4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
10 #include "qemu/osdep.h"
11 #include "qapi/error.h"
13 #include "hw/arm/arm.h"
14 #include "hw/arm/linux-boot-if.h"
15 #include "sysemu/kvm.h"
16 #include "sysemu/sysemu.h"
17 #include "sysemu/numa.h"
18 #include "hw/boards.h"
19 #include "hw/loader.h"
21 #include "sysemu/device_tree.h"
22 #include "qemu/config-file.h"
23 #include "exec/address-spaces.h"
25 /* Kernel boot protocol is specified in the kernel docs
26 * Documentation/arm/Booting and Documentation/arm64/booting.txt
27 * They have different preferred image load offsets from system RAM base.
29 #define KERNEL_ARGS_ADDR 0x100
30 #define KERNEL_LOAD_ADDR 0x00010000
31 #define KERNEL64_LOAD_ADDR 0x00080000
34 FIXUP_NONE
= 0, /* do nothing */
35 FIXUP_TERMINATOR
, /* end of insns */
36 FIXUP_BOARDID
, /* overwrite with board ID number */
37 FIXUP_BOARD_SETUP
, /* overwrite with board specific setup code address */
38 FIXUP_ARGPTR
, /* overwrite with pointer to kernel args */
39 FIXUP_ENTRYPOINT
, /* overwrite with kernel entry point */
40 FIXUP_GIC_CPU_IF
, /* overwrite with GIC CPU interface address */
41 FIXUP_BOOTREG
, /* overwrite with boot register address */
42 FIXUP_DSB
, /* overwrite with correct DSB insn for cpu */
46 typedef struct ARMInsnFixup
{
51 static const ARMInsnFixup bootloader_aarch64
[] = {
52 { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
53 { 0xaa1f03e1 }, /* mov x1, xzr */
54 { 0xaa1f03e2 }, /* mov x2, xzr */
55 { 0xaa1f03e3 }, /* mov x3, xzr */
56 { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
57 { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
58 { 0, FIXUP_ARGPTR
}, /* arg: .word @DTB Lower 32-bits */
59 { 0 }, /* .word @DTB Higher 32-bits */
60 { 0, FIXUP_ENTRYPOINT
}, /* entry: .word @Kernel Entry Lower 32-bits */
61 { 0 }, /* .word @Kernel Entry Higher 32-bits */
62 { 0, FIXUP_TERMINATOR
}
65 /* A very small bootloader: call the board-setup code (if needed),
66 * set r0-r2, then jump to the kernel.
67 * If we're not calling boot setup code then we don't copy across
68 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
71 static const ARMInsnFixup bootloader
[] = {
72 { 0xe28fe004 }, /* add lr, pc, #4 */
73 { 0xe51ff004 }, /* ldr pc, [pc, #-4] */
74 { 0, FIXUP_BOARD_SETUP
},
75 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
76 { 0xe3a00000 }, /* mov r0, #0 */
77 { 0xe59f1004 }, /* ldr r1, [pc, #4] */
78 { 0xe59f2004 }, /* ldr r2, [pc, #4] */
79 { 0xe59ff004 }, /* ldr pc, [pc, #4] */
82 { 0, FIXUP_ENTRYPOINT
},
83 { 0, FIXUP_TERMINATOR
}
86 /* Handling for secondary CPU boot in a multicore system.
87 * Unlike the uniprocessor/primary CPU boot, this is platform
88 * dependent. The default code here is based on the secondary
89 * CPU boot protocol used on realview/vexpress boards, with
90 * some parameterisation to increase its flexibility.
91 * QEMU platform models for which this code is not appropriate
92 * should override write_secondary_boot and secondary_cpu_reset_hook
95 * This code enables the interrupt controllers for the secondary
96 * CPUs and then puts all the secondary CPUs into a loop waiting
97 * for an interprocessor interrupt and polling a configurable
98 * location for the kernel secondary CPU entry point.
