linux-user: Fix i386 safe-syscall.S
[qemu/cris-port.git] / hw / arm / boot.c
blob1b913a43ca6584231e4f0de96227c0f18c0d0b12
1 /*
2 * ARM kernel loader.
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 #include "qemu/osdep.h"
11 #include "qapi/error.h"
12 #include "hw/hw.h"
13 #include "hw/arm/arm.h"
14 #include "hw/arm/linux-boot-if.h"
15 #include "sysemu/kvm.h"
16 #include "sysemu/sysemu.h"
17 #include "sysemu/numa.h"
18 #include "hw/boards.h"
19 #include "hw/loader.h"
20 #include "elf.h"
21 #include "sysemu/device_tree.h"
22 #include "qemu/config-file.h"
23 #include "exec/address-spaces.h"
25 /* Kernel boot protocol is specified in the kernel docs
26 * Documentation/arm/Booting and Documentation/arm64/booting.txt
27 * They have different preferred image load offsets from system RAM base.
29 #define KERNEL_ARGS_ADDR 0x100
30 #define KERNEL_LOAD_ADDR 0x00010000
31 #define KERNEL64_LOAD_ADDR 0x00080000
33 typedef enum {
34 FIXUP_NONE = 0, /* do nothing */
35 FIXUP_TERMINATOR, /* end of insns */
36 FIXUP_BOARDID, /* overwrite with board ID number */
37 FIXUP_BOARD_SETUP, /* overwrite with board specific setup code address */
38 FIXUP_ARGPTR, /* overwrite with pointer to kernel args */
39 FIXUP_ENTRYPOINT, /* overwrite with kernel entry point */
40 FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */
41 FIXUP_BOOTREG, /* overwrite with boot register address */
42 FIXUP_DSB, /* overwrite with correct DSB insn for cpu */
43 FIXUP_MAX,
44 } FixupType;
46 typedef struct ARMInsnFixup {
47 uint32_t insn;
48 FixupType fixup;
49 } ARMInsnFixup;
51 static const ARMInsnFixup bootloader_aarch64[] = {
52 { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
53 { 0xaa1f03e1 }, /* mov x1, xzr */
54 { 0xaa1f03e2 }, /* mov x2, xzr */
55 { 0xaa1f03e3 }, /* mov x3, xzr */
56 { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
57 { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
58 { 0, FIXUP_ARGPTR }, /* arg: .word @DTB Lower 32-bits */
59 { 0 }, /* .word @DTB Higher 32-bits */
60 { 0, FIXUP_ENTRYPOINT }, /* entry: .word @Kernel Entry Lower 32-bits */
61 { 0 }, /* .word @Kernel Entry Higher 32-bits */
62 { 0, FIXUP_TERMINATOR }
65 /* A very small bootloader: call the board-setup code (if needed),
66 * set r0-r2, then jump to the kernel.
67 * If we're not calling boot setup code then we don't copy across
68 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
71 static const ARMInsnFixup bootloader[] = {
72 { 0xe28fe004 }, /* add lr, pc, #4 */
73 { 0xe51ff004 }, /* ldr pc, [pc, #-4] */
74 { 0, FIXUP_BOARD_SETUP },
75 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
76 { 0xe3a00000 }, /* mov r0, #0 */
77 { 0xe59f1004 }, /* ldr r1, [pc, #4] */
78 { 0xe59f2004 }, /* ldr r2, [pc, #4] */
79 { 0xe59ff004 }, /* ldr pc, [pc, #4] */
80 { 0, FIXUP_BOARDID },
81 { 0, FIXUP_ARGPTR },
82 { 0, FIXUP_ENTRYPOINT },
83 { 0, FIXUP_TERMINATOR }
86 /* Handling for secondary CPU boot in a multicore system.
87 * Unlike the uniprocessor/primary CPU boot, this is platform
88 * dependent. The default code here is based on the secondary
89 * CPU boot protocol used on realview/vexpress boards, with
90 * some parameterisation to increase its flexibility.
91 * QEMU platform models for which this code is not appropriate
92 * should override write_secondary_boot and secondary_cpu_reset_hook
93 * instead.
