2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
7 * Michael R. Hines <mrhines@us.ibm.com>
8 * Jiuxing Liu <jl@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or
11 * later. See the COPYING file in the top-level directory.
14 #include "qemu-common.h"
15 #include "migration/migration.h"
16 #include "migration/qemu-file.h"
17 #include "exec/cpu-common.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/sockets.h"
20 #include "qemu/bitmap.h"
21 #include "block/coroutine.h"
23 #include <sys/types.h>
24 #include <sys/socket.h>
26 #include <arpa/inet.h>
28 #include <rdma/rdma_cma.h>
31 //#define DEBUG_RDMA_VERBOSE
32 //#define DEBUG_RDMA_REALLY_VERBOSE
35 #define DPRINTF(fmt, ...) \
36 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
38 #define DPRINTF(fmt, ...) \
42 #ifdef DEBUG_RDMA_VERBOSE
43 #define DDPRINTF(fmt, ...) \
44 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
46 #define DDPRINTF(fmt, ...) \
50 #ifdef DEBUG_RDMA_REALLY_VERBOSE
51 #define DDDPRINTF(fmt, ...) \
52 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
54 #define DDDPRINTF(fmt, ...) \
59 * Print and error on both the Monitor and the Log file.
61 #define ERROR(errp, fmt, ...) \
63 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
64 if (errp && (*(errp) == NULL)) { \
65 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
69 #define RDMA_RESOLVE_TIMEOUT_MS 10000
71 /* Do not merge data if larger than this. */
72 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
73 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
75 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
78 * This is only for non-live state being migrated.
79 * Instead of RDMA_WRITE messages, we use RDMA_SEND
80 * messages for that state, which requires a different
81 * delivery design than main memory.
83 #define RDMA_SEND_INCREMENT 32768
86 * Maximum size infiniband SEND message
88 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
89 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
91 #define RDMA_CONTROL_VERSION_CURRENT 1
93 * Capabilities for negotiation.
95 #define RDMA_CAPABILITY_PIN_ALL 0x01
98 * Add the other flags above to this list of known capabilities
99 * as they are introduced.
101 static uint32_t known_capabilities
= RDMA_CAPABILITY_PIN_ALL
;
103 #define CHECK_ERROR_STATE() \
105 if (rdma->error_state) { \
106 if (!rdma->error_reported) { \
107 fprintf(stderr, "RDMA is in an error state waiting migration" \
109 rdma->error_reported = 1; \
111 return rdma->error_state; \
116 * A work request ID is 64-bits and we split up these bits
119 * bits 0-15 : type of control message, 2^16
120 * bits 16-29: ram block index, 2^14
121 * bits 30-63: ram block chunk number, 2^34
123 * The last two bit ranges are only used for RDMA writes,
124 * in order to track their completion and potentially
125 * also track unregistration status of the message.
127 #define RDMA_WRID_TYPE_SHIFT 0UL
128 #define RDMA_WRID_BLOCK_SHIFT 16UL
129 #define RDMA_WRID_CHUNK_SHIFT 30UL
131 #define RDMA_WRID_TYPE_MASK \
132 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
134 #define RDMA_WRID_BLOCK_MASK \
135 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
137 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
140 * RDMA migration protocol:
141 * 1. RDMA Writes (data messages, i.e. RAM)
142 * 2. IB Send/Recv (control channel messages)
146 RDMA_WRID_RDMA_WRITE
= 1,
147 RDMA_WRID_SEND_CONTROL
= 2000,
148 RDMA_WRID_RECV_CONTROL
= 4000,
151 const char *wrid_desc
[] = {
152 [RDMA_WRID_NONE
] = "NONE",
153 [RDMA_WRID_RDMA_WRITE
] = "WRITE RDMA",
154 [RDMA_WRID_SEND_CONTROL
] = "CONTROL SEND",
155 [RDMA_WRID_RECV_CONTROL
] = "CONTROL RECV",
159 * Work request IDs for IB SEND messages only (not RDMA writes).
160 * This is used by the migration protocol to transmit
161 * control messages (such as device state and registration commands)
163 * We could use more WRs, but we have enough for now.
173 * SEND/RECV IB Control Messages.
176 RDMA_CONTROL_NONE
= 0,
178 RDMA_CONTROL_READY
, /* ready to receive */
179 RDMA_CONTROL_QEMU_FILE
, /* QEMUFile-transmitted bytes */
180 RDMA_CONTROL_RAM_BLOCKS_REQUEST
, /* RAMBlock synchronization */
181 RDMA_CONTROL_RAM_BLOCKS_RESULT
, /* RAMBlock synchronization */
182 RDMA_CONTROL_COMPRESS
, /* page contains repeat values */
183 RDMA_CONTROL_REGISTER_REQUEST
, /* dynamic page registration */
184 RDMA_CONTROL_REGISTER_RESULT
, /* key to use after registration */
185 RDMA_CONTROL_REGISTER_FINISHED
, /* current iteration finished */
186 RDMA_CONTROL_UNREGISTER_REQUEST
, /* dynamic UN-registration */
187 RDMA_CONTROL_UNREGISTER_FINISHED
, /* unpinning finished */
190 const char *control_desc
[] = {
191 [RDMA_CONTROL_NONE
] = "NONE",
192 [RDMA_CONTROL_ERROR
] = "ERROR",
193 [RDMA_CONTROL_READY
] = "READY",
194 [RDMA_CONTROL_QEMU_FILE
] = "QEMU FILE",
195 [RDMA_CONTROL_RAM_BLOCKS_REQUEST
] = "RAM BLOCKS REQUEST",
196 [RDMA_CONTROL_RAM_BLOCKS_RESULT
] = "RAM BLOCKS RESULT",
197 [RDMA_CONTROL_COMPRESS
] = "COMPRESS",
198 [RDMA_CONTROL_REGISTER_REQUEST
] = "REGISTER REQUEST",
199 [RDMA_CONTROL_REGISTER_RESULT
] = "REGISTER RESULT",
200 [RDMA_CONTROL_REGISTER_FINISHED
] = "REGISTER FINISHED",
201 [RDMA_CONTROL_UNREGISTER_REQUEST
] = "UNREGISTER REQUEST",
202 [RDMA_CONTROL_UNREGISTER_FINISHED
] = "UNREGISTER FINISHED",
206 * Memory and MR structures used to represent an IB Send/Recv work request.
207 * This is *not* used for RDMA writes, only IB Send/Recv.
210 uint8_t control
[RDMA_CONTROL_MAX_BUFFER
]; /* actual buffer to register */
211 struct ibv_mr
*control_mr
; /* registration metadata */
212 size_t control_len
; /* length of the message */
213 uint8_t *control_curr
; /* start of unconsumed bytes */
214 } RDMAWorkRequestData
;
217 * Negotiate RDMA capabilities during connection-setup time.
224 static void caps_to_network(RDMACapabilities
*cap
)
226 cap
->version
= htonl(cap
->version
);
227 cap
->flags
= htonl(cap
->flags
);
230 static void network_to_caps(RDMACapabilities
*cap
)
232 cap
->version
= ntohl(cap
->version
);
233 cap
->flags
= ntohl(cap
->flags
);
237 * Representation of a RAMBlock from an RDMA perspective.
238 * This is not transmitted, only local.
239 * This and subsequent structures cannot be linked lists
240 * because we're using a single IB message to transmit
241 * the information. It's small anyway, so a list is overkill.
243 typedef struct RDMALocalBlock
{
244 uint8_t *local_host_addr
; /* local virtual address */
245 uint64_t remote_host_addr
; /* remote virtual address */
248 struct ibv_mr
**pmr
; /* MRs for chunk-level registration */
249 struct ibv_mr
*mr
; /* MR for non-chunk-level registration */
250 uint32_t *remote_keys
; /* rkeys for chunk-level registration */
251 uint32_t remote_rkey
; /* rkeys for non-chunk-level registration */
252 int index
; /* which block are we */
255 unsigned long *transit_bitmap
;
256 unsigned long *unregister_bitmap
;
260 * Also represents a RAMblock, but only on the dest.
261 * This gets transmitted by the dest during connection-time
262 * to the source VM and then is used to populate the
263 * corresponding RDMALocalBlock with
264 * the information needed to perform the actual RDMA.
266 typedef struct QEMU_PACKED RDMARemoteBlock
{
267 uint64_t remote_host_addr
;
270 uint32_t remote_rkey
;
274 static uint64_t htonll(uint64_t v
)
276 union { uint32_t lv
[2]; uint64_t llv
; } u
;
277 u
.lv
[0] = htonl(v
>> 32);
278 u
.lv
[1] = htonl(v
& 0xFFFFFFFFULL
);
282 static uint64_t ntohll(uint64_t v
) {
283 union { uint32_t lv
[2]; uint64_t llv
; } u
;
285 return ((uint64_t)ntohl(u
.lv
[0]) << 32) | (uint64_t) ntohl(u
.lv
[1]);
288 static void remote_block_to_network(RDMARemoteBlock
*rb
)
290 rb
->remote_host_addr
= htonll(rb
->remote_host_addr
);
291 rb
->offset
= htonll(rb
->offset
);
292 rb
->length
= htonll(rb
->length
);
293 rb
->remote_rkey
= htonl(rb
->remote_rkey
);
296 static void network_to_remote_block(RDMARemoteBlock
*rb
)
298 rb
->remote_host_addr
= ntohll(rb
->remote_host_addr
);
299 rb
->offset
= ntohll(rb
->offset
);
300 rb
->length
= ntohll(rb
->length
);
301 rb
->remote_rkey
= ntohl(rb
->remote_rkey
);
305 * Virtual address of the above structures used for transmitting
306 * the RAMBlock descriptions at connection-time.
307 * This structure is *not* transmitted.
309 typedef struct RDMALocalBlocks
{
311 bool init
; /* main memory init complete */
312 RDMALocalBlock
*block
;
316 * Main data structure for RDMA state.
317 * While there is only one copy of this structure being allocated right now,
318 * this is the place where one would start if you wanted to consider
319 * having more than one RDMA connection open at the same time.
321 typedef struct RDMAContext
{
325 RDMAWorkRequestData wr_data
[RDMA_WRID_MAX
];
328 * This is used by *_exchange_send() to figure out whether or not
329 * the initial "READY" message has already been received or not.
330 * This is because other functions may potentially poll() and detect
331 * the READY message before send() does, in which case we need to
332 * know if it completed.
334 int control_ready_expected
;
336 /* number of outstanding writes */
339 /* store info about current buffer so that we can
340 merge it with future sends */
341 uint64_t current_addr
;
342 uint64_t current_length
;
343 /* index of ram block the current buffer belongs to */
345 /* index of the chunk in the current ram block */
351 * infiniband-specific variables for opening the device
352 * and maintaining connection state and so forth.
354 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
355 * cm_id->verbs, cm_id->channel, and cm_id->qp.
357 struct rdma_cm_id
*cm_id
; /* connection manager ID */
358 struct rdma_cm_id
*listen_id
;
360 struct ibv_context
*verbs
;
361 struct rdma_event_channel
*channel
;
362 struct ibv_qp
*qp
; /* queue pair */
363 struct ibv_comp_channel
*comp_channel
; /* completion channel */
364 struct ibv_pd
*pd
; /* protection domain */
365 struct ibv_cq
*cq
; /* completion queue */
368 * If a previous write failed (perhaps because of a failed
369 * memory registration, then do not attempt any future work
370 * and remember the error state.
376 * Description of ram blocks used throughout the code.
378 RDMALocalBlocks local_ram_blocks
;
379 RDMARemoteBlock
*block
;
382 * Migration on *destination* started.
383 * Then use coroutine yield function.
384 * Source runs in a thread, so we don't care.
386 int migration_started_on_destination
;
388 int total_registrations
;
391 int unregister_current
, unregister_next
;
392 uint64_t unregistrations
[RDMA_SIGNALED_SEND_MAX
];
394 GHashTable
*blockmap
;
398 * Interface to the rest of the migration call stack.
400 typedef struct QEMUFileRDMA
{
407 * Main structure for IB Send/Recv control messages.
408 * This gets prepended at the beginning of every Send/Recv.
410 typedef struct QEMU_PACKED
{
411 uint32_t len
; /* Total length of data portion */
412 uint32_t type
; /* which control command to perform */
413 uint32_t repeat
; /* number of commands in data portion of same type */
417 static void control_to_network(RDMAControlHeader
*control
)
419 control
->type
= htonl(control
->type
);
420 control
->len
= htonl(control
->len
);
421 control
->repeat
= htonl(control
->repeat
);
424 static void network_to_control(RDMAControlHeader
*control
)
426 control
->type
= ntohl(control
->type
);
427 control
->len
= ntohl(control
->len
);
428 control
->repeat
= ntohl(control
->repeat
);
432 * Register a single Chunk.
433 * Information sent by the source VM to inform the dest
434 * to register an single chunk of memory before we can perform
435 * the actual RDMA operation.