100 #define DSB_INSN 0xf57ff04f
101 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
103 static const ARMInsnFixup smpboot
[] = {
104 { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
105 { 0xe59f0028 }, /* ldr r0, bootreg_addr */
106 { 0xe3a01001 }, /* mov r1, #1 */
107 { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
108 { 0xe3a010ff }, /* mov r1, #0xff */
109 { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
110 { 0, FIXUP_DSB
}, /* dsb */
111 { 0xe320f003 }, /* wfi */
112 { 0xe5901000 }, /* ldr r1, [r0] */
113 { 0xe1110001 }, /* tst r1, r1 */
114 { 0x0afffffb }, /* beq <wfi> */
115 { 0xe12fff11 }, /* bx r1 */
116 { 0, FIXUP_GIC_CPU_IF
}, /* gic_cpu_if: .word 0x.... */
117 { 0, FIXUP_BOOTREG
}, /* bootreg_addr: .word 0x.... */
118 { 0, FIXUP_TERMINATOR
}
121 static void write_bootloader(const char *name
, hwaddr addr
,
122 const ARMInsnFixup
*insns
, uint32_t *fixupcontext
)
124 /* Fix up the specified bootloader fragment and write it into
125 * guest memory using rom_add_blob_fixed(). fixupcontext is
126 * an array giving the values to write in for the fixup types
127 * which write a value into the code array.
133 while (insns
[len
].fixup
!= FIXUP_TERMINATOR
) {
137 code
= g_new0(uint32_t, len
);
139 for (i
= 0; i
< len
; i
++) {
140 uint32_t insn
= insns
[i
].insn
;
141 FixupType fixup
= insns
[i
].fixup
;
147 case FIXUP_BOARD_SETUP
:
149 case FIXUP_ENTRYPOINT
:
150 case FIXUP_GIC_CPU_IF
:
153 insn
= fixupcontext
[fixup
];
158 code
[i
] = tswap32(insn
);
161 rom_add_blob_fixed(name
, code
, len
* sizeof(uint32_t), addr
);
166 static void default_write_secondary(ARMCPU
*cpu
,
167 const struct arm_boot_info
*info
)
169 uint32_t fixupcontext
[FIXUP_MAX
];
171 fixupcontext
[FIXUP_GIC_CPU_IF
] = info
->gic_cpu_if_addr
;
172 fixupcontext
[FIXUP_BOOTREG
] = info
->smp_bootreg_addr
;
173 if (arm_feature(&cpu
->env
, ARM_FEATURE_V7
)) {
174 fixupcontext
[FIXUP_DSB
] = DSB_INSN
;
176 fixupcontext
[FIXUP_DSB
] = CP15_DSB_INSN
;
179 write_bootloader("smpboot", info
->smp_loader_start
,
180 smpboot
, fixupcontext
);
183 void arm_write_secure_board_setup_dummy_smc(ARMCPU
*cpu
,
184 const struct arm_boot_info
*info
,
188 uint32_t mvbar_blob
[] = {
189 /* mvbar_addr: secure monitor vectors
190 * Default unimplemented and unused vectors to spin. Makes it
191 * easier to debug (as opposed to the CPU running away).
193 0xeafffffe, /* (spin) */
194 0xeafffffe, /* (spin) */
195 0xe1b0f00e, /* movs pc, lr ;SMC exception return */
196 0xeafffffe, /* (spin) */
197 0xeafffffe, /* (spin) */
198 0xeafffffe, /* (spin) */
199 0xeafffffe, /* (spin) */
200 0xeafffffe, /* (spin) */
202 uint32_t board_setup_blob
[] = {
203 /* board setup addr */
204 0xe3a00e00 + (mvbar_addr
>> 4), /* mov r0, #mvbar_addr */
205 0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */
206 0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */
207 0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */
208 0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */
209 0xe1a0100e, /* mov r1, lr ;save LR across SMC */
210 0xe1600070, /* smc #0 ;call monitor to flush SCR */
211 0xe1a0f001, /* mov pc, r1 ;return */
214 /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
215 assert((mvbar_addr
& 0x1f) == 0 && (mvbar_addr
>> 4) < 0x100);
217 /* check that these blobs don't overlap */
218 assert((mvbar_addr
+ sizeof(mvbar_blob
) <= info
->board_setup_addr
)
219 || (info
->board_setup_addr
+ sizeof(board_setup_blob
) <= mvbar_addr
));
221 for (n
= 0; n
< ARRAY_SIZE(mvbar_blob
); n
++) {
222 mvbar_blob
[n
] = tswap32(mvbar_blob
[n
]);
224 rom_add_blob_fixed("board-setup-mvbar", mvbar_blob