95 * This code enables the interrupt controllers for the secondary
96 * CPUs and then puts all the secondary CPUs into a loop waiting
97 * for an interprocessor interrupt and polling a configurable
98 * location for the kernel secondary CPU entry point.
100 #define DSB_INSN 0xf57ff04f
101 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
103 static const ARMInsnFixup smpboot[] = {
104 { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
105 { 0xe59f0028 }, /* ldr r0, bootreg_addr */
106 { 0xe3a01001 }, /* mov r1, #1 */
107 { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
108 { 0xe3a010ff }, /* mov r1, #0xff */
109 { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
110 { 0, FIXUP_DSB }, /* dsb */
111 { 0xe320f003 }, /* wfi */
112 { 0xe5901000 }, /* ldr r1, [r0] */
113 { 0xe1110001 }, /* tst r1, r1 */
114 { 0x0afffffb }, /* beq <wfi> */
115 { 0xe12fff11 }, /* bx r1 */
116 { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
117 { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
118 { 0, FIXUP_TERMINATOR }
121 static void write_bootloader(const char *name, hwaddr addr,
122 const ARMInsnFixup *insns, uint32_t *fixupcontext)
124 /* Fix up the specified bootloader fragment and write it into
125 * guest memory using rom_add_blob_fixed(). fixupcontext is
126 * an array giving the values to write in for the fixup types
127 * which write a value into the code array.
129 int i, len;
130 uint32_t *code;
132 len = 0;
133 while (insns[len].fixup != FIXUP_TERMINATOR) {
134 len++;
137 code = g_new0(uint32_t, len);
139 for (i = 0; i < len; i++) {
140 uint32_t insn = insns[i].insn;
141 FixupType fixup = insns[i].fixup;
143 switch (fixup) {
144 case FIXUP_NONE:
145 break;
146 case FIXUP_BOARDID:
147 case FIXUP_BOARD_SETUP:
148 case FIXUP_ARGPTR:
149 case FIXUP_ENTRYPOINT:
150 case FIXUP_GIC_CPU_IF:
151 case FIXUP_BOOTREG:
152 case FIXUP_DSB:
153 insn = fixupcontext[fixup];
154 break;
155 default:
156 abort();
158 code[i] = tswap32(insn);
161 rom_add_blob_fixed(name, code, len * sizeof(uint32_t), addr);
163 g_free(code);
166 static void default_write_secondary(ARMCPU *cpu,
167 const struct arm_boot_info *info)
169 uint32_t fixupcontext[FIXUP_MAX];
171 fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
172 fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
173 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
174 fixupcontext[FIXUP_DSB] = DSB_INSN;
175 } else {
176 fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
179 write_bootloader("smpboot", info->smp_loader_start,
180 smpboot, fixupcontext);
183 void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
184 const struct arm_boot_info *info,
185 hwaddr mvbar_addr)
187 int n;
188 uint32_t mvbar_blob[] = {
189 /* mvbar_addr: secure monitor vectors
190 * Default unimplemented and unused vectors to spin. Makes it
191 * easier to debug (as opposed to the CPU running away).