437 typedef struct QEMU_PACKED
{
439 uint64_t current_addr
; /* offset into the ramblock of the chunk */
440 uint64_t chunk
; /* chunk to lookup if unregistering */
442 uint32_t current_index
; /* which ramblock the chunk belongs to */
444 uint64_t chunks
; /* how many sequential chunks to register */
447 static void register_to_network(RDMARegister
*reg
)
449 reg
->key
.current_addr
= htonll(reg
->key
.current_addr
);
450 reg
->current_index
= htonl(reg
->current_index
);
451 reg
->chunks
= htonll(reg
->chunks
);
454 static void network_to_register(RDMARegister
*reg
)
456 reg
->key
.current_addr
= ntohll(reg
->key
.current_addr
);
457 reg
->current_index
= ntohl(reg
->current_index
);
458 reg
->chunks
= ntohll(reg
->chunks
);
461 typedef struct QEMU_PACKED
{
462 uint32_t value
; /* if zero, we will madvise() */
463 uint32_t block_idx
; /* which ram block index */
464 uint64_t offset
; /* where in the remote ramblock this chunk */
465 uint64_t length
; /* length of the chunk */
468 static void compress_to_network(RDMACompress
*comp
)
470 comp
->value
= htonl(comp
->value
);
471 comp
->block_idx
= htonl(comp
->block_idx
);
472 comp
->offset
= htonll(comp
->offset
);
473 comp
->length
= htonll(comp
->length
);
476 static void network_to_compress(RDMACompress
*comp
)
478 comp
->value
= ntohl(comp
->value
);
479 comp
->block_idx
= ntohl(comp
->block_idx
);
480 comp
->offset
= ntohll(comp
->offset
);
481 comp
->length
= ntohll(comp
->length
);
485 * The result of the dest's memory registration produces an "rkey"
486 * which the source VM must reference in order to perform
487 * the RDMA operation.
489 typedef struct QEMU_PACKED
{
493 } RDMARegisterResult
;
495 static void result_to_network(RDMARegisterResult
*result
)
497 result
->rkey
= htonl(result
->rkey
);
498 result
->host_addr
= htonll(result
->host_addr
);
501 static void network_to_result(RDMARegisterResult
*result
)
503 result
->rkey
= ntohl(result
->rkey
);
504 result
->host_addr
= ntohll(result
->host_addr
);
507 const char *print_wrid(int wrid
);
508 static int qemu_rdma_exchange_send(RDMAContext
*rdma
, RDMAControlHeader
*head
,
509 uint8_t *data
, RDMAControlHeader
*resp
,
511 int (*callback
)(RDMAContext
*rdma
));
513 static inline uint64_t ram_chunk_index(uint8_t *start
, uint8_t *host
)
515 return ((uintptr_t) host
- (uintptr_t) start
) >> RDMA_REG_CHUNK_SHIFT
;
518 static inline uint8_t *ram_chunk_start(RDMALocalBlock
*rdma_ram_block
,
521 return (uint8_t *) (((uintptr_t) rdma_ram_block
->local_host_addr
)
522 + (i
<< RDMA_REG_CHUNK_SHIFT
));
525 static inline uint8_t *ram_chunk_end(RDMALocalBlock
*rdma_ram_block
, uint64_t i
)
527 uint8_t *result
= ram_chunk_start(rdma_ram_block
, i
) +
528 (1UL << RDMA_REG_CHUNK_SHIFT
);
530 if (result
> (rdma_ram_block
->local_host_addr
+ rdma_ram_block
->length
)) {
531 result
= rdma_ram_block
->local_host_addr
+ rdma_ram_block
->length
;
537 static int __qemu_rdma_add_block(RDMAContext
*rdma
, void *host_addr
,
538 ram_addr_t block_offset
, uint64_t length
)
540 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
541 RDMALocalBlock
*block
= g_hash_table_lookup(rdma
->blockmap
,
542 (void *) block_offset
);
543 RDMALocalBlock
*old
= local
->block
;
545 assert(block
== NULL
);
547 local
->block
= g_malloc0(sizeof(RDMALocalBlock
) * (local
->nb_blocks
+ 1));
549 if (local
->nb_blocks
) {
552 for (x
= 0; x
< local
->nb_blocks
; x
++) {
553 g_hash_table_remove(rdma
->blockmap
, (void *)old
[x
].offset
);
554 g_hash_table_insert(rdma
->blockmap
, (void *)old
[x
].offset
,
557 memcpy(local
->block
, old
, sizeof(RDMALocalBlock
) * local
->nb_blocks
);
561 block
= &local
->block
[local
->nb_blocks
];
563 block
->local_host_addr
= host_addr
;
564 block
->offset
= block_offset
;
565 block
->length
= length
;
566 block
->index
= local
->nb_blocks
;
567 block
->nb_chunks
= ram_chunk_index(host_addr
, host_addr
+ length
) + 1UL;
568 block
->transit_bitmap
= bitmap_new(block
->nb_chunks
);
569 bitmap_clear(block
->transit_bitmap
, 0, block
->nb_chunks
);
570 block
->unregister_bitmap
= bitmap_new(block
->nb_chunks
);
571 bitmap_clear(block
->unregister_bitmap
, 0, block
->nb_chunks
);
572 block
->remote_keys
= g_malloc0(block
->nb_chunks
* sizeof(uint32_t));
574 block
->is_ram_block
= local
->init
? false : true;
576 g_hash_table_insert(rdma
->blockmap
, (void *) block_offset
, block
);
578 DDPRINTF("Added Block: %d, addr: %" PRIu64
", offset: %" PRIu64
579 " length: %" PRIu64
" end: %" PRIu64
" bits %" PRIu64
" chunks %d\n",
580 local
->nb_blocks
, (uint64_t) block
->local_host_addr
, block
->offset
,
581 block
->length
, (uint64_t) (block
->local_host_addr
+ block
->length
),
582 BITS_TO_LONGS(block
->nb_chunks
) *
583 sizeof(unsigned long) * 8, block
->nb_chunks
);
591 * Memory regions need to be registered with the device and queue pairs setup
592 * in advanced before the migration starts. This tells us where the RAM blocks
593 * are so that we can register them individually.
595 static void qemu_rdma_init_one_block(void *host_addr
,
596 ram_addr_t block_offset
, ram_addr_t length
, void *opaque
)
598 __qemu_rdma_add_block(opaque
, host_addr
, block_offset
, length
);
602 * Identify the RAMBlocks and their quantity. They will be references to
603 * identify chunk boundaries inside each RAMBlock and also be referenced
604 * during dynamic page registration.
606 static int qemu_rdma_init_ram_blocks(RDMAContext
*rdma
)
608 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
610 assert(rdma
->blockmap
== NULL
);
611 rdma
->blockmap
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
612 memset(local
, 0, sizeof *local
);
613 qemu_ram_foreach_block(qemu_rdma_init_one_block
, rdma
);
614 DPRINTF("Allocated %d local ram block structures\n", local
->nb_blocks
);
615 rdma
->block
= (RDMARemoteBlock
*) g_malloc0(sizeof(RDMARemoteBlock
) *
616 rdma
->local_ram_blocks
.nb_blocks
);
621 static int __qemu_rdma_delete_block(RDMAContext
*rdma
, ram_addr_t block_offset
)
623 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
624 RDMALocalBlock
*block
= g_hash_table_lookup(rdma
->blockmap
,
625 (void *) block_offset
);
626 RDMALocalBlock
*old
= local
->block
;
634 for (j
= 0; j
< block
->nb_chunks
; j
++) {
635 if (!block
->pmr
[j
]) {
638 ibv_dereg_mr(block
->pmr
[j
]);
639 rdma
->total_registrations
--;
646 ibv_dereg_mr(block
->mr
);
647 rdma
->total_registrations
--;
651 g_free(block
->transit_bitmap
);
652 block
->transit_bitmap
= NULL
;
654 g_free(block
->unregister_bitmap
);
655 block
->unregister_bitmap
= NULL
;
657 g_free(block
->remote_keys
);
658 block
->remote_keys
= NULL
;
660 for (x
= 0; x
< local
->nb_blocks
; x
++) {
661 g_hash_table_remove(rdma
->blockmap
, (void *)old
[x
].offset
);
664 if (local
->nb_blocks
> 1) {
666 local
->block
= g_malloc0(sizeof(RDMALocalBlock
) *
667 (local
->nb_blocks
- 1));
670 memcpy(local
->block
, old
, sizeof(RDMALocalBlock
) * block
->index
);
673 if (block
->index
< (local
->nb_blocks
- 1)) {
674 memcpy(local
->block
+ block
->index
, old
+ (block
->index
+ 1),
675 sizeof(RDMALocalBlock
) *
676 (local
->nb_blocks
- (block
->index
+ 1)));
679 assert(block
== local
->block
);
683 DDPRINTF("Deleted Block: %d, addr: %" PRIu64
", offset: %" PRIu64
684 " length: %" PRIu64
" end: %" PRIu64
" bits %" PRIu64
" chunks %d\n",
685 local
->nb_blocks
, (uint64_t) block
->local_host_addr
, block
->offset
,
686 block
->length
, (uint64_t) (block
->local_host_addr
+ block
->length
),
687 BITS_TO_LONGS(block
->nb_chunks
) *
688 sizeof(unsigned long) * 8, block
->nb_chunks
);
694 if (local
->nb_blocks
) {
695 for (x
= 0; x
< local
->nb_blocks
; x
++) {
696 g_hash_table_insert(rdma
->blockmap
, (void *)local
->block
[x
].offset
,
705 * Put in the log file which RDMA device was opened and the details
706 * associated with that device.
708 static void qemu_rdma_dump_id(const char *who
, struct ibv_context
*verbs
)
710 struct ibv_port_attr port
;
712 if (ibv_query_port(verbs
, 1, &port
)) {
713 fprintf(stderr
, "FAILED TO QUERY PORT INFORMATION!\n");
717 printf("%s RDMA Device opened: kernel name %s "
718 "uverbs device name %s, "
719 "infiniband_verbs class device path %s, "
720 "infiniband class device path %s, "
721 "transport: (%d) %s\n",
724 verbs
->device
->dev_name
,
725 verbs
->device
->dev_path
,
726 verbs
->device
->ibdev_path
,
728 (port
.link_layer
== IBV_LINK_LAYER_INFINIBAND
) ? "Infiniband" :
729 ((port
.link_layer
== IBV_LINK_LAYER_ETHERNET
)
730 ? "Ethernet" : "Unknown"));
734 * Put in the log file the RDMA gid addressing information,
735 * useful for folks who have trouble understanding the
736 * RDMA device hierarchy in the kernel.
738 static void qemu_rdma_dump_gid(const char *who
, struct rdma_cm_id
*id
)
742 inet_ntop(AF_INET6
, &id
->route
.addr
.addr
.ibaddr
.sgid
, sgid
, sizeof sgid
);
743 inet_ntop(AF_INET6
, &id
->route
.addr
.addr
.ibaddr
.dgid
, dgid
, sizeof dgid
);
744 DPRINTF("%s Source GID: %s, Dest GID: %s\n", who
, sgid
, dgid
);
748 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
749 * We will try the next addrinfo struct, and fail if there are
750 * no other valid addresses to bind against.
752 * If user is listening on '[::]', then we will not have a opened a device
753 * yet and have no way of verifying if the device is RoCE or not.
755 * In this case, the source VM will throw an error for ALL types of
756 * connections (both IPv4 and IPv6) if the destination machine does not have
757 * a regular infiniband network available for use.
759 * The only way to gaurantee that an error is thrown for broken kernels is
760 * for the management software to choose a *specific* interface at bind time
761 * and validate what time of hardware it is.
763 * Unfortunately, this puts the user in a fix:
765 * If the source VM connects with an IPv4 address without knowing that the
766 * destination has bound to '[::]' the migration will unconditionally fail
767 * unless the management software is explicitly listening on the the IPv4
768 * address while using a RoCE-based device.
770 * If the source VM connects with an IPv6 address, then we're OK because we can
771 * throw an error on the source (and similarly on the destination).
773 * But in mixed environments, this will be broken for a while until it is fixed
776 * We do provide a *tiny* bit of help in this function: We can list all of the
777 * devices in the system and check to see if all the devices are RoCE or
780 * If we detect that we have a *pure* RoCE environment, then we can safely
781 * thrown an error even if the management sofware has specified '[::]' as the
784 * However, if there is are multiple hetergeneous devices, then we cannot make
785 * this assumption and the user just has to be sure they know what they are
788 * Patches are being reviewed on linux-rdma.
790 static int qemu_rdma_broken_ipv6_kernel(Error
**errp
, struct ibv_context
*verbs
)
792 struct ibv_port_attr port_attr
;
794 /* This bug only exists in linux, to our knowledge. */
798 * Verbs are only NULL if management has bound to '[::]'.
800 * Let's iterate through all the devices and see if there any pure IB
801 * devices (non-ethernet).
803 * If not, then we can safely proceed with the migration.
804 * Otherwise, there are no gaurantees until the bug is fixed in linux.