, sizeof(mvbar_blob
),
227 for (n
= 0; n
< ARRAY_SIZE(board_setup_blob
); n
++) {
228 board_setup_blob
[n
] = tswap32(board_setup_blob
[n
]);
230 rom_add_blob_fixed("board-setup", board_setup_blob
,
231 sizeof(board_setup_blob
), info
->board_setup_addr
);
234 static void default_reset_secondary(ARMCPU
*cpu
,
235 const struct arm_boot_info
*info
)
237 CPUState
*cs
= CPU(cpu
);
239 address_space_stl_notdirty(&address_space_memory
, info
->smp_bootreg_addr
,
240 0, MEMTXATTRS_UNSPECIFIED
, NULL
);
241 cpu_set_pc(cs
, info
->smp_loader_start
);
244 static inline bool have_dtb(const struct arm_boot_info
*info
)
246 return info
->dtb_filename
|| info
->get_dtb
;
249 #define WRITE_WORD(p, value) do { \
250 address_space_stl_notdirty(&address_space_memory, p, value, \
251 MEMTXATTRS_UNSPECIFIED, NULL); \
255 static void set_kernel_args(const struct arm_boot_info
*info
)
257 int initrd_size
= info
->initrd_size
;
258 hwaddr base
= info
->loader_start
;
261 p
= base
+ KERNEL_ARGS_ADDR
;
264 WRITE_WORD(p
, 0x54410001);
266 WRITE_WORD(p
, 0x1000);
269 /* TODO: handle multiple chips on one ATAG list */
271 WRITE_WORD(p
, 0x54410002);
272 WRITE_WORD(p
, info
->ram_size
);
273 WRITE_WORD(p
, info
->loader_start
);
277 WRITE_WORD(p
, 0x54420005);
278 WRITE_WORD(p
, info
->initrd_start
);
279 WRITE_WORD(p
, initrd_size
);
281 if (info
->kernel_cmdline
&& *info
->kernel_cmdline
) {
285 cmdline_size
= strlen(info
->kernel_cmdline
);
286 cpu_physical_memory_write(p
+ 8, info
->kernel_cmdline
,
288 cmdline_size
= (cmdline_size
>> 2) + 1;
289 WRITE_WORD(p
, cmdline_size
+ 2);
290 WRITE_WORD(p
, 0x54410009);
291 p
+= cmdline_size
* 4;
293 if (info
->atag_board
) {
296 uint8_t atag_board_buf
[0x1000];
298 atag_board_len
= (info
->atag_board(info
, atag_board_buf
) + 3) & ~3;
299 WRITE_WORD(p
, (atag_board_len
+ 8) >> 2);
300 WRITE_WORD(p
, 0x414f4d50);
301 cpu_physical_memory_write(p
, atag_board_buf
, atag_board_len
);
309 static void set_kernel_args_old(const struct arm_boot_info
*info
)
313 int initrd_size
= info
->initrd_size
;
314 hwaddr base
= info
->loader_start
;
316 /* see linux/include/asm-arm/setup.h */
317 p
= base
+ KERNEL_ARGS_ADDR
;
321 WRITE_WORD(p
, info
->ram_size
/ 4096);
324 #define FLAG_READONLY 1
325 #define FLAG_RDLOAD 4
326 #define FLAG_RDPROMPT 8
328 WRITE_WORD(p
, FLAG_READONLY
| FLAG_RDLOAD
| FLAG_RDPROMPT
);
330 WRITE_WORD(p
, (31 << 8) | 0); /* /dev/mtdblock0 */
339 /* memc_control_reg */
341 /* unsigned char sounddefault */
342 /* unsigned char adfsdrives */
343 /* unsigned char bytes_per_char_h */
344 /* unsigned char bytes_per_char_v */
346 /* pages_in_bank[4] */
355 WRITE_WORD(p
, info
->initrd_start
);
360 WRITE_WORD(p
, initrd_size
);
365 /* system_serial_low */
367 /* system_serial_high */
371 /* zero unused fields */
372 while (p
< base
+ KERNEL_ARGS_ADDR
+ 256 + 1024) {
375 s
= info
->kernel_cmdline
;
377 cpu_physical_memory_write(p
, s
, strlen(s
) + 1);
384 * load_dtb() - load a device tree binary image into memory
385 * @addr: the address to load the image at
386 * @binfo: struct describing the boot environment
387 * @addr_limit: upper limit of the available memory area at @addr
389 * Load a device tree supplied by the machine or by the user with the
390 * '-dtb' command line option, and put it at offset @addr in target
393 * If @addr_limit contains a meaningful value (i.e., it is strictly greater
394 * than @addr), the device tree is only loaded if its size does not exceed
397 * Returns: the size of the device tree image on success,
398 * 0 if the image size exceeds the limit,
401 * Note: Must not be called unless have_dtb(binfo) is true.
