 * Description of ram blocks used throughout the code.
378 RDMALocalBlocks local_ram_blocks;
379 RDMARemoteBlock *block;
382 * Migration on *destination* started.
383 * Then use coroutine yield function.
384 * Source runs in a thread, so we don't care.
386 int migration_started_on_destination;
388 int total_registrations;
389 int total_writes;
391 int unregister_current, unregister_next;
392 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
394 GHashTable *blockmap;
395 } RDMAContext;
398 * Interface to the rest of the migration call stack.
400 typedef struct QEMUFileRDMA {
401 RDMAContext *rdma;
402 size_t len;
403 void *file;
404 } QEMUFileRDMA;
407 * Main structure for IB Send/Recv control messages.
408 * This gets prepended at the beginning of every Send/Recv.
410 typedef struct QEMU_PACKED {
411 uint32_t len; /* Total length of data portion */
412 uint32_t type; /* which control command to perform */
413 uint32_t repeat; /* number of commands in data portion of same type */
414 uint32_t padding;
415 } RDMAControlHeader;
417 static void control_to_network(RDMAControlHeader *control)
419 control->type = htonl(control->type);
420 control->len = htonl(control->len);
421 control->repeat = htonl(control->repeat);
424 static void network_to_control(RDMAControlHeader *control)
426 control->type = ntohl(control->type);
427 control->len = ntohl(control->len);
428 control->repeat = ntohl(control->repeat);
432 * Register a single Chunk.
433 * Information sent by the source VM to inform the dest
434 * to register an single chunk of memory before we can perform
435 * the actual RDMA operation.
437 typedef struct QEMU_PACKED {
438 union QEMU_PACKED {
439 uint64_t current_addr; /* offset into the ramblock of the chunk */
440 uint64_t chunk; /* chunk to lookup if unregistering */
441 } key;
442 uint32_t current_index; /* which ramblock the chunk belongs to */
443 uint32_t padding;
444 uint64_t chunks; /* how many sequential chunks to register */
445 } RDMARegister;
447 static void register_to_network(RDMARegister *reg)
449 reg->key.current_addr = htonll(reg->key.current_addr);
450 reg->current_index = htonl(reg->current_index);
451 reg->chunks = htonll(reg->chunks);
454 static void network_to_register(RDMARegister *reg)
456 reg->key.current_addr = ntohll(reg->key.current_addr);
457 reg->current_index = ntohl(reg->current_index);
458 reg->chunks = ntohll(reg->chunks);
461 typedef struct QEMU_PACKED {
462 uint32_t value; /* if zero, we will madvise() */
463 uint32_t block_idx; /* which ram block index */
464 uint64_t offset; /* where in the remote ramblock this chunk */
465 uint64_t length; /* length of the chunk */
466 } RDMACompress;
468 static void compress_to_network(RDMACompress *comp)
470 comp->value = htonl(comp->value);
471 comp->block_idx = htonl(comp->block_idx);
472 comp->offset = htonll(comp->offset);
473 comp->length = htonll(comp->length);
476 static void network_to_compress(RDMACompress *comp)
478 comp->value = ntohl(comp->value);
479 comp->block_idx = ntohl(comp->block_idx);
480 comp->offset = ntohll(comp->offset);
481 comp->length = ntohll(comp->length);
485 * The result of the dest's memory registration produces an "rkey"
486 * which the source VM must reference in order to perform
487 * the RDMA operation.
489 typedef struct QEMU_PACKED {
490 uint32_t rkey;
491 uint32_t padding;
492 uint64_t host_addr;
493 } RDMARegisterResult;
495 static void result_to_network(RDMARegisterResult *result)
497 result->rkey = htonl(result->rkey);
498 result->host_addr = htonll(result->host_addr);
501 static void network_to_result(RDMARegisterResult *result)
503 result->rkey = ntohl(result->rkey);
504 result->host_addr = ntohll(result->host_addr);
507 const char *print_wrid(int wrid);
508 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
509 uint8_t *data, RDMAControlHeader *resp,
510 int *resp_idx,
511 int (*callback)(RDMAContext *rdma));
513 static inline uint64_t ram_chunk_index(uint8_t *start, uint8_t *host)
515 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
518 static inline uint8_t *ram_chunk_start(RDMALocalBlock *rdma_ram_block,
519 uint64_t i)
521 return (uint8_t *) (((uintptr_t) rdma_ram_block->local_host_addr)
522 + (i << RDMA_REG_CHUNK_SHIFT));
525 static inline uint8_t *ram_chunk_end(RDMALocalBlock *rdma_ram_block, uint64_t i)
527 uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
528 (1UL << RDMA_REG_CHUNK_SHIFT);
530 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
531 result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
534 return result;
537 static int __qemu_rdma_add_block(RDMAContext *rdma, void *host_addr,
538 ram_addr_t block_offset, uint64_t length)
540 RDMALocalBlocks *local = &rdma->local_ram_blocks;
541 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
542 (void *) block_offset);
543 RDMALocalBlock *old = local->block;
545 assert(block == NULL);
547 local->block = g_malloc0(sizeof(RDMALocalBlock) * (local->nb_blocks + 1));
549 if (local->nb_blocks) {
550 int x;
552 for (x = 0; x < local->nb_blocks; x++) {
553 g_hash_table_remove(rdma->blockmap, (void *)old[x].offset);
554 g_hash_table_insert(rdma->blockmap, (void *)old[x].offset,
555 &local->block[x]);
557 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
558 g_free(old);
561 block = &local->block[local->nb_blocks];
563 block->local_host_addr = host_addr;
564 block->offset = block_offset;
565 block->length = length;
566 block->index = local->nb_blocks;
567 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
568 block->transit_bitmap = bitmap_new(block->nb_chunks);
569 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
570 block->unregister_bitmap = bitmap_new(block->nb_chunks);
571 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
572 block->remote_keys = g_malloc0(block->nb_chunks * sizeof(uint32_t));
574 block->is_ram_block = local->init ? false : true;
576 g_hash_table_insert(rdma->blockmap, (void *) block_offset, block);
578 DDPRINTF("Added Block: %d, addr: %" PRIu64 ", offset: %" PRIu64
579 " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n",
580 local->nb_blocks, (uint64_t) block->local_host_addr, block->offset,
581 block->length, (uint64_t) (block->local_host_addr + block->length),
582 BITS_TO_LONGS(block->nb_chunks) *
583 sizeof(unsigned long) * 8, block->nb_chunks);
585 local->nb_blocks++;
587 return 0;
591 * Memory regions need to be registered with the device and queue pairs setup
592 * in advanced before the migration starts. This tells us where the RAM blocks
593 * are so that we can register them individually.
595 static void qemu_rdma_init_one_block(void *host_addr,
596 ram_addr_t block_offset, ram_addr_t length, void *opaque)
598 __qemu_rdma_add_block(opaque, host_addr, block_offset, length);
602 * Identify the RAMBlocks and their quantity. They will be references to
603 * identify chunk boundaries inside each RAMBlock and also be referenced
604 * during dynamic page registration.
606 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
608 RDMALocalBlocks *local = &rdma->local_ram_blocks;
610 assert(rdma->blockmap == NULL);
611 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
612 memset(local, 0, sizeof *local);
613 qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma);
614 DPRINTF("Allocated %d local ram block structures\n", local->nb_blocks);
615 rdma->block = (RDMARemoteBlock *) g_malloc0(sizeof(RDMARemoteBlock) *
616 rdma->local_ram_blocks.nb_blocks);
617 local->init = true;
618 return 0;
621 static int __qemu_rdma_delete_block(RDMAContext *rdma, ram_addr_t block_offset)
623 RDMALocalBlocks *local = &rdma->local_ram_blocks;
624 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
625 (void *) block_offset);
626 RDMALocalBlock *old = local->block;
627 int x;
629 assert(block);
631 if (block->pmr) {
632 int j;
634 for (j = 0; j < block->nb_chunks; j++) {
635 if (!block->pmr[j]) {
636 continue;
638 ibv_dereg_mr(block->pmr[j]);
639 rdma->total_registrations--;
641 g_free(block->pmr);
642 block->pmr = NULL;
645 if (block->mr) {
646 ibv_dereg_mr(block->mr);
647 rdma->total_registrations--;
648 block->mr = NULL;
651 g_free(block->transit_bitmap);
652 block->transit_bitmap = NULL;
654 g_free(block->unregister_bitmap);
655 block->unregister_bitmap = NULL;
657 g_free(block->remote_keys);
658 block->remote_keys = NULL;
660 for (x = 0; x < local->nb_blocks; x++) {
661 g_hash_table_remove(rdma->blockmap, (void *)old[x].offset);
664 if (local->nb_blocks > 1) {
666 local->block = g_malloc0(sizeof(RDMALocalBlock) *
667 (local->nb_blocks - 1));
669 if (block->index) {
670 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
673 if (block->index < (local->nb_blocks - 1)) {
674 memcpy(local->block + block->index, old + (block->index + 1),
675 sizeof(RDMALocalBlock) *
676 (local->nb_blocks - (block->index + 1)));
678 } else {
679 assert(block == local->block);
680 local->block = NULL;
683 DDPRINTF("Deleted Block: %d, addr: %" PRIu64 ", offset: %" PRIu64
684 " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n",
685 local->nb_blocks, (uint64_t) block->local_host_addr, block->offset,
686 block->length, (uint64_t) (block->local_host_addr + block->length),
687 BITS_TO_LONGS(block->nb_chunks) *
688 sizeof(unsigned long) * 8, block->nb_chunks);
690 g_free(old);
692 local->nb_blocks--;
694 if (local->nb_blocks) {
695 for (x = 0; x < local->nb_blocks; x++) {
696 g_hash_table_insert(rdma->blockmap, (void *)local->block[x].offset,
697 &local->block[x]);
701 return 0;
705 * Put in the log file which RDMA device was opened and the details
706 * associated with that device.
708 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
710 struct ibv_port_attr port;
712 if (ibv_query_port(verbs, 1, &port)) {
713 fprintf(stderr, "FAILED TO QUERY PORT INFORMATION!\n");
714 return;
717 printf("%s RDMA Device opened: kernel name %s "
718 "uverbs device name %s, "
719 "infiniband_verbs class device path %s, "
720 "infiniband class device path %s, "
721 "transport: (%d) %s\n",
722 who,
723 verbs->device->name,
724 verbs->device->dev_name,
725 verbs->device->dev_path,
726 verbs->device->ibdev_path,
727 port.link_layer,
728 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
729 ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
730 ? "Ethernet" : "Unknown"));
734 * Put in the log file the RDMA gid addressing information,
735 * useful for folks who have trouble understanding the
736 * RDMA device hierarchy in the kernel.
