2 * QEMU S390x KVM implementation
4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
5 * Copyright IBM Corp. 2012
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * Contributions after 2012-10-29 are licensed under the terms of the
18 * GNU GPL, version 2 or (at your option) any later version.
20 * You should have received a copy of the GNU (Lesser) General Public
21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #include <sys/types.h>
25 #include <sys/ioctl.h>
28 #include <linux/kvm.h>
29 #include <asm/ptrace.h>
31 #include "qemu-common.h"
32 #include "qemu/timer.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/kvm.h"
37 #include "sysemu/device_tree.h"
38 #include "qapi/qmp/qjson.h"
39 #include "monitor/monitor.h"
40 #include "exec/gdbstub.h"
41 #include "exec/address-spaces.h"
43 #include "qapi-event.h"
44 #include "hw/s390x/s390-pci-inst.h"
45 #include "hw/s390x/s390-pci-bus.h"
46 #include "hw/s390x/ipl.h"
48 /* #define DEBUG_KVM */
51 #define DPRINTF(fmt, ...) \
52 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
54 #define DPRINTF(fmt, ...) \
58 #define kvm_vm_check_mem_attr(s, attr) \
59 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
61 #define IPA0_DIAG 0x8300
62 #define IPA0_SIGP 0xae00
63 #define IPA0_B2 0xb200
64 #define IPA0_B9 0xb900
65 #define IPA0_EB 0xeb00
66 #define IPA0_E3 0xe300
68 #define PRIV_B2_SCLP_CALL 0x20
69 #define PRIV_B2_CSCH 0x30
70 #define PRIV_B2_HSCH 0x31
71 #define PRIV_B2_MSCH 0x32
72 #define PRIV_B2_SSCH 0x33
73 #define PRIV_B2_STSCH 0x34
74 #define PRIV_B2_TSCH 0x35
75 #define PRIV_B2_TPI 0x36
76 #define PRIV_B2_SAL 0x37
77 #define PRIV_B2_RSCH 0x38
78 #define PRIV_B2_STCRW 0x39
79 #define PRIV_B2_STCPS 0x3a
80 #define PRIV_B2_RCHP 0x3b
81 #define PRIV_B2_SCHM 0x3c
82 #define PRIV_B2_CHSC 0x5f
83 #define PRIV_B2_SIGA 0x74
84 #define PRIV_B2_XSCH 0x76
86 #define PRIV_EB_SQBS 0x8a
87 #define PRIV_EB_PCISTB 0xd0
88 #define PRIV_EB_SIC 0xd1
90 #define PRIV_B9_EQBS 0x9c
91 #define PRIV_B9_CLP 0xa0
92 #define PRIV_B9_PCISTG 0xd0
93 #define PRIV_B9_PCILG 0xd2
94 #define PRIV_B9_RPCIT 0xd3
96 #define PRIV_E3_MPCIFC 0xd0
97 #define PRIV_E3_STPCIFC 0xd4
99 #define DIAG_IPL 0x308
100 #define DIAG_KVM_HYPERCALL 0x500
101 #define DIAG_KVM_BREAKPOINT 0x501
103 #define ICPT_INSTRUCTION 0x04
104 #define ICPT_PROGRAM 0x08
105 #define ICPT_EXT_INT 0x14
106 #define ICPT_WAITPSW 0x1c
107 #define ICPT_SOFT_INTERCEPT 0x24
108 #define ICPT_CPU_STOP 0x28
111 static CPUWatchpoint hw_watchpoint
;
113 * We don't use a list because this structure is also used to transmit the
114 * hardware breakpoints to the kernel.
116 static struct kvm_hw_breakpoint
*hw_breakpoints
;
117 static int nb_hw_breakpoints
;
119 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
123 static int cap_sync_regs
;
124 static int cap_async_pf
;
126 static void *legacy_s390_alloc(size_t size
, uint64_t *align
);
128 static int kvm_s390_query_mem_limit(KVMState
*s
, uint64_t *memory_limit
)
130 struct kvm_device_attr attr
= {
131 .group
= KVM_S390_VM_MEM_CTRL
,
132 .attr
= KVM_S390_VM_MEM_LIMIT_SIZE
,
133 .addr
= (uint64_t) memory_limit
,
136 return kvm_vm_ioctl(s
, KVM_GET_DEVICE_ATTR
, &attr
);
139 int kvm_s390_set_mem_limit(KVMState
*s
, uint64_t new_limit
, uint64_t *hw_limit
)
143 struct kvm_device_attr attr
= {
144 .group
= KVM_S390_VM_MEM_CTRL
,
145 .attr
= KVM_S390_VM_MEM_LIMIT_SIZE
,
146 .addr
= (uint64_t) &new_limit
,
149 if (!kvm_vm_check_mem_attr(s
, KVM_S390_VM_MEM_LIMIT_SIZE
)) {
153 rc
= kvm_s390_query_mem_limit(s
, hw_limit
);
156 } else if (*hw_limit
< new_limit
) {
160 return kvm_vm_ioctl(s
, KVM_SET_DEVICE_ATTR
, &attr
);
163 void kvm_s390_clear_cmma_callback(void *opaque
)
166 KVMState
*s
= opaque
;
167 struct kvm_device_attr attr
= {
168 .group
= KVM_S390_VM_MEM_CTRL
,
169 .attr
= KVM_S390_VM_MEM_CLR_CMMA
,
172 rc
= kvm_vm_ioctl(s
, KVM_SET_DEVICE_ATTR
, &attr
);
173 trace_kvm_clear_cmma(rc
);
176 static void kvm_s390_enable_cmma(KVMState
*s
)
179 struct kvm_device_attr attr
= {
180 .group
= KVM_S390_VM_MEM_CTRL
,
181 .attr
= KVM_S390_VM_MEM_ENABLE_CMMA
,
184 if (!kvm_vm_check_mem_attr(s
, KVM_S390_VM_MEM_ENABLE_CMMA
) ||
185 !kvm_vm_check_mem_attr(s
, KVM_S390_VM_MEM_CLR_CMMA
)) {
189 rc
= kvm_vm_ioctl(s
, KVM_SET_DEVICE_ATTR
, &attr
);
191 qemu_register_reset(kvm_s390_clear_cmma_callback
, s
);
193 trace_kvm_enable_cmma(rc
);
196 static void kvm_s390_set_attr(uint64_t attr
)
198 struct kvm_device_attr attribute
= {
199 .group
= KVM_S390_VM_CRYPTO
,
203 int ret
= kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attribute
);
206 error_report("Failed to set crypto device attribute %lu: %s",
207 attr
, strerror(-ret
));
211 static void kvm_s390_init_aes_kw(void)
213 uint64_t attr
= KVM_S390_VM_CRYPTO_DISABLE_AES_KW
;
215 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
217 attr
= KVM_S390_VM_CRYPTO_ENABLE_AES_KW
;
220 if (kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CRYPTO
, attr
)) {
221 kvm_s390_set_attr(attr
);
225 static void kvm_s390_init_dea_kw(void)
227 uint64_t attr
= KVM_S390_VM_CRYPTO_DISABLE_DEA_KW
;
229 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
231 attr
= KVM_S390_VM_CRYPTO_ENABLE_DEA_KW
;
234 if (kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CRYPTO
, attr
)) {
235 kvm_s390_set_attr(attr
);
239 static void kvm_s390_init_crypto(void)
241 kvm_s390_init_aes_kw();
242 kvm_s390_init_dea_kw();
245 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
247 cap_sync_regs
= kvm_check_extension(s
, KVM_CAP_SYNC_REGS
);
248 cap_async_pf
= kvm_check_extension(s
, KVM_CAP_ASYNC_PF
);
250 kvm_s390_enable_cmma(s
);
252 if (!kvm_check_extension(s
, KVM_CAP_S390_GMAP
)
253 || !kvm_check_extension(s
, KVM_CAP_S390_COW
)) {
254 phys_mem_set_alloc(legacy_s390_alloc
);
257 kvm_vm_enable_cap(s
, KVM_CAP_S390_USER_SIGP
, 0);
262 unsigned long kvm_arch_vcpu_id(CPUState
*cpu
)
264 return cpu
->cpu_index
;
267 int kvm_arch_init_vcpu(CPUState
*cs
)
269 S390CPU
*cpu
= S390_CPU(cs
);
270 kvm_s390_set_cpu_state(cpu
, cpu
->env
.cpu_state
);
274 void kvm_s390_reset_vcpu(S390CPU
*cpu
)
276 CPUState
*cs
= CPU(cpu
);
278 /* The initial reset call is needed here to reset in-kernel
279 * vcpu data that we can't access directly from QEMU
280 * (i.e. with older kernels which don't support sync_regs/ONE_REG).