193 0xeafffffe, /* (spin) */
194 0xeafffffe, /* (spin) */
195 0xe1b0f00e, /* movs pc, lr ;SMC exception return */
196 0xeafffffe, /* (spin) */
197 0xeafffffe, /* (spin) */
198 0xeafffffe, /* (spin) */
199 0xeafffffe, /* (spin) */
200 0xeafffffe, /* (spin) */
202 uint32_t board_setup_blob[] = {
203 /* board setup addr */
204 0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
205 0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */
206 0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */
207 0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */
208 0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */
209 0xe1a0100e, /* mov r1, lr ;save LR across SMC */
210 0xe1600070, /* smc #0 ;call monitor to flush SCR */
211 0xe1a0f001, /* mov pc, r1 ;return */
214 /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
215 assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
217 /* check that these blobs don't overlap */
218 assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
219 || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
221 for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
222 mvbar_blob[n] = tswap32(mvbar_blob[n]);
224 rom_add_blob_fixed("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
225 mvbar_addr);
227 for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
228 board_setup_blob[n] = tswap32(board_setup_blob[n]);
230 rom_add_blob_fixed("board-setup", board_setup_blob,
231 sizeof(board_setup_blob), info->board_setup_addr);
234 static void default_reset_secondary(ARMCPU *cpu,
235 const struct arm_boot_info *info)
237 CPUState *cs = CPU(cpu);
239 address_space_stl_notdirty(&address_space_memory, info->smp_bootreg_addr,
240 0, MEMTXATTRS_UNSPECIFIED, NULL);
241 cpu_set_pc(cs, info->smp_loader_start);
244 static inline bool have_dtb(const struct arm_boot_info *info)
246 return info->dtb_filename || info->get_dtb;
249 #define WRITE_WORD(p, value) do { \
250 address_space_stl_notdirty(&address_space_memory, p, value, \
251 MEMTXATTRS_UNSPECIFIED, NULL); \
252 p += 4; \
253 } while (0)
255 static void set_kernel_args(const struct arm_boot_info *info)
257 int initrd_size = info->initrd_size;
258 hwaddr base = info->loader_start;
259 hwaddr p;
261 p = base + KERNEL_ARGS_ADDR;
262 /* ATAG_CORE */
263 WRITE_WORD(p, 5);
264 WRITE_WORD(p, 0x54410001);
265 WRITE_WORD(p, 1);
266 WRITE_WORD(p, 0x1000);
267 WRITE_WORD(p, 0);
268 /* ATAG_MEM */
269 /* TODO: handle multiple chips on one ATAG list */
270 WRITE_WORD(p, 4);
271 WRITE_WORD(p, 0x54410002);
272 WRITE_WORD(p, info->ram_size);
273 WRITE_WORD(p, info->loader_start);
274 if (initrd_size) {
275 /* ATAG_INITRD2 */
276 WRITE_WORD(p, 4);
277 WRITE_WORD(p, 0x54420005);
278 WRITE_WORD(p, info->initrd_start);
279 WRITE_WORD(p, initrd_size);
281 if (info->kernel_cmdline && *info->kernel_cmdline) {
282 /* ATAG_CMDLINE */
283 int cmdline_size;
285 cmdline_size = strlen(info->kernel_cmdline);
286 cpu_physical_memory_write(p + 8, info->kernel_cmdline,
287 cmdline_size + 1);
288 cmdline_size = (cmdline_size >> 2) + 1;
289 WRITE_WORD(p, cmdline_size + 2);
290 WRITE_WORD(p, 0x54410009);
291 p += cmdline_size * 4;
293 if (info->atag_board) {
294 /* ATAG_BOARD */
295 int atag_board_len;
296 uint8_t atag_board_buf[0x1000];
298 atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
299 WRITE_WORD(p, (atag_board_len + 8) >> 2);
300 WRITE_WORD(p, 0x414f4d50);
301 cpu_physical_memory_write(p, atag_board_buf, atag_board_len);
302 p += atag_board_len;
304 /* ATAG_END */
305 WRITE_WORD(p, 0);
306 WRITE_WORD(p, 0);
309 static void set_kernel_args_old(const struct arm_boot_info *info)
311 hwaddr p;
312 const char *s;
313 int initrd_size = info->initrd_size;
314 hwaddr base = info->loader_start;
316 /* see linux/include/asm-arm/setup.h */
317 p = base + KERNEL_ARGS_ADDR;
318 /* page_size */
319 WRITE_WORD(p, 4096);
320 /* nr_pages */
321 WRITE_WORD(p, info->ram_size / 4096);
322 /* ramdisk_size */
323 WRITE_WORD(p, 0);