808 struct ibv_device
** dev_list
= ibv_get_device_list(&num_devices
);
809 bool roce_found
= false;
810 bool ib_found
= false;
812 for (x
= 0; x
< num_devices
; x
++) {
813 verbs
= ibv_open_device(dev_list
[x
]);
815 if (ibv_query_port(verbs
, 1, &port_attr
)) {
816 ibv_close_device(verbs
);
817 ERROR(errp
, "Could not query initial IB port");
821 if (port_attr
.link_layer
== IBV_LINK_LAYER_INFINIBAND
) {
823 } else if (port_attr
.link_layer
== IBV_LINK_LAYER_ETHERNET
) {
827 ibv_close_device(verbs
);
833 fprintf(stderr
, "WARN: migrations may fail:"
834 " IPv6 over RoCE / iWARP in linux"
835 " is broken. But since you appear to have a"
836 " mixed RoCE / IB environment, be sure to only"
837 " migrate over the IB fabric until the kernel "
838 " fixes the bug.\n");
840 ERROR(errp
, "You only have RoCE / iWARP devices in your systems"
841 " and your management software has specified '[::]'"
842 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
851 * If we have a verbs context, that means that some other than '[::]' was
852 * used by the management software for binding. In which case we can actually
853 * warn the user about a potential broken kernel;
856 /* IB ports start with 1, not 0 */
857 if (ibv_query_port(verbs
, 1, &port_attr
)) {
858 ERROR(errp
, "Could not query initial IB port");
862 if (port_attr
.link_layer
== IBV_LINK_LAYER_ETHERNET
) {
863 ERROR(errp
, "Linux kernel's RoCE / iWARP does not support IPv6 "
864 "(but patches on linux-rdma in progress)");
874 * Figure out which RDMA device corresponds to the requested IP hostname
875 * Also create the initial connection manager identifiers for opening
878 static int qemu_rdma_resolve_host(RDMAContext
*rdma
, Error
**errp
)
881 struct rdma_addrinfo
*res
;
883 struct rdma_cm_event
*cm_event
;
884 char ip
[40] = "unknown";
885 struct rdma_addrinfo
*e
;
887 if (rdma
->host
== NULL
|| !strcmp(rdma
->host
, "")) {
888 ERROR(errp
, "RDMA hostname has not been set");
892 /* create CM channel */
893 rdma
->channel
= rdma_create_event_channel();
894 if (!rdma
->channel
) {
895 ERROR(errp
, "could not create CM channel");
900 ret
= rdma_create_id(rdma
->channel
, &rdma
->cm_id
, NULL
, RDMA_PS_TCP
);
902 ERROR(errp
, "could not create channel id");
903 goto err_resolve_create_id
;
906 snprintf(port_str
, 16, "%d", rdma
->port
);
909 ret
= rdma_getaddrinfo(rdma
->host
, port_str
, NULL
, &res
);
911 ERROR(errp
, "could not rdma_getaddrinfo address %s", rdma
->host
);
912 goto err_resolve_get_addr
;
915 for (e
= res
; e
!= NULL
; e
= e
->ai_next
) {
916 inet_ntop(e
->ai_family
,
917 &((struct sockaddr_in
*) e
->ai_dst_addr
)->sin_addr
, ip
, sizeof ip
);
918 DPRINTF("Trying %s => %s\n", rdma
->host
, ip
);
920 ret
= rdma_resolve_addr(rdma
->cm_id
, NULL
, e
->ai_dst_addr
,
921 RDMA_RESOLVE_TIMEOUT_MS
);
923 ret
= qemu_rdma_broken_ipv6_kernel(errp
, rdma
->cm_id
->verbs
);
931 ERROR(errp
, "could not resolve address %s", rdma
->host
);
932 goto err_resolve_get_addr
;
935 qemu_rdma_dump_gid("source_resolve_addr", rdma
->cm_id
);
937 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
939 ERROR(errp
, "could not perform event_addr_resolved");
940 goto err_resolve_get_addr
;
943 if (cm_event
->event
!= RDMA_CM_EVENT_ADDR_RESOLVED
) {
944 ERROR(errp
, "result not equal to event_addr_resolved %s",
945 rdma_event_str(cm_event
->event
));
946 perror("rdma_resolve_addr");
948 goto err_resolve_get_addr
;
950 rdma_ack_cm_event(cm_event
);
953 ret
= rdma_resolve_route(rdma
->cm_id
, RDMA_RESOLVE_TIMEOUT_MS
);
955 ERROR(errp
, "could not resolve rdma route");
956 goto err_resolve_get_addr
;
959 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
961 ERROR(errp
, "could not perform event_route_resolved");
962 goto err_resolve_get_addr
;
964 if (cm_event
->event
!= RDMA_CM_EVENT_ROUTE_RESOLVED
) {
965 ERROR(errp
, "result not equal to event_route_resolved: %s",
966 rdma_event_str(cm_event
->event
));
967 rdma_ack_cm_event(cm_event
);
969 goto err_resolve_get_addr
;
971 rdma_ack_cm_event(cm_event
);
972 rdma
->verbs
= rdma
->cm_id
->verbs
;
973 qemu_rdma_dump_id("source_resolve_host", rdma
->cm_id
->verbs
);
974 qemu_rdma_dump_gid("source_resolve_host", rdma
->cm_id
);
977 err_resolve_get_addr
:
978 rdma_destroy_id(rdma
->cm_id
);
980 err_resolve_create_id
:
981 rdma_destroy_event_channel(rdma
->channel
);
982 rdma
->channel
= NULL
;
987 * Create protection domain and completion queues
989 static int qemu_rdma_alloc_pd_cq(RDMAContext
*rdma
)
992 rdma
->pd
= ibv_alloc_pd(rdma
->verbs
);
994 fprintf(stderr
, "failed to allocate protection domain\n");
998 /* create completion channel */
999 rdma
->comp_channel
= ibv_create_comp_channel(rdma
->verbs
);
1000 if (!rdma
->comp_channel
) {
1001 fprintf(stderr
, "failed to allocate completion channel\n");
1002 goto err_alloc_pd_cq
;
1006 * Completion queue can be filled by both read and write work requests,
1007 * so must reflect the sum of both possible queue sizes.
1009 rdma
->cq
= ibv_create_cq(rdma
->verbs
, (RDMA_SIGNALED_SEND_MAX
* 3),
1010 NULL
, rdma
->comp_channel
, 0);
1012 fprintf(stderr
, "failed to allocate completion queue\n");
1013 goto err_alloc_pd_cq
;
1020 ibv_dealloc_pd(rdma
->pd
);
1022 if (rdma
->comp_channel
) {
1023 ibv_destroy_comp_channel(rdma
->comp_channel
);
1026 rdma
->comp_channel
= NULL
;
1032 * Create queue pairs.
1034 static int qemu_rdma_alloc_qp(RDMAContext
*rdma
)
1036 struct ibv_qp_init_attr attr
= { 0 };
1039 attr
.cap
.max_send_wr
= RDMA_SIGNALED_SEND_MAX
;
1040 attr
.cap
.max_recv_wr
= 3;
1041 attr
.cap
.max_send_sge
= 1;
1042 attr
.cap
.max_recv_sge
= 1;
1043 attr
.send_cq
= rdma
->cq
;
1044 attr
.recv_cq
= rdma
->cq
;
1045 attr
.qp_type
= IBV_QPT_RC
;
1047 ret
= rdma_create_qp(rdma
->cm_id
, rdma
->pd
, &attr
);
1052 rdma
->qp
= rdma
->cm_id
->qp
;
1056 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext
*rdma
)
1059 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
1061 for (i
= 0; i
< local
->nb_blocks
; i
++) {
1062 local
->block
[i
].mr
=
1063 ibv_reg_mr(rdma
->pd
,
1064 local
->block
[i
].local_host_addr
,
1065 local
->block
[i
].length
,
1066 IBV_ACCESS_LOCAL_WRITE
|
1067 IBV_ACCESS_REMOTE_WRITE
1069 if (!local
->block
[i
].mr
) {
1070 perror("Failed to register local dest ram block!\n");
1073 rdma
->total_registrations
++;
1076 if (i
>= local
->nb_blocks
) {
1080 for (i
--; i
>= 0; i
--) {
1081 ibv_dereg_mr(local
->block
[i
].mr
);
1082 rdma
->total_registrations
--;
1090 * Find the ram block that corresponds to the page requested to be
1091 * transmitted by QEMU.
1093 * Once the block is found, also identify which 'chunk' within that
1094 * block that the page belongs to.
1096 * This search cannot fail or the migration will fail.
1098 static int qemu_rdma_search_ram_block(RDMAContext
*rdma
,
1099 uint64_t block_offset
,
1102 uint64_t *block_index
,
1103 uint64_t *chunk_index
)
1105 uint64_t current_addr
= block_offset
+ offset
;
1106 RDMALocalBlock
*block
= g_hash_table_lookup(rdma
->blockmap
,
1107 (void *) block_offset
);
1109 assert(current_addr
>= block
->offset
);
1110 assert((current_addr
+ length
) <= (block
->offset
+ block
->length
));
1112 *block_index
= block
->index
;
1113 *chunk_index
= ram_chunk_index(block
->local_host_addr
,
1114 block
->local_host_addr
+ (current_addr
- block
->offset
));
1120 * Register a chunk with IB. If the chunk was already registered
1121 * previously, then skip.
1123 * Also return the keys associated with the registration needed
1124 * to perform the actual RDMA operation.
1126 static int qemu_rdma_register_and_get_keys(RDMAContext
*rdma
,
1127 RDMALocalBlock
*block
, uint8_t *host_addr
,
1128 uint32_t *lkey
, uint32_t *rkey
, int chunk
,
1129 uint8_t *chunk_start
, uint8_t *chunk_end
)
1133 *lkey
= block
->mr
->lkey
;
1136 *rkey
= block
->mr
->rkey
;
1141 /* allocate memory to store chunk MRs */
1143 block
->pmr
= g_malloc0(block
->nb_chunks
* sizeof(struct ibv_mr
*));
1150 * If 'rkey', then we're the destination, so grant access to the source.
1152 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1154 if (!block
->pmr
[chunk
]) {
1155 uint64_t len
= chunk_end
- chunk_start
;
1157 DDPRINTF("Registering %" PRIu64
" bytes @ %p\n",
1160 block
->pmr
[chunk
] = ibv_reg_mr(rdma
->pd
,
1162 (rkey
? (IBV_ACCESS_LOCAL_WRITE
|
1163 IBV_ACCESS_REMOTE_WRITE
) : 0));
1165 if (!block
->pmr
[chunk
]) {
1166 perror("Failed to register chunk!");
1167 fprintf(stderr
, "Chunk details: block: %d chunk index %d"
1168 " start %" PRIu64
" end %" PRIu64
" host %" PRIu64
1169 " local %" PRIu64
" registrations: %d\n",
1170 block
->index
, chunk
, (uint64_t) chunk_start
,
1171 (uint64_t) chunk_end
, (uint64_t) host_addr
,
1172 (uint64_t) block
->local_host_addr
,
1173 rdma
->total_registrations
);
1176 rdma
->total_registrations
++;
1180 *lkey
= block
->pmr
[chunk
]->lkey
;
1183 *rkey
= block
->pmr
[chunk
]->rkey
;
1189 * Register (at connection time) the memory used for control
1192 static int qemu_rdma_reg_control(RDMAContext
*rdma
, int idx
)
1194 rdma
->wr_data
[idx
].control_mr
= ibv_reg_mr(rdma
->pd
,
1195 rdma
->wr_data
[idx
].control
, RDMA_CONTROL_MAX_BUFFER
,
1196 IBV_ACCESS_LOCAL_WRITE
| IBV_ACCESS_REMOTE_WRITE
);
1197 if (rdma
->wr_data
[idx
].control_mr
) {
1198 rdma
->total_registrations
++;
1201 fprintf(stderr
, "qemu_rdma_reg_control failed!\n");
1205 const char *print_wrid(int wrid
)
1207 if (wrid
>= RDMA_WRID_RECV_CONTROL
) {
1208 return wrid_desc
[RDMA_WRID_RECV_CONTROL
];
1210 return wrid_desc
[wrid
];
1214 * RDMA requires memory registration (mlock/pinning), but this is not good for
1217 * In preparation for the future where LRU information or workload-specific
1218 * writable writable working set memory access behavior is available to QEMU
1219 * it would be nice to have in place the ability to UN-register/UN-pin
1220 * particular memory regions from the RDMA hardware when it is determine that
1221 * those regions of memory will likely not be accessed again in the near future.
1223 * While we do not yet have such information right now, the following
1224 * compile-time option allows us to perform a non-optimized version of this
1227 * By uncommenting this option, you will cause *all* RDMA transfers to be
1228 * unregistered immediately after the transfer completes on both sides of the
1229 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1231 * This will have a terrible impact on migration performance, so until future
1232 * workload information or LRU information is available, do not attempt to use
1233 * this feature except for basic testing.
1235 //#define RDMA_UNREGISTRATION_EXAMPLE
1238 * Perform a non-optimized memory unregistration after every transfer
1239 * for demonsration purposes, only if pin-all is not requested.
1241 * Potential optimizations:
1242 * 1. Start a new thread to run this function continuously
1244 - and for receipt of unregister messages
1246 * 3. Use workload hints.