281 * Before this ioctl cpu_synchronize_state() is called in common kvm
283 if (kvm_vcpu_ioctl(cs
, KVM_S390_INITIAL_RESET
, NULL
)) {
284 error_report("Initial CPU reset failed on CPU %i", cs
->cpu_index
);
287 kvm_s390_init_crypto();
290 static int can_sync_regs(CPUState
*cs
, int regs
)
292 return cap_sync_regs
&& (cs
->kvm_run
->kvm_valid_regs
& regs
) == regs
;
295 int kvm_arch_put_registers(CPUState
*cs
, int level
)
297 S390CPU
*cpu
= S390_CPU(cs
);
298 CPUS390XState
*env
= &cpu
->env
;
299 struct kvm_sregs sregs
;
300 struct kvm_regs regs
;
301 struct kvm_fpu fpu
= {};
305 /* always save the PSW and the GPRS*/
306 cs
->kvm_run
->psw_addr
= env
->psw
.addr
;
307 cs
->kvm_run
->psw_mask
= env
->psw
.mask
;
309 if (can_sync_regs(cs
, KVM_SYNC_GPRS
)) {
310 for (i
= 0; i
< 16; i
++) {
311 cs
->kvm_run
->s
.regs
.gprs
[i
] = env
->regs
[i
];
312 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_GPRS
;
315 for (i
= 0; i
< 16; i
++) {
316 regs
.gprs
[i
] = env
->regs
[i
];
318 r
= kvm_vcpu_ioctl(cs
, KVM_SET_REGS
, ®s
);
325 for (i
= 0; i
< 16; i
++) {
326 fpu
.fprs
[i
] = env
->fregs
[i
].ll
;
330 r
= kvm_vcpu_ioctl(cs
, KVM_SET_FPU
, &fpu
);
335 /* Do we need to save more than that? */
336 if (level
== KVM_PUT_RUNTIME_STATE
) {
340 if (can_sync_regs(cs
, KVM_SYNC_ARCH0
)) {
341 cs
->kvm_run
->s
.regs
.cputm
= env
->cputm
;
342 cs
->kvm_run
->s
.regs
.ckc
= env
->ckc
;
343 cs
->kvm_run
->s
.regs
.todpr
= env
->todpr
;
344 cs
->kvm_run
->s
.regs
.gbea
= env
->gbea
;
345 cs
->kvm_run
->s
.regs
.pp
= env
->pp
;
346 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_ARCH0
;
349 * These ONE_REGS are not protected by a capability. As they are only
350 * necessary for migration we just trace a possible error, but don't
351 * return with an error return code.
353 kvm_set_one_reg(cs
, KVM_REG_S390_CPU_TIMER
, &env
->cputm
);
354 kvm_set_one_reg(cs
, KVM_REG_S390_CLOCK_COMP
, &env
->ckc
);
355 kvm_set_one_reg(cs
, KVM_REG_S390_TODPR
, &env
->todpr
);
356 kvm_set_one_reg(cs
, KVM_REG_S390_GBEA
, &env
->gbea
);
357 kvm_set_one_reg(cs
, KVM_REG_S390_PP
, &env
->pp
);
360 /* pfault parameters */
361 if (can_sync_regs(cs
, KVM_SYNC_PFAULT
)) {
362 cs
->kvm_run
->s
.regs
.pft
= env
->pfault_token
;
363 cs
->kvm_run
->s
.regs
.pfs
= env
->pfault_select
;
364 cs
->kvm_run
->s
.regs
.pfc
= env
->pfault_compare
;
365 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_PFAULT
;
366 } else if (cap_async_pf
) {
367 r
= kvm_set_one_reg(cs
, KVM_REG_S390_PFTOKEN
, &env
->pfault_token
);
371 r
= kvm_set_one_reg(cs
, KVM_REG_S390_PFCOMPARE
, &env
->pfault_compare
);
375 r
= kvm_set_one_reg(cs
, KVM_REG_S390_PFSELECT
, &env
->pfault_select
);
381 /* access registers and control registers*/
382 if (can_sync_regs(cs
, KVM_SYNC_ACRS
| KVM_SYNC_CRS
)) {
383 for (i
= 0; i
< 16; i
++) {
384 cs
->kvm_run
->s
.regs
.acrs
[i
] = env
->aregs
[i
];
385 cs
->kvm_run
->s
.regs
.crs
[i
] = env
->cregs
[i
];
387 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_ACRS
;
388 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_CRS
;
390 for (i
= 0; i
< 16; i
++) {
391 sregs
.acrs
[i
] = env
->aregs
[i
];
392 sregs
.crs
[i
] = env
->cregs
[i
];
394 r
= kvm_vcpu_ioctl(cs
, KVM_SET_SREGS
, &sregs
);
400 /* Finally the prefix */
401 if (can_sync_regs(cs
, KVM_SYNC_PREFIX
)) {
402 cs
->kvm_run
->s
.regs
.prefix
= env
->psa
;
403 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_PREFIX
;
405 /* prefix is only supported via sync regs */
410 int kvm_arch_get_registers(CPUState
*cs
)
412 S390CPU
*cpu
= S390_CPU(cs
);
413 CPUS390XState
*env
= &cpu
->env
;
414 struct kvm_sregs sregs
;
415 struct kvm_regs regs
;
420 env
->psw
.addr
= cs
->kvm_run
->psw_addr
;
421 env
->psw
.mask
= cs
->kvm_run
->psw_mask
;
424 if (can_sync_regs(cs
, KVM_SYNC_GPRS
)) {
425 for (i
= 0; i
< 16; i
++) {
426 env
->regs
[i
] = cs
->kvm_run
->s
.regs
.gprs
[i
];
429 r
= kvm_vcpu_ioctl(cs
, KVM_GET_REGS
, ®s
);
433 for (i
= 0; i
< 16; i
++) {
434 env
->regs
[i
] = regs
.gprs
[i
];
438 /* The ACRS and CRS */
439 if (can_sync_regs(cs
, KVM_SYNC_ACRS
| KVM_SYNC_CRS
)) {
440 for (i
= 0; i
< 16; i
++) {
441 env
->aregs
[i
] = cs
->kvm_run
->s
.regs
.acrs
[i
];
442 env
->cregs
[i
] = cs
->kvm_run
->s
.regs
.crs
[i
];
445 r
= kvm_vcpu_ioctl(cs
, KVM_GET_SREGS
, &sregs
);
449 for (i
= 0; i
< 16; i
++) {
450 env
->aregs
[i
] = sregs
.acrs
[i
];
451 env
->cregs
[i
] = sregs
.crs
[i
];
456 r
= kvm_vcpu_ioctl(cs
, KVM_GET_FPU
, &fpu
);
460 for (i
= 0; i
< 16; i
++) {
461 env
->fregs
[i
].ll
= fpu
.fprs
[i
];
466 if (can_sync_regs(cs
, KVM_SYNC_PREFIX
)) {
467 env
->psa
= cs
->kvm_run
->s
.regs
.prefix
;
470 if (can_sync_regs(cs
, KVM_SYNC_ARCH0
)) {
471 env
->cputm
= cs
->kvm_run
->s
.regs
.cputm
;
472 env
->ckc
= cs
->kvm_run
->s
.regs
.ckc
;
473 env
->todpr
= cs
->kvm_run
->s
.regs
.todpr
;
474 env
->gbea
= cs
->kvm_run
->s
.regs
.gbea
;
475 env
->pp
= cs
->kvm_run
->s
.regs
.pp
;
478 * These ONE_REGS are not protected by a capability. As they are only
479 * necessary for migration we just trace a possible error, but don't
480 * return with an error return code.