403 static int load_dtb(hwaddr addr
, const struct arm_boot_info
*binfo
,
408 uint32_t acells
, scells
;
411 hwaddr mem_base
, mem_len
;
413 if (binfo
->dtb_filename
) {
415 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, binfo
->dtb_filename
);
417 fprintf(stderr
, "Couldn't open dtb file %s\n", binfo
->dtb_filename
);
421 fdt
= load_device_tree(filename
, &size
);
423 fprintf(stderr
, "Couldn't open dtb file %s\n", filename
);
429 fdt
= binfo
->get_dtb(binfo
, &size
);
431 fprintf(stderr
, "Board was unable to create a dtb blob\n");
436 if (addr_limit
> addr
&& size
> (addr_limit
- addr
)) {
437 /* Installing the device tree blob at addr would exceed addr_limit.
438 * Whether this constitutes failure is up to the caller to decide,
439 * so just return 0 as size, i.e., no error.
445 acells
= qemu_fdt_getprop_cell(fdt
, "/", "#address-cells",
447 scells
= qemu_fdt_getprop_cell(fdt
, "/", "#size-cells",
449 if (acells
== 0 || scells
== 0) {
450 fprintf(stderr
, "dtb file invalid (#address-cells or #size-cells 0)\n");
454 if (scells
< 2 && binfo
->ram_size
>= (1ULL << 32)) {
455 /* This is user error so deserves a friendlier error message
456 * than the failure of setprop_sized_cells would provide
458 fprintf(stderr
, "qemu: dtb file not compatible with "
463 if (nb_numa_nodes
> 0) {
465 * Turn the /memory node created before into a NOP node, then create
466 * /memory@addr nodes for all numa nodes respectively.
468 qemu_fdt_nop_node(fdt
, "/memory");
469 mem_base
= binfo
->loader_start
;
470 for (i
= 0; i
< nb_numa_nodes
; i
++) {
471 mem_len
= numa_info
[i
].node_mem
;
472 nodename
= g_strdup_printf("/memory@%" PRIx64
, mem_base
);
473 qemu_fdt_add_subnode(fdt
, nodename
);
474 qemu_fdt_setprop_string(fdt
, nodename
, "device_type", "memory");
475 rc
= qemu_fdt_setprop_sized_cells(fdt
, nodename
, "reg",
479 fprintf(stderr
, "couldn't set %s/reg for node %d\n", nodename
,
484 qemu_fdt_setprop_cell(fdt
, nodename
, "numa-node-id", i
);
489 rc
= qemu_fdt_setprop_sized_cells(fdt
, "/memory", "reg",
490 acells
, binfo
->loader_start
,
491 scells
, binfo
->ram_size
);
493 fprintf(stderr
, "couldn't set /memory/reg\n");
498 if (binfo
->kernel_cmdline
&& *binfo
->kernel_cmdline
) {
499 rc
= qemu_fdt_setprop_string(fdt
, "/chosen", "bootargs",
500 binfo
->kernel_cmdline
);
502 fprintf(stderr
, "couldn't set /chosen/bootargs\n");
507 if (binfo
->initrd_size
) {
508 rc
= qemu_fdt_setprop_cell(fdt
, "/chosen", "linux,initrd-start",
509 binfo
->initrd_start
);
511 fprintf(stderr
, "couldn't set /chosen/linux,initrd-start\n");
515 rc
= qemu_fdt_setprop_cell(fdt
, "/chosen", "linux,initrd-end",
516 binfo
->initrd_start
+ binfo
->initrd_size
);
518 fprintf(stderr
, "couldn't set /chosen/linux,initrd-end\n");
523 if (binfo
->modify_dtb
) {
524 binfo
->modify_dtb(binfo
, fdt
);
527 qemu_fdt_dumpdtb(fdt
, size
);
529 /* Put the DTB into the memory map as a ROM image: this will ensure
530 * the DTB is copied again upon reset, even if addr points into RAM.