1248 static int qemu_rdma_unregister_waiting(RDMAContext
*rdma
)
1250 while (rdma
->unregistrations
[rdma
->unregister_current
]) {
1252 uint64_t wr_id
= rdma
->unregistrations
[rdma
->unregister_current
];
1254 (wr_id
& RDMA_WRID_CHUNK_MASK
) >> RDMA_WRID_CHUNK_SHIFT
;
1256 (wr_id
& RDMA_WRID_BLOCK_MASK
) >> RDMA_WRID_BLOCK_SHIFT
;
1257 RDMALocalBlock
*block
=
1258 &(rdma
->local_ram_blocks
.block
[index
]);
1259 RDMARegister reg
= { .current_index
= index
};
1260 RDMAControlHeader resp
= { .type
= RDMA_CONTROL_UNREGISTER_FINISHED
,
1262 RDMAControlHeader head
= { .len
= sizeof(RDMARegister
),
1263 .type
= RDMA_CONTROL_UNREGISTER_REQUEST
,
1267 DDPRINTF("Processing unregister for chunk: %" PRIu64
1268 " at position %d\n", chunk
, rdma
->unregister_current
);
1270 rdma
->unregistrations
[rdma
->unregister_current
] = 0;
1271 rdma
->unregister_current
++;
1273 if (rdma
->unregister_current
== RDMA_SIGNALED_SEND_MAX
) {
1274 rdma
->unregister_current
= 0;
1279 * Unregistration is speculative (because migration is single-threaded
1280 * and we cannot break the protocol's inifinband message ordering).
1281 * Thus, if the memory is currently being used for transmission,
1282 * then abort the attempt to unregister and try again
1283 * later the next time a completion is received for this memory.
1285 clear_bit(chunk
, block
->unregister_bitmap
);
1287 if (test_bit(chunk
, block
->transit_bitmap
)) {
1288 DDPRINTF("Cannot unregister inflight chunk: %" PRIu64
"\n", chunk
);
1292 DDPRINTF("Sending unregister for chunk: %" PRIu64
"\n", chunk
);
1294 ret
= ibv_dereg_mr(block
->pmr
[chunk
]);
1295 block
->pmr
[chunk
] = NULL
;
1296 block
->remote_keys
[chunk
] = 0;
1299 perror("unregistration chunk failed");
1302 rdma
->total_registrations
--;
1304 reg
.key
.chunk
= chunk
;
1305 register_to_network(®
);
1306 ret
= qemu_rdma_exchange_send(rdma
, &head
, (uint8_t *) ®
,
1312 DDPRINTF("Unregister for chunk: %" PRIu64
" complete.\n", chunk
);
1318 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id
, uint64_t index
,
1321 uint64_t result
= wr_id
& RDMA_WRID_TYPE_MASK
;
1323 result
|= (index
<< RDMA_WRID_BLOCK_SHIFT
);
1324 result
|= (chunk
<< RDMA_WRID_CHUNK_SHIFT
);
1330 * Set bit for unregistration in the next iteration.
1331 * We cannot transmit right here, but will unpin later.
1333 static void qemu_rdma_signal_unregister(RDMAContext
*rdma
, uint64_t index
,
1334 uint64_t chunk
, uint64_t wr_id
)
1336 if (rdma
->unregistrations
[rdma
->unregister_next
] != 0) {
1337 fprintf(stderr
, "rdma migration: queue is full!\n");
1339 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[index
]);
1341 if (!test_and_set_bit(chunk
, block
->unregister_bitmap
)) {
1342 DDPRINTF("Appending unregister chunk %" PRIu64
1343 " at position %d\n", chunk
, rdma
->unregister_next
);
1345 rdma
->unregistrations
[rdma
->unregister_next
++] =
1346 qemu_rdma_make_wrid(wr_id
, index
, chunk
);
1348 if (rdma
->unregister_next
== RDMA_SIGNALED_SEND_MAX
) {
1349 rdma
->unregister_next
= 0;
1352 DDPRINTF("Unregister chunk %" PRIu64
" already in queue.\n",
1359 * Consult the connection manager to see a work request
1360 * (of any kind) has completed.
1361 * Return the work request ID that completed.
1363 static uint64_t qemu_rdma_poll(RDMAContext
*rdma
, uint64_t *wr_id_out
,
1370 ret
= ibv_poll_cq(rdma
->cq
, 1, &wc
);
1373 *wr_id_out
= RDMA_WRID_NONE
;
1378 fprintf(stderr
, "ibv_poll_cq return %d!\n", ret
);
1382 wr_id
= wc
.wr_id
& RDMA_WRID_TYPE_MASK
;
1384 if (wc
.status
!= IBV_WC_SUCCESS
) {
1385 fprintf(stderr
, "ibv_poll_cq wc.status=%d %s!\n",
1386 wc
.status
, ibv_wc_status_str(wc
.status
));
1387 fprintf(stderr
, "ibv_poll_cq wrid=%s!\n", wrid_desc
[wr_id
]);
1392 if (rdma
->control_ready_expected
&&
1393 (wr_id
>= RDMA_WRID_RECV_CONTROL
)) {
1394 DDDPRINTF("completion %s #%" PRId64
" received (%" PRId64
")"
1395 " left %d\n", wrid_desc
[RDMA_WRID_RECV_CONTROL
],
1396 wr_id
- RDMA_WRID_RECV_CONTROL
, wr_id
, rdma
->nb_sent
);
1397 rdma
->control_ready_expected
= 0;
1400 if (wr_id
== RDMA_WRID_RDMA_WRITE
) {
1402 (wc
.wr_id
& RDMA_WRID_CHUNK_MASK
) >> RDMA_WRID_CHUNK_SHIFT
;
1404 (wc
.wr_id
& RDMA_WRID_BLOCK_MASK
) >> RDMA_WRID_BLOCK_SHIFT
;
1405 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[index
]);
1407 DDDPRINTF("completions %s (%" PRId64
") left %d, "
1408 "block %" PRIu64
", chunk: %" PRIu64
" %p %p\n",
1409 print_wrid(wr_id
), wr_id
, rdma
->nb_sent
, index
, chunk
,
1410 block
->local_host_addr
, (void *)block
->remote_host_addr
);
1412 clear_bit(chunk
, block
->transit_bitmap
);
1414 if (rdma
->nb_sent
> 0) {
1418 if (!rdma
->pin_all
) {
1420 * FYI: If one wanted to signal a specific chunk to be unregistered
1421 * using LRU or workload-specific information, this is the function
1422 * you would call to do so. That chunk would then get asynchronously
1423 * unregistered later.
1425 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1426 qemu_rdma_signal_unregister(rdma
, index
, chunk
, wc
.wr_id
);
1430 DDDPRINTF("other completion %s (%" PRId64
") received left %d\n",
1431 print_wrid(wr_id
), wr_id
, rdma
->nb_sent
);
1434 *wr_id_out
= wc
.wr_id
;
1436 *byte_len
= wc
.byte_len
;
1443 * Block until the next work request has completed.
1445 * First poll to see if a work request has already completed,
1448 * If we encounter completed work requests for IDs other than
1449 * the one we're interested in, then that's generally an error.
1451 * The only exception is actual RDMA Write completions. These
1452 * completions only need to be recorded, but do not actually
1453 * need further processing.
1455 static int qemu_rdma_block_for_wrid(RDMAContext
*rdma
, int wrid_requested
,
1458 int num_cq_events
= 0, ret
= 0;
1461 uint64_t wr_id
= RDMA_WRID_NONE
, wr_id_in
;
1463 if (ibv_req_notify_cq(rdma
->cq
, 0)) {
1467 while (wr_id
!= wrid_requested
) {
1468 ret
= qemu_rdma_poll(rdma
, &wr_id_in
, byte_len
);
1473 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
1475 if (wr_id
== RDMA_WRID_NONE
) {
1478 if (wr_id
!= wrid_requested
) {
1479 DDDPRINTF("A Wanted wrid %s (%d) but got %s (%" PRIu64
")\n",
1480 print_wrid(wrid_requested
),
1481 wrid_requested
, print_wrid(wr_id
), wr_id
);
1485 if (wr_id
== wrid_requested
) {
1491 * Coroutine doesn't start until process_incoming_migration()
1492 * so don't yield unless we know we're running inside of a coroutine.
1494 if (rdma
->migration_started_on_destination
) {
1495 yield_until_fd_readable(rdma
->comp_channel
->fd
);
1498 if (ibv_get_cq_event(rdma
->comp_channel
, &cq
, &cq_ctx
)) {
1499 perror("ibv_get_cq_event");
1500 goto err_block_for_wrid
;
1505 if (ibv_req_notify_cq(cq
, 0)) {
1506 goto err_block_for_wrid
;
1509 while (wr_id
!= wrid_requested
) {
1510 ret
= qemu_rdma_poll(rdma
, &wr_id_in
, byte_len
);
1512 goto err_block_for_wrid
;
1515 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
1517 if (wr_id
== RDMA_WRID_NONE
) {
1520 if (wr_id
!= wrid_requested
) {
1521 DDDPRINTF("B Wanted wrid %s (%d) but got %s (%" PRIu64
")\n",
1522 print_wrid(wrid_requested
), wrid_requested
,
1523 print_wrid(wr_id
), wr_id
);
1527 if (wr_id
== wrid_requested
) {
1528 goto success_block_for_wrid
;
1532 success_block_for_wrid
:
1533 if (num_cq_events
) {
1534 ibv_ack_cq_events(cq
, num_cq_events
);
1539 if (num_cq_events
) {
1540 ibv_ack_cq_events(cq
, num_cq_events
);
1546 * Post a SEND message work request for the control channel
1547 * containing some data and block until the post completes.
1549 static int qemu_rdma_post_send_control(RDMAContext
*rdma
, uint8_t *buf
,
1550 RDMAControlHeader
*head
)
1553 RDMAWorkRequestData
*wr
= &rdma
->wr_data
[RDMA_WRID_CONTROL
];
1554 struct ibv_send_wr
*bad_wr
;
1555 struct ibv_sge sge
= {
1556 .addr
= (uint64_t)(wr
->control
),
1557 .length
= head
->len
+ sizeof(RDMAControlHeader
),
1558 .lkey
= wr
->control_mr
->lkey
,
1560 struct ibv_send_wr send_wr
= {
1561 .wr_id
= RDMA_WRID_SEND_CONTROL
,
1562 .opcode
= IBV_WR_SEND
,
1563 .send_flags
= IBV_SEND_SIGNALED
,
1568 DDDPRINTF("CONTROL: sending %s..\n", control_desc
[head
->type
]);
1571 * We don't actually need to do a memcpy() in here if we used
1572 * the "sge" properly, but since we're only sending control messages
1573 * (not RAM in a performance-critical path), then its OK for now.
1575 * The copy makes the RDMAControlHeader simpler to manipulate
1576 * for the time being.
1578 assert(head
->len
<= RDMA_CONTROL_MAX_BUFFER
- sizeof(*head
));
1579 memcpy(wr
->control
, head
, sizeof(RDMAControlHeader
));
1580 control_to_network((void *) wr
->control
);
1583 memcpy(wr
->control
+ sizeof(RDMAControlHeader
), buf
, head
->len
);
1587 if (ibv_post_send(rdma
->qp
, &send_wr
, &bad_wr
)) {
1592 fprintf(stderr
, "Failed to use post IB SEND for control!\n");
1596 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_SEND_CONTROL
, NULL
);
1598 fprintf(stderr
, "rdma migration: send polling control error!\n");
1605 * Post a RECV work request in anticipation of some future receipt
1606 * of data on the control channel.
1608 static int qemu_rdma_post_recv_control(RDMAContext
*rdma
, int idx
)
1610 struct ibv_recv_wr
*bad_wr
;
1611 struct ibv_sge sge
= {
1612 .addr
= (uint64_t)(rdma
->wr_data
[idx
].control
),
1613 .length
= RDMA_CONTROL_MAX_BUFFER
,
1614 .lkey
= rdma
->wr_data
[idx
].control_mr
->lkey
,
1617 struct ibv_recv_wr recv_wr
= {
1618 .wr_id
= RDMA_WRID_RECV_CONTROL
+ idx
,
1624 if (ibv_post_recv(rdma
->qp
, &recv_wr
, &bad_wr
)) {
1632 * Block and wait for a RECV control channel message to arrive.
1634 static int qemu_rdma_exchange_get_response(RDMAContext
*rdma
,
1635 RDMAControlHeader
*head
, int expecting
, int idx
)
1638 int ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RECV_CONTROL
+ idx
,
1642 fprintf(stderr
, "rdma migration: recv polling control error!\n");
1646 network_to_control((void *) rdma
->wr_data
[idx
].control
);
1647 memcpy(head
, rdma
->wr_data
[idx
].control
, sizeof(RDMAControlHeader
));
1649 DDDPRINTF("CONTROL: %s receiving...\n", control_desc
[expecting
]);
1651 if (expecting
== RDMA_CONTROL_NONE
) {
1652 DDDPRINTF("Surprise: got %s (%d)\n",
1653 control_desc
[head
->type
], head
->type
);
1654 } else if (head
->type
!= expecting
|| head
->type
== RDMA_CONTROL_ERROR
) {
1655 fprintf(stderr
, "Was expecting a %s (%d) control message"
1656 ", but got: %s (%d), length: %d\n",
1657 control_desc
[expecting
], expecting
,
1658 control_desc
[head
->type
], head
->type
, head
->len
);
1661 if (head
->len
> RDMA_CONTROL_MAX_BUFFER
- sizeof(*head
)) {
1662 fprintf(stderr
, "too long length: %d\n", head
->len
);
1665 if (sizeof(*head
) + head
->len
!= byte_len
) {
1666 fprintf(stderr
, "Malformed length: %d byte_len %d\n",
1667 head
->len
, byte_len
);
1675 * When a RECV work request has completed, the work request's
1676 * buffer is pointed at the header.