482 kvm_get_one_reg(cs
, KVM_REG_S390_CPU_TIMER
, &env
->cputm
);
483 kvm_get_one_reg(cs
, KVM_REG_S390_CLOCK_COMP
, &env
->ckc
);
484 kvm_get_one_reg(cs
, KVM_REG_S390_TODPR
, &env
->todpr
);
485 kvm_get_one_reg(cs
, KVM_REG_S390_GBEA
, &env
->gbea
);
486 kvm_get_one_reg(cs
, KVM_REG_S390_PP
, &env
->pp
);
489 /* pfault parameters */
490 if (can_sync_regs(cs
, KVM_SYNC_PFAULT
)) {
491 env
->pfault_token
= cs
->kvm_run
->s
.regs
.pft
;
492 env
->pfault_select
= cs
->kvm_run
->s
.regs
.pfs
;
493 env
->pfault_compare
= cs
->kvm_run
->s
.regs
.pfc
;
494 } else if (cap_async_pf
) {
495 r
= kvm_get_one_reg(cs
, KVM_REG_S390_PFTOKEN
, &env
->pfault_token
);
499 r
= kvm_get_one_reg(cs
, KVM_REG_S390_PFCOMPARE
, &env
->pfault_compare
);
503 r
= kvm_get_one_reg(cs
, KVM_REG_S390_PFSELECT
, &env
->pfault_select
);
512 int kvm_s390_get_clock(uint8_t *tod_high
, uint64_t *tod_low
)
515 struct kvm_device_attr attr
= {
516 .group
= KVM_S390_VM_TOD
,
517 .attr
= KVM_S390_VM_TOD_LOW
,
518 .addr
= (uint64_t)tod_low
,
521 r
= kvm_vm_ioctl(kvm_state
, KVM_GET_DEVICE_ATTR
, &attr
);
526 attr
.attr
= KVM_S390_VM_TOD_HIGH
;
527 attr
.addr
= (uint64_t)tod_high
;
528 return kvm_vm_ioctl(kvm_state
, KVM_GET_DEVICE_ATTR
, &attr
);
531 int kvm_s390_set_clock(uint8_t *tod_high
, uint64_t *tod_low
)
535 struct kvm_device_attr attr
= {
536 .group
= KVM_S390_VM_TOD
,
537 .attr
= KVM_S390_VM_TOD_LOW
,
538 .addr
= (uint64_t)tod_low
,
541 r
= kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
546 attr
.attr
= KVM_S390_VM_TOD_HIGH
;
547 attr
.addr
= (uint64_t)tod_high
;
548 return kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
552 * Legacy layout for s390:
553 * Older S390 KVM requires the topmost vma of the RAM to be
554 * smaller than an system defined value, which is at least 256GB.
555 * Larger systems have larger values. We put the guest between
556 * the end of data segment (system break) and this value. We
557 * use 32GB as a base to have enough room for the system break
558 * to grow. We also have to use MAP parameters that avoid
559 * read-only mapping of guest pages.
561 static void *legacy_s390_alloc(size_t size
, uint64_t *align
)
565 mem
= mmap((void *) 0x800000000ULL
, size
,
566 PROT_EXEC
|PROT_READ
|PROT_WRITE
,
567 MAP_SHARED
| MAP_ANONYMOUS
| MAP_FIXED
, -1, 0);
568 return mem
== MAP_FAILED
? NULL
: mem
;
571 /* DIAG 501 is used for sw breakpoints */
572 static const uint8_t diag_501
[] = {0x83, 0x24, 0x05, 0x01};
574 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
577 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
,
578 sizeof(diag_501
), 0) ||
579 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)diag_501
,
580 sizeof(diag_501
), 1)) {
586 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
588 uint8_t t
[sizeof(diag_501
)];
590 if (cpu_memory_rw_debug(cs
, bp
->pc
, t
, sizeof(diag_501
), 0)) {
592 } else if (memcmp(t
, diag_501
, sizeof(diag_501
))) {
594 } else if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
,
595 sizeof(diag_501
), 1)) {
602 static struct kvm_hw_breakpoint
*find_hw_breakpoint(target_ulong addr
,
607 for (n
= 0; n
< nb_hw_breakpoints
; n
++) {
608 if (hw_breakpoints
[n
].addr
== addr
&& hw_breakpoints
[n
].type
== type
&&
609 (hw_breakpoints
[n
].len
== len
|| len
== -1)) {
610 return &hw_breakpoints
[n
];
617 static int insert_hw_breakpoint(target_ulong addr
, int len
, int type
)
621 if (find_hw_breakpoint(addr
, len
, type
)) {
625 size
= (nb_hw_breakpoints
+ 1) * sizeof(struct kvm_hw_breakpoint
);
627 if (!hw_breakpoints
) {
628 nb_hw_breakpoints
= 0;
629 hw_breakpoints
= (struct kvm_hw_breakpoint
*)g_try_malloc(size
);
632 (struct kvm_hw_breakpoint
*)g_try_realloc(hw_breakpoints
, size
);
635 if (!hw_breakpoints
) {
636 nb_hw_breakpoints
= 0;
640 hw_breakpoints
[nb_hw_breakpoints
].addr
= addr
;
641 hw_breakpoints
[nb_hw_breakpoints
].len
= len
;
642 hw_breakpoints
[nb_hw_breakpoints
].type
= type
;
649 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
650 target_ulong len
, int type
)
653 case GDB_BREAKPOINT_HW
:
656 case GDB_WATCHPOINT_WRITE
:
660 type
= KVM_HW_WP_WRITE
;
665 return insert_hw_breakpoint(addr
, len
, type
);
668 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
669 target_ulong len
, int type
)
672 struct kvm_hw_breakpoint
*bp
= find_hw_breakpoint(addr
, len
, type
);
679 if (nb_hw_breakpoints
> 0) {
681 * In order to trim the array, move the last element to the position to
682 * be removed - if necessary.