324 #define FLAG_READONLY 1
325 #define FLAG_RDLOAD 4
326 #define FLAG_RDPROMPT 8
327 /* flags */
328 WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
329 /* rootdev */
330 WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */
331 /* video_num_cols */
332 WRITE_WORD(p, 0);
333 /* video_num_rows */
334 WRITE_WORD(p, 0);
335 /* video_x */
336 WRITE_WORD(p, 0);
337 /* video_y */
338 WRITE_WORD(p, 0);
339 /* memc_control_reg */
340 WRITE_WORD(p, 0);
341 /* unsigned char sounddefault */
342 /* unsigned char adfsdrives */
343 /* unsigned char bytes_per_char_h */
344 /* unsigned char bytes_per_char_v */
345 WRITE_WORD(p, 0);
346 /* pages_in_bank[4] */
347 WRITE_WORD(p, 0);
348 WRITE_WORD(p, 0);
349 WRITE_WORD(p, 0);
350 WRITE_WORD(p, 0);
351 /* pages_in_vram */
352 WRITE_WORD(p, 0);
353 /* initrd_start */
354 if (initrd_size) {
355 WRITE_WORD(p, info->initrd_start);
356 } else {
357 WRITE_WORD(p, 0);
359 /* initrd_size */
360 WRITE_WORD(p, initrd_size);
361 /* rd_start */
362 WRITE_WORD(p, 0);
363 /* system_rev */
364 WRITE_WORD(p, 0);
365 /* system_serial_low */
366 WRITE_WORD(p, 0);
367 /* system_serial_high */
368 WRITE_WORD(p, 0);
369 /* mem_fclk_21285 */
370 WRITE_WORD(p, 0);
371 /* zero unused fields */
372 while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
373 WRITE_WORD(p, 0);
375 s = info->kernel_cmdline;
376 if (s) {
377 cpu_physical_memory_write(p, s, strlen(s) + 1);
378 } else {
379 WRITE_WORD(p, 0);
384 * load_dtb() - load a device tree binary image into memory
385 * @addr: the address to load the image at
386 * @binfo: struct describing the boot environment
387 * @addr_limit: upper limit of the available memory area at @addr
389 * Load a device tree supplied by the machine or by the user with the
390 * '-dtb' command line option, and put it at offset @addr in target
391 * memory.
393 * If @addr_limit contains a meaningful value (i.e., it is strictly greater
394 * than @addr), the device tree is only loaded if its size does not exceed
395 * the limit.
397 * Returns: the size of the device tree image on success,
398 * 0 if the image size exceeds the limit,
399 * -1 on errors.
401 * Note: Must not be called unless have_dtb(binfo) is true.
403 static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
404 hwaddr addr_limit)
406 void *fdt = NULL;
407 int size, rc;
408 uint32_t acells, scells;
409 char *nodename;
410 unsigned int i;
411 hwaddr mem_base, mem_len;
413 if (binfo->dtb_filename) {
414 char *filename;
415 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
416 if (!filename) {
417 fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
418 goto fail;
421 fdt = load_device_tree(filename, &size);
422 if (!fdt) {
423 fprintf(stderr, "Couldn't open dtb file %s\n", filename);
424 g_free(filename);
425 goto fail;
427 g_free(filename);
428 } else {
429 fdt = binfo->get_dtb(binfo, &size);
430 if (!fdt) {
431 fprintf(stderr, "Board was unable to create a dtb blob\n");
432 goto fail;
436 if (addr_limit > addr && size > (addr_limit - addr)) {
437 /* Installing the device tree blob at addr would exceed addr_limit.
438 * Whether this constitutes failure is up to the caller to decide,
439 * so just return 0 as size, i.e., no error.
441 g_free(fdt);
442 return 0;
445 acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
446 NULL, &error_fatal);
447 scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
448 NULL, &error_fatal);
449 if (acells == 0 || scells == 0) {
450 fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
451 goto fail;
454 if (scells < 2 && binfo->ram_size >= (1ULL << 32)) {
455 /* This is user error so deserves a friendlier error message
456 * than the failure of setprop_sized_cells would provide
458 fprintf(stderr, "qemu: dtb file not compatible with "
459 "RAM size > 4GB\n");
460 goto fail;
463 if (nb_numa_nodes > 0) {
465 * Turn the /memory node created before into a NOP node, then create
466 * /memory@addr nodes for all numa nodes respectively.