738 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
740 char sgid[33];
741 char dgid[33];
742 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
743 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
744 DPRINTF("%s Source GID: %s, Dest GID: %s\n", who, sgid, dgid);
748 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
749 * We will try the next addrinfo struct, and fail if there are
750 * no other valid addresses to bind against.
752 * If user is listening on '[::]', then we will not have a opened a device
753 * yet and have no way of verifying if the device is RoCE or not.
755 * In this case, the source VM will throw an error for ALL types of
756 * connections (both IPv4 and IPv6) if the destination machine does not have
757 * a regular infiniband network available for use.
759 * The only way to gaurantee that an error is thrown for broken kernels is
760 * for the management software to choose a *specific* interface at bind time
761 * and validate what time of hardware it is.
763 * Unfortunately, this puts the user in a fix:
765 * If the source VM connects with an IPv4 address without knowing that the
766 * destination has bound to '[::]' the migration will unconditionally fail
767 * unless the management software is explicitly listening on the the IPv4
768 * address while using a RoCE-based device.
770 * If the source VM connects with an IPv6 address, then we're OK because we can
771 * throw an error on the source (and similarly on the destination).
773 * But in mixed environments, this will be broken for a while until it is fixed
774 * inside linux.
776 * We do provide a *tiny* bit of help in this function: We can list all of the
777 * devices in the system and check to see if all the devices are RoCE or
778 * Infiniband.
780 * If we detect that we have a *pure* RoCE environment, then we can safely
781 * thrown an error even if the management sofware has specified '[::]' as the
782 * bind address.
784 * However, if there is are multiple hetergeneous devices, then we cannot make
785 * this assumption and the user just has to be sure they know what they are
786 * doing.
788 * Patches are being reviewed on linux-rdma.
790 static int qemu_rdma_broken_ipv6_kernel(Error **errp, struct ibv_context *verbs)
792 struct ibv_port_attr port_attr;
794 /* This bug only exists in linux, to our knowledge. */
795 #ifdef CONFIG_LINUX
798 * Verbs are only NULL if management has bound to '[::]'.
800 * Let's iterate through all the devices and see if there any pure IB
801 * devices (non-ethernet).
803 * If not, then we can safely proceed with the migration.
804 * Otherwise, there are no gaurantees until the bug is fixed in linux.
806 if (!verbs) {
807 int num_devices, x;
808 struct ibv_device ** dev_list = ibv_get_device_list(&num_devices);
809 bool roce_found = false;
810 bool ib_found = false;
812 for (x = 0; x < num_devices; x++) {
813 verbs = ibv_open_device(dev_list[x]);
815 if (ibv_query_port(verbs, 1, &port_attr)) {
816 ibv_close_device(verbs);
817 ERROR(errp, "Could not query initial IB port");
818 return -EINVAL;
821 if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
822 ib_found = true;
823 } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
824 roce_found = true;
827 ibv_close_device(verbs);
831 if (roce_found) {
832 if (ib_found) {
833 fprintf(stderr, "WARN: migrations may fail:"
834 " IPv6 over RoCE / iWARP in linux"
835 " is broken. But since you appear to have a"
836 " mixed RoCE / IB environment, be sure to only"
837 " migrate over the IB fabric until the kernel "
838 " fixes the bug.\n");
839 } else {
840 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
841 " and your management software has specified '[::]'"
842 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
843 return -ENONET;
847 return 0;
851 * If we have a verbs context, that means that some other than '[::]' was
852 * used by the management software for binding. In which case we can actually
853 * warn the user about a potential broken kernel;
856 /* IB ports start with 1, not 0 */
857 if (ibv_query_port(verbs, 1, &port_attr)) {
858 ERROR(errp, "Could not query initial IB port");
859 return -EINVAL;
862 if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
863 ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
864 "(but patches on linux-rdma in progress)");
865 return -ENONET;
868 #endif
870 return 0;
874 * Figure out which RDMA device corresponds to the requested IP hostname
875 * Also create the initial connection manager identifiers for opening
876 * the connection.
878 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
880 int ret;
881 struct rdma_addrinfo *res;
882 char port_str[16];
883 struct rdma_cm_event *cm_event;
884 char ip[40] = "unknown";
885 struct rdma_addrinfo *e;
887 if (rdma->host == NULL || !strcmp(rdma->host, "")) {
888 ERROR(errp, "RDMA hostname has not been set");
889 return -EINVAL;
892 /* create CM channel */
893 rdma->channel = rdma_create_event_channel();
894 if (!rdma->channel) {
895 ERROR(errp, "could not create CM channel");
896 return -EINVAL;
899 /* create CM id */
900 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
901 if (ret) {
902 ERROR(errp, "could not create channel id");
903 goto err_resolve_create_id;
906 snprintf(port_str, 16, "%d", rdma->port);
907 port_str[15] = '\0';
909 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
910 if (ret < 0) {
911 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
912 goto err_resolve_get_addr;
915 for (e = res; e != NULL; e = e->ai_next) {
916 inet_ntop(e->ai_family,
917 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
918 DPRINTF("Trying %s => %s\n", rdma->host, ip);
920 ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
921 RDMA_RESOLVE_TIMEOUT_MS);
922 if (!ret) {
923 ret = qemu_rdma_broken_ipv6_kernel(errp, rdma->cm_id->verbs);
924 if (ret) {
925 continue;
927 goto route;
931 ERROR(errp, "could not resolve address %s", rdma->host);
932 goto err_resolve_get_addr;
934 route:
935 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
937 ret = rdma_get_cm_event(rdma->channel, &cm_event);
938 if (ret) {
939 ERROR(errp, "could not perform event_addr_resolved");
940 goto err_resolve_get_addr;
943 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
944 ERROR(errp, "result not equal to event_addr_resolved %s",
945 rdma_event_str(cm_event->event));
946 perror("rdma_resolve_addr");
947 ret = -EINVAL;
948 goto err_resolve_get_addr;
950 rdma_ack_cm_event(cm_event);
952 /* resolve route */
953 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
954 if (ret) {
955 ERROR(errp, "could not resolve rdma route");
956 goto err_resolve_get_addr;
959 ret = rdma_get_cm_event(rdma->channel, &cm_event);
960 if (ret) {
961 ERROR(errp, "could not perform event_route_resolved");
962 goto err_resolve_get_addr;
964 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
965 ERROR(errp, "result not equal to event_route_resolved: %s",
966 rdma_event_str(cm_event->event));
967 rdma_ack_cm_event(cm_event);
968 ret = -EINVAL;
969 goto err_resolve_get_addr;
971 rdma_ack_cm_event(cm_event);
972 rdma->verbs = rdma->cm_id->verbs;
973 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
974 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
975 return 0;
977 err_resolve_get_addr:
978 rdma_destroy_id(rdma->cm_id);
979 rdma->cm_id = NULL;
980 err_resolve_create_id:
981 rdma_destroy_event_channel(rdma->channel);
982 rdma->channel = NULL;
983 return ret;
987 * Create protection domain and completion queues
989 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
991 /* allocate pd */
992 rdma->pd = ibv_alloc_pd(rdma->verbs);
993 if (!rdma->pd) {
994 fprintf(stderr, "failed to allocate protection domain\n");
995 return -1;
998 /* create completion channel */
999 rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
1000 if (!rdma->comp_channel) {
1001 fprintf(stderr, "failed to allocate completion channel\n");
1002 goto err_alloc_pd_cq;
1006 * Completion queue can be filled by both read and write work requests,
1007 * so must reflect the sum of both possible queue sizes.
1009 rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1010 NULL, rdma->comp_channel, 0);
1011 if (!rdma->cq) {
1012 fprintf(stderr, "failed to allocate completion queue\n");
1013 goto err_alloc_pd_cq;
1016 return 0;
1018 err_alloc_pd_cq:
1019 if (rdma->pd) {
1020 ibv_dealloc_pd(rdma->pd);
1022 if (rdma->comp_channel) {
1023 ibv_destroy_comp_channel(rdma->comp_channel);
1025 rdma->pd = NULL;
1026 rdma->comp_channel = NULL;
1027 return -1;
1032 * Create queue pairs.
1034 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1036 struct ibv_qp_init_attr attr = { 0 };
1037 int ret;
1039 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1040 attr.cap.max_recv_wr = 3;
1041 attr.cap.max_send_sge = 1;
1042 attr.cap.max_recv_sge = 1;
1043 attr.send_cq = rdma->cq;
1044 attr.recv_cq = rdma->cq;
1045 attr.qp_type = IBV_QPT_RC;
1047 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1048 if (ret) {
1049 return -1;
1052 rdma->qp = rdma->cm_id->qp;
1053 return 0;
1056 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1058 int i;
1059 RDMALocalBlocks *local = &rdma->local_ram_blocks;
1061 for (i = 0; i < local->nb_blocks; i++) {
1062 local->block[i].mr =
1063 ibv_reg_mr(rdma->pd,
1064 local->block[i].local_host_addr,
1065 local->block[i].length,
1066 IBV_ACCESS_LOCAL_WRITE |
1067 IBV_ACCESS_REMOTE_WRITE
1069 if (!local->block[i].mr) {
1070 perror("Failed to register local dest ram block!\n");
1071 break;
1073 rdma->total_registrations++;
1076 if (i >= local->nb_blocks) {
1077 return 0;
1080 for (i--; i >= 0; i--) {
1081 ibv_dereg_mr(local->block[i].mr);
1082 rdma->total_registrations--;
1085 return -1;
1090 * Find the ram block that corresponds to the page requested to be
1091 * transmitted by QEMU.
1093 * Once the block is found, also identify which 'chunk' within that
1094 * block that the page belongs to.
1096 * This search cannot fail or the migration will fail.
1098 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1099 uint64_t block_offset,
1100 uint64_t offset,
1101 uint64_t length,
1102 uint64_t *block_index,
1103 uint64_t *chunk_index)
1105 uint64_t current_addr = block_offset + offset;
1106 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1107 (void *) block_offset);
1108 assert(block);
1109 assert(current_addr >= block->offset);
1110 assert((current_addr + length) <= (block->offset + block->length));
1112 *block_index = block->index;
1113 *chunk_index = ram_chunk_index(block->local_host_addr,
1114 block->local_host_addr + (current_addr - block->offset));
1116 return 0;
1120 * Register a chunk with IB. If the chunk was already registered
1121 * previously, then skip.
1123 * Also return the keys associated with the registration needed
1124 * to perform the actual RDMA operation.