684 if (bp
!= &hw_breakpoints
[nb_hw_breakpoints
]) {
685 *bp
= hw_breakpoints
[nb_hw_breakpoints
];
687 size
= nb_hw_breakpoints
* sizeof(struct kvm_hw_breakpoint
);
689 (struct kvm_hw_breakpoint
*)g_realloc(hw_breakpoints
, size
);
691 g_free(hw_breakpoints
);
692 hw_breakpoints
= NULL
;
698 void kvm_arch_remove_all_hw_breakpoints(void)
700 nb_hw_breakpoints
= 0;
701 g_free(hw_breakpoints
);
702 hw_breakpoints
= NULL
;
705 void kvm_arch_update_guest_debug(CPUState
*cpu
, struct kvm_guest_debug
*dbg
)
709 if (nb_hw_breakpoints
> 0) {
710 dbg
->arch
.nr_hw_bp
= nb_hw_breakpoints
;
711 dbg
->arch
.hw_bp
= hw_breakpoints
;
713 for (i
= 0; i
< nb_hw_breakpoints
; ++i
) {
714 hw_breakpoints
[i
].phys_addr
= s390_cpu_get_phys_addr_debug(cpu
,
715 hw_breakpoints
[i
].addr
);
717 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
719 dbg
->arch
.nr_hw_bp
= 0;
720 dbg
->arch
.hw_bp
= NULL
;
724 void kvm_arch_pre_run(CPUState
*cpu
, struct kvm_run
*run
)
728 void kvm_arch_post_run(CPUState
*cpu
, struct kvm_run
*run
)
732 int kvm_arch_process_async_events(CPUState
*cs
)
737 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq
*irq
,
738 struct kvm_s390_interrupt
*interrupt
)
742 interrupt
->type
= irq
->type
;
744 case KVM_S390_INT_VIRTIO
:
745 interrupt
->parm
= irq
->u
.ext
.ext_params
;
747 case KVM_S390_INT_PFAULT_INIT
:
748 case KVM_S390_INT_PFAULT_DONE
:
749 interrupt
->parm64
= irq
->u
.ext
.ext_params2
;
751 case KVM_S390_PROGRAM_INT
:
752 interrupt
->parm
= irq
->u
.pgm
.code
;
754 case KVM_S390_SIGP_SET_PREFIX
:
755 interrupt
->parm
= irq
->u
.prefix
.address
;
757 case KVM_S390_INT_SERVICE
:
758 interrupt
->parm
= irq
->u
.ext
.ext_params
;
761 interrupt
->parm
= irq
->u
.mchk
.cr14
;
762 interrupt
->parm64
= irq
->u
.mchk
.mcic
;
764 case KVM_S390_INT_EXTERNAL_CALL
:
765 interrupt
->parm
= irq
->u
.extcall
.code
;
767 case KVM_S390_INT_EMERGENCY
:
768 interrupt
->parm
= irq
->u
.emerg
.code
;
770 case KVM_S390_SIGP_STOP
:
771 case KVM_S390_RESTART
:
772 break; /* These types have no parameters */
773 case KVM_S390_INT_IO_MIN
...KVM_S390_INT_IO_MAX
:
774 interrupt
->parm
= irq
->u
.io
.subchannel_id
<< 16;
775 interrupt
->parm
|= irq
->u
.io
.subchannel_nr
;
776 interrupt
->parm64
= (uint64_t)irq
->u
.io
.io_int_parm
<< 32;
777 interrupt
->parm64
|= irq
->u
.io
.io_int_word
;
786 void kvm_s390_vcpu_interrupt(S390CPU
*cpu
, struct kvm_s390_irq
*irq
)
788 struct kvm_s390_interrupt kvmint
= {};
789 CPUState
*cs
= CPU(cpu
);
792 r
= s390_kvm_irq_to_interrupt(irq
, &kvmint
);
794 fprintf(stderr
, "%s called with bogus interrupt\n", __func__
);
798 r
= kvm_vcpu_ioctl(cs
, KVM_S390_INTERRUPT
, &kvmint
);
800 fprintf(stderr
, "KVM failed to inject interrupt\n");
805 static void __kvm_s390_floating_interrupt(struct kvm_s390_irq
*irq
)
807 struct kvm_s390_interrupt kvmint
= {};
810 r
= s390_kvm_irq_to_interrupt(irq
, &kvmint
);
812 fprintf(stderr
, "%s called with bogus interrupt\n", __func__
);
816 r
= kvm_vm_ioctl(kvm_state
, KVM_S390_INTERRUPT
, &kvmint
);
818 fprintf(stderr
, "KVM failed to inject interrupt\n");
823 void kvm_s390_floating_interrupt(struct kvm_s390_irq
*irq
)
825 static bool use_flic
= true;
829 r
= kvm_s390_inject_flic(irq
);
837 __kvm_s390_floating_interrupt(irq
);
840 void kvm_s390_virtio_irq(int config_change
, uint64_t token
)
842 struct kvm_s390_irq irq
= {
843 .type
= KVM_S390_INT_VIRTIO
,
844 .u
.ext
.ext_params
= config_change
,
845 .u
.ext
.ext_params2
= token
,
848 kvm_s390_floating_interrupt(&irq
);
851 void kvm_s390_service_interrupt(uint32_t parm
)
853 struct kvm_s390_irq irq
= {
854 .type
= KVM_S390_INT_SERVICE
,
855 .u
.ext
.ext_params
= parm
,
858 kvm_s390_floating_interrupt(&irq
);
861 static void enter_pgmcheck(S390CPU
*cpu
, uint16_t code
)
863 struct kvm_s390_irq irq
= {
864 .type
= KVM_S390_PROGRAM_INT
,
868 kvm_s390_vcpu_interrupt(cpu
, &irq
);
871 void kvm_s390_access_exception(S390CPU
*cpu
, uint16_t code
, uint64_t te_code
)
873 struct kvm_s390_irq irq
= {
874 .type
= KVM_S390_PROGRAM_INT
,
876 .u
.pgm
.trans_exc_code
= te_code
,
877 .u
.pgm
.exc_access_id
= te_code
& 3,
880 kvm_s390_vcpu_interrupt(cpu
, &irq
);
883 static int kvm_sclp_service_call(S390CPU
*cpu
, struct kvm_run
*run
,
886 CPUS390XState
*env
= &cpu
->env
;
891 cpu_synchronize_state(CPU(cpu
));
892 sccb
= env
->regs
[ipbh0
& 0xf];
893 code
= env
->regs
[(ipbh0
& 0xf0) >> 4];
895 r
= sclp_service_call(env
, sccb
, code
);
897 enter_pgmcheck(cpu
, -r
);
905 static int handle_b2(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipa1
)
907 CPUS390XState
*env
= &cpu
->env
;
909 uint16_t ipbh0
= (run
->s390_sieic
.ipb
& 0xffff0000) >> 16;
911 cpu_synchronize_state(CPU(cpu
));
915 ioinst_handle_xsch(cpu
, env
->regs
[1]);
918 ioinst_handle_csch(cpu
, env
->regs
[1]);
921 ioinst_handle_hsch(cpu
, env
->regs
[1]);
924 ioinst_handle_msch(cpu
, env
->regs
[1], run
->s390_sieic
.ipb
);
927 ioinst_handle_ssch(cpu
, env
->regs
[1], run
->s390_sieic
.ipb
);
930 ioinst_handle_stcrw(cpu
, run
->s390_sieic
.ipb
);
933 ioinst_handle_stsch(cpu
, env
->regs
[1], run
->s390_sieic
.ipb
);
936 /* We should only get tsch via KVM_EXIT_S390_TSCH. */
937 fprintf(stderr
, "Spurious tsch intercept\n");
940 ioinst_handle_chsc(cpu
, run
->s390_sieic
.ipb
);
943 /* This should have been handled by kvm already. */
944 fprintf(stderr