468 qemu_fdt_nop_node(fdt, "/memory");
469 mem_base = binfo->loader_start;
470 for (i = 0; i < nb_numa_nodes; i++) {
471 mem_len = numa_info[i].node_mem;
472 nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
473 qemu_fdt_add_subnode(fdt, nodename);
474 qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
475 rc = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg",
476 acells, mem_base,
477 scells, mem_len);
478 if (rc < 0) {
479 fprintf(stderr, "couldn't set %s/reg for node %d\n", nodename,
481 goto fail;
484 qemu_fdt_setprop_cell(fdt, nodename, "numa-node-id", i);
485 mem_base += mem_len;
486 g_free(nodename);
488 } else {
489 rc = qemu_fdt_setprop_sized_cells(fdt, "/memory", "reg",
490 acells, binfo->loader_start,
491 scells, binfo->ram_size);
492 if (rc < 0) {
493 fprintf(stderr, "couldn't set /memory/reg\n");
494 goto fail;
498 if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
499 rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
500 binfo->kernel_cmdline);
501 if (rc < 0) {
502 fprintf(stderr, "couldn't set /chosen/bootargs\n");
503 goto fail;
507 if (binfo->initrd_size) {
508 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
509 binfo->initrd_start);
510 if (rc < 0) {
511 fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
512 goto fail;
515 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
516 binfo->initrd_start + binfo->initrd_size);
517 if (rc < 0) {
518 fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
519 goto fail;
523 if (binfo->modify_dtb) {
524 binfo->modify_dtb(binfo, fdt);
527 qemu_fdt_dumpdtb(fdt, size);
529 /* Put the DTB into the memory map as a ROM image: this will ensure
530 * the DTB is copied again upon reset, even if addr points into RAM.
532 rom_add_blob_fixed("dtb", fdt, size, addr);
534 g_free(fdt);
536 return size;
538 fail:
539 g_free(fdt);
540 return -1;
543 static void do_cpu_reset(void *opaque)
545 ARMCPU *cpu = opaque;
546 CPUState *cs = CPU(cpu);
547 CPUARMState *env = &cpu->env;
548 const struct arm_boot_info *info = env->boot_info;
550 cpu_reset(cs);
551 if (info) {
552 if (!info->is_linux) {
553 int i;
554 /* Jump to the entry point. */
555 uint64_t entry = info->entry;
557 switch (info->endianness) {
558 case ARM_ENDIANNESS_LE:
559 env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
560 for (i = 1; i < 4; ++i) {
561 env->cp15.sctlr_el[i] &= ~SCTLR_EE;
563 env->uncached_cpsr &= ~CPSR_E;
564 break;
565 case ARM_ENDIANNESS_BE8:
566 env->cp15.sctlr_el[1] |= SCTLR_E0E;
567 for (i = 1; i < 4; ++i) {
568 env->cp15.sctlr_el[i] |= SCTLR_EE;
570 env->uncached_cpsr |= CPSR_E;
571 break;
572 case ARM_ENDIANNESS_BE32:
573 env->cp15.sctlr_el[1] |= SCTLR_B;
574 break;
575 case ARM_ENDIANNESS_UNKNOWN:
576 break; /* Board's decision */
577 default:
578 g_assert_not_reached();
581 if (!env->aarch64) {
582 env->thumb = info->entry & 1;
583 entry &= 0xfffffffe;
585 cpu_set_pc(cs, entry);
586 } else {
587 /* If we are booting Linux then we need to check whether we are
588 * booting into secure or non-secure state and adjust the state
589 * accordingly. Out of reset, ARM is defined to be in secure state
590 * (SCR.NS = 0), we change that here if non-secure boot has been
591 * requested.
593 if (arm_feature(env, ARM_FEATURE_EL3)) {
594 /* AArch64 is defined to come out of reset into EL3 if enabled.
595 * If we are booting Linux then we need to adjust our EL as
596 * Linux expects us to be in EL2 or EL1. AArch32 resets into
597 * SVC, which Linux expects, so no privilege/exception level to
598 * adjust.
600 if (env->aarch64) {
601 env->cp15.scr_el3 |= SCR_RW;
602 if (arm_feature(env, ARM_FEATURE_EL2)) {
603 env->cp15.hcr_el2 |= HCR_RW;
604 env->pstate = PSTATE_MODE_EL2h;
605 } else {
606 env->pstate = PSTATE_MODE_EL1h;
610 /* Set to non-secure if not a secure boot */
611 if (!info->secure_boot &&
612 (cs != first_cpu || !info->secure_board_setup)) {
613 /* Linux expects non-secure state */
614 env->cp15.scr_el3 |= SCR_NS;
618 if (cs == first_cpu) {
619 cpu_set_pc(cs, info->loader_start);
621 if (!have_dtb(info)) {
622 if (old_param) {
623 set_kernel_args_old(info);
624 } else {
625 set_kernel_args(info);
628 } else {
629 info->secondary_cpu_reset_hook(cpu, info);
636 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
637 * by key.