1678 * This will advance the pointer to the data portion
1679 * of the control message of the work request's buffer that
1680 * was populated after the work request finished.
1682 static void qemu_rdma_move_header(RDMAContext
*rdma
, int idx
,
1683 RDMAControlHeader
*head
)
1685 rdma
->wr_data
[idx
].control_len
= head
->len
;
1686 rdma
->wr_data
[idx
].control_curr
=
1687 rdma
->wr_data
[idx
].control
+ sizeof(RDMAControlHeader
);
1691 * This is an 'atomic' high-level operation to deliver a single, unified
1692 * control-channel message.
1694 * Additionally, if the user is expecting some kind of reply to this message,
1695 * they can request a 'resp' response message be filled in by posting an
1696 * additional work request on behalf of the user and waiting for an additional
1699 * The extra (optional) response is used during registration to us from having
1700 * to perform an *additional* exchange of message just to provide a response by
1701 * instead piggy-backing on the acknowledgement.
1703 static int qemu_rdma_exchange_send(RDMAContext
*rdma
, RDMAControlHeader
*head
,
1704 uint8_t *data
, RDMAControlHeader
*resp
,
1706 int (*callback
)(RDMAContext
*rdma
))
1711 * Wait until the dest is ready before attempting to deliver the message
1712 * by waiting for a READY message.
1714 if (rdma
->control_ready_expected
) {
1715 RDMAControlHeader resp
;
1716 ret
= qemu_rdma_exchange_get_response(rdma
,
1717 &resp
, RDMA_CONTROL_READY
, RDMA_WRID_READY
);
1724 * If the user is expecting a response, post a WR in anticipation of it.
1727 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_DATA
);
1729 fprintf(stderr
, "rdma migration: error posting"
1730 " extra control recv for anticipated result!");
1736 * Post a WR to replace the one we just consumed for the READY message.
1738 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
1740 fprintf(stderr
, "rdma migration: error posting first control recv!");
1745 * Deliver the control message that was requested.
1747 ret
= qemu_rdma_post_send_control(rdma
, data
, head
);
1750 fprintf(stderr
, "Failed to send control buffer!\n");
1755 * If we're expecting a response, block and wait for it.
1759 DDPRINTF("Issuing callback before receiving response...\n");
1760 ret
= callback(rdma
);
1766 DDPRINTF("Waiting for response %s\n", control_desc
[resp
->type
]);
1767 ret
= qemu_rdma_exchange_get_response(rdma
, resp
,
1768 resp
->type
, RDMA_WRID_DATA
);
1774 qemu_rdma_move_header(rdma
, RDMA_WRID_DATA
, resp
);
1776 *resp_idx
= RDMA_WRID_DATA
;
1778 DDPRINTF("Response %s received.\n", control_desc
[resp
->type
]);
1781 rdma
->control_ready_expected
= 1;
1787 * This is an 'atomic' high-level operation to receive a single, unified
1788 * control-channel message.
1790 static int qemu_rdma_exchange_recv(RDMAContext
*rdma
, RDMAControlHeader
*head
,
1793 RDMAControlHeader ready
= {
1795 .type
= RDMA_CONTROL_READY
,
1801 * Inform the source that we're ready to receive a message.
1803 ret
= qemu_rdma_post_send_control(rdma
, NULL
, &ready
);
1806 fprintf(stderr
, "Failed to send control buffer!\n");
1811 * Block and wait for the message.
1813 ret
= qemu_rdma_exchange_get_response(rdma
, head
,
1814 expecting
, RDMA_WRID_READY
);
1820 qemu_rdma_move_header(rdma
, RDMA_WRID_READY
, head
);
1823 * Post a new RECV work request to replace the one we just consumed.
1825 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
1827 fprintf(stderr
, "rdma migration: error posting second control recv!");
1835 * Write an actual chunk of memory using RDMA.
1837 * If we're using dynamic registration on the dest-side, we have to
1838 * send a registration command first.
1840 static int qemu_rdma_write_one(QEMUFile
*f
, RDMAContext
*rdma
,
1841 int current_index
, uint64_t current_addr
,
1845 struct ibv_send_wr send_wr
= { 0 };
1846 struct ibv_send_wr
*bad_wr
;
1847 int reg_result_idx
, ret
, count
= 0;
1848 uint64_t chunk
, chunks
;
1849 uint8_t *chunk_start
, *chunk_end
;
1850 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[current_index
]);
1852 RDMARegisterResult
*reg_result
;
1853 RDMAControlHeader resp
= { .type
= RDMA_CONTROL_REGISTER_RESULT
};
1854 RDMAControlHeader head
= { .len
= sizeof(RDMARegister
),
1855 .type
= RDMA_CONTROL_REGISTER_REQUEST
,
1860 sge
.addr
= (uint64_t)(block
->local_host_addr
+
1861 (current_addr
- block
->offset
));
1862 sge
.length
= length
;
1864 chunk
= ram_chunk_index(block
->local_host_addr
, (uint8_t *) sge
.addr
);
1865 chunk_start
= ram_chunk_start(block
, chunk
);
1867 if (block
->is_ram_block
) {
1868 chunks
= length
/ (1UL << RDMA_REG_CHUNK_SHIFT
);
1870 if (chunks
&& ((length
% (1UL << RDMA_REG_CHUNK_SHIFT
)) == 0)) {
1874 chunks
= block
->length
/ (1UL << RDMA_REG_CHUNK_SHIFT
);
1876 if (chunks
&& ((block
->length
% (1UL << RDMA_REG_CHUNK_SHIFT
)) == 0)) {
1881 DDPRINTF("Writing %" PRIu64
" chunks, (%" PRIu64
" MB)\n",
1882 chunks
+ 1, (chunks
+ 1) * (1UL << RDMA_REG_CHUNK_SHIFT
) / 1024 / 1024);
1884 chunk_end
= ram_chunk_end(block
, chunk
+ chunks
);
1886 if (!rdma
->pin_all
) {
1887 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1888 qemu_rdma_unregister_waiting(rdma
);
1892 while (test_bit(chunk
, block
->transit_bitmap
)) {
1894 DDPRINTF("(%d) Not clobbering: block: %d chunk %" PRIu64
1895 " current %" PRIu64
" len %" PRIu64
" %d %d\n",
1896 count
++, current_index
, chunk
,
1897 sge
.addr
, length
, rdma
->nb_sent
, block
->nb_chunks
);
1899 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
1902 fprintf(stderr
, "Failed to Wait for previous write to complete "
1903 "block %d chunk %" PRIu64
1904 " current %" PRIu64
" len %" PRIu64
" %d\n",
1905 current_index
, chunk
, sge
.addr
, length
, rdma
->nb_sent
);
1910 if (!rdma
->pin_all
|| !block
->is_ram_block
) {
1911 if (!block
->remote_keys
[chunk
]) {
1913 * This chunk has not yet been registered, so first check to see
1914 * if the entire chunk is zero. If so, tell the other size to
1915 * memset() + madvise() the entire chunk without RDMA.
1918 if (can_use_buffer_find_nonzero_offset((void *)sge
.addr
, length
)
1919 && buffer_find_nonzero_offset((void *)sge
.addr
,
1920 length
) == length
) {
1921 RDMACompress comp
= {
1922 .offset
= current_addr
,
1924 .block_idx
= current_index
,
1928 head
.len
= sizeof(comp
);
1929 head
.type
= RDMA_CONTROL_COMPRESS
;
1931 DDPRINTF("Entire chunk is zero, sending compress: %"
1933 "bytes, index: %d, offset: %" PRId64
"...\n",
1934 chunk
, sge
.length
, current_index
, current_addr
);
1936 compress_to_network(&comp
);
1937 ret
= qemu_rdma_exchange_send(rdma
, &head
,
1938 (uint8_t *) &comp
, NULL
, NULL
, NULL
);
1944 acct_update_position(f
, sge
.length
, true);
1950 * Otherwise, tell other side to register.
1952 reg
.current_index
= current_index
;
1953 if (block
->is_ram_block
) {
1954 reg
.key
.current_addr
= current_addr
;
1956 reg
.key
.chunk
= chunk
;
1958 reg
.chunks
= chunks
;
1960 DDPRINTF("Sending registration request chunk %" PRIu64
" for %d "
1961 "bytes, index: %d, offset: %" PRId64
"...\n",
1962 chunk
, sge
.length
, current_index
, current_addr
);
1964 register_to_network(®
);
1965 ret
= qemu_rdma_exchange_send(rdma
, &head
, (uint8_t *) ®
,
1966 &resp
, ®_result_idx
, NULL
);
1971 /* try to overlap this single registration with the one we sent. */
1972 if (qemu_rdma_register_and_get_keys(rdma
, block
,
1973 (uint8_t *) sge
.addr
,
1974 &sge
.lkey
, NULL
, chunk
,
1975 chunk_start
, chunk_end
)) {
1976 fprintf(stderr
, "cannot get lkey!\n");
1980 reg_result
= (RDMARegisterResult
*)
1981 rdma
->wr_data
[reg_result_idx
].control_curr
;
1983 network_to_result(reg_result
);
1985 DDPRINTF("Received registration result:"
1986 " my key: %x their key %x, chunk %" PRIu64
"\n",
1987 block
->remote_keys
[chunk
], reg_result
->rkey
, chunk
);
1989 block
->remote_keys
[chunk
] = reg_result
->rkey
;
1990 block
->remote_host_addr
= reg_result
->host_addr
;
1992 /* already registered before */
1993 if (qemu_rdma_register_and_get_keys(rdma
, block
,
1994 (uint8_t *)sge
.addr
,
1995 &sge
.lkey
, NULL
, chunk
,
1996 chunk_start
, chunk_end
)) {
1997 fprintf(stderr
, "cannot get lkey!\n");
2002 send_wr
.wr
.rdma
.rkey
= block
->remote_keys
[chunk
];
2004 send_wr
.wr
.rdma
.rkey
= block
->remote_rkey
;
2006 if (qemu_rdma_register_and_get_keys(rdma
, block
, (uint8_t *)sge
.addr
,
2007 &sge
.lkey
, NULL
, chunk
,
2008 chunk_start
, chunk_end
)) {
2009 fprintf(stderr
, "cannot get lkey!\n");
2015 * Encode the ram block index and chunk within this wrid.
2016 * We will use this information at the time of completion
2017 * to figure out which bitmap to check against and then which
2018 * chunk in the bitmap to look for.
2020 send_wr
.wr_id
= qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE
,
2021 current_index
, chunk
);
2023 send_wr
.opcode
= IBV_WR_RDMA_WRITE
;
2024 send_wr
.send_flags
= IBV_SEND_SIGNALED
;
2025 send_wr
.sg_list
= &sge
;
2026 send_wr
.num_sge
= 1;
2027 send_wr
.wr
.rdma
.remote_addr
= block
->remote_host_addr
+
2028 (current_addr
- block
->offset
);
2030 DDDPRINTF("Posting chunk: %" PRIu64
", addr: %lx"
2031 " remote: %lx, bytes %" PRIu32
"\n",
2032 chunk
, sge
.addr
, send_wr
.wr
.rdma
.remote_addr
,
2036 * ibv_post_send() does not return negative error numbers,
2037 * per the specification they are positive - no idea why.
2039 ret
= ibv_post_send(rdma
->qp
, &send_wr
, &bad_wr
);
2041 if (ret
== ENOMEM
) {
2042 DDPRINTF("send queue is full. wait a little....\n");
2043 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2045 fprintf(stderr
, "rdma migration: failed to make "
2046 "room in full send queue! %d\n", ret
);
2052 } else if (ret
> 0) {
2053 perror("rdma migration: post rdma write failed");
2057 set_bit(chunk
, block
->transit_bitmap
);
2058 acct_update_position(f
, sge
.length
, false);
2059 rdma
->total_writes
++;
2065 * Push out any unwritten RDMA operations.
2067 * We support sending out multiple chunks at the same time.
2068 * Not all of them need to get signaled in the completion queue.