532 rom_add_blob_fixed("dtb", fdt
, size
, addr
);
543 static void do_cpu_reset(void *opaque
)
545 ARMCPU
*cpu
= opaque
;
546 CPUState
*cs
= CPU(cpu
);
547 CPUARMState
*env
= &cpu
->env
;
548 const struct arm_boot_info
*info
= env
->boot_info
;
552 if (!info
->is_linux
) {
554 /* Jump to the entry point. */
555 uint64_t entry
= info
->entry
;
557 switch (info
->endianness
) {
558 case ARM_ENDIANNESS_LE
:
559 env
->cp15
.sctlr_el
[1] &= ~SCTLR_E0E
;
560 for (i
= 1; i
< 4; ++i
) {
561 env
->cp15
.sctlr_el
[i
] &= ~SCTLR_EE
;
563 env
->uncached_cpsr
&= ~CPSR_E
;
565 case ARM_ENDIANNESS_BE8
:
566 env
->cp15
.sctlr_el
[1] |= SCTLR_E0E
;
567 for (i
= 1; i
< 4; ++i
) {
568 env
->cp15
.sctlr_el
[i
] |= SCTLR_EE
;
570 env
->uncached_cpsr
|= CPSR_E
;
572 case ARM_ENDIANNESS_BE32
:
573 env
->cp15
.sctlr_el
[1] |= SCTLR_B
;
575 case ARM_ENDIANNESS_UNKNOWN
:
576 break; /* Board's decision */
578 g_assert_not_reached();
582 env
->thumb
= info
->entry
& 1;
585 cpu_set_pc(cs
, entry
);
587 /* If we are booting Linux then we need to check whether we are
588 * booting into secure or non-secure state and adjust the state
589 * accordingly. Out of reset, ARM is defined to be in secure state
590 * (SCR.NS = 0), we change that here if non-secure boot has been
593 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
594 /* AArch64 is defined to come out of reset into EL3 if enabled.
595 * If we are booting Linux then we need to adjust our EL as
596 * Linux expects us to be in EL2 or EL1. AArch32 resets into
597 * SVC, which Linux expects, so no privilege/exception level to
601 env
->cp15
.scr_el3
|= SCR_RW
;
602 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
603 env
->cp15
.hcr_el2
|= HCR_RW
;
604 env
->pstate
= PSTATE_MODE_EL2h
;
606 env
->pstate
= PSTATE_MODE_EL1h
;
610 /* Set to non-secure if not a secure boot */
611 if (!info
->secure_boot
&&
612 (cs
!= first_cpu
|| !info
->secure_board_setup
)) {
613 /* Linux expects non-secure state */
614 env
->cp15
.scr_el3
|= SCR_NS
;
618 if (cs
== first_cpu
) {
619 cpu_set_pc(cs
, info
->loader_start
);
621 if (!have_dtb(info
)) {
623 set_kernel_args_old(info
);
625 set_kernel_args(info
);
629 info
->secondary_cpu_reset_hook(cpu
, info
);
636 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
638 * @fw_cfg: The firmware config instance to store the data in.
639 * @size_key: The firmware config key to store the size of the loaded
640 * data under, with fw_cfg_add_i32().
641 * @data_key: The firmware config key to store the loaded data under,
642 * with fw_cfg_add_bytes().
643 * @image_name: The name of the image file to load. If it is NULL, the
644 * function returns without doing anything.
645 * @try_decompress: Whether the image should be decompressed (gunzipped) before
646 * adding it to fw_cfg. If decompression fails, the image is
649 * In case of failure, the function prints an error message to stderr and the
650 * process exits with status 1.