, "Spurious tpi intercept\n");
947 ioinst_handle_schm(cpu
, env
->regs
[1], env
->regs
[2],
948 run
->s390_sieic
.ipb
);
951 ioinst_handle_rsch(cpu
, env
->regs
[1]);
954 ioinst_handle_rchp(cpu
, env
->regs
[1]);
957 /* We do not provide this instruction, it is suppressed. */
960 ioinst_handle_sal(cpu
, env
->regs
[1]);
963 /* Not provided, set CC = 3 for subchannel not operational */
966 case PRIV_B2_SCLP_CALL
:
967 rc
= kvm_sclp_service_call(cpu
, run
, ipbh0
);
971 DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1
);
978 static uint64_t get_base_disp_rxy(S390CPU
*cpu
, struct kvm_run
*run
)
980 CPUS390XState
*env
= &cpu
->env
;
981 uint32_t x2
= (run
->s390_sieic
.ipa
& 0x000f);
982 uint32_t base2
= run
->s390_sieic
.ipb
>> 28;
983 uint32_t disp2
= ((run
->s390_sieic
.ipb
& 0x0fff0000) >> 16) +
984 ((run
->s390_sieic
.ipb
& 0xff00) << 4);
986 if (disp2
& 0x80000) {
990 return (base2
? env
->regs
[base2
] : 0) +
991 (x2
? env
->regs
[x2
] : 0) + (long)(int)disp2
;
994 static uint64_t get_base_disp_rsy(S390CPU
*cpu
, struct kvm_run
*run
)
996 CPUS390XState
*env
= &cpu
->env
;
997 uint32_t base2
= run
->s390_sieic
.ipb
>> 28;
998 uint32_t disp2
= ((run
->s390_sieic
.ipb
& 0x0fff0000) >> 16) +
999 ((run
->s390_sieic
.ipb
& 0xff00) << 4);
1001 if (disp2
& 0x80000) {
1002 disp2
+= 0xfff00000;
1005 return (base2
? env
->regs
[base2
] : 0) + (long)(int)disp2
;
1008 static int kvm_clp_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1010 uint8_t r2
= (run
->s390_sieic
.ipb
& 0x000f0000) >> 16;
1012 return clp_service_call(cpu
, r2
);
1015 static int kvm_pcilg_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1017 uint8_t r1
= (run
->s390_sieic
.ipb
& 0x00f00000) >> 20;
1018 uint8_t r2
= (run
->s390_sieic
.ipb
& 0x000f0000) >> 16;
1020 return pcilg_service_call(cpu
, r1
, r2
);
1023 static int kvm_pcistg_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1025 uint8_t r1
= (run
->s390_sieic
.ipb
& 0x00f00000) >> 20;
1026 uint8_t r2
= (run
->s390_sieic
.ipb
& 0x000f0000) >> 16;
1028 return pcistg_service_call(cpu
, r1
, r2
);
1031 static int kvm_stpcifc_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1033 uint8_t r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1036 cpu_synchronize_state(CPU(cpu
));
1037 fiba
= get_base_disp_rxy(cpu
, run
);
1039 return stpcifc_service_call(cpu
, r1
, fiba
);
1042 static int kvm_sic_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1048 static int kvm_rpcit_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1050 uint8_t r1
= (run
->s390_sieic
.ipb
& 0x00f00000) >> 20;
1051 uint8_t r2
= (run
->s390_sieic
.ipb
& 0x000f0000) >> 16;
1053 return rpcit_service_call(cpu
, r1
, r2
);
1056 static int kvm_pcistb_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1058 uint8_t r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1059 uint8_t r3
= run
->s390_sieic
.ipa
& 0x000f;
1062 cpu_synchronize_state(CPU(cpu
));
1063 gaddr
= get_base_disp_rsy(cpu
, run
);
1065 return pcistb_service_call(cpu
, r1
, r3
, gaddr
);
1068 static int kvm_mpcifc_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1070 uint8_t r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1073 cpu_synchronize_state(CPU(cpu
));
1074 fiba
= get_base_disp_rxy(cpu
, run
);
1076 return mpcifc_service_call(cpu
, r1
, fiba
);
1079 static int handle_b9(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipa1
)
1085 r
= kvm_clp_service_call(cpu
, run
);
1087 case PRIV_B9_PCISTG
:
1088 r
= kvm_pcistg_service_call(cpu
, run
);
1091 r
= kvm_pcilg_service_call(cpu
, run
);
1094 r
= kvm_rpcit_service_call(cpu
, run
);
1097 /* just inject exception */
1102 DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1
);
1109 static int handle_eb(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipbl
)
1114 case PRIV_EB_PCISTB
:
1115 r
= kvm_pcistb_service_call(cpu
, run
);
1118 r
= kvm_sic_service_call(cpu
, run
);
1121 /* just inject exception */
1126 DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl
);
1133 static int handle_e3(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipbl
)
1138 case PRIV_E3_MPCIFC
:
1139 r
= kvm_mpcifc_service_call(cpu
, run
);
1141 case PRIV_E3_STPCIFC
:
1142 r
= kvm_stpcifc_service_call(cpu
, run
);
1146 DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl
);
1153 static int handle_hypercall(S390CPU
*cpu
, struct kvm_run
*run
)
1155 CPUS390XState
*env
= &cpu
->env
;
1158 cpu_synchronize_state(CPU(cpu
));
1159 ret
= s390_virtio_hypercall(env
);
1160 if (ret
== -EINVAL
) {
1161 enter_pgmcheck(cpu
, PGM_SPECIFICATION
);
1168 static void kvm_handle_diag_308(S390CPU
*cpu
, struct kvm_run
*run
)
1172 cpu_synchronize_state(CPU(cpu
));
1173 r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1174 r3
= run
->s390_sieic
.ipa
& 0x000f;
1175 handle_diag_308(&cpu
->env
, r1
, r3
);
1178 static int handle_sw_breakpoint(S390CPU
*cpu
, struct kvm_run
*run
)
1180 CPUS390XState
*env
= &cpu
->env
;
1183 cpu_synchronize_state(CPU(cpu
));
1185 pc
= env
->psw
.addr
- 4;
1186 if (kvm_find_sw_breakpoint(CPU(cpu
), pc
)) {
1194 #define DIAG_KVM_CODE_MASK 0x000000000000ffff
1196 static int handle_diag(S390CPU
*cpu
, struct kvm_run
*run
, uint32_t ipb
)
1202 * For any diagnose call we support, bits 48-63 of the resulting
1203 * address specify the function code; the remainder is ignored.