2070 static int qemu_rdma_write_flush(QEMUFile
*f
, RDMAContext
*rdma
)
2074 if (!rdma
->current_length
) {
2078 ret
= qemu_rdma_write_one(f
, rdma
,
2079 rdma
->current_index
, rdma
->current_addr
, rdma
->current_length
);
2087 DDDPRINTF("sent total: %d\n", rdma
->nb_sent
);
2090 rdma
->current_length
= 0;
2091 rdma
->current_addr
= 0;
2096 static inline int qemu_rdma_buffer_mergable(RDMAContext
*rdma
,
2097 uint64_t offset
, uint64_t len
)
2099 RDMALocalBlock
*block
;
2103 if (rdma
->current_index
< 0) {
2107 if (rdma
->current_chunk
< 0) {
2111 block
= &(rdma
->local_ram_blocks
.block
[rdma
->current_index
]);
2112 host_addr
= block
->local_host_addr
+ (offset
- block
->offset
);
2113 chunk_end
= ram_chunk_end(block
, rdma
->current_chunk
);
2115 if (rdma
->current_length
== 0) {
2120 * Only merge into chunk sequentially.
2122 if (offset
!= (rdma
->current_addr
+ rdma
->current_length
)) {
2126 if (offset
< block
->offset
) {
2130 if ((offset
+ len
) > (block
->offset
+ block
->length
)) {
2134 if ((host_addr
+ len
) > chunk_end
) {
2142 * We're not actually writing here, but doing three things:
2144 * 1. Identify the chunk the buffer belongs to.
2145 * 2. If the chunk is full or the buffer doesn't belong to the current
2146 * chunk, then start a new chunk and flush() the old chunk.
2147 * 3. To keep the hardware busy, we also group chunks into batches
2148 * and only require that a batch gets acknowledged in the completion
2149 * qeueue instead of each individual chunk.
2151 static int qemu_rdma_write(QEMUFile
*f
, RDMAContext
*rdma
,
2152 uint64_t block_offset
, uint64_t offset
,
2155 uint64_t current_addr
= block_offset
+ offset
;
2156 uint64_t index
= rdma
->current_index
;
2157 uint64_t chunk
= rdma
->current_chunk
;
2160 /* If we cannot merge it, we flush the current buffer first. */
2161 if (!qemu_rdma_buffer_mergable(rdma
, current_addr
, len
)) {
2162 ret
= qemu_rdma_write_flush(f
, rdma
);
2166 rdma
->current_length
= 0;
2167 rdma
->current_addr
= current_addr
;
2169 ret
= qemu_rdma_search_ram_block(rdma
, block_offset
,
2170 offset
, len
, &index
, &chunk
);
2172 fprintf(stderr
, "ram block search failed\n");
2175 rdma
->current_index
= index
;
2176 rdma
->current_chunk
= chunk
;
2180 rdma
->current_length
+= len
;
2182 /* flush it if buffer is too large */
2183 if (rdma
->current_length
>= RDMA_MERGE_MAX
) {
2184 return qemu_rdma_write_flush(f
, rdma
);
2190 static void qemu_rdma_cleanup(RDMAContext
*rdma
)
2192 struct rdma_cm_event
*cm_event
;
2196 if (rdma
->error_state
) {
2197 RDMAControlHeader head
= { .len
= 0,
2198 .type
= RDMA_CONTROL_ERROR
,
2201 fprintf(stderr
, "Early error. Sending error.\n");
2202 qemu_rdma_post_send_control(rdma
, NULL
, &head
);
2205 ret
= rdma_disconnect(rdma
->cm_id
);
2207 DDPRINTF("waiting for disconnect\n");
2208 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
2210 rdma_ack_cm_event(cm_event
);
2213 DDPRINTF("Disconnected.\n");
2217 g_free(rdma
->block
);
2220 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2221 if (rdma
->wr_data
[idx
].control_mr
) {
2222 rdma
->total_registrations
--;
2223 ibv_dereg_mr(rdma
->wr_data
[idx
].control_mr
);
2225 rdma
->wr_data
[idx
].control_mr
= NULL
;
2228 if (rdma
->local_ram_blocks
.block
) {
2229 while (rdma
->local_ram_blocks
.nb_blocks
) {
2230 __qemu_rdma_delete_block(rdma
,
2231 rdma
->local_ram_blocks
.block
->offset
);
2236 ibv_destroy_qp(rdma
->qp
);
2240 ibv_destroy_cq(rdma
->cq
);
2243 if (rdma
->comp_channel
) {
2244 ibv_destroy_comp_channel(rdma
->comp_channel
);
2245 rdma
->comp_channel
= NULL
;
2248 ibv_dealloc_pd(rdma
->pd
);
2251 if (rdma
->listen_id
) {
2252 rdma_destroy_id(rdma
->listen_id
);
2253 rdma
->listen_id
= NULL
;
2256 rdma_destroy_id(rdma
->cm_id
);
2259 if (rdma
->channel
) {
2260 rdma_destroy_event_channel(rdma
->channel
);
2261 rdma
->channel
= NULL
;
2268 static int qemu_rdma_source_init(RDMAContext
*rdma
, Error
**errp
, bool pin_all
)
2271 Error
*local_err
= NULL
, **temp
= &local_err
;
2274 * Will be validated against destination's actual capabilities
2275 * after the connect() completes.
2277 rdma
->pin_all
= pin_all
;
2279 ret
= qemu_rdma_resolve_host(rdma
, temp
);
2281 goto err_rdma_source_init
;
2284 ret
= qemu_rdma_alloc_pd_cq(rdma
);
2286 ERROR(temp
, "rdma migration: error allocating pd and cq! Your mlock()"
2287 " limits may be too low. Please check $ ulimit -a # and "
2288 "search for 'ulimit -l' in the output");
2289 goto err_rdma_source_init
;
2292 ret
= qemu_rdma_alloc_qp(rdma
);
2294 ERROR(temp
, "rdma migration: error allocating qp!");
2295 goto err_rdma_source_init
;
2298 ret
= qemu_rdma_init_ram_blocks(rdma
);
2300 ERROR(temp
, "rdma migration: error initializing ram blocks!");
2301 goto err_rdma_source_init
;
2304 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2305 ret
= qemu_rdma_reg_control(rdma
, idx
);
2307 ERROR(temp
, "rdma migration: error registering %d control!",
2309 goto err_rdma_source_init
;
2315 err_rdma_source_init
:
2316 error_propagate(errp
, local_err
);
2317 qemu_rdma_cleanup(rdma
);
2321 static int qemu_rdma_connect(RDMAContext
*rdma
, Error
**errp
)
2323 RDMACapabilities cap
= {
2324 .version
= RDMA_CONTROL_VERSION_CURRENT
,
2327 struct rdma_conn_param conn_param
= { .initiator_depth
= 2,
2329 .private_data
= &cap
,
2330 .private_data_len
= sizeof(cap
),
2332 struct rdma_cm_event
*cm_event
;
2336 * Only negotiate the capability with destination if the user
2337 * on the source first requested the capability.
2339 if (rdma
->pin_all
) {
2340 DPRINTF("Server pin-all memory requested.\n");
2341 cap
.flags
|= RDMA_CAPABILITY_PIN_ALL
;
2344 caps_to_network(&cap
);
2346 ret
= rdma_connect(rdma
->cm_id
, &conn_param
);
2348 perror("rdma_connect");
2349 ERROR(errp
, "connecting to destination!");
2350 rdma_destroy_id(rdma
->cm_id
);
2352 goto err_rdma_source_connect
;
2355 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
2357 perror("rdma_get_cm_event after rdma_connect");
2358 ERROR(errp
, "connecting to destination!");
2359 rdma_ack_cm_event(cm_event
);
2360 rdma_destroy_id(rdma
->cm_id
);
2362 goto err_rdma_source_connect
;
2365 if (cm_event
->event
!= RDMA_CM_EVENT_ESTABLISHED
) {
2366 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2367 ERROR(errp
, "connecting to destination!");
2368 rdma_ack_cm_event(cm_event
);
2369 rdma_destroy_id(rdma
->cm_id
);
2371 goto err_rdma_source_connect
;
2374 memcpy(&cap
, cm_event
->param
.conn
.private_data
, sizeof(cap
));
2375 network_to_caps(&cap
);
2378 * Verify that the *requested* capabilities are supported by the destination
2379 * and disable them otherwise.
2381 if (rdma
->pin_all
&& !(cap
.flags
& RDMA_CAPABILITY_PIN_ALL
)) {
2382 ERROR(errp
, "Server cannot support pinning all memory. "
2383 "Will register memory dynamically.");
2384 rdma
->pin_all
= false;
2387 DPRINTF("Pin all memory: %s\n", rdma
->pin_all
? "enabled" : "disabled");
2389 rdma_ack_cm_event(cm_event
);
2391 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
2393 ERROR(errp
, "posting second control recv!");
2394 goto err_rdma_source_connect
;
2397 rdma
->control_ready_expected
= 1;
2401 err_rdma_source_connect
:
2402 qemu_rdma_cleanup(rdma
);
2406 static int qemu_rdma_dest_init(RDMAContext
*rdma
, Error
**errp
)
2408 int ret
= -EINVAL
, idx
;
2409 struct rdma_cm_id
*listen_id
;
2410 char ip
[40] = "unknown";
2411 struct rdma_addrinfo
*res
;
2414 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2415 rdma
->wr_data
[idx
].control_len
= 0;
2416 rdma
->wr_data
[idx
].control_curr
= NULL
;
2419 if (rdma
->host
== NULL
) {
2420 ERROR(errp
, "RDMA host is not set!");
2421 rdma
->error_state
= -EINVAL
;
2424 /* create CM channel */
2425 rdma
->channel
= rdma_create_event_channel();
2426 if (!rdma
->channel
) {
2427 ERROR(errp
, "could not create rdma event channel");
2428 rdma
->error_state
= -EINVAL
;
2433 ret
= rdma_create_id(rdma
->channel
, &listen_id
, NULL
, RDMA_PS_TCP
);
2435 ERROR(errp
, "could not create cm_id!");
2436 goto err_dest_init_create_listen_id
;
2439 snprintf(port_str
, 16, "%d", rdma
->port
);
2440 port_str
[15] = '\0';
2442 if (rdma
->host
&& strcmp("", rdma
->host
)) {
2443 struct rdma_addrinfo
*e
;
2445 ret
= rdma_getaddrinfo(rdma
->host
, port_str
, NULL
, &res
);
2447 ERROR(errp
, "could not rdma_getaddrinfo address %s", rdma
->host
);
2448 goto err_dest_init_bind_addr
;
2451 for (e
= res
; e
!= NULL
; e
= e
->ai_next
) {
2452 inet_ntop(e
->ai_family
,
2453 &((struct sockaddr_in
*) e
->ai_dst_addr
)->sin_addr
, ip
, sizeof ip
);
2454 DPRINTF("Trying %s => %s\n", rdma
->host
, ip
);
2455 ret
= rdma_bind_addr(listen_id
, e
->ai_dst_addr
);
2457 if (e
->ai_family
== AF_INET6
) {
2458 ret
= qemu_rdma_broken_ipv6_kernel(errp
, listen_id
->verbs
);
2468 ERROR(errp
, "Error: could not rdma_bind_addr!");
2469 goto err_dest_init_bind_addr
;
2471 ERROR(errp
, "migration host and port not specified!");
2473 goto err_dest_init_bind_addr
;
2477 rdma
->listen_id
= listen_id
;
2478 qemu_rdma_dump_gid("dest_init", listen_id
);
2481 err_dest_init_bind_addr
:
2482 rdma_destroy_id(listen_id
);
2483 err_dest_init_create_listen_id
:
2484 rdma_destroy_event_channel(rdma
->channel
);
2485 rdma
->channel
= NULL
;
2486 rdma
->error_state
= ret
;
2491 static void *qemu_rdma_data_init(const char *host_port
, Error
**errp
)
2493 RDMAContext
*rdma
= NULL
;
2494 InetSocketAddress
*addr
;
2497 rdma
= g_malloc0(sizeof(RDMAContext
));
2498 memset(rdma
, 0, sizeof(RDMAContext
));
2499 rdma
->current_index
= -1;
2500 rdma
->current_chunk
= -1;
2502 addr
= inet_parse(host_port
, NULL
);
2504 rdma
->port
= atoi(addr
->port
);
2505 rdma
->host
= g_strdup(addr
->host
);
2507 ERROR(errp
, "bad RDMA migration address '%s'", host_port
);
2517 * QEMUFile interface to the control channel.
2518 * SEND messages for control only.
2519 * pc.ram is handled with regular RDMA messages.
2521 static int qemu_rdma_put_buffer(void *opaque
, const uint8_t *buf
,
2522 int64_t pos
, int size
)
2524 QEMUFileRDMA
*r
= opaque
;
2525 QEMUFile
*f
= r
->file
;
2526 RDMAContext
*rdma
= r
->rdma
;
2527 size_t remaining
= size
;
2528 uint8_t * data
= (void *) buf
;
2531 CHECK_ERROR_STATE();
2534 * Push out any writes that
2535 * we're queued up for pc.ram.