652 static void load_image_to_fw_cfg(FWCfgState
*fw_cfg
, uint16_t size_key
,
653 uint16_t data_key
, const char *image_name
,
659 if (image_name
== NULL
) {
663 if (try_decompress
) {
664 size
= load_image_gzipped_buffer(image_name
,
665 LOAD_IMAGE_MAX_GUNZIP_BYTES
, &data
);
668 if (size
== (size_t)-1) {
672 if (!g_file_get_contents(image_name
, &contents
, &length
, NULL
)) {
673 fprintf(stderr
, "failed to load \"%s\"\n", image_name
);
677 data
= (uint8_t *)contents
;
680 fw_cfg_add_i32(fw_cfg
, size_key
, size
);
681 fw_cfg_add_bytes(fw_cfg
, data_key
, data
, size
);
684 static int do_arm_linux_init(Object
*obj
, void *opaque
)
686 if (object_dynamic_cast(obj
, TYPE_ARM_LINUX_BOOT_IF
)) {
687 ARMLinuxBootIf
*albif
= ARM_LINUX_BOOT_IF(obj
);
688 ARMLinuxBootIfClass
*albifc
= ARM_LINUX_BOOT_IF_GET_CLASS(obj
);
689 struct arm_boot_info
*info
= opaque
;
691 if (albifc
->arm_linux_init
) {
692 albifc
->arm_linux_init(albif
, info
->secure_boot
);
698 static uint64_t arm_load_elf(struct arm_boot_info
*info
, uint64_t *pentry
,
699 uint64_t *lowaddr
, uint64_t *highaddr
,
713 load_elf_hdr(info
->kernel_filename
, &elf_header
, &elf_is64
, &err
);
719 big_endian
= elf_header
.h64
.e_ident
[EI_DATA
] == ELFDATA2MSB
;
720 info
->endianness
= big_endian
? ARM_ENDIANNESS_BE8
723 big_endian
= elf_header
.h32
.e_ident
[EI_DATA
] == ELFDATA2MSB
;
725 if (bswap32(elf_header
.h32
.e_flags
) & EF_ARM_BE8
) {
726 info
->endianness
= ARM_ENDIANNESS_BE8
;
728 info
->endianness
= ARM_ENDIANNESS_BE32
;
729 /* In BE32, the CPU has a different view of the per-byte
730 * address map than the rest of the system. BE32 ELF files
731 * are organised such that they can be programmed through
732 * the CPU's per-word byte-reversed view of the world. QEMU
733 * however loads ELF files independently of the CPU. So
734 * tell the ELF loader to byte reverse the data for us.
739 info
->endianness
= ARM_ENDIANNESS_LE
;
743 ret
= load_elf(info
->kernel_filename
, NULL
, NULL
,
744 pentry
, lowaddr
, highaddr
, big_endian
, elf_machine
,
747 /* The header loaded but the image didn't */
754 static void arm_load_kernel_notify(Notifier
*notifier
, void *data
)
760 uint64_t elf_entry
, elf_low_addr
, elf_high_addr
;
762 hwaddr entry
, kernel_load_offset
;
763 static const ARMInsnFixup
*primary_loader
;
764 ArmLoadKernelNotifier
*n
= DO_UPCAST(ArmLoadKernelNotifier
,
766 ARMCPU
*cpu
= n
->cpu
;
767 struct arm_boot_info
*info
=
768 container_of(n
, struct arm_boot_info
, load_kernel_notifier
);
770 /* The board code is not supposed to set secure_board_setup unless
771 * running its code in secure mode is actually possible, and KVM
772 * doesn't support secure.
774 assert(!(info
->secure_board_setup
&& kvm_enabled()));
776 /* Load the kernel. */
777 if (!info
->kernel_filename
|| info
->firmware_loaded
) {
779 if (have_dtb(info
)) {
780 /* If we have a device tree blob, but no kernel to supply it to (or
781 * the kernel is supposed to be loaded by the bootloader), copy the
782 * DTB to the base of RAM for the bootloader to pick up.