1205 func_code
= decode_basedisp_rs(&cpu
->env
, ipb
) & DIAG_KVM_CODE_MASK
;
1206 switch (func_code
) {
1208 kvm_handle_diag_308(cpu
, run
);
1210 case DIAG_KVM_HYPERCALL
:
1211 r
= handle_hypercall(cpu
, run
);
1213 case DIAG_KVM_BREAKPOINT
:
1214 r
= handle_sw_breakpoint(cpu
, run
);
1217 DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code
);
1218 enter_pgmcheck(cpu
, PGM_SPECIFICATION
);
1225 typedef struct SigpInfo
{
1229 uint64_t *status_reg
;
1232 static void set_sigp_status(SigpInfo
*si
, uint64_t status
)
1234 *si
->status_reg
&= 0xffffffff00000000ULL
;
1235 *si
->status_reg
|= status
;
1236 si
->cc
= SIGP_CC_STATUS_STORED
;
1239 static void sigp_start(void *arg
)
1243 if (s390_cpu_get_state(si
->cpu
) != CPU_STATE_STOPPED
) {
1244 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1248 s390_cpu_set_state(CPU_STATE_OPERATING
, si
->cpu
);
1249 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1252 static void sigp_stop(void *arg
)
1255 struct kvm_s390_irq irq
= {
1256 .type
= KVM_S390_SIGP_STOP
,
1259 if (s390_cpu_get_state(si
->cpu
) != CPU_STATE_OPERATING
) {
1260 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1264 /* disabled wait - sleeping in user space */
1265 if (CPU(si
->cpu
)->halted
) {
1266 s390_cpu_set_state(CPU_STATE_STOPPED
, si
->cpu
);
1268 /* execute the stop function */
1269 si
->cpu
->env
.sigp_order
= SIGP_STOP
;
1270 kvm_s390_vcpu_interrupt(si
->cpu
, &irq
);
1272 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1275 #define KVM_S390_STORE_STATUS_DEF_ADDR offsetof(LowCore, floating_pt_save_area)
1276 #define SAVE_AREA_SIZE 512
1277 static int kvm_s390_store_status(S390CPU
*cpu
, hwaddr addr
, bool store_arch
)
1279 static const uint8_t ar_id
= 1;
1280 uint64_t ckc
= cpu
->env
.ckc
>> 8;
1282 hwaddr len
= SAVE_AREA_SIZE
;
1284 mem
= cpu_physical_memory_map(addr
, &len
, 1);
1288 if (len
!= SAVE_AREA_SIZE
) {
1289 cpu_physical_memory_unmap(mem
, len
, 1, 0);
1294 cpu_physical_memory_write(offsetof(LowCore
, ar_access_id
), &ar_id
, 1);
1296 memcpy(mem
, &cpu
->env
.fregs
, 128);
1297 memcpy(mem
+ 128, &cpu
->env
.regs
, 128);
1298 memcpy(mem
+ 256, &cpu
->env
.psw
, 16);
1299 memcpy(mem
+ 280, &cpu
->env
.psa
, 4);
1300 memcpy(mem
+ 284, &cpu
->env
.fpc
, 4);
1301 memcpy(mem
+ 292, &cpu
->env
.todpr
, 4);
1302 memcpy(mem
+ 296, &cpu
->env
.cputm
, 8);
1303 memcpy(mem
+ 304, &ckc
, 8);
1304 memcpy(mem
+ 320, &cpu
->env
.aregs
, 64);
1305 memcpy(mem
+ 384, &cpu
->env
.cregs
, 128);
1307 cpu_physical_memory_unmap(mem
, len
, 1, len
);
1312 static void sigp_stop_and_store_status(void *arg
)
1315 struct kvm_s390_irq irq
= {
1316 .type
= KVM_S390_SIGP_STOP
,
1319 /* disabled wait - sleeping in user space */
1320 if (s390_cpu_get_state(si
->cpu
) == CPU_STATE_OPERATING
&&
1321 CPU(si
->cpu
)->halted
) {
1322 s390_cpu_set_state(CPU_STATE_STOPPED
, si
->cpu
);
1325 switch (s390_cpu_get_state(si
->cpu
)) {
1326 case CPU_STATE_OPERATING
:
1327 si
->cpu
->env
.sigp_order
= SIGP_STOP_STORE_STATUS
;
1328 kvm_s390_vcpu_interrupt(si
->cpu
, &irq
);
1329 /* store will be performed when handling the stop intercept */
1331 case CPU_STATE_STOPPED
:
1332 /* already stopped, just store the status */
1333 cpu_synchronize_state(CPU(si
->cpu
));
1334 kvm_s390_store_status(si
->cpu
, KVM_S390_STORE_STATUS_DEF_ADDR
, true);
1337 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1340 static void sigp_store_status_at_address(void *arg
)
1343 uint32_t address
= si
->param
& 0x7ffffe00u
;
1345 /* cpu has to be stopped */
1346 if (s390_cpu_get_state(si
->cpu
) != CPU_STATE_STOPPED
) {
1347 set_sigp_status(si
, SIGP_STAT_INCORRECT_STATE
);
1351 cpu_synchronize_state(CPU(si
->cpu
));
1353 if (kvm_s390_store_status(si
->cpu
, address
, false)) {
1354 set_sigp_status(si
, SIGP_STAT_INVALID_PARAMETER
);
1357 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1360 static void sigp_restart(void *arg
)
1363 struct kvm_s390_irq irq
= {
1364 .type
= KVM_S390_RESTART
,
1367 switch (s390_cpu_get_state(si
->cpu
)) {
1368 case CPU_STATE_STOPPED
:
1369 /* the restart irq has to be delivered prior to any other pending irq */
1370 cpu_synchronize_state(CPU(si
->cpu
));
1371 do_restart_interrupt(&si
->cpu
->env
);
1372 s390_cpu_set_state(CPU_STATE_OPERATING
, si
->cpu
);
1374 case CPU_STATE_OPERATING
:
1375 kvm_s390_vcpu_interrupt(si
->cpu
, &irq
);
1378 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1381 int kvm_s390_cpu_restart(S390CPU
*cpu
)
1387 run_on_cpu(CPU(cpu
), sigp_restart
, &si
);
1388 DPRINTF("DONE: KVM cpu restart: %p\n", &cpu
->env
);
1392 static void sigp_initial_cpu_reset(void *arg
)
1395 CPUState
*cs
= CPU(si
->cpu
);
1396 S390CPUClass
*scc
= S390_CPU_GET_CLASS(si
->cpu
);
1398 cpu_synchronize_state(cs
);
1399 scc
->initial_cpu_reset(cs
);
1400 cpu_synchronize_post_reset(cs
);
1401 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1404 static void sigp_cpu_reset(void *arg
)
1407 CPUState
*cs
= CPU(si
->cpu
);
1408 S390CPUClass
*scc
= S390_CPU_GET_CLASS(si
->cpu
);
1410 cpu_synchronize_state(cs
);
1412 cpu_synchronize_post_reset(cs
);
1413 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1416 static void sigp_set_prefix(void *arg
)
1419 uint32_t addr
= si
->param
& 0x7fffe000u
;
1421 cpu_synchronize_state(CPU(si
->cpu
));
1423 if (!address_space_access_valid(&address_space_memory
, addr
,
1424 sizeof(struct LowCore
), false)) {
1425 set_sigp_status(si
, SIGP_STAT_INVALID_PARAMETER
);
1429 /* cpu has to be stopped */
1430 if (s390_cpu_get_state(si
->cpu
) != CPU_STATE_STOPPED
) {
1431 set_sigp_status(si
, SIGP_STAT_INCORRECT_STATE
);
1435 si
->cpu
->env
.psa
= addr
;
1436 cpu_synchronize_post_init(CPU(si
->cpu
));
1437 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1440 static int handle_sigp_single_dst(S390CPU
*dst_cpu
, uint8_t order
,