638 * @fw_cfg: The firmware config instance to store the data in.
639 * @size_key: The firmware config key to store the size of the loaded
640 * data under, with fw_cfg_add_i32().
641 * @data_key: The firmware config key to store the loaded data under,
642 * with fw_cfg_add_bytes().
643 * @image_name: The name of the image file to load. If it is NULL, the
644 * function returns without doing anything.
645 * @try_decompress: Whether the image should be decompressed (gunzipped) before
646 * adding it to fw_cfg. If decompression fails, the image is
647 * loaded as-is.
649 * In case of failure, the function prints an error message to stderr and the
650 * process exits with status 1.
652 static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
653 uint16_t data_key, const char *image_name,
654 bool try_decompress)
656 size_t size = -1;
657 uint8_t *data;
659 if (image_name == NULL) {
660 return;
663 if (try_decompress) {
664 size = load_image_gzipped_buffer(image_name,
665 LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
668 if (size == (size_t)-1) {
669 gchar *contents;
670 gsize length;
672 if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
673 fprintf(stderr, "failed to load \"%s\"\n", image_name);
674 exit(1);
676 size = length;
677 data = (uint8_t *)contents;
680 fw_cfg_add_i32(fw_cfg, size_key, size);
681 fw_cfg_add_bytes(fw_cfg, data_key, data, size);
684 static int do_arm_linux_init(Object *obj, void *opaque)
686 if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
687 ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
688 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
689 struct arm_boot_info *info = opaque;
691 if (albifc->arm_linux_init) {
692 albifc->arm_linux_init(albif, info->secure_boot);
695 return 0;
698 static uint64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
699 uint64_t *lowaddr, uint64_t *highaddr,
700 int elf_machine)
702 bool elf_is64;
703 union {
704 Elf32_Ehdr h32;
705 Elf64_Ehdr h64;
706 } elf_header;
707 int data_swab = 0;
708 bool big_endian;
709 uint64_t ret = -1;
710 Error *err = NULL;
713 load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
714 if (err) {
715 return ret;
718 if (elf_is64) {
719 big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
720 info->endianness = big_endian ? ARM_ENDIANNESS_BE8
721 : ARM_ENDIANNESS_LE;
722 } else {
723 big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
724 if (big_endian) {
725 if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
726 info->endianness = ARM_ENDIANNESS_BE8;
727 } else {
728 info->endianness = ARM_ENDIANNESS_BE32;
729 /* In BE32, the CPU has a different view of the per-byte
730 * address map than the rest of the system. BE32 ELF files
731 * are organised such that they can be programmed through
732 * the CPU's per-word byte-reversed view of the world. QEMU
733 * however loads ELF files independently of the CPU. So
734 * tell the ELF loader to byte reverse the data for us.
736 data_swab = 2;
738 } else {
739 info->endianness = ARM_ENDIANNESS_LE;
743 ret = load_elf(info->kernel_filename, NULL, NULL,
744 pentry, lowaddr, highaddr, big_endian, elf_machine,
745 1, data_swab);
746 if (ret <= 0) {
747 /* The header loaded but the image didn't */
748 exit(1);
751 return ret;
754 static void arm_load_kernel_notify(Notifier *notifier, void *data)
756 CPUState *cs;
757 int kernel_size;
758 int initrd_size;
759 int is_linux = 0;
760 uint64_t elf_entry, elf_low_addr, elf_high_addr;
761 int elf_machine;
762 hwaddr entry, kernel_load_offset;
763 static const ARMInsnFixup *primary_loader;
764 ArmLoadKernelNotifier *n = DO_UPCAST(ArmLoadKernelNotifier,
765 notifier, notifier);
766 ARMCPU *cpu = n->cpu;
767 struct arm_boot_info *info =
768 container_of(n, struct arm_boot_info, load_kernel_notifier);
770 /* The board code is not supposed to set secure_board_setup unless
771 * running its code in secure mode is actually possible, and KVM
772 * doesn't support secure.