784 if (load_dtb(info
->loader_start
, info
, 0) < 0) {
789 if (info
->kernel_filename
) {
791 bool try_decompressing_kernel
;
793 fw_cfg
= fw_cfg_find();
794 try_decompressing_kernel
= arm_feature(&cpu
->env
,
795 ARM_FEATURE_AARCH64
);
797 /* Expose the kernel, the command line, and the initrd in fw_cfg.
798 * We don't process them here at all, it's all left to the
801 load_image_to_fw_cfg(fw_cfg
,
802 FW_CFG_KERNEL_SIZE
, FW_CFG_KERNEL_DATA
,
803 info
->kernel_filename
,
804 try_decompressing_kernel
);
805 load_image_to_fw_cfg(fw_cfg
,
806 FW_CFG_INITRD_SIZE
, FW_CFG_INITRD_DATA
,
807 info
->initrd_filename
, false);
809 if (info
->kernel_cmdline
) {
810 fw_cfg_add_i32(fw_cfg
, FW_CFG_CMDLINE_SIZE
,
811 strlen(info
->kernel_cmdline
) + 1);
812 fw_cfg_add_string(fw_cfg
, FW_CFG_CMDLINE_DATA
,
813 info
->kernel_cmdline
);
817 /* We will start from address 0 (typically a boot ROM image) in the
818 * same way as hardware.
823 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
824 primary_loader
= bootloader_aarch64
;
825 kernel_load_offset
= KERNEL64_LOAD_ADDR
;
826 elf_machine
= EM_AARCH64
;
828 primary_loader
= bootloader
;
829 if (!info
->write_board_setup
) {
830 primary_loader
+= BOOTLOADER_NO_BOARD_SETUP_OFFSET
;
832 kernel_load_offset
= KERNEL_LOAD_ADDR
;
833 elf_machine
= EM_ARM
;
836 info
->dtb_filename
= qemu_opt_get(qemu_get_machine_opts(), "dtb");
838 if (!info
->secondary_cpu_reset_hook
) {
839 info
->secondary_cpu_reset_hook
= default_reset_secondary
;
841 if (!info
->write_secondary_boot
) {
842 info
->write_secondary_boot
= default_write_secondary
;
845 if (info
->nb_cpus
== 0)
848 /* We want to put the initrd far enough into RAM that when the
849 * kernel is uncompressed it will not clobber the initrd. However
850 * on boards without much RAM we must ensure that we still leave
851 * enough room for a decent sized initrd, and on boards with large
852 * amounts of RAM we must avoid the initrd being so far up in RAM
853 * that it is outside lowmem and inaccessible to the kernel.
854 * So for boards with less than 256MB of RAM we put the initrd
855 * halfway into RAM, and for boards with 256MB of RAM or more we put
856 * the initrd at 128MB.
858 info
->initrd_start
= info
->loader_start
+
859 MIN(info
->ram_size
/ 2, 128 * 1024 * 1024);
861 /* Assume that raw images are linux kernels, and ELF images are not. */
862 kernel_size
= arm_load_elf(info
, &elf_entry
, &elf_low_addr
,
863 &elf_high_addr
, elf_machine
);
864 if (kernel_size
> 0 && have_dtb(info
)) {
865 /* If there is still some room left at the base of RAM, try and put
866 * the DTB there like we do for images loaded with -bios or -pflash.
868 if (elf_low_addr
> info
->loader_start
869 || elf_high_addr
< info
->loader_start
) {
870 /* Pass elf_low_addr as address limit to load_dtb if it may be
871 * pointing into RAM, otherwise pass '0' (no limit)
873 if (elf_low_addr
< info
->loader_start
) {
876 if (load_dtb(info
->loader_start
, info
, elf_low_addr
) < 0) {
882 if (kernel_size
< 0) {
883 kernel_size
= load_uimage(info
->kernel_filename
, &entry
, NULL
,
884 &is_linux
, NULL
, NULL
);
886 /* On aarch64, it's the bootloader's job to uncompress the kernel. */
887 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
) && kernel_size
< 0) {
888 entry
= info
->loader_start
+ kernel_load_offset
;
889 kernel_size
= load_image_gzipped(info
->kernel_filename
, entry
,
890 info
->ram_size
- kernel_load_offset
);
893 if (kernel_size
< 0) {
894 entry
= info
->loader_start
+ kernel_load_offset
;
895 kernel_size
= load_image_targphys(info
->kernel_filename
, entry
,
896 info
->ram_size
- kernel_load_offset
);
899 if (kernel_size
< 0) {
900 fprintf(stderr
, "qemu: could not load kernel '%s'\n",
901 info
->kernel_filename
);
906 uint32_t fixupcontext
[FIXUP_MAX
];
908 if (info
->initrd_filename
) {
909 initrd_size
= load_ramdisk(info
->initrd_filename
,
913 if (initrd_size
< 0) {
914 initrd_size
= load_image_targphys(info
->initrd_filename
,
919 if (initrd_size
< 0) {
920 fprintf(stderr
, "qemu: could not load initrd '%s'\n",
921 info
->initrd_filename
);
927 info
->initrd_size
= initrd_size
;
929 fixupcontext
[FIXUP_BOARDID
] = info
->board_id
;
930 fixupcontext
[FIXUP_BOARD_SETUP
] = info
->board_setup_addr
;
932 /* for device tree boot, we pass the DTB directly in r2. Otherwise
933 * we point to the kernel args.