1126 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1127 RDMALocalBlock *block, uint8_t *host_addr,
1128 uint32_t *lkey, uint32_t *rkey, int chunk,
1129 uint8_t *chunk_start, uint8_t *chunk_end)
1131 if (block->mr) {
1132 if (lkey) {
1133 *lkey = block->mr->lkey;
1135 if (rkey) {
1136 *rkey = block->mr->rkey;
1138 return 0;
1141 /* allocate memory to store chunk MRs */
1142 if (!block->pmr) {
1143 block->pmr = g_malloc0(block->nb_chunks * sizeof(struct ibv_mr *));
1144 if (!block->pmr) {
1145 return -1;
1150 * If 'rkey', then we're the destination, so grant access to the source.
1152 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1154 if (!block->pmr[chunk]) {
1155 uint64_t len = chunk_end - chunk_start;
1157 DDPRINTF("Registering %" PRIu64 " bytes @ %p\n",
1158 len, chunk_start);
1160 block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1161 chunk_start, len,
1162 (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1163 IBV_ACCESS_REMOTE_WRITE) : 0));
1165 if (!block->pmr[chunk]) {
1166 perror("Failed to register chunk!");
1167 fprintf(stderr, "Chunk details: block: %d chunk index %d"
1168 " start %" PRIu64 " end %" PRIu64 " host %" PRIu64
1169 " local %" PRIu64 " registrations: %d\n",
1170 block->index, chunk, (uint64_t) chunk_start,
1171 (uint64_t) chunk_end, (uint64_t) host_addr,
1172 (uint64_t) block->local_host_addr,
1173 rdma->total_registrations);
1174 return -1;
1176 rdma->total_registrations++;
1179 if (lkey) {
1180 *lkey = block->pmr[chunk]->lkey;
1182 if (rkey) {
1183 *rkey = block->pmr[chunk]->rkey;
1185 return 0;
1189 * Register (at connection time) the memory used for control
1190 * channel messages.
1192 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1194 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1195 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1196 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1197 if (rdma->wr_data[idx].control_mr) {
1198 rdma->total_registrations++;
1199 return 0;
1201 fprintf(stderr, "qemu_rdma_reg_control failed!\n");
1202 return -1;
1205 const char *print_wrid(int wrid)
1207 if (wrid >= RDMA_WRID_RECV_CONTROL) {
1208 return wrid_desc[RDMA_WRID_RECV_CONTROL];
1210 return wrid_desc[wrid];
1214 * RDMA requires memory registration (mlock/pinning), but this is not good for
1215 * overcommitment.
1217 * In preparation for the future where LRU information or workload-specific
1218 * writable writable working set memory access behavior is available to QEMU
1219 * it would be nice to have in place the ability to UN-register/UN-pin
1220 * particular memory regions from the RDMA hardware when it is determine that
1221 * those regions of memory will likely not be accessed again in the near future.
1223 * While we do not yet have such information right now, the following
1224 * compile-time option allows us to perform a non-optimized version of this
1225 * behavior.
1227 * By uncommenting this option, you will cause *all* RDMA transfers to be
1228 * unregistered immediately after the transfer completes on both sides of the
1229 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1231 * This will have a terrible impact on migration performance, so until future
1232 * workload information or LRU information is available, do not attempt to use
1233 * this feature except for basic testing.
1235 //#define RDMA_UNREGISTRATION_EXAMPLE
1238 * Perform a non-optimized memory unregistration after every transfer
1239 * for demonsration purposes, only if pin-all is not requested.
1241 * Potential optimizations:
1242 * 1. Start a new thread to run this function continuously
1243 - for bit clearing
1244 - and for receipt of unregister messages
1245 * 2. Use an LRU.
1246 * 3. Use workload hints.
1248 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1250 while (rdma->unregistrations[rdma->unregister_current]) {
1251 int ret;
1252 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1253 uint64_t chunk =
1254 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1255 uint64_t index =
1256 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1257 RDMALocalBlock *block =
1258 &(rdma->local_ram_blocks.block[index]);
1259 RDMARegister reg = { .current_index = index };
1260 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1262 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1263 .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1264 .repeat = 1,
1267 DDPRINTF("Processing unregister for chunk: %" PRIu64
1268 " at position %d\n", chunk, rdma->unregister_current);
1270 rdma->unregistrations[rdma->unregister_current] = 0;
1271 rdma->unregister_current++;
1273 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1274 rdma->unregister_current = 0;
1279 * Unregistration is speculative (because migration is single-threaded
1280 * and we cannot break the protocol's inifinband message ordering).
1281 * Thus, if the memory is currently being used for transmission,
1282 * then abort the attempt to unregister and try again
1283 * later the next time a completion is received for this memory.
1285 clear_bit(chunk, block->unregister_bitmap);
1287 if (test_bit(chunk, block->transit_bitmap)) {
1288 DDPRINTF("Cannot unregister inflight chunk: %" PRIu64 "\n", chunk);
1289 continue;
1292 DDPRINTF("Sending unregister for chunk: %" PRIu64 "\n", chunk);
1294 ret = ibv_dereg_mr(block->pmr[chunk]);
1295 block->pmr[chunk] = NULL;
1296 block->remote_keys[chunk] = 0;
1298 if (ret != 0) {
1299 perror("unregistration chunk failed");
1300 return -ret;
1302 rdma->total_registrations--;
1304 reg.key.chunk = chunk;
1305 register_to_network(&reg);
1306 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1307 &resp, NULL, NULL);
1308 if (ret < 0) {
1309 return ret;
1312 DDPRINTF("Unregister for chunk: %" PRIu64 " complete.\n", chunk);
1315 return 0;
1318 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1319 uint64_t chunk)
1321 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1323 result |= (index << RDMA_WRID_BLOCK_SHIFT);
1324 result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1326 return result;
1330 * Set bit for unregistration in the next iteration.
1331 * We cannot transmit right here, but will unpin later.
1333 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1334 uint64_t chunk, uint64_t wr_id)
1336 if (rdma->unregistrations[rdma->unregister_next] != 0) {
1337 fprintf(stderr, "rdma migration: queue is full!\n");
1338 } else {
1339 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1341 if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1342 DDPRINTF("Appending unregister chunk %" PRIu64
1343 " at position %d\n", chunk, rdma->unregister_next);
1345 rdma->unregistrations[rdma->unregister_next++] =
1346 qemu_rdma_make_wrid(wr_id, index, chunk);
1348 if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1349 rdma->unregister_next = 0;
1351 } else {
1352 DDPRINTF("Unregister chunk %" PRIu64 " already in queue.\n",
1353 chunk);
1359 * Consult the connection manager to see a work request
1360 * (of any kind) has completed.
1361 * Return the work request ID that completed.
1363 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
1364 uint32_t *byte_len)
1366 int ret;
1367 struct ibv_wc wc;
1368 uint64_t wr_id;
1370 ret = ibv_poll_cq(rdma->cq, 1, &wc);
1372 if (!ret) {
1373 *wr_id_out = RDMA_WRID_NONE;
1374 return 0;
1377 if (ret < 0) {
1378 fprintf(stderr, "ibv_poll_cq return %d!\n", ret);
1379 return ret;
1382 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1384 if (wc.status != IBV_WC_SUCCESS) {
1385 fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1386 wc.status, ibv_wc_status_str(wc.status));
1387 fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1389 return -1;
1392 if (rdma->control_ready_expected &&
1393 (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1394 DDDPRINTF("completion %s #%" PRId64 " received (%" PRId64 ")"
1395 " left %d\n", wrid_desc[RDMA_WRID_RECV_CONTROL],
1396 wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1397 rdma->control_ready_expected = 0;
1400 if (wr_id == RDMA_WRID_RDMA_WRITE) {
1401 uint64_t chunk =
1402 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1403 uint64_t index =
1404 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1405 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1407 DDDPRINTF("completions %s (%" PRId64 ") left %d, "
1408 "block %" PRIu64 ", chunk: %" PRIu64 " %p %p\n",
1409 print_wrid(wr_id), wr_id, rdma->nb_sent, index, chunk,
1410 block->local_host_addr, (void *)block->remote_host_addr);
1412 clear_bit(chunk, block->transit_bitmap);
1414 if (rdma->nb_sent > 0) {
1415 rdma->nb_sent--;
1418 if (!rdma->pin_all) {
1420 * FYI: If one wanted to signal a specific chunk to be unregistered
1421 * using LRU or workload-specific information, this is the function
1422 * you would call to do so. That chunk would then get asynchronously
1423 * unregistered later.
1425 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1426 qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1427 #endif
1429 } else {
1430 DDDPRINTF("other completion %s (%" PRId64 ") received left %d\n",
1431 print_wrid(wr_id), wr_id, rdma->nb_sent);
1434 *wr_id_out = wc.wr_id;
1435 if (byte_len) {
1436 *byte_len = wc.byte_len;
1439 return 0;
1443 * Block until the next work request has completed.
1445 * First poll to see if a work request has already completed,
1446 * otherwise block.
1448 * If we encounter completed work requests for IDs other than
1449 * the one we're interested in, then that's generally an error.
1451 * The only exception is actual RDMA Write completions. These
1452 * completions only need to be recorded, but do not actually
1453 * need further processing.
1455 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1456 uint32_t *byte_len)
1458 int num_cq_events = 0, ret = 0;
1459 struct ibv_cq *cq;
1460 void *cq_ctx;
1461 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1463 if (ibv_req_notify_cq(rdma->cq, 0)) {
1464 return -1;
1466 /* poll cq first */
1467 while (wr_id != wrid_requested) {
1468 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1469 if (ret < 0) {
1470 return ret;
1473 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1475 if (wr_id == RDMA_WRID_NONE) {
1476 break;
1478 if (wr_id != wrid_requested) {
1479 DDDPRINTF("A Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n",
1480 print_wrid(wrid_requested),
1481 wrid_requested, print_wrid(wr_id), wr_id);
1485 if (wr_id == wrid_requested) {
1486 return 0;
1489 while (1) {
1491 * Coroutine doesn't start until process_incoming_migration()
1492 * so don't yield unless we know we're running inside of a coroutine.
1494 if (rdma->migration_started_on_destination) {
1495 yield_until_fd_readable(rdma->comp_channel->fd);
1498 if (ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx)) {
1499 perror("ibv_get_cq_event");
1500 goto err_block_for_wrid;
1503 num_cq_events++;
1505 if (ibv_req_notify_cq(cq, 0)) {
1506 goto err_block_for_wrid;
1509 while (wr_id != wrid_requested) {
1510 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1511 if (ret < 0) {
1512 goto err_block_for_wrid;
1515 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1517 if (wr_id == RDMA_WRID_NONE) {
1518 break;
1520 if (wr_id != wrid_requested) {
1521 DDDPRINTF("B Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n",
1522 print_wrid(wrid_requested), wrid_requested,
1523 print_wrid(wr_id), wr_id);
1527 if (wr_id == wrid_requested) {
1528 goto success_block_for_wrid;
1532 success_block_for_wrid:
1533 if (num_cq_events) {
1534 ibv_ack_cq_events(cq, num_cq_events);
1536 return 0;
1538 err_block_for_wrid:
1539 if (num_cq_events) {
1540 ibv_ack_cq_events(cq, num_cq_events);
1542 return ret;
1546 * Post a SEND message work request for the control channel
1547 * containing some data and block until the post completes.