1441 uint64_t param
, uint64_t *status_reg
)
1446 .status_reg
= status_reg
,
1449 /* cpu available? */
1450 if (dst_cpu
== NULL
) {
1451 return SIGP_CC_NOT_OPERATIONAL
;
1454 /* only resets can break pending orders */
1455 if (dst_cpu
->env
.sigp_order
!= 0 &&
1456 order
!= SIGP_CPU_RESET
&&
1457 order
!= SIGP_INITIAL_CPU_RESET
) {
1458 return SIGP_CC_BUSY
;
1463 run_on_cpu(CPU(dst_cpu
), sigp_start
, &si
);
1466 run_on_cpu(CPU(dst_cpu
), sigp_stop
, &si
);
1469 run_on_cpu(CPU(dst_cpu
), sigp_restart
, &si
);
1471 case SIGP_STOP_STORE_STATUS
:
1472 run_on_cpu(CPU(dst_cpu
), sigp_stop_and_store_status
, &si
);
1474 case SIGP_STORE_STATUS_ADDR
:
1475 run_on_cpu(CPU(dst_cpu
), sigp_store_status_at_address
, &si
);
1477 case SIGP_SET_PREFIX
:
1478 run_on_cpu(CPU(dst_cpu
), sigp_set_prefix
, &si
);
1480 case SIGP_INITIAL_CPU_RESET
:
1481 run_on_cpu(CPU(dst_cpu
), sigp_initial_cpu_reset
, &si
);
1483 case SIGP_CPU_RESET
:
1484 run_on_cpu(CPU(dst_cpu
), sigp_cpu_reset
, &si
);
1487 DPRINTF("KVM: unknown SIGP: 0x%x\n", order
);
1488 set_sigp_status(&si
, SIGP_STAT_INVALID_ORDER
);
1494 static int sigp_set_architecture(S390CPU
*cpu
, uint32_t param
,
1495 uint64_t *status_reg
)
1500 /* due to the BQL, we are the only active cpu */
1501 CPU_FOREACH(cur_cs
) {
1502 cur_cpu
= S390_CPU(cur_cs
);
1503 if (cur_cpu
->env
.sigp_order
!= 0) {
1504 return SIGP_CC_BUSY
;
1506 cpu_synchronize_state(cur_cs
);
1507 /* all but the current one have to be stopped */
1508 if (cur_cpu
!= cpu
&&
1509 s390_cpu_get_state(cur_cpu
) != CPU_STATE_STOPPED
) {
1510 *status_reg
&= 0xffffffff00000000ULL
;
1511 *status_reg
|= SIGP_STAT_INCORRECT_STATE
;
1512 return SIGP_CC_STATUS_STORED
;
1516 switch (param
& 0xff) {
1517 case SIGP_MODE_ESA_S390
:
1519 return SIGP_CC_NOT_OPERATIONAL
;
1520 case SIGP_MODE_Z_ARCH_TRANS_ALL_PSW
:
1521 case SIGP_MODE_Z_ARCH_TRANS_CUR_PSW
:
1522 CPU_FOREACH(cur_cs
) {
1523 cur_cpu
= S390_CPU(cur_cs
);
1524 cur_cpu
->env
.pfault_token
= -1UL;
1528 *status_reg
&= 0xffffffff00000000ULL
;
1529 *status_reg
|= SIGP_STAT_INVALID_PARAMETER
;
1530 return SIGP_CC_STATUS_STORED
;
1533 return SIGP_CC_ORDER_CODE_ACCEPTED
;
1536 #define SIGP_ORDER_MASK 0x000000ff
1538 static int handle_sigp(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipa1
)
1540 CPUS390XState
*env
= &cpu
->env
;
1541 const uint8_t r1
= ipa1
>> 4;
1542 const uint8_t r3
= ipa1
& 0x0f;
1545 uint64_t *status_reg
;
1547 S390CPU
*dst_cpu
= NULL
;
1549 cpu_synchronize_state(CPU(cpu
));
1551 /* get order code */
1552 order
= decode_basedisp_rs(env
, run
->s390_sieic
.ipb
) & SIGP_ORDER_MASK
;
1553 status_reg
= &env
->regs
[r1
];
1554 param
= (r1
% 2) ? env
->regs
[r1
] : env
->regs
[r1
+ 1];
1558 ret
= sigp_set_architecture(cpu
, param
, status_reg
);
1561 /* all other sigp orders target a single vcpu */
1562 dst_cpu
= s390_cpu_addr2state(env
->regs
[r3
]);
1563 ret
= handle_sigp_single_dst(dst_cpu
, order
, param
, status_reg
);
1566 trace_kvm_sigp_finished(order
, CPU(cpu
)->cpu_index
,
1567 dst_cpu
? CPU(dst_cpu
)->cpu_index
: -1, ret
);
1577 static int handle_instruction(S390CPU
*cpu
, struct kvm_run
*run
)
1579 unsigned int ipa0
= (run
->s390_sieic
.ipa
& 0xff00);
1580 uint8_t ipa1
= run
->s390_sieic
.ipa
& 0x00ff;
1583 DPRINTF("handle_instruction 0x%x 0x%x\n",
1584 run
->s390_sieic
.ipa
, run
->s390_sieic
.ipb
);
1587 r
= handle_b2(cpu
, run
, ipa1
);
1590 r
= handle_b9(cpu
, run
, ipa1
);
1593 r
= handle_eb(cpu
, run
, run
->s390_sieic
.ipb
& 0xff);
1596 r
= handle_e3(cpu
, run
, run
->s390_sieic
.ipb
& 0xff);
1599 r
= handle_diag(cpu
, run
, run
->s390_sieic
.ipb
);
1602 r
= handle_sigp(cpu
, run
, ipa1
);
1608 enter_pgmcheck(cpu
, 0x0001);
1614 static bool is_special_wait_psw(CPUState
*cs
)
1616 /* signal quiesce */
1617 return cs
->kvm_run
->psw_addr
== 0xfffUL
;
1620 static void guest_panicked(void)
1622 qapi_event_send_guest_panicked(GUEST_PANIC_ACTION_PAUSE
,
1624 vm_stop(RUN_STATE_GUEST_PANICKED
);
1627 static void unmanageable_intercept(S390CPU
*cpu
, const char *str
, int pswoffset
)
1629 CPUState
*cs
= CPU(cpu
);
1631 error_report("Unmanageable %s! CPU%i new PSW: 0x%016lx:%016lx",
1632 str
, cs
->cpu_index
, ldq_phys(cs
->as
, cpu
->env
.psa
+ pswoffset
),
1633 ldq_phys(cs
->as
, cpu
->env
.psa
+ pswoffset
+ 8));
1638 static int handle_intercept(S390CPU
*cpu
)
1640 CPUState
*cs
= CPU(cpu
);
1641 struct kvm_run
*run
= cs
->kvm_run
;
1642 int icpt_code
= run
->s390_sieic
.icptcode
;
1645 DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code
,
1646 (long)cs
->kvm_run
->psw_addr
);
1647 switch (icpt_code
) {
1648 case ICPT_INSTRUCTION
:
1649 r
= handle_instruction(cpu
, run
);
1652 unmanageable_intercept(cpu
, "program interrupt",
1653 offsetof(LowCore
, program_new_psw
));
1657 unmanageable_intercept(cpu
, "external interrupt",
1658 offsetof(LowCore
, external_new_psw
));
1662 /* disabled wait, since enabled wait is handled in kernel */
1663 cpu_synchronize_state(cs
);
1664 if (s390_cpu_halt(cpu
) == 0) {
1665 if (is_special_wait_psw(cs
)) {
1666 qemu_system_shutdown_request();
1674 if (s390_cpu_set_state(CPU_STATE_STOPPED
, cpu
) == 0) {
1675 qemu_system_shutdown_request();
1677 if (cpu
->env
.sigp_order
== SIGP_STOP_STORE_STATUS
) {
1678 kvm_s390_store_status(cpu
, KVM_S390_STORE_STATUS_DEF_ADDR
,
1681 cpu
->env
.sigp_order
= 0;
1684 case ICPT_SOFT_INTERCEPT
:
1685 fprintf(stderr
, "KVM unimplemented icpt SOFT\n");
1689 fprintf(stderr
, "KVM unimplemented icpt IO\n");
1693 fprintf(stderr
, "Unknown intercept code: %d\n", icpt_code
);
1701 static int handle_tsch(S390CPU
*cpu
)
1703 CPUState
*cs
= CPU(cpu
);
1704 struct kvm_run
*run
= cs
->kvm_run
;
1707 cpu_synchronize_state(cs
);
1709 ret
= ioinst_handle_tsch(cpu
, cpu
->env
.regs
[1], run
->s390_tsch
.ipb
);
1713 * If an I/O interrupt had been dequeued, we have to reinject it.