935 if (have_dtb(info
)) {
939 if (elf_machine
== EM_AARCH64
) {
941 * Some AArch64 kernels on early bootup map the fdt region as
943 * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
945 * Let's play safe and prealign it to 2MB to give us some space.
947 align
= 2 * 1024 * 1024;
950 * Some 32bit kernels will trash anything in the 4K page the
951 * initrd ends in, so make sure the DTB isn't caught up in that.
956 /* Place the DTB after the initrd in memory with alignment. */
957 dtb_start
= QEMU_ALIGN_UP(info
->initrd_start
+ initrd_size
, align
);
958 if (load_dtb(dtb_start
, info
, 0) < 0) {
961 fixupcontext
[FIXUP_ARGPTR
] = dtb_start
;
963 fixupcontext
[FIXUP_ARGPTR
] = info
->loader_start
+ KERNEL_ARGS_ADDR
;
964 if (info
->ram_size
>= (1ULL << 32)) {
965 fprintf(stderr
, "qemu: RAM size must be less than 4GB to boot"
966 " Linux kernel using ATAGS (try passing a device tree"
971 fixupcontext
[FIXUP_ENTRYPOINT
] = entry
;
973 write_bootloader("bootloader", info
->loader_start
,
974 primary_loader
, fixupcontext
);
976 if (info
->nb_cpus
> 1) {
977 info
->write_secondary_boot(cpu
, info
);
979 if (info
->write_board_setup
) {
980 info
->write_board_setup(cpu
, info
);
983 /* Notify devices which need to fake up firmware initialization
984 * that we're doing a direct kernel boot.
986 object_child_foreach_recursive(object_get_root(),
987 do_arm_linux_init
, info
);
989 info
->is_linux
= is_linux
;
991 for (cs
= CPU(cpu
); cs
; cs
= CPU_NEXT(cs
)) {
992 ARM_CPU(cs
)->env
.boot_info
= info
;
996 void arm_load_kernel(ARMCPU
*cpu
, struct arm_boot_info
*info
)
1000 info
->load_kernel_notifier
.cpu
= cpu
;
1001 info
->load_kernel_notifier
.notifier
.notify
= arm_load_kernel_notify
;
1002 qemu_add_machine_init_done_notifier(&info
->load_kernel_notifier
.notifier
);
1004 /* CPU objects (unlike devices) are not automatically reset on system
1005 * reset, so we must always register a handler to do so. If we're
1006 * actually loading a kernel, the handler is also responsible for
1007 * arranging that we start it correctly.
1009 for (cs
= CPU(cpu
); cs
; cs
= CPU_NEXT(cs
)) {
1010 qemu_register_reset(do_cpu_reset
, ARM_CPU(cs
));
1014 static const TypeInfo arm_linux_boot_if_info
= {
1015 .name
= TYPE_ARM_LINUX_BOOT_IF
,
1016 .parent
= TYPE_INTERFACE
,
1017 .class_size
= sizeof(ARMLinuxBootIfClass
),
1020 static void arm_linux_boot_register_types(void)
1022 type_register_static(&arm_linux_boot_if_info
);
1025 type_init(arm_linux_boot_register_types
)