1549 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1550 RDMAControlHeader *head)
1552 int ret = 0;
1553 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1554 struct ibv_send_wr *bad_wr;
1555 struct ibv_sge sge = {
1556 .addr = (uint64_t)(wr->control),
1557 .length = head->len + sizeof(RDMAControlHeader),
1558 .lkey = wr->control_mr->lkey,
1560 struct ibv_send_wr send_wr = {
1561 .wr_id = RDMA_WRID_SEND_CONTROL,
1562 .opcode = IBV_WR_SEND,
1563 .send_flags = IBV_SEND_SIGNALED,
1564 .sg_list = &sge,
1565 .num_sge = 1,
1568 DDDPRINTF("CONTROL: sending %s..\n", control_desc[head->type]);
1571 * We don't actually need to do a memcpy() in here if we used
1572 * the "sge" properly, but since we're only sending control messages
1573 * (not RAM in a performance-critical path), then its OK for now.
1575 * The copy makes the RDMAControlHeader simpler to manipulate
1576 * for the time being.
1578 assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1579 memcpy(wr->control, head, sizeof(RDMAControlHeader));
1580 control_to_network((void *) wr->control);
1582 if (buf) {
1583 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1587 if (ibv_post_send(rdma->qp, &send_wr, &bad_wr)) {
1588 return -1;
1591 if (ret < 0) {
1592 fprintf(stderr, "Failed to use post IB SEND for control!\n");
1593 return ret;
1596 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1597 if (ret < 0) {
1598 fprintf(stderr, "rdma migration: send polling control error!\n");
1601 return ret;
1605 * Post a RECV work request in anticipation of some future receipt
1606 * of data on the control channel.
1608 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1610 struct ibv_recv_wr *bad_wr;
1611 struct ibv_sge sge = {
1612 .addr = (uint64_t)(rdma->wr_data[idx].control),
1613 .length = RDMA_CONTROL_MAX_BUFFER,
1614 .lkey = rdma->wr_data[idx].control_mr->lkey,
1617 struct ibv_recv_wr recv_wr = {
1618 .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1619 .sg_list = &sge,
1620 .num_sge = 1,
1624 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1625 return -1;
1628 return 0;
1632 * Block and wait for a RECV control channel message to arrive.
1634 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1635 RDMAControlHeader *head, int expecting, int idx)
1637 uint32_t byte_len;
1638 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1639 &byte_len);
1641 if (ret < 0) {
1642 fprintf(stderr, "rdma migration: recv polling control error!\n");
1643 return ret;
1646 network_to_control((void *) rdma->wr_data[idx].control);
1647 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1649 DDDPRINTF("CONTROL: %s receiving...\n", control_desc[expecting]);
1651 if (expecting == RDMA_CONTROL_NONE) {
1652 DDDPRINTF("Surprise: got %s (%d)\n",
1653 control_desc[head->type], head->type);
1654 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1655 fprintf(stderr, "Was expecting a %s (%d) control message"
1656 ", but got: %s (%d), length: %d\n",
1657 control_desc[expecting], expecting,
1658 control_desc[head->type], head->type, head->len);
1659 return -EIO;
1661 if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1662 fprintf(stderr, "too long length: %d\n", head->len);
1663 return -EINVAL;
1665 if (sizeof(*head) + head->len != byte_len) {
1666 fprintf(stderr, "Malformed length: %d byte_len %d\n",
1667 head->len, byte_len);
1668 return -EINVAL;
1671 return 0;
1675 * When a RECV work request has completed, the work request's
1676 * buffer is pointed at the header.
1678 * This will advance the pointer to the data portion
1679 * of the control message of the work request's buffer that
1680 * was populated after the work request finished.
1682 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1683 RDMAControlHeader *head)
1685 rdma->wr_data[idx].control_len = head->len;
1686 rdma->wr_data[idx].control_curr =
1687 rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1691 * This is an 'atomic' high-level operation to deliver a single, unified
1692 * control-channel message.
1694 * Additionally, if the user is expecting some kind of reply to this message,
1695 * they can request a 'resp' response message be filled in by posting an
1696 * additional work request on behalf of the user and waiting for an additional
1697 * completion.
1699 * The extra (optional) response is used during registration to us from having
1700 * to perform an *additional* exchange of message just to provide a response by
1701 * instead piggy-backing on the acknowledgement.
1703 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1704 uint8_t *data, RDMAControlHeader *resp,
1705 int *resp_idx,
1706 int (*callback)(RDMAContext *rdma))
1708 int ret = 0;
1711 * Wait until the dest is ready before attempting to deliver the message
1712 * by waiting for a READY message.
1714 if (rdma->control_ready_expected) {
1715 RDMAControlHeader resp;
1716 ret = qemu_rdma_exchange_get_response(rdma,
1717 &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1718 if (ret < 0) {
1719 return ret;
1724 * If the user is expecting a response, post a WR in anticipation of it.
1726 if (resp) {
1727 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1728 if (ret) {
1729 fprintf(stderr, "rdma migration: error posting"
1730 " extra control recv for anticipated result!");
1731 return ret;
1736 * Post a WR to replace the one we just consumed for the READY message.
1738 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1739 if (ret) {
1740 fprintf(stderr, "rdma migration: error posting first control recv!");
1741 return ret;
1745 * Deliver the control message that was requested.
1747 ret = qemu_rdma_post_send_control(rdma, data, head);
1749 if (ret < 0) {
1750 fprintf(stderr, "Failed to send control buffer!\n");
1751 return ret;
1755 * If we're expecting a response, block and wait for it.
1757 if (resp) {
1758 if (callback) {
1759 DDPRINTF("Issuing callback before receiving response...\n");
1760 ret = callback(rdma);
1761 if (ret < 0) {
1762 return ret;
1766 DDPRINTF("Waiting for response %s\n", control_desc[resp->type]);
1767 ret = qemu_rdma_exchange_get_response(rdma, resp,
1768 resp->type, RDMA_WRID_DATA);
1770 if (ret < 0) {
1771 return ret;
1774 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1775 if (resp_idx) {
1776 *resp_idx = RDMA_WRID_DATA;
1778 DDPRINTF("Response %s received.\n", control_desc[resp->type]);
1781 rdma->control_ready_expected = 1;
1783 return 0;
1787 * This is an 'atomic' high-level operation to receive a single, unified
1788 * control-channel message.
1790 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1791 int expecting)
1793 RDMAControlHeader ready = {
1794 .len = 0,
1795 .type = RDMA_CONTROL_READY,
1796 .repeat = 1,
1798 int ret;
1801 * Inform the source that we're ready to receive a message.
1803 ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1805 if (ret < 0) {
1806 fprintf(stderr, "Failed to send control buffer!\n");
1807 return ret;
1811 * Block and wait for the message.
1813 ret = qemu_rdma_exchange_get_response(rdma, head,
1814 expecting, RDMA_WRID_READY);
1816 if (ret < 0) {
1817 return ret;
1820 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1823 * Post a new RECV work request to replace the one we just consumed.
1825 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1826 if (ret) {
1827 fprintf(stderr, "rdma migration: error posting second control recv!");
1828 return ret;
1831 return 0;
1835 * Write an actual chunk of memory using RDMA.
1837 * If we're using dynamic registration on the dest-side, we have to
1838 * send a registration command first.
1840 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1841 int current_index, uint64_t current_addr,
1842 uint64_t length)
1844 struct ibv_sge sge;
1845 struct ibv_send_wr send_wr = { 0 };
1846 struct ibv_send_wr *bad_wr;
1847 int reg_result_idx, ret, count = 0;
1848 uint64_t chunk, chunks;
1849 uint8_t *chunk_start, *chunk_end;
1850 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1851 RDMARegister reg;
1852 RDMARegisterResult *reg_result;
1853 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1854 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1855 .type = RDMA_CONTROL_REGISTER_REQUEST,
1856 .repeat = 1,
1859 retry:
1860 sge.addr = (uint64_t)(block->local_host_addr +
1861 (current_addr - block->offset));
1862 sge.length = length;
1864 chunk = ram_chunk_index(block->local_host_addr, (uint8_t *) sge.addr);
1865 chunk_start = ram_chunk_start(block, chunk);
1867 if (block->is_ram_block) {
1868 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
1870 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1871 chunks--;
1873 } else {
1874 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
1876 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1877 chunks--;
1881 DDPRINTF("Writing %" PRIu64 " chunks, (%" PRIu64 " MB)\n",
1882 chunks + 1, (chunks + 1) * (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
1884 chunk_end = ram_chunk_end(block, chunk + chunks);
1886 if (!rdma->pin_all) {
1887 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1888 qemu_rdma_unregister_waiting(rdma);
1889 #endif
1892 while (test_bit(chunk, block->transit_bitmap)) {
1893 (void)count;
1894 DDPRINTF("(%d) Not clobbering: block: %d chunk %" PRIu64
1895 " current %" PRIu64 " len %" PRIu64 " %d %d\n",
1896 count++, current_index, chunk,
1897 sge.addr, length, rdma->nb_sent, block->nb_chunks);
1899 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
1901 if (ret < 0) {
1902 fprintf(stderr, "Failed to Wait for previous write to complete "
1903 "block %d chunk %" PRIu64
1904 " current %" PRIu64 " len %" PRIu64 " %d\n",
1905 current_index, chunk, sge.addr, length, rdma->nb_sent);
1906 return ret;
1910 if (!rdma->pin_all || !block->is_ram_block) {
1911 if (!block->remote_keys[chunk]) {
1913 * This chunk has not yet been registered, so first check to see
1914 * if the entire chunk is zero. If so, tell the other size to
1915 * memset() + madvise() the entire chunk without RDMA.
1918 if (can_use_buffer_find_nonzero_offset((void *)sge.addr, length)
1919 && buffer_find_nonzero_offset((void *)sge.addr,
1920 length) == length) {
1921 RDMACompress comp = {
1922 .offset = current_addr,
1923 .value = 0,
1924 .block_idx = current_index,
1925 .length = length,
1928 head.len = sizeof(comp);
1929 head.type = RDMA_CONTROL_COMPRESS;
1931 DDPRINTF("Entire chunk is zero, sending compress: %"
1932 PRIu64 " for %d "
1933 "bytes, index: %d, offset: %" PRId64 "...\n",
1934 chunk, sge.length, current_index, current_addr);
1936 compress_to_network(&comp);
1937 ret = qemu_rdma_exchange_send(rdma, &head,
1938 (uint8_t *) &comp, NULL, NULL, NULL);
1940 if (ret < 0) {
1941 return -EIO;
1944 acct_update_position(f, sge.length, true);
1946 return 1;
1950 * Otherwise, tell other side to register.