1715 if (run
->s390_tsch
.dequeued
) {
1716 kvm_s390_io_interrupt(run
->s390_tsch
.subchannel_id
,
1717 run
->s390_tsch
.subchannel_nr
,
1718 run
->s390_tsch
.io_int_parm
,
1719 run
->s390_tsch
.io_int_word
);
1726 static int kvm_arch_handle_debug_exit(S390CPU
*cpu
)
1728 CPUState
*cs
= CPU(cpu
);
1729 struct kvm_run
*run
= cs
->kvm_run
;
1732 struct kvm_debug_exit_arch
*arch_info
= &run
->debug
.arch
;
1734 switch (arch_info
->type
) {
1735 case KVM_HW_WP_WRITE
:
1736 if (find_hw_breakpoint(arch_info
->addr
, -1, arch_info
->type
)) {
1737 cs
->watchpoint_hit
= &hw_watchpoint
;
1738 hw_watchpoint
.vaddr
= arch_info
->addr
;
1739 hw_watchpoint
.flags
= BP_MEM_WRITE
;
1744 if (find_hw_breakpoint(arch_info
->addr
, -1, arch_info
->type
)) {
1748 case KVM_SINGLESTEP
:
1749 if (cs
->singlestep_enabled
) {
1760 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
1762 S390CPU
*cpu
= S390_CPU(cs
);
1765 switch (run
->exit_reason
) {
1766 case KVM_EXIT_S390_SIEIC
:
1767 ret
= handle_intercept(cpu
);
1769 case KVM_EXIT_S390_RESET
:
1770 s390_reipl_request();
1772 case KVM_EXIT_S390_TSCH
:
1773 ret
= handle_tsch(cpu
);
1775 case KVM_EXIT_DEBUG
:
1776 ret
= kvm_arch_handle_debug_exit(cpu
);
1779 fprintf(stderr
, "Unknown KVM exit: %d\n", run
->exit_reason
);
1784 ret
= EXCP_INTERRUPT
;
1789 bool kvm_arch_stop_on_emulation_error(CPUState
*cpu
)
1794 int kvm_arch_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
1799 int kvm_arch_on_sigbus(int code
, void *addr
)
1804 void kvm_s390_io_interrupt(uint16_t subchannel_id
,
1805 uint16_t subchannel_nr
, uint32_t io_int_parm
,
1806 uint32_t io_int_word
)
1808 struct kvm_s390_irq irq
= {
1809 .u
.io
.subchannel_id
= subchannel_id
,
1810 .u
.io
.subchannel_nr
= subchannel_nr
,
1811 .u
.io
.io_int_parm
= io_int_parm
,
1812 .u
.io
.io_int_word
= io_int_word
,
1815 if (io_int_word
& IO_INT_WORD_AI
) {
1816 irq
.type
= KVM_S390_INT_IO(1, 0, 0, 0);
1818 irq
.type
= ((subchannel_id
& 0xff00) << 24) |
1819 ((subchannel_id
& 0x00060) << 22) | (subchannel_nr
<< 16);
1821 kvm_s390_floating_interrupt(&irq
);
1824 void kvm_s390_crw_mchk(void)
1826 struct kvm_s390_irq irq
= {
1827 .type
= KVM_S390_MCHK
,
1828 .u
.mchk
.cr14
= 1 << 28,
1829 .u
.mchk
.mcic
= 0x00400f1d40330000ULL
,
1831 kvm_s390_floating_interrupt(&irq
);
1834 void kvm_s390_enable_css_support(S390CPU
*cpu
)
1838 /* Activate host kernel channel subsystem support. */
1839 r
= kvm_vcpu_enable_cap(CPU(cpu
), KVM_CAP_S390_CSS_SUPPORT
, 0);
1843 void kvm_arch_init_irq_routing(KVMState
*s
)
1846 * Note that while irqchip capabilities generally imply that cpustates
1847 * are handled in-kernel, it is not true for s390 (yet); therefore, we
1848 * have to override the common code kvm_halt_in_kernel_allowed setting.
1850 if (kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
)) {
1851 kvm_gsi_routing_allowed
= true;
1852 kvm_halt_in_kernel_allowed
= false;
1856 int kvm_s390_assign_subch_ioeventfd(EventNotifier
*notifier
, uint32_t sch
,
1857 int vq
, bool assign
)
1859 struct kvm_ioeventfd kick
= {
1860 .flags
= KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY
|
1861 KVM_IOEVENTFD_FLAG_DATAMATCH
,
1862 .fd
= event_notifier_get_fd(notifier
),
1867 if (!kvm_check_extension(kvm_state
, KVM_CAP_IOEVENTFD
)) {
1871 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
1873 return kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
1876 int kvm_s390_get_memslot_count(KVMState
*s
)
1878 return kvm_check_extension(s
, KVM_CAP_NR_MEMSLOTS
);
1881 int kvm_s390_set_cpu_state(S390CPU
*cpu
, uint8_t cpu_state
)
1883 struct kvm_mp_state mp_state
= {};
1886 /* the kvm part might not have been initialized yet */
1887 if (CPU(cpu
)->kvm_state
== NULL
) {
1891 switch (cpu_state
) {
1892 case CPU_STATE_STOPPED
:
1893 mp_state
.mp_state
= KVM_MP_STATE_STOPPED
;
1895 case CPU_STATE_CHECK_STOP
:
1896 mp_state
.mp_state
= KVM_MP_STATE_CHECK_STOP
;
1898 case CPU_STATE_OPERATING
:
1899 mp_state
.mp_state
= KVM_MP_STATE_OPERATING
;
1901 case CPU_STATE_LOAD
:
1902 mp_state
.mp_state
= KVM_MP_STATE_LOAD
;
1905 error_report("Requested CPU state is not a valid S390 CPU state: %u",
1910 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MP_STATE
, &mp_state
);
1912 trace_kvm_failed_cpu_state_set(CPU(cpu
)->cpu_index
, cpu_state
,
1919 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
1920 uint64_t address
, uint32_t data
)
1922 S390PCIBusDevice
*pbdev
;
1923 uint32_t fid
= data
>> ZPCI_MSI_VEC_BITS
;
1924 uint32_t vec
= data
& ZPCI_MSI_VEC_MASK
;
1926 pbdev
= s390_pci_find_dev_by_fid(fid
);
1928 DPRINTF("add_msi_route no dev\n");
1932 pbdev
->routes
.adapter
.ind_offset
= vec
;
1934 route
->type
= KVM_IRQ_ROUTING_S390_ADAPTER
;
1936 route
->u
.adapter
.summary_addr
= pbdev
->routes
.adapter
.summary_addr
;
1937 route
->u
.adapter
.ind_addr
= pbdev
->routes
.adapter
.ind_addr
;
1938 route
->u
.adapter
.summary_offset
= pbdev
->routes
.adapter
.summary_offset
;
1939 route
->u
.adapter
.ind_offset
= pbdev
->routes
.adapter
.ind_offset
;
1940 route
->u
.adapter
.adapter_id
= pbdev
->routes
.adapter
.adapter_id
;