774 assert(!(info->secure_board_setup && kvm_enabled()));
776 /* Load the kernel. */
777 if (!info->kernel_filename || info->firmware_loaded) {
779 if (have_dtb(info)) {
780 /* If we have a device tree blob, but no kernel to supply it to (or
781 * the kernel is supposed to be loaded by the bootloader), copy the
782 * DTB to the base of RAM for the bootloader to pick up.
784 if (load_dtb(info->loader_start, info, 0) < 0) {
785 exit(1);
789 if (info->kernel_filename) {
790 FWCfgState *fw_cfg;
791 bool try_decompressing_kernel;
793 fw_cfg = fw_cfg_find();
794 try_decompressing_kernel = arm_feature(&cpu->env,
795 ARM_FEATURE_AARCH64);
797 /* Expose the kernel, the command line, and the initrd in fw_cfg.
798 * We don't process them here at all, it's all left to the
799 * firmware.
801 load_image_to_fw_cfg(fw_cfg,
802 FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
803 info->kernel_filename,
804 try_decompressing_kernel);
805 load_image_to_fw_cfg(fw_cfg,
806 FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
807 info->initrd_filename, false);
809 if (info->kernel_cmdline) {
810 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
811 strlen(info->kernel_cmdline) + 1);
812 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
813 info->kernel_cmdline);
817 /* We will start from address 0 (typically a boot ROM image) in the
818 * same way as hardware.
820 return;
823 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
824 primary_loader = bootloader_aarch64;
825 kernel_load_offset = KERNEL64_LOAD_ADDR;
826 elf_machine = EM_AARCH64;
827 } else {
828 primary_loader = bootloader;
829 if (!info->write_board_setup) {
830 primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
832 kernel_load_offset = KERNEL_LOAD_ADDR;
833 elf_machine = EM_ARM;
836 info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
838 if (!info->secondary_cpu_reset_hook) {
839 info->secondary_cpu_reset_hook = default_reset_secondary;
841 if (!info->write_secondary_boot) {
842 info->write_secondary_boot = default_write_secondary;
845 if (info->nb_cpus == 0)
846 info->nb_cpus = 1;
848 /* We want to put the initrd far enough into RAM that when the
849 * kernel is uncompressed it will not clobber the initrd. However
850 * on boards without much RAM we must ensure that we still leave
851 * enough room for a decent sized initrd, and on boards with large
852 * amounts of RAM we must avoid the initrd being so far up in RAM
853 * that it is outside lowmem and inaccessible to the kernel.
854 * So for boards with less than 256MB of RAM we put the initrd
855 * halfway into RAM, and for boards with 256MB of RAM or more we put
856 * the initrd at 128MB.
858 info->initrd_start = info->loader_start +
859 MIN(info->ram_size / 2, 128 * 1024 * 1024);
861 /* Assume that raw images are linux kernels, and ELF images are not. */
862 kernel_size = arm_load_elf(info, &elf_entry, &elf_low_addr,
863 &elf_high_addr, elf_machine);
864 if (kernel_size > 0 && have_dtb(info)) {
865 /* If there is still some room left at the base of RAM, try and put
866 * the DTB there like we do for images loaded with -bios or -pflash.