1952 reg.current_index = current_index;
1953 if (block->is_ram_block) {
1954 reg.key.current_addr = current_addr;
1955 } else {
1956 reg.key.chunk = chunk;
1958 reg.chunks = chunks;
1960 DDPRINTF("Sending registration request chunk %" PRIu64 " for %d "
1961 "bytes, index: %d, offset: %" PRId64 "...\n",
1962 chunk, sge.length, current_index, current_addr);
1964 register_to_network(&reg);
1965 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1966 &resp, &reg_result_idx, NULL);
1967 if (ret < 0) {
1968 return ret;
1971 /* try to overlap this single registration with the one we sent. */
1972 if (qemu_rdma_register_and_get_keys(rdma, block,
1973 (uint8_t *) sge.addr,
1974 &sge.lkey, NULL, chunk,
1975 chunk_start, chunk_end)) {
1976 fprintf(stderr, "cannot get lkey!\n");
1977 return -EINVAL;
1980 reg_result = (RDMARegisterResult *)
1981 rdma->wr_data[reg_result_idx].control_curr;
1983 network_to_result(reg_result);
1985 DDPRINTF("Received registration result:"
1986 " my key: %x their key %x, chunk %" PRIu64 "\n",
1987 block->remote_keys[chunk], reg_result->rkey, chunk);
1989 block->remote_keys[chunk] = reg_result->rkey;
1990 block->remote_host_addr = reg_result->host_addr;
1991 } else {
1992 /* already registered before */
1993 if (qemu_rdma_register_and_get_keys(rdma, block,
1994 (uint8_t *)sge.addr,
1995 &sge.lkey, NULL, chunk,
1996 chunk_start, chunk_end)) {
1997 fprintf(stderr, "cannot get lkey!\n");
1998 return -EINVAL;
2002 send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2003 } else {
2004 send_wr.wr.rdma.rkey = block->remote_rkey;
2006 if (qemu_rdma_register_and_get_keys(rdma, block, (uint8_t *)sge.addr,
2007 &sge.lkey, NULL, chunk,
2008 chunk_start, chunk_end)) {
2009 fprintf(stderr, "cannot get lkey!\n");
2010 return -EINVAL;
2015 * Encode the ram block index and chunk within this wrid.
2016 * We will use this information at the time of completion
2017 * to figure out which bitmap to check against and then which
2018 * chunk in the bitmap to look for.
2020 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2021 current_index, chunk);
2023 send_wr.opcode = IBV_WR_RDMA_WRITE;
2024 send_wr.send_flags = IBV_SEND_SIGNALED;
2025 send_wr.sg_list = &sge;
2026 send_wr.num_sge = 1;
2027 send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2028 (current_addr - block->offset);
2030 DDDPRINTF("Posting chunk: %" PRIu64 ", addr: %lx"
2031 " remote: %lx, bytes %" PRIu32 "\n",
2032 chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2033 sge.length);
2036 * ibv_post_send() does not return negative error numbers,
2037 * per the specification they are positive - no idea why.
2039 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2041 if (ret == ENOMEM) {
2042 DDPRINTF("send queue is full. wait a little....\n");
2043 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2044 if (ret < 0) {
2045 fprintf(stderr, "rdma migration: failed to make "
2046 "room in full send queue! %d\n", ret);
2047 return ret;
2050 goto retry;
2052 } else if (ret > 0) {
2053 perror("rdma migration: post rdma write failed");
2054 return -ret;
2057 set_bit(chunk, block->transit_bitmap);
2058 acct_update_position(f, sge.length, false);
2059 rdma->total_writes++;
2061 return 0;
2065 * Push out any unwritten RDMA operations.
2067 * We support sending out multiple chunks at the same time.
2068 * Not all of them need to get signaled in the completion queue.
2070 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2072 int ret;
2074 if (!rdma->current_length) {
2075 return 0;
2078 ret = qemu_rdma_write_one(f, rdma,
2079 rdma->current_index, rdma->current_addr, rdma->current_length);
2081 if (ret < 0) {
2082 return ret;
2085 if (ret == 0) {
2086 rdma->nb_sent++;
2087 DDDPRINTF("sent total: %d\n", rdma->nb_sent);
2090 rdma->current_length = 0;
2091 rdma->current_addr = 0;
2093 return 0;
2096 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2097 uint64_t offset, uint64_t len)
2099 RDMALocalBlock *block;
2100 uint8_t *host_addr;
2101 uint8_t *chunk_end;
2103 if (rdma->current_index < 0) {
2104 return 0;
2107 if (rdma->current_chunk < 0) {
2108 return 0;
2111 block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2112 host_addr = block->local_host_addr + (offset - block->offset);
2113 chunk_end = ram_chunk_end(block, rdma->current_chunk);
2115 if (rdma->current_length == 0) {
2116 return 0;
2120 * Only merge into chunk sequentially.
2122 if (offset != (rdma->current_addr + rdma->current_length)) {
2123 return 0;
2126 if (offset < block->offset) {
2127 return 0;
2130 if ((offset + len) > (block->offset + block->length)) {
2131 return 0;
2134 if ((host_addr + len) > chunk_end) {
2135 return 0;
2138 return 1;
2142 * We're not actually writing here, but doing three things:
2144 * 1. Identify the chunk the buffer belongs to.
2145 * 2. If the chunk is full or the buffer doesn't belong to the current
2146 * chunk, then start a new chunk and flush() the old chunk.
2147 * 3. To keep the hardware busy, we also group chunks into batches
2148 * and only require that a batch gets acknowledged in the completion
2149 * qeueue instead of each individual chunk.
2151 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2152 uint64_t block_offset, uint64_t offset,
2153 uint64_t len)
2155 uint64_t current_addr = block_offset + offset;
2156 uint64_t index = rdma->current_index;
2157 uint64_t chunk = rdma->current_chunk;
2158 int ret;
2160 /* If we cannot merge it, we flush the current buffer first. */
2161 if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2162 ret = qemu_rdma_write_flush(f, rdma);
2163 if (ret) {
2164 return ret;
2166 rdma->current_length = 0;
2167 rdma->current_addr = current_addr;
2169 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2170 offset, len, &index, &chunk);
2171 if (ret) {
2172 fprintf(stderr, "ram block search failed\n");
2173 return ret;
2175 rdma->current_index = index;
2176 rdma->current_chunk = chunk;
2179 /* merge it */
2180 rdma->current_length += len;
2182 /* flush it if buffer is too large */
2183 if (rdma->current_length >= RDMA_MERGE_MAX) {
2184 return qemu_rdma_write_flush(f, rdma);
2187 return 0;
2190 static void qemu_rdma_cleanup(RDMAContext *rdma)
2192 struct rdma_cm_event *cm_event;
2193 int ret, idx;
2195 if (rdma->cm_id) {
2196 if (rdma->error_state) {
2197 RDMAControlHeader head = { .len = 0,
2198 .type = RDMA_CONTROL_ERROR,
2199 .repeat = 1,
2201 fprintf(stderr, "Early error. Sending error.\n");
2202 qemu_rdma_post_send_control(rdma, NULL, &head);
2205 ret = rdma_disconnect(rdma->cm_id);
2206 if (!ret) {
2207 DDPRINTF("waiting for disconnect\n");
2208 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2209 if (!ret) {
2210 rdma_ack_cm_event(cm_event);
2213 DDPRINTF("Disconnected.\n");
2214 rdma->cm_id = NULL;
2217 g_free(rdma->block);
2218 rdma->block = NULL;
2220 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2221 if (rdma->wr_data[idx].control_mr) {
2222 rdma->total_registrations--;
2223 ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2225 rdma->wr_data[idx].control_mr = NULL;
2228 if (rdma->local_ram_blocks.block) {
2229 while (rdma->local_ram_blocks.nb_blocks) {
2230 __qemu_rdma_delete_block(rdma,
2231 rdma->local_ram_blocks.block->offset);
2235 if (rdma->qp) {
2236 ibv_destroy_qp(rdma->qp);
2237 rdma->qp = NULL;
2239 if (rdma->cq) {
2240 ibv_destroy_cq(rdma->cq);
2241 rdma->cq = NULL;
2243 if (rdma->comp_channel) {
2244 ibv_destroy_comp_channel(rdma->comp_channel);
2245 rdma->comp_channel = NULL;
2247 if (rdma->pd) {
2248 ibv_dealloc_pd(rdma->pd);
2249 rdma->pd = NULL;
2251 if (rdma->listen_id) {
2252 rdma_destroy_id(rdma->listen_id);
2253 rdma->listen_id = NULL;
2255 if (rdma->cm_id) {
2256 rdma_destroy_id(rdma->cm_id);
2257 rdma->cm_id = NULL;
2259 if (rdma->channel) {
2260 rdma_destroy_event_channel(rdma->channel);
2261 rdma->channel = NULL;
2263 g_free(rdma->host);
2264 rdma->host = NULL;
2268 static int qemu_rdma_source_init(RDMAContext *rdma, Error **errp, bool pin_all)
2270 int ret, idx;
2271 Error *local_err = NULL, **temp = &local_err;
2274 * Will be validated against destination's actual capabilities
2275 * after the connect() completes.
2277 rdma->pin_all = pin_all;
2279 ret = qemu_rdma_resolve_host(rdma, temp);
2280 if (ret) {
2281 goto err_rdma_source_init;
2284 ret = qemu_rdma_alloc_pd_cq(rdma);
2285 if (ret) {
2286 ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2287 " limits may be too low. Please check $ ulimit -a # and "
2288 "search for 'ulimit -l' in the output");
2289 goto err_rdma_source_init;
2292 ret = qemu_rdma_alloc_qp(rdma);
2293 if (ret) {
2294 ERROR(temp, "rdma migration: error allocating qp!");
2295 goto err_rdma_source_init;
2298 ret = qemu_rdma_init_ram_blocks(rdma);
2299 if (ret) {
2300 ERROR(temp, "rdma migration: error initializing ram blocks!");
2301 goto err_rdma_source_init;
2304 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2305 ret = qemu_rdma_reg_control(rdma, idx);
2306 if (ret) {
2307 ERROR(temp, "rdma migration: error registering %d control!",
2308 idx);
2309 goto err_rdma_source_init;
2313 return 0;
2315 err_rdma_source_init:
2316 error_propagate(errp, local_err);
2317 qemu_rdma_cleanup(rdma);
2318 return -1;
2321 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
2323 RDMACapabilities cap = {
2324 .version = RDMA_CONTROL_VERSION_CURRENT,
2325 .flags = 0,
2327 struct rdma_conn_param conn_param = { .initiator_depth = 2,
2328 .retry_count = 5,
2329 .private_data = &cap,
2330 .private_data_len = sizeof(cap),
2332 struct rdma_cm_event *cm_event;
2333 int ret;
2336 * Only negotiate the capability with destination if the user
2337 * on the source first requested the capability.