2537 ret
= qemu_rdma_write_flush(f
, rdma
);
2539 rdma
->error_state
= ret
;
2544 RDMAControlHeader head
;
2546 r
->len
= MIN(remaining
, RDMA_SEND_INCREMENT
);
2547 remaining
-= r
->len
;
2550 head
.type
= RDMA_CONTROL_QEMU_FILE
;
2552 ret
= qemu_rdma_exchange_send(rdma
, &head
, data
, NULL
, NULL
, NULL
);
2555 rdma
->error_state
= ret
;
2565 static size_t qemu_rdma_fill(RDMAContext
*rdma
, uint8_t *buf
,
2570 if (rdma
->wr_data
[idx
].control_len
) {
2571 DDDPRINTF("RDMA %" PRId64
" of %d bytes already in buffer\n",
2572 rdma
->wr_data
[idx
].control_len
, size
);
2574 len
= MIN(size
, rdma
->wr_data
[idx
].control_len
);
2575 memcpy(buf
, rdma
->wr_data
[idx
].control_curr
, len
);
2576 rdma
->wr_data
[idx
].control_curr
+= len
;
2577 rdma
->wr_data
[idx
].control_len
-= len
;
2584 * QEMUFile interface to the control channel.
2585 * RDMA links don't use bytestreams, so we have to
2586 * return bytes to QEMUFile opportunistically.
2588 static int qemu_rdma_get_buffer(void *opaque
, uint8_t *buf
,
2589 int64_t pos
, int size
)
2591 QEMUFileRDMA
*r
= opaque
;
2592 RDMAContext
*rdma
= r
->rdma
;
2593 RDMAControlHeader head
;
2596 CHECK_ERROR_STATE();
2599 * First, we hold on to the last SEND message we
2600 * were given and dish out the bytes until we run
2603 r
->len
= qemu_rdma_fill(r
->rdma
, buf
, size
, 0);
2609 * Once we run out, we block and wait for another
2610 * SEND message to arrive.
2612 ret
= qemu_rdma_exchange_recv(rdma
, &head
, RDMA_CONTROL_QEMU_FILE
);
2615 rdma
->error_state
= ret
;
2620 * SEND was received with new bytes, now try again.
2622 return qemu_rdma_fill(r
->rdma
, buf
, size
, 0);
2626 * Block until all the outstanding chunks have been delivered by the hardware.
2628 static int qemu_rdma_drain_cq(QEMUFile
*f
, RDMAContext
*rdma
)
2632 if (qemu_rdma_write_flush(f
, rdma
) < 0) {
2636 while (rdma
->nb_sent
) {
2637 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2639 fprintf(stderr
, "rdma migration: complete polling error!\n");
2644 qemu_rdma_unregister_waiting(rdma
);
2649 static int qemu_rdma_close(void *opaque
)
2651 DPRINTF("Shutting down connection.\n");
2652 QEMUFileRDMA
*r
= opaque
;
2654 qemu_rdma_cleanup(r
->rdma
);
2664 * This means that 'block_offset' is a full virtual address that does not
2665 * belong to a RAMBlock of the virtual machine and instead
2666 * represents a private malloc'd memory area that the caller wishes to
2670 * Offset is an offset to be added to block_offset and used
2671 * to also lookup the corresponding RAMBlock.
2674 * Initiate an transfer this size.
2677 * A 'hint' or 'advice' that means that we wish to speculatively
2678 * and asynchronously unregister this memory. In this case, there is no
2679 * guarantee that the unregister will actually happen, for example,
2680 * if the memory is being actively transmitted. Additionally, the memory
2681 * may be re-registered at any future time if a write within the same
2682 * chunk was requested again, even if you attempted to unregister it
2685 * @size < 0 : TODO, not yet supported
2686 * Unregister the memory NOW. This means that the caller does not
2687 * expect there to be any future RDMA transfers and we just want to clean
2688 * things up. This is used in case the upper layer owns the memory and
2689 * cannot wait for qemu_fclose() to occur.
2691 * @bytes_sent : User-specificed pointer to indicate how many bytes were
2692 * sent. Usually, this will not be more than a few bytes of
2693 * the protocol because most transfers are sent asynchronously.
2695 static size_t qemu_rdma_save_page(QEMUFile
*f
, void *opaque
,
2696 ram_addr_t block_offset
, ram_addr_t offset
,
2697 size_t size
, int *bytes_sent
)
2699 QEMUFileRDMA
*rfile
= opaque
;
2700 RDMAContext
*rdma
= rfile
->rdma
;
2703 CHECK_ERROR_STATE();
2709 * Add this page to the current 'chunk'. If the chunk
2710 * is full, or the page doen't belong to the current chunk,
2711 * an actual RDMA write will occur and a new chunk will be formed.
2713 ret
= qemu_rdma_write(f
, rdma
, block_offset
, offset
, size
);
2715 fprintf(stderr
, "rdma migration: write error! %d\n", ret
);
2720 * We always return 1 bytes because the RDMA
2721 * protocol is completely asynchronous. We do not yet know
2722 * whether an identified chunk is zero or not because we're
2723 * waiting for other pages to potentially be merged with
2724 * the current chunk. So, we have to call qemu_update_position()
2725 * later on when the actual write occurs.
2731 uint64_t index
, chunk
;
2733 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
2735 ret = qemu_rdma_drain_cq(f, rdma);
2737 fprintf(stderr, "rdma: failed to synchronously drain"
2738 " completion queue before unregistration.\n");
2744 ret
= qemu_rdma_search_ram_block(rdma
, block_offset
,
2745 offset
, size
, &index
, &chunk
);
2748 fprintf(stderr
, "ram block search failed\n");
2752 qemu_rdma_signal_unregister(rdma
, index
, chunk
, 0);
2755 * TODO: Synchronous, guaranteed unregistration (should not occur during
2756 * fast-path). Otherwise, unregisters will process on the next call to
2757 * qemu_rdma_drain_cq()
2759 qemu_rdma_unregister_waiting(rdma);
2765 * Drain the Completion Queue if possible, but do not block,
2768 * If nothing to poll, the end of the iteration will do this
2769 * again to make sure we don't overflow the request queue.
2772 uint64_t wr_id
, wr_id_in
;
2773 int ret
= qemu_rdma_poll(rdma
, &wr_id_in
, NULL
);
2775 fprintf(stderr
, "rdma migration: polling error! %d\n", ret
);
2779 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
2781 if (wr_id
== RDMA_WRID_NONE
) {
2786 return RAM_SAVE_CONTROL_DELAYED
;
2788 rdma
->error_state
= ret
;
2792 static int qemu_rdma_accept(RDMAContext
*rdma
)
2794 RDMACapabilities cap
;
2795 struct rdma_conn_param conn_param
= {
2796 .responder_resources
= 2,
2797 .private_data
= &cap
,
2798 .private_data_len
= sizeof(cap
),
2800 struct rdma_cm_event
*cm_event
;
2801 struct ibv_context
*verbs
;
2805 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
2807 goto err_rdma_dest_wait
;
2810 if (cm_event
->event
!= RDMA_CM_EVENT_CONNECT_REQUEST
) {
2811 rdma_ack_cm_event(cm_event
);
2812 goto err_rdma_dest_wait
;
2815 memcpy(&cap
, cm_event
->param
.conn
.private_data
, sizeof(cap
));
2817 network_to_caps(&cap
);
2819 if (cap
.version
< 1 || cap
.version
> RDMA_CONTROL_VERSION_CURRENT
) {
2820 fprintf(stderr
, "Unknown source RDMA version: %d, bailing...\n",
2822 rdma_ack_cm_event(cm_event
);
2823 goto err_rdma_dest_wait
;
2827 * Respond with only the capabilities this version of QEMU knows about.
2829 cap
.flags
&= known_capabilities
;
2832 * Enable the ones that we do know about.
2833 * Add other checks here as new ones are introduced.
2835 if (cap
.flags
& RDMA_CAPABILITY_PIN_ALL
) {
2836 rdma
->pin_all
= true;
2839 rdma
->cm_id
= cm_event
->id
;
2840 verbs
= cm_event
->id
->verbs
;
2842 rdma_ack_cm_event(cm_event
);
2844 DPRINTF("Memory pin all: %s\n", rdma
->pin_all
? "enabled" : "disabled");
2846 caps_to_network(&cap
);
2848 DPRINTF("verbs context after listen: %p\n", verbs
);
2851 rdma
->verbs
= verbs
;
2852 } else if (rdma
->verbs
!= verbs
) {
2853 fprintf(stderr
, "ibv context not matching %p, %p!\n",
2854 rdma
->verbs
, verbs
);
2855 goto err_rdma_dest_wait
;
2858 qemu_rdma_dump_id("dest_init", verbs
);
2860 ret
= qemu_rdma_alloc_pd_cq(rdma
);
2862 fprintf(stderr
, "rdma migration: error allocating pd and cq!\n");
2863 goto err_rdma_dest_wait
;
2866 ret
= qemu_rdma_alloc_qp(rdma
);
2868 fprintf(stderr
, "rdma migration: error allocating qp!\n");
2869 goto err_rdma_dest_wait
;
2872 ret
= qemu_rdma_init_ram_blocks(rdma
);
2874 fprintf(stderr
, "rdma migration: error initializing ram blocks!\n");
2875 goto err_rdma_dest_wait
;
2878 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2879 ret
= qemu_rdma_reg_control(rdma
, idx
);
2881 fprintf(stderr
, "rdma: error registering %d control!\n", idx
);
2882 goto err_rdma_dest_wait
;
2886 qemu_set_fd_handler2(rdma
->channel
->fd
, NULL
, NULL
, NULL
, NULL
);
2888 ret
= rdma_accept(rdma
->cm_id
, &conn_param
);
2890 fprintf(stderr
, "rdma_accept returns %d!\n", ret
);
2891 goto err_rdma_dest_wait
;
2894 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
2896 fprintf(stderr
, "rdma_accept get_cm_event failed %d!\n", ret
);
2897 goto err_rdma_dest_wait
;
2900 if (cm_event
->event
!= RDMA_CM_EVENT_ESTABLISHED
) {
2901 fprintf(stderr
, "rdma_accept not event established!\n");
2902 rdma_ack_cm_event(cm_event
);
2903 goto err_rdma_dest_wait
;
2906 rdma_ack_cm_event(cm_event
);
2908 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
2910 fprintf(stderr
, "rdma migration: error posting second control recv!\n");
2911 goto err_rdma_dest_wait
;
2914 qemu_rdma_dump_gid("dest_connect", rdma
->cm_id
);
2919 rdma
->error_state
= ret
;
2920 qemu_rdma_cleanup(rdma
);
2925 * During each iteration of the migration, we listen for instructions
2926 * by the source VM to perform dynamic page registrations before they
2927 * can perform RDMA operations.
2929 * We respond with the 'rkey'.
2931 * Keep doing this until the source tells us to stop.
2933 static int qemu_rdma_registration_handle(QEMUFile
*f
, void *opaque
,
2936 RDMAControlHeader reg_resp
= { .len
= sizeof(RDMARegisterResult
),
2937 .type
= RDMA_CONTROL_REGISTER_RESULT
,
2940 RDMAControlHeader unreg_resp
= { .len
= 0,
2941 .type
= RDMA_CONTROL_UNREGISTER_FINISHED
,
2944 RDMAControlHeader blocks
= { .type
= RDMA_CONTROL_RAM_BLOCKS_RESULT
,
2946 QEMUFileRDMA
*rfile
= opaque
;
2947 RDMAContext
*rdma
= rfile
->rdma
;
2948 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
2949 RDMAControlHeader head
;
2950 RDMARegister
*reg
, *registers
;
2952 RDMARegisterResult
*reg_result
;
2953 static RDMARegisterResult results
[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE
];
2954 RDMALocalBlock
*block
;
2961 CHECK_ERROR_STATE();
2964 DDDPRINTF("Waiting for next request %" PRIu64
"...\n", flags
);
2966 ret
= qemu_rdma_exchange_recv(rdma
, &head
, RDMA_CONTROL_NONE
);
2972 if (head
.repeat
> RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE
) {
2973 fprintf(stderr
, "rdma: Too many requests in this message (%d)."
2974 "Bailing.\n", head
.repeat
);
2979 switch (head
.type
) {
2980 case RDMA_CONTROL_COMPRESS
:
2981 comp
= (RDMACompress
*) rdma
->wr_data
[idx
].control_curr
;
2982 network_to_compress(comp
);
2984 DDPRINTF("Zapping zero chunk: %" PRId64
2985 " bytes, index %d, offset %" PRId64
"\n",
2986 comp
->length
, comp
->block_idx
, comp
->offset
);
2987 block
= &(rdma
->local_ram_blocks
.block
[comp
->block_idx
]);
2989 host_addr
= block
->local_host_addr
+
2990 (comp
->offset
- block
->offset
);
2992 ram_handle_compressed(host_addr
, comp
->value
, comp
->length
);
2995 case RDMA_CONTROL_REGISTER_FINISHED
:
2996 DDDPRINTF("Current registrations complete.\n");
2999 case RDMA_CONTROL_RAM_BLOCKS_REQUEST
:
3000 DPRINTF("Initial setup info requested.\n");
3002 if (rdma
->pin_all
) {
3003 ret
= qemu_rdma_reg_whole_ram_blocks(rdma
);
3005 fprintf(stderr
, "rdma migration: error dest "
3006 "registering ram blocks!\n");
3012 * Dest uses this to prepare to transmit the RAMBlock descriptions
3013 * to the source VM after connection setup.