868 if (elf_low_addr > info->loader_start
869 || elf_high_addr < info->loader_start) {
870 /* Pass elf_low_addr as address limit to load_dtb if it may be
871 * pointing into RAM, otherwise pass '0' (no limit)
873 if (elf_low_addr < info->loader_start) {
874 elf_low_addr = 0;
876 if (load_dtb(info->loader_start, info, elf_low_addr) < 0) {
877 exit(1);
881 entry = elf_entry;
882 if (kernel_size < 0) {
883 kernel_size = load_uimage(info->kernel_filename, &entry, NULL,
884 &is_linux, NULL, NULL);
886 /* On aarch64, it's the bootloader's job to uncompress the kernel. */
887 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
888 entry = info->loader_start + kernel_load_offset;
889 kernel_size = load_image_gzipped(info->kernel_filename, entry,
890 info->ram_size - kernel_load_offset);
891 is_linux = 1;
893 if (kernel_size < 0) {
894 entry = info->loader_start + kernel_load_offset;
895 kernel_size = load_image_targphys(info->kernel_filename, entry,
896 info->ram_size - kernel_load_offset);
897 is_linux = 1;
899 if (kernel_size < 0) {
900 fprintf(stderr, "qemu: could not load kernel '%s'\n",
901 info->kernel_filename);
902 exit(1);
904 info->entry = entry;
905 if (is_linux) {
906 uint32_t fixupcontext[FIXUP_MAX];
908 if (info->initrd_filename) {
909 initrd_size = load_ramdisk(info->initrd_filename,
910 info->initrd_start,
911 info->ram_size -
912 info->initrd_start);
913 if (initrd_size < 0) {
914 initrd_size = load_image_targphys(info->initrd_filename,
915 info->initrd_start,
916 info->ram_size -
917 info->initrd_start);
919 if (initrd_size < 0) {
920 fprintf(stderr, "qemu: could not load initrd '%s'\n",
921 info->initrd_filename);
922 exit(1);
924 } else {
925 initrd_size = 0;
927 info->initrd_size = initrd_size;
929 fixupcontext[FIXUP_BOARDID] = info->board_id;
930 fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
932 /* for device tree boot, we pass the DTB directly in r2. Otherwise
933 * we point to the kernel args.
935 if (have_dtb(info)) {
936 hwaddr align;
937 hwaddr dtb_start;
939 if (elf_machine == EM_AARCH64) {
941 * Some AArch64 kernels on early bootup map the fdt region as
943 * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
945 * Let's play safe and prealign it to 2MB to give us some space.
947 align = 2 * 1024 * 1024;
948 } else {
950 * Some 32bit kernels will trash anything in the 4K page the
951 * initrd ends in, so make sure the DTB isn't caught up in that.
953 align = 4096;
956 /* Place the DTB after the initrd in memory with alignment. */
957 dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size, align);
958 if (load_dtb(dtb_start, info, 0) < 0) {
959 exit(1);
961 fixupcontext[FIXUP_ARGPTR] = dtb_start;
962 } else {
963 fixupcontext[FIXUP_ARGPTR] = info->loader_start + KERNEL_ARGS_ADDR;
964 if (info->ram_size >= (1ULL << 32)) {
965 fprintf(stderr, "qemu: RAM size must be less than 4GB to boot"
966 " Linux kernel using ATAGS (try passing a device tree"
967 " using -dtb)\n");
968 exit(1);
971 fixupcontext[FIXUP_ENTRYPOINT] = entry;
973 write_bootloader("bootloader", info->loader_start,
974 primary_loader, fixupcontext);
976 if (info->nb_cpus > 1) {
977 info->write_secondary_boot(cpu, info);
979 if (info->write_board_setup) {
980 info->write_board_setup(cpu, info);
983 /* Notify devices which need to fake up firmware initialization
984 * that we're doing a direct kernel boot.
986 object_child_foreach_recursive(object_get_root(),
987 do_arm_linux_init, info);
989 info->is_linux = is_linux;
991 for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
992 ARM_CPU(cs)->env.boot_info = info;
996 void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
998 CPUState *cs;
1000 info->load_kernel_notifier.cpu = cpu;
1001 info->load_kernel_notifier.notifier.notify = arm_load_kernel_notify;
1002 qemu_add_machine_init_done_notifier(&info->load_kernel_notifier.notifier);
1004 /* CPU objects (unlike devices) are not automatically reset on system
1005 * reset, so we must always register a handler to do so. If we're
1006 * actually loading a kernel, the handler is also responsible for
1007 * arranging that we start it correctly.
1009 for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
1010 qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
1014 static const TypeInfo arm_linux_boot_if_info = {
1015 .name = TYPE_ARM_LINUX_BOOT_IF,
1016 .parent = TYPE_INTERFACE,
1017 .class_size = sizeof(ARMLinuxBootIfClass),
1020 static void arm_linux_boot_register_types(void)
1022 type_register_static(&arm_linux_boot_if_info);
1025 type_init(arm_linux_boot_register_types)