2339 if (rdma->pin_all) {
2340 DPRINTF("Server pin-all memory requested.\n");
2341 cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2344 caps_to_network(&cap);
2346 ret = rdma_connect(rdma->cm_id, &conn_param);
2347 if (ret) {
2348 perror("rdma_connect");
2349 ERROR(errp, "connecting to destination!");
2350 rdma_destroy_id(rdma->cm_id);
2351 rdma->cm_id = NULL;
2352 goto err_rdma_source_connect;
2355 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2356 if (ret) {
2357 perror("rdma_get_cm_event after rdma_connect");
2358 ERROR(errp, "connecting to destination!");
2359 rdma_ack_cm_event(cm_event);
2360 rdma_destroy_id(rdma->cm_id);
2361 rdma->cm_id = NULL;
2362 goto err_rdma_source_connect;
2365 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2366 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2367 ERROR(errp, "connecting to destination!");
2368 rdma_ack_cm_event(cm_event);
2369 rdma_destroy_id(rdma->cm_id);
2370 rdma->cm_id = NULL;
2371 goto err_rdma_source_connect;
2374 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2375 network_to_caps(&cap);
2378 * Verify that the *requested* capabilities are supported by the destination
2379 * and disable them otherwise.
2381 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2382 ERROR(errp, "Server cannot support pinning all memory. "
2383 "Will register memory dynamically.");
2384 rdma->pin_all = false;
2387 DPRINTF("Pin all memory: %s\n", rdma->pin_all ? "enabled" : "disabled");
2389 rdma_ack_cm_event(cm_event);
2391 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2392 if (ret) {
2393 ERROR(errp, "posting second control recv!");
2394 goto err_rdma_source_connect;
2397 rdma->control_ready_expected = 1;
2398 rdma->nb_sent = 0;
2399 return 0;
2401 err_rdma_source_connect:
2402 qemu_rdma_cleanup(rdma);
2403 return -1;
2406 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2408 int ret = -EINVAL, idx;
2409 struct rdma_cm_id *listen_id;
2410 char ip[40] = "unknown";
2411 struct rdma_addrinfo *res;
2412 char port_str[16];
2414 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2415 rdma->wr_data[idx].control_len = 0;
2416 rdma->wr_data[idx].control_curr = NULL;
2419 if (rdma->host == NULL) {
2420 ERROR(errp, "RDMA host is not set!");
2421 rdma->error_state = -EINVAL;
2422 return -1;
2424 /* create CM channel */
2425 rdma->channel = rdma_create_event_channel();
2426 if (!rdma->channel) {
2427 ERROR(errp, "could not create rdma event channel");
2428 rdma->error_state = -EINVAL;
2429 return -1;
2432 /* create CM id */
2433 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2434 if (ret) {
2435 ERROR(errp, "could not create cm_id!");
2436 goto err_dest_init_create_listen_id;
2439 snprintf(port_str, 16, "%d", rdma->port);
2440 port_str[15] = '\0';
2442 if (rdma->host && strcmp("", rdma->host)) {
2443 struct rdma_addrinfo *e;
2445 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2446 if (ret < 0) {
2447 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2448 goto err_dest_init_bind_addr;
2451 for (e = res; e != NULL; e = e->ai_next) {
2452 inet_ntop(e->ai_family,
2453 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2454 DPRINTF("Trying %s => %s\n", rdma->host, ip);
2455 ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2456 if (!ret) {
2457 if (e->ai_family == AF_INET6) {
2458 ret = qemu_rdma_broken_ipv6_kernel(errp, listen_id->verbs);
2459 if (ret) {
2460 continue;
2464 goto listen;
2468 ERROR(errp, "Error: could not rdma_bind_addr!");
2469 goto err_dest_init_bind_addr;
2470 } else {
2471 ERROR(errp, "migration host and port not specified!");
2472 ret = -EINVAL;
2473 goto err_dest_init_bind_addr;
2475 listen:
2477 rdma->listen_id = listen_id;
2478 qemu_rdma_dump_gid("dest_init", listen_id);
2479 return 0;
2481 err_dest_init_bind_addr:
2482 rdma_destroy_id(listen_id);
2483 err_dest_init_create_listen_id:
2484 rdma_destroy_event_channel(rdma->channel);
2485 rdma->channel = NULL;
2486 rdma->error_state = ret;
2487 return ret;
2491 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2493 RDMAContext *rdma = NULL;
2494 InetSocketAddress *addr;
2496 if (host_port) {
2497 rdma = g_malloc0(sizeof(RDMAContext));
2498 memset(rdma, 0, sizeof(RDMAContext));
2499 rdma->current_index = -1;
2500 rdma->current_chunk = -1;
2502 addr = inet_parse(host_port, NULL);
2503 if (addr != NULL) {
2504 rdma->port = atoi(addr->port);
2505 rdma->host = g_strdup(addr->host);
2506 } else {
2507 ERROR(errp, "bad RDMA migration address '%s'", host_port);
2508 g_free(rdma);
2509 return NULL;
2513 return rdma;
2517 * QEMUFile interface to the control channel.
2518 * SEND messages for control only.
2519 * pc.ram is handled with regular RDMA messages.
2521 static int qemu_rdma_put_buffer(void *opaque, const uint8_t *buf,
2522 int64_t pos, int size)
2524 QEMUFileRDMA *r = opaque;
2525 QEMUFile *f = r->file;
2526 RDMAContext *rdma = r->rdma;
2527 size_t remaining = size;
2528 uint8_t * data = (void *) buf;
2529 int ret;
2531 CHECK_ERROR_STATE();
2534 * Push out any writes that
2535 * we're queued up for pc.ram.
2537 ret = qemu_rdma_write_flush(f, rdma);
2538 if (ret < 0) {
2539 rdma->error_state = ret;
2540 return ret;
2543 while (remaining) {
2544 RDMAControlHeader head;
2546 r->len = MIN(remaining, RDMA_SEND_INCREMENT);
2547 remaining -= r->len;
2549 head.len = r->len;
2550 head.type = RDMA_CONTROL_QEMU_FILE;
2552 ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2554 if (ret < 0) {
2555 rdma->error_state = ret;
2556 return ret;
2559 data += r->len;
2562 return size;
2565 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2566 int size, int idx)
2568 size_t len = 0;
2570 if (rdma->wr_data[idx].control_len) {
2571 DDDPRINTF("RDMA %" PRId64 " of %d bytes already in buffer\n",
2572 rdma->wr_data[idx].control_len, size);
2574 len = MIN(size, rdma->wr_data[idx].control_len);
2575 memcpy(buf, rdma->wr_data[idx].control_curr, len);
2576 rdma->wr_data[idx].control_curr += len;
2577 rdma->wr_data[idx].control_len -= len;
2580 return len;
2584 * QEMUFile interface to the control channel.
2585 * RDMA links don't use bytestreams, so we have to
2586 * return bytes to QEMUFile opportunistically.
2588 static int qemu_rdma_get_buffer(void *opaque, uint8_t *buf,
2589 int64_t pos, int size)
2591 QEMUFileRDMA *r = opaque;
2592 RDMAContext *rdma = r->rdma;
2593 RDMAControlHeader head;
2594 int ret = 0;
2596 CHECK_ERROR_STATE();
2599 * First, we hold on to the last SEND message we
2600 * were given and dish out the bytes until we run
2601 * out of bytes.
2603 r->len = qemu_rdma_fill(r->rdma, buf, size, 0);
2604 if (r->len) {
2605 return r->len;
2609 * Once we run out, we block and wait for another
2610 * SEND message to arrive.
2612 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2614 if (ret < 0) {
2615 rdma->error_state = ret;
2616 return ret;
2620 * SEND was received with new bytes, now try again.
2622 return qemu_rdma_fill(r->rdma, buf, size, 0);
2626 * Block until all the outstanding chunks have been delivered by the hardware.
2628 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2630 int ret;
2632 if (qemu_rdma_write_flush(f, rdma) < 0) {
2633 return -EIO;
2636 while (rdma->nb_sent) {
2637 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2638 if (ret < 0) {
2639 fprintf(stderr, "rdma migration: complete polling error!\n");
2640 return -EIO;
2644 qemu_rdma_unregister_waiting(rdma);
2646 return 0;
2649 static int qemu_rdma_close(void *opaque)
2651 DPRINTF("Shutting down connection.\n");
2652 QEMUFileRDMA *r = opaque;
2653 if (r->rdma) {
2654 qemu_rdma_cleanup(r->rdma);
2655 g_free(r->rdma);
2657 g_free(r);
2658 return 0;
2662 * Parameters:
2663 * @offset == 0 :
2664 * This means that 'block_offset' is a full virtual address that does not
2665 * belong to a RAMBlock of the virtual machine and instead
2666 * represents a private malloc'd memory area that the caller wishes to
2667 * transfer.
2669 * @offset != 0 :
2670 * Offset is an offset to be added to block_offset and used
2671 * to also lookup the corresponding RAMBlock.
2673 * @size > 0 :
2674 * Initiate an transfer this size.
2676 * @size == 0 :
2677 * A 'hint' or 'advice' that means that we wish to speculatively
2678 * and asynchronously unregister this memory. In this case, there is no
2679 * guarantee that the unregister will actually happen, for example,
2680 * if the memory is being actively transmitted. Additionally, the memory
2681 * may be re-registered at any future time if a write within the same
2682 * chunk was requested again, even if you attempted to unregister it
2683 * here.
2685 * @size < 0 : TODO, not yet supported
2686 * Unregister the memory NOW. This means that the caller does not
2687 * expect there to be any future RDMA transfers and we just want to clean
2688 * things up. This is used in case the upper layer owns the memory and
2689 * cannot wait for qemu_fclose() to occur.
2691 * @bytes_sent : User-specificed pointer to indicate how many bytes were
2692 * sent. Usually, this will not be more than a few bytes of
2693 * the protocol because most transfers are sent asynchronously.