3014 * Both sides use the "remote" structure to communicate and update
3015 * their "local" descriptions with what was sent.
3017 for (i
= 0; i
< local
->nb_blocks
; i
++) {
3018 rdma
->block
[i
].remote_host_addr
=
3019 (uint64_t)(local
->block
[i
].local_host_addr
);
3021 if (rdma
->pin_all
) {
3022 rdma
->block
[i
].remote_rkey
= local
->block
[i
].mr
->rkey
;
3025 rdma
->block
[i
].offset
= local
->block
[i
].offset
;
3026 rdma
->block
[i
].length
= local
->block
[i
].length
;
3028 remote_block_to_network(&rdma
->block
[i
]);
3031 blocks
.len
= rdma
->local_ram_blocks
.nb_blocks
3032 * sizeof(RDMARemoteBlock
);
3035 ret
= qemu_rdma_post_send_control(rdma
,
3036 (uint8_t *) rdma
->block
, &blocks
);
3039 fprintf(stderr
, "rdma migration: error sending remote info!\n");
3044 case RDMA_CONTROL_REGISTER_REQUEST
:
3045 DDPRINTF("There are %d registration requests\n", head
.repeat
);
3047 reg_resp
.repeat
= head
.repeat
;
3048 registers
= (RDMARegister
*) rdma
->wr_data
[idx
].control_curr
;
3050 for (count
= 0; count
< head
.repeat
; count
++) {
3052 uint8_t *chunk_start
, *chunk_end
;
3054 reg
= ®isters
[count
];
3055 network_to_register(reg
);
3057 reg_result
= &results
[count
];
3059 DDPRINTF("Registration request (%d): index %d, current_addr %"
3060 PRIu64
" chunks: %" PRIu64
"\n", count
,
3061 reg
->current_index
, reg
->key
.current_addr
, reg
->chunks
);
3063 block
= &(rdma
->local_ram_blocks
.block
[reg
->current_index
]);
3064 if (block
->is_ram_block
) {
3065 host_addr
= (block
->local_host_addr
+
3066 (reg
->key
.current_addr
- block
->offset
));
3067 chunk
= ram_chunk_index(block
->local_host_addr
,
3068 (uint8_t *) host_addr
);
3070 chunk
= reg
->key
.chunk
;
3071 host_addr
= block
->local_host_addr
+
3072 (reg
->key
.chunk
* (1UL << RDMA_REG_CHUNK_SHIFT
));
3074 chunk_start
= ram_chunk_start(block
, chunk
);
3075 chunk_end
= ram_chunk_end(block
, chunk
+ reg
->chunks
);
3076 if (qemu_rdma_register_and_get_keys(rdma
, block
,
3077 (uint8_t *)host_addr
, NULL
, ®_result
->rkey
,
3078 chunk
, chunk_start
, chunk_end
)) {
3079 fprintf(stderr
, "cannot get rkey!\n");
3084 reg_result
->host_addr
= (uint64_t) block
->local_host_addr
;
3086 DDPRINTF("Registered rkey for this request: %x\n",
3089 result_to_network(reg_result
);
3092 ret
= qemu_rdma_post_send_control(rdma
,
3093 (uint8_t *) results
, ®_resp
);
3096 fprintf(stderr
, "Failed to send control buffer!\n");
3100 case RDMA_CONTROL_UNREGISTER_REQUEST
:
3101 DDPRINTF("There are %d unregistration requests\n", head
.repeat
);
3102 unreg_resp
.repeat
= head
.repeat
;
3103 registers
= (RDMARegister
*) rdma
->wr_data
[idx
].control_curr
;
3105 for (count
= 0; count
< head
.repeat
; count
++) {
3106 reg
= ®isters
[count
];
3107 network_to_register(reg
);
3109 DDPRINTF("Unregistration request (%d): "
3110 " index %d, chunk %" PRIu64
"\n",
3111 count
, reg
->current_index
, reg
->key
.chunk
);
3113 block
= &(rdma
->local_ram_blocks
.block
[reg
->current_index
]);
3115 ret
= ibv_dereg_mr(block
->pmr
[reg
->key
.chunk
]);
3116 block
->pmr
[reg
->key
.chunk
] = NULL
;
3119 perror("rdma unregistration chunk failed");
3124 rdma
->total_registrations
--;
3126 DDPRINTF("Unregistered chunk %" PRIu64
" successfully.\n",
3130 ret
= qemu_rdma_post_send_control(rdma
, NULL
, &unreg_resp
);
3133 fprintf(stderr
, "Failed to send control buffer!\n");
3137 case RDMA_CONTROL_REGISTER_RESULT
:
3138 fprintf(stderr
, "Invalid RESULT message at dest.\n");
3142 fprintf(stderr
, "Unknown control message %s\n",
3143 control_desc
[head
.type
]);
3150 rdma
->error_state
= ret
;
3155 static int qemu_rdma_registration_start(QEMUFile
*f
, void *opaque
,
3158 QEMUFileRDMA
*rfile
= opaque
;
3159 RDMAContext
*rdma
= rfile
->rdma
;
3161 CHECK_ERROR_STATE();
3163 DDDPRINTF("start section: %" PRIu64
"\n", flags
);
3164 qemu_put_be64(f
, RAM_SAVE_FLAG_HOOK
);
3171 * Inform dest that dynamic registrations are done for now.
3172 * First, flush writes, if any.
3174 static int qemu_rdma_registration_stop(QEMUFile
*f
, void *opaque
,
3177 Error
*local_err
= NULL
, **errp
= &local_err
;
3178 QEMUFileRDMA
*rfile
= opaque
;
3179 RDMAContext
*rdma
= rfile
->rdma
;
3180 RDMAControlHeader head
= { .len
= 0, .repeat
= 1 };
3183 CHECK_ERROR_STATE();
3186 ret
= qemu_rdma_drain_cq(f
, rdma
);
3192 if (flags
== RAM_CONTROL_SETUP
) {
3193 RDMAControlHeader resp
= {.type
= RDMA_CONTROL_RAM_BLOCKS_RESULT
};
3194 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
3195 int reg_result_idx
, i
, j
, nb_remote_blocks
;
3197 head
.type
= RDMA_CONTROL_RAM_BLOCKS_REQUEST
;
3198 DPRINTF("Sending registration setup for ram blocks...\n");
3201 * Make sure that we parallelize the pinning on both sides.
3202 * For very large guests, doing this serially takes a really
3203 * long time, so we have to 'interleave' the pinning locally
3204 * with the control messages by performing the pinning on this
3205 * side before we receive the control response from the other
3206 * side that the pinning has completed.
3208 ret
= qemu_rdma_exchange_send(rdma
, &head
, NULL
, &resp
,
3209 ®_result_idx
, rdma
->pin_all
?
3210 qemu_rdma_reg_whole_ram_blocks
: NULL
);
3212 ERROR(errp
, "receiving remote info!");
3216 nb_remote_blocks
= resp
.len
/ sizeof(RDMARemoteBlock
);
3219 * The protocol uses two different sets of rkeys (mutually exclusive):
3220 * 1. One key to represent the virtual address of the entire ram block.
3221 * (dynamic chunk registration disabled - pin everything with one rkey.)
3222 * 2. One to represent individual chunks within a ram block.
3223 * (dynamic chunk registration enabled - pin individual chunks.)
3225 * Once the capability is successfully negotiated, the destination transmits
3226 * the keys to use (or sends them later) including the virtual addresses
3227 * and then propagates the remote ram block descriptions to his local copy.
3230 if (local
->nb_blocks
!= nb_remote_blocks
) {
3231 ERROR(errp
, "ram blocks mismatch #1! "
3232 "Your QEMU command line parameters are probably "
3233 "not identical on both the source and destination.");
3237 qemu_rdma_move_header(rdma
, reg_result_idx
, &resp
);
3239 rdma
->wr_data
[reg_result_idx
].control_curr
, resp
.len
);
3240 for (i
= 0; i
< nb_remote_blocks
; i
++) {
3241 network_to_remote_block(&rdma
->block
[i
]);
3243 /* search local ram blocks */
3244 for (j
= 0; j
< local
->nb_blocks
; j
++) {
3245 if (rdma
->block
[i
].offset
!= local
->block
[j
].offset
) {
3249 if (rdma
->block
[i
].length
!= local
->block
[j
].length
) {
3250 ERROR(errp
, "ram blocks mismatch #2! "
3251 "Your QEMU command line parameters are probably "
3252 "not identical on both the source and destination.");
3255 local
->block
[j
].remote_host_addr
=
3256 rdma
->block
[i
].remote_host_addr
;
3257 local
->block
[j
].remote_rkey
= rdma
->block
[i
].remote_rkey
;
3261 if (j
>= local
->nb_blocks
) {
3262 ERROR(errp
, "ram blocks mismatch #3! "
3263 "Your QEMU command line parameters are probably "
3264 "not identical on both the source and destination.");
3270 DDDPRINTF("Sending registration finish %" PRIu64
"...\n", flags
);
3272 head
.type
= RDMA_CONTROL_REGISTER_FINISHED
;
3273 ret
= qemu_rdma_exchange_send(rdma
, &head
, NULL
, NULL
, NULL
, NULL
);
3281 rdma
->error_state
= ret
;
3285 static int qemu_rdma_get_fd(void *opaque
)
3287 QEMUFileRDMA
*rfile
= opaque
;
3288 RDMAContext
*rdma
= rfile
->rdma
;
3290 return rdma
->comp_channel
->fd
;
3293 const QEMUFileOps rdma_read_ops
= {
3294 .get_buffer
= qemu_rdma_get_buffer
,
3295 .get_fd
= qemu_rdma_get_fd
,
3296 .close
= qemu_rdma_close
,
3297 .hook_ram_load
= qemu_rdma_registration_handle
,
3300 const QEMUFileOps rdma_write_ops
= {
3301 .put_buffer
= qemu_rdma_put_buffer
,
3302 .close
= qemu_rdma_close
,
3303 .before_ram_iterate
= qemu_rdma_registration_start
,
3304 .after_ram_iterate
= qemu_rdma_registration_stop
,
3305 .save_page
= qemu_rdma_save_page
,
3308 static void *qemu_fopen_rdma(RDMAContext
*rdma
, const char *mode
)
3310 QEMUFileRDMA
*r
= g_malloc0(sizeof(QEMUFileRDMA
));
3312 if (qemu_file_mode_is_not_valid(mode
)) {
3318 if (mode
[0] == 'w') {
3319 r
->file
= qemu_fopen_ops(r
, &rdma_write_ops
);
3321 r
->file
= qemu_fopen_ops(r
, &rdma_read_ops
);
3327 static void rdma_accept_incoming_migration(void *opaque
)
3329 RDMAContext
*rdma
= opaque
;
3332 Error
*local_err
= NULL
, **errp
= &local_err
;
3334 DPRINTF("Accepting rdma connection...\n");
3335 ret
= qemu_rdma_accept(rdma
);
3338 ERROR(errp
, "RDMA Migration initialization failed!");
3342 DPRINTF("Accepted migration\n");
3344 f
= qemu_fopen_rdma(rdma
, "rb");
3346 ERROR(errp
, "could not qemu_fopen_rdma!");
3347 qemu_rdma_cleanup(rdma
);
3351 rdma
->migration_started_on_destination
= 1;
3352 process_incoming_migration(f
);
3355 void rdma_start_incoming_migration(const char *host_port
, Error
**errp
)
3359 Error
*local_err
= NULL
;
3361 DPRINTF("Starting RDMA-based incoming migration\n");
3362 rdma
= qemu_rdma_data_init(host_port
, &local_err
);
3368 ret
= qemu_rdma_dest_init(rdma
, &local_err
);
3374 DPRINTF("qemu_rdma_dest_init success\n");
3376 ret
= rdma_listen(rdma
->listen_id
, 5);
3379 ERROR(errp
, "listening on socket!");
3383 DPRINTF("rdma_listen success\n");
3385 qemu_set_fd_handler2(rdma
->channel
->fd
, NULL
,
3386 rdma_accept_incoming_migration
, NULL
,
3387 (void *)(intptr_t) rdma
);
3390 error_propagate(errp
, local_err
);
3394 void rdma_start_outgoing_migration(void *opaque
,
3395 const char *host_port
, Error
**errp
)
3397 MigrationState
*s
= opaque
;
3398 Error
*local_err
= NULL
, **temp
= &local_err
;
3399 RDMAContext
*rdma
= qemu_rdma_data_init(host_port
, &local_err
);
3403 ERROR(temp
, "Failed to initialize RDMA data structures! %d", ret
);
3407 ret
= qemu_rdma_source_init(rdma
, &local_err
,
3408 s
->enabled_capabilities
[MIGRATION_CAPABILITY_X_RDMA_PIN_ALL
]);
3414 DPRINTF("qemu_rdma_source_init success\n");
3415 ret
= qemu_rdma_connect(rdma
, &local_err
);
3421 DPRINTF("qemu_rdma_source_connect success\n");
3423 s
->file
= qemu_fopen_rdma(rdma
, "wb");
3424 migrate_fd_connect(s
);
3427 error_propagate(errp
, local_err
);
3429 migrate_fd_error(s
);