2695 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
2696 ram_addr_t block_offset, ram_addr_t offset,
2697 size_t size, int *bytes_sent)
2699 QEMUFileRDMA *rfile = opaque;
2700 RDMAContext *rdma = rfile->rdma;
2701 int ret;
2703 CHECK_ERROR_STATE();
2705 qemu_fflush(f);
2707 if (size > 0) {
2709 * Add this page to the current 'chunk'. If the chunk
2710 * is full, or the page doen't belong to the current chunk,
2711 * an actual RDMA write will occur and a new chunk will be formed.
2713 ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
2714 if (ret < 0) {
2715 fprintf(stderr, "rdma migration: write error! %d\n", ret);
2716 goto err;
2720 * We always return 1 bytes because the RDMA
2721 * protocol is completely asynchronous. We do not yet know
2722 * whether an identified chunk is zero or not because we're
2723 * waiting for other pages to potentially be merged with
2724 * the current chunk. So, we have to call qemu_update_position()
2725 * later on when the actual write occurs.
2727 if (bytes_sent) {
2728 *bytes_sent = 1;
2730 } else {
2731 uint64_t index, chunk;
2733 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
2734 if (size < 0) {
2735 ret = qemu_rdma_drain_cq(f, rdma);
2736 if (ret < 0) {
2737 fprintf(stderr, "rdma: failed to synchronously drain"
2738 " completion queue before unregistration.\n");
2739 goto err;
2744 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2745 offset, size, &index, &chunk);
2747 if (ret) {
2748 fprintf(stderr, "ram block search failed\n");
2749 goto err;
2752 qemu_rdma_signal_unregister(rdma, index, chunk, 0);
2755 * TODO: Synchronous, guaranteed unregistration (should not occur during
2756 * fast-path). Otherwise, unregisters will process on the next call to
2757 * qemu_rdma_drain_cq()
2758 if (size < 0) {
2759 qemu_rdma_unregister_waiting(rdma);
2765 * Drain the Completion Queue if possible, but do not block,
2766 * just poll.
2768 * If nothing to poll, the end of the iteration will do this
2769 * again to make sure we don't overflow the request queue.
2771 while (1) {
2772 uint64_t wr_id, wr_id_in;
2773 int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
2774 if (ret < 0) {
2775 fprintf(stderr, "rdma migration: polling error! %d\n", ret);
2776 goto err;
2779 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
2781 if (wr_id == RDMA_WRID_NONE) {
2782 break;
2786 return RAM_SAVE_CONTROL_DELAYED;
2787 err:
2788 rdma->error_state = ret;
2789 return ret;
2792 static int qemu_rdma_accept(RDMAContext *rdma)
2794 RDMACapabilities cap;
2795 struct rdma_conn_param conn_param = {
2796 .responder_resources = 2,
2797 .private_data = &cap,
2798 .private_data_len = sizeof(cap),
2800 struct rdma_cm_event *cm_event;
2801 struct ibv_context *verbs;
2802 int ret = -EINVAL;
2803 int idx;
2805 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2806 if (ret) {
2807 goto err_rdma_dest_wait;
2810 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
2811 rdma_ack_cm_event(cm_event);
2812 goto err_rdma_dest_wait;
2815 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2817 network_to_caps(&cap);
2819 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
2820 fprintf(stderr, "Unknown source RDMA version: %d, bailing...\n",
2821 cap.version);
2822 rdma_ack_cm_event(cm_event);
2823 goto err_rdma_dest_wait;
2827 * Respond with only the capabilities this version of QEMU knows about.
2829 cap.flags &= known_capabilities;
2832 * Enable the ones that we do know about.
2833 * Add other checks here as new ones are introduced.
2835 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
2836 rdma->pin_all = true;
2839 rdma->cm_id = cm_event->id;
2840 verbs = cm_event->id->verbs;
2842 rdma_ack_cm_event(cm_event);
2844 DPRINTF("Memory pin all: %s\n", rdma->pin_all ? "enabled" : "disabled");
2846 caps_to_network(&cap);
2848 DPRINTF("verbs context after listen: %p\n", verbs);
2850 if (!rdma->verbs) {
2851 rdma->verbs = verbs;
2852 } else if (rdma->verbs != verbs) {
2853 fprintf(stderr, "ibv context not matching %p, %p!\n",
2854 rdma->verbs, verbs);
2855 goto err_rdma_dest_wait;
2858 qemu_rdma_dump_id("dest_init", verbs);
2860 ret = qemu_rdma_alloc_pd_cq(rdma);
2861 if (ret) {
2862 fprintf(stderr, "rdma migration: error allocating pd and cq!\n");
2863 goto err_rdma_dest_wait;
2866 ret = qemu_rdma_alloc_qp(rdma);
2867 if (ret) {
2868 fprintf(stderr, "rdma migration: error allocating qp!\n");
2869 goto err_rdma_dest_wait;
2872 ret = qemu_rdma_init_ram_blocks(rdma);
2873 if (ret) {
2874 fprintf(stderr, "rdma migration: error initializing ram blocks!\n");
2875 goto err_rdma_dest_wait;
2878 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2879 ret = qemu_rdma_reg_control(rdma, idx);
2880 if (ret) {
2881 fprintf(stderr, "rdma: error registering %d control!\n", idx);
2882 goto err_rdma_dest_wait;
2886 qemu_set_fd_handler2(rdma->channel->fd, NULL, NULL, NULL, NULL);
2888 ret = rdma_accept(rdma->cm_id, &conn_param);
2889 if (ret) {
2890 fprintf(stderr, "rdma_accept returns %d!\n", ret);
2891 goto err_rdma_dest_wait;
2894 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2895 if (ret) {
2896 fprintf(stderr, "rdma_accept get_cm_event failed %d!\n", ret);
2897 goto err_rdma_dest_wait;
2900 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2901 fprintf(stderr, "rdma_accept not event established!\n");
2902 rdma_ack_cm_event(cm_event);
2903 goto err_rdma_dest_wait;
2906 rdma_ack_cm_event(cm_event);
2908 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2909 if (ret) {
2910 fprintf(stderr, "rdma migration: error posting second control recv!\n");
2911 goto err_rdma_dest_wait;
2914 qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
2916 return 0;
2918 err_rdma_dest_wait:
2919 rdma->error_state = ret;
2920 qemu_rdma_cleanup(rdma);
2921 return ret;
2925 * During each iteration of the migration, we listen for instructions
2926 * by the source VM to perform dynamic page registrations before they
2927 * can perform RDMA operations.
2929 * We respond with the 'rkey'.
2931 * Keep doing this until the source tells us to stop.
2933 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque,
2934 uint64_t flags)
2936 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
2937 .type = RDMA_CONTROL_REGISTER_RESULT,
2938 .repeat = 0,
2940 RDMAControlHeader unreg_resp = { .len = 0,
2941 .type = RDMA_CONTROL_UNREGISTER_FINISHED,
2942 .repeat = 0,
2944 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
2945 .repeat = 1 };
2946 QEMUFileRDMA *rfile = opaque;
2947 RDMAContext *rdma = rfile->rdma;
2948 RDMALocalBlocks *local = &rdma->local_ram_blocks;
2949 RDMAControlHeader head;
2950 RDMARegister *reg, *registers;
2951 RDMACompress *comp;
2952 RDMARegisterResult *reg_result;
2953 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
2954 RDMALocalBlock *block;
2955 void *host_addr;
2956 int ret = 0;
2957 int idx = 0;
2958 int count = 0;
2959 int i = 0;
2961 CHECK_ERROR_STATE();
2963 do {
2964 DDDPRINTF("Waiting for next request %" PRIu64 "...\n", flags);
2966 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
2968 if (ret < 0) {
2969 break;
2972 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
2973 fprintf(stderr, "rdma: Too many requests in this message (%d)."
2974 "Bailing.\n", head.repeat);
2975 ret = -EIO;
2976 break;
2979 switch (head.type) {
2980 case RDMA_CONTROL_COMPRESS:
2981 comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
2982 network_to_compress(comp);
2984 DDPRINTF("Zapping zero chunk: %" PRId64
2985 " bytes, index %d, offset %" PRId64 "\n",
2986 comp->length, comp->block_idx, comp->offset);
2987 block = &(rdma->local_ram_blocks.block[comp->block_idx]);
2989 host_addr = block->local_host_addr +
2990 (comp->offset - block->offset);
2992 ram_handle_compressed(host_addr, comp->value, comp->length);
2993 break;
2995 case RDMA_CONTROL_REGISTER_FINISHED:
2996 DDDPRINTF("Current registrations complete.\n");
2997 goto out;
2999 case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3000 DPRINTF("Initial setup info requested.\n");
3002 if (rdma->pin_all) {
3003 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3004 if (ret) {
3005 fprintf(stderr, "rdma migration: error dest "
3006 "registering ram blocks!\n");
3007 goto out;
3012 * Dest uses this to prepare to transmit the RAMBlock descriptions
3013 * to the source VM after connection setup.
3014 * Both sides use the "remote" structure to communicate and update
3015 * their "local" descriptions with what was sent.
3017 for (i = 0; i < local->nb_blocks; i++) {
3018 rdma->block[i].remote_host_addr =
3019 (uint64_t)(local->block[i].local_host_addr);
3021 if (rdma->pin_all) {
3022 rdma->block[i].remote_rkey = local->block[i].mr->rkey;
3025 rdma->block[i].offset = local->block[i].offset;
3026 rdma->block[i].length = local->block[i].length;
3028 remote_block_to_network(&rdma->block[i]);
3031 blocks.len = rdma->local_ram_blocks.nb_blocks
3032 * sizeof(RDMARemoteBlock);
3035 ret = qemu_rdma_post_send_control(rdma,
3036 (uint8_t *) rdma->block, &blocks);
3038 if (ret < 0) {
3039 fprintf(stderr, "rdma migration: error sending remote info!\n");
3040 goto out;
3043 break;
3044 case RDMA_CONTROL_REGISTER_REQUEST:
3045 DDPRINTF("There are %d registration requests\n", head.repeat);
3047 reg_resp.repeat = head.repeat;
3048 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3050 for (count = 0; count < head.repeat; count++) {
3051 uint64_t chunk;
3052 uint8_t *chunk_start, *chunk_end;
3054 reg = &registers[count];
3055 network_to_register(reg);
3057 reg_result = &results[count];
3059 DDPRINTF("Registration request (%d): index %d, current_addr %"
3060 PRIu64 " chunks: %" PRIu64 "\n", count,
3061 reg->current_index, reg->key.current_addr, reg->chunks);
3063 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3064 if (block->is_ram_block) {
3065 host_addr = (block->local_host_addr +
3066 (reg->key.current_addr - block->offset));
3067 chunk = ram_chunk_index(block->local_host_addr,
3068 (uint8_t *) host_addr);
3069 } else {
3070 chunk = reg->key.chunk;
3071 host_addr = block->local_host_addr +
3072 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3074 chunk_start = ram_chunk_start(block, chunk);
3075 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3076 if (qemu_rdma_register_and_get_keys(rdma, block,
3077 (uint8_t *)host_addr, NULL, &reg_result->rkey,
3078 chunk, chunk_start, chunk_end)) {
3079 fprintf(stderr, "cannot get rkey!\n");
3080 ret = -EINVAL;
3081 goto out;
3084 reg_result->host_addr = (uint64_t) block->local_host_addr;
3086 DDPRINTF("Registered rkey for this request: %x\n",
3087 reg_result->rkey);
3089 result_to_network(reg_result);
3092 ret = qemu_rdma_post_send_control(rdma,
3093 (uint8_t *) results, &reg_resp);
3095 if (ret < 0) {
3096 fprintf(stderr, "Failed to send control buffer!\n");
3097 goto out;
3099 break;
3100 case RDMA_CONTROL_UNREGISTER_REQUEST:
3101 DDPRINTF("There are %d unregistration requests\n", head.repeat);
3102 unreg_resp.repeat = head.repeat;
3103 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3105 for (count = 0; count < head.repeat; count++) {
3106 reg = &registers[count];
3107 network_to_register(reg);
3109 DDPRINTF("Unregistration request (%d): "
3110 " index %d, chunk %" PRIu64 "\n",
3111 count, reg->current_index, reg->key.chunk);
3113 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3115 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3116 block->pmr[reg->key.chunk] = NULL;
3118 if (ret != 0) {
3119 perror("rdma unregistration chunk failed");
3120 ret = -ret;
3121 goto out;
3124 rdma->total_registrations--;
3126 DDPRINTF("Unregistered chunk %" PRIu64 " successfully.\n",
3127 reg->key.chunk);
3130 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3132 if (ret < 0) {
3133 fprintf(stderr, "Failed to send control buffer!\n");
3134 goto out;
3136 break;
3137 case RDMA_CONTROL_REGISTER_RESULT:
3138 fprintf(stderr, "Invalid RESULT message at dest.\n");
3139 ret = -EIO;
3140 goto out;
3141 default:
3142 fprintf(stderr, "Unknown control message %s\n",
3143 control_desc[head.type]);
3144 ret = -EIO;
3145 goto out;
3147 } while (1);
3148 out:
3149 if (ret < 0) {
3150 rdma->error_state = ret;
3152 return ret;
3155 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3156 uint64_t flags)
3158 QEMUFileRDMA *rfile = opaque;
3159 RDMAContext *rdma = rfile->rdma;
3161 CHECK_ERROR_STATE();
3163 DDDPRINTF("start section: %" PRIu64 "\n", flags);
3164 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3165 qemu_fflush(f);
3167 return 0;
3171 * Inform dest that dynamic registrations are done for now.
3172 * First, flush writes, if any.
3174 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3175 uint64_t flags)
3177 Error *local_err = NULL, **errp = &local_err;
3178 QEMUFileRDMA *rfile = opaque;
3179 RDMAContext *rdma = rfile->rdma;
3180 RDMAControlHeader head = { .len = 0, .repeat = 1 };
3181 int ret = 0;
3183 CHECK_ERROR_STATE();
3185 qemu_fflush(f);
3186 ret = qemu_rdma_drain_cq(f, rdma);
3188 if (ret < 0) {
3189 goto err;
3192 if (flags == RAM_CONTROL_SETUP) {
3193 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3194 RDMALocalBlocks *local = &rdma->local_ram_blocks;
3195 int reg_result_idx, i, j, nb_remote_blocks;
3197 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3198 DPRINTF("Sending registration setup for ram blocks...\n");
3201 * Make sure that we parallelize the pinning on both sides.
3202 * For very large guests, doing this serially takes a really
3203 * long time, so we have to 'interleave' the pinning locally
3204 * with the control messages by performing the pinning on this
3205 * side before we receive the control response from the other
3206 * side that the pinning has completed.
3208 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3209 &reg_result_idx, rdma->pin_all ?
3210 qemu_rdma_reg_whole_ram_blocks : NULL);
3211 if (ret < 0) {
3212 ERROR(errp, "receiving remote info!");
3213 return ret;
3216 nb_remote_blocks = resp.len / sizeof(RDMARemoteBlock);
3219 * The protocol uses two different sets of rkeys (mutually exclusive):
3220 * 1. One key to represent the virtual address of the entire ram block.
3221 * (dynamic chunk registration disabled - pin everything with one rkey.)
3222 * 2. One to represent individual chunks within a ram block.
3223 * (dynamic chunk registration enabled - pin individual chunks.)
3225 * Once the capability is successfully negotiated, the destination transmits
3226 * the keys to use (or sends them later) including the virtual addresses
3227 * and then propagates the remote ram block descriptions to his local copy.
3230 if (local->nb_blocks != nb_remote_blocks) {
3231 ERROR(errp, "ram blocks mismatch #1! "
3232 "Your QEMU command line parameters are probably "
3233 "not identical on both the source and destination.");
3234 return -EINVAL;
3237 qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3238 memcpy(rdma->block,
3239 rdma->wr_data[reg_result_idx].control_curr, resp.len);
3240 for (i = 0; i < nb_remote_blocks; i++) {
3241 network_to_remote_block(&rdma->block[i]);
3243 /* search local ram blocks */
3244 for (j = 0; j < local->nb_blocks; j++) {
3245 if (rdma->block[i].offset != local->block[j].offset) {
3246 continue;
3249 if (rdma->block[i].length != local->block[j].length) {
3250 ERROR(errp, "ram blocks mismatch #2! "
3251 "Your QEMU command line parameters are probably "
3252 "not identical on both the source and destination.");
3253 return -EINVAL;
3255 local->block[j].remote_host_addr =
3256 rdma->block[i].remote_host_addr;
3257 local->block[j].remote_rkey = rdma->block[i].remote_rkey;
3258 break;
3261 if (j >= local->nb_blocks) {
3262 ERROR(errp, "ram blocks mismatch #3! "
3263 "Your QEMU command line parameters are probably "
3264 "not identical on both the source and destination.");
3265 return -EINVAL;
3270 DDDPRINTF("Sending registration finish %" PRIu64 "...\n", flags);
3272 head.type = RDMA_CONTROL_REGISTER_FINISHED;
3273 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3275 if (ret < 0) {
3276 goto err;
3279 return 0;
3280 err:
3281 rdma->error_state = ret;
3282 return ret;
3285 static int qemu_rdma_get_fd(void *opaque)
3287 QEMUFileRDMA *rfile = opaque;
3288 RDMAContext *rdma = rfile->rdma;
3290 return rdma->comp_channel->fd;
3293 const QEMUFileOps rdma_read_ops = {
3294 .get_buffer = qemu_rdma_get_buffer,
3295 .get_fd = qemu_rdma_get_fd,
3296 .close = qemu_rdma_close,
3297 .hook_ram_load = qemu_rdma_registration_handle,
3300 const QEMUFileOps rdma_write_ops = {
3301 .put_buffer = qemu_rdma_put_buffer,
3302 .close = qemu_rdma_close,
3303 .before_ram_iterate = qemu_rdma_registration_start,
3304 .after_ram_iterate = qemu_rdma_registration_stop,
3305 .save_page = qemu_rdma_save_page,
3308 static void *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
3310 QEMUFileRDMA *r = g_malloc0(sizeof(QEMUFileRDMA));
3312 if (qemu_file_mode_is_not_valid(mode)) {
3313 return NULL;
3316 r->rdma = rdma;
3318 if (mode[0] == 'w') {
3319 r->file = qemu_fopen_ops(r, &rdma_write_ops);
3320 } else {
3321 r->file = qemu_fopen_ops(r, &rdma_read_ops);
3324 return r->file;
3327 static void rdma_accept_incoming_migration(void *opaque)
3329 RDMAContext *rdma = opaque;
3330 int ret;
3331 QEMUFile *f;
3332 Error *local_err = NULL, **errp = &local_err;
3334 DPRINTF("Accepting rdma connection...\n");
3335 ret = qemu_rdma_accept(rdma);
3337 if (ret) {
3338 ERROR(errp, "RDMA Migration initialization failed!");
3339 return;
3342 DPRINTF("Accepted migration\n");
3344 f = qemu_fopen_rdma(rdma, "rb");
3345 if (f == NULL) {
3346 ERROR(errp, "could not qemu_fopen_rdma!");
3347 qemu_rdma_cleanup(rdma);
3348 return;
3351 rdma->migration_started_on_destination = 1;
3352 process_incoming_migration(f);
3355 void rdma_start_incoming_migration(const char *host_port, Error **errp)
3357 int ret;
3358 RDMAContext *rdma;
3359 Error *local_err = NULL;
3361 DPRINTF("Starting RDMA-based incoming migration\n");
3362 rdma = qemu_rdma_data_init(host_port, &local_err);
3364 if (rdma == NULL) {
3365 goto err;
3368 ret = qemu_rdma_dest_init(rdma, &local_err);
3370 if (ret) {
3371 goto err;
3374 DPRINTF("qemu_rdma_dest_init success\n");
3376 ret = rdma_listen(rdma->listen_id, 5);
3378 if (ret) {
3379 ERROR(errp, "listening on socket!");
3380 goto err;
3383 DPRINTF("rdma_listen success\n");
3385 qemu_set_fd_handler2(rdma->channel->fd, NULL,
3386 rdma_accept_incoming_migration, NULL,
3387 (void *)(intptr_t) rdma);
3388 return;
3389 err:
3390 error_propagate(errp, local_err);
3391 g_free(rdma);
3394 void rdma_start_outgoing_migration(void *opaque,
3395 const char *host_port, Error **errp)
3397 MigrationState *s = opaque;
3398 Error *local_err = NULL, **temp = &local_err;
3399 RDMAContext *rdma = qemu_rdma_data_init(host_port, &local_err);
3400 int ret = 0;
3402 if (rdma == NULL) {
3403 ERROR(temp, "Failed to initialize RDMA data structures! %d", ret);
3404 goto err;
3407 ret = qemu_rdma_source_init(rdma, &local_err,
3408 s->enabled_capabilities[MIGRATION_CAPABILITY_X_RDMA_PIN_ALL]);
3410 if (ret) {
3411 goto err;
3414 DPRINTF("qemu_rdma_source_init success\n");
3415 ret = qemu_rdma_connect(rdma, &local_err);
3417 if (ret) {
3418 goto err;
3421 DPRINTF("qemu_rdma_source_connect success\n");
3423 s->file = qemu_fopen_rdma(rdma, "wb");
3424 migrate_fd_connect(s);
3425 return;
3426 err:
3427 error_propagate(errp, local_err);
3428 g_free(rdma);
3429 migrate_fd_error(s);