hw/i386: add device tree support
[qemu/cris-port.git] / hw / i386 / pc.c
blob719884ff88c58afc53b402f1cddd44486db98cf0
1 /*
2 * QEMU PC System Emulator
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "hw/i386/pc.h"
27 #include "hw/char/serial.h"
28 #include "hw/i386/apic.h"
29 #include "hw/i386/topology.h"
30 #include "sysemu/cpus.h"
31 #include "hw/block/fdc.h"
32 #include "hw/ide.h"
33 #include "hw/pci/pci.h"
34 #include "hw/pci/pci_bus.h"
35 #include "hw/nvram/fw_cfg.h"
36 #include "hw/timer/hpet.h"
37 #include "hw/smbios/smbios.h"
38 #include "hw/loader.h"
39 #include "elf.h"
40 #include "multiboot.h"
41 #include "hw/timer/mc146818rtc.h"
42 #include "hw/timer/i8254.h"
43 #include "hw/audio/pcspk.h"
44 #include "hw/pci/msi.h"
45 #include "hw/sysbus.h"
46 #include "sysemu/sysemu.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/kvm.h"
49 #include "sysemu/qtest.h"
50 #include "kvm_i386.h"
51 #include "hw/xen/xen.h"
52 #include "sysemu/block-backend.h"
53 #include "hw/block/block.h"
54 #include "ui/qemu-spice.h"
55 #include "exec/memory.h"
56 #include "exec/address-spaces.h"
57 #include "sysemu/arch_init.h"
58 #include "qemu/bitmap.h"
59 #include "qemu/config-file.h"
60 #include "qemu/error-report.h"
61 #include "hw/acpi/acpi.h"
62 #include "hw/acpi/cpu_hotplug.h"
63 #include "hw/boards.h"
64 #include "hw/pci/pci_host.h"
65 #include "acpi-build.h"
66 #include "hw/mem/pc-dimm.h"
67 #include "qapi/visitor.h"
68 #include "qapi-visit.h"
69 #include "qom/cpu.h"
70 #include "hw/nmi.h"
72 /* debug PC/ISA interrupts */
73 //#define DEBUG_IRQ
75 #ifdef DEBUG_IRQ
76 #define DPRINTF(fmt, ...) \
77 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
78 #else
79 #define DPRINTF(fmt, ...)
80 #endif
82 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
83 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
84 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
85 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
86 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
88 #define E820_NR_ENTRIES 16
90 struct e820_entry {
91 uint64_t address;
92 uint64_t length;
93 uint32_t type;
94 } QEMU_PACKED __attribute((__aligned__(4)));
96 struct e820_table {
97 uint32_t count;
98 struct e820_entry entry[E820_NR_ENTRIES];
99 } QEMU_PACKED __attribute((__aligned__(4)));
101 static struct e820_table e820_reserve;
102 static struct e820_entry *e820_table;
103 static unsigned e820_entries;
104 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
106 void gsi_handler(void *opaque, int n, int level)
108 GSIState *s = opaque;
110 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
111 if (n < ISA_NUM_IRQS) {
112 qemu_set_irq(s->i8259_irq[n], level);
114 qemu_set_irq(s->ioapic_irq[n], level);
117 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
118 unsigned size)
122 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
124 return 0xffffffffffffffffULL;
127 /* MSDOS compatibility mode FPU exception support */
128 static qemu_irq ferr_irq;
130 void pc_register_ferr_irq(qemu_irq irq)
132 ferr_irq = irq;
135 /* XXX: add IGNNE support */
136 void cpu_set_ferr(CPUX86State *s)
138 qemu_irq_raise(ferr_irq);
141 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
142 unsigned size)
144 qemu_irq_lower(ferr_irq);
147 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
149 return 0xffffffffffffffffULL;
152 /* TSC handling */
153 uint64_t cpu_get_tsc(CPUX86State *env)
155 return cpu_get_ticks();
158 /* IRQ handling */
159 int cpu_get_pic_interrupt(CPUX86State *env)
161 X86CPU *cpu = x86_env_get_cpu(env);
162 int intno;
164 intno = apic_get_interrupt(cpu->apic_state);
165 if (intno >= 0) {
166 return intno;
168 /* read the irq from the PIC */
169 if (!apic_accept_pic_intr(cpu->apic_state)) {
170 return -1;
173 intno = pic_read_irq(isa_pic);
174 return intno;
177 static void pic_irq_request(void *opaque, int irq, int level)
179 CPUState *cs = first_cpu;
180 X86CPU *cpu = X86_CPU(cs);
182 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
183 if (cpu->apic_state) {
184 CPU_FOREACH(cs) {
185 cpu = X86_CPU(cs);
186 if (apic_accept_pic_intr(cpu->apic_state)) {
187 apic_deliver_pic_intr(cpu->apic_state, level);
190 } else {
191 if (level) {
192 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
193 } else {
194 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
199 /* PC cmos mappings */
201 #define REG_EQUIPMENT_BYTE 0x14
203 int cmos_get_fd_drive_type(FloppyDriveType fd0)
205 int val;
207 switch (fd0) {
208 case FLOPPY_DRIVE_TYPE_144:
209 /* 1.44 Mb 3"5 drive */
210 val = 4;
211 break;
212 case FLOPPY_DRIVE_TYPE_288:
213 /* 2.88 Mb 3"5 drive */
214 val = 5;
215 break;
216 case FLOPPY_DRIVE_TYPE_120:
217 /* 1.2 Mb 5"5 drive */
218 val = 2;
219 break;
220 case FLOPPY_DRIVE_TYPE_NONE:
221 default:
222 val = 0;
223 break;
225 return val;
228 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
229 int16_t cylinders, int8_t heads, int8_t sectors)
231 rtc_set_memory(s, type_ofs, 47);
232 rtc_set_memory(s, info_ofs, cylinders);
233 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
234 rtc_set_memory(s, info_ofs + 2, heads);
235 rtc_set_memory(s, info_ofs + 3, 0xff);
236 rtc_set_memory(s, info_ofs + 4, 0xff);
237 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
238 rtc_set_memory(s, info_ofs + 6, cylinders);
239 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
240 rtc_set_memory(s, info_ofs + 8, sectors);
243 /* convert boot_device letter to something recognizable by the bios */
244 static int boot_device2nibble(char boot_device)
246 switch(boot_device) {
247 case 'a':
248 case 'b':
249 return 0x01; /* floppy boot */
250 case 'c':
251 return 0x02; /* hard drive boot */
252 case 'd':
253 return 0x03; /* CD-ROM boot */
254 case 'n':
255 return 0x04; /* Network boot */
257 return 0;
260 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
262 #define PC_MAX_BOOT_DEVICES 3
263 int nbds, bds[3] = { 0, };
264 int i;
266 nbds = strlen(boot_device);
267 if (nbds > PC_MAX_BOOT_DEVICES) {
268 error_setg(errp, "Too many boot devices for PC");
269 return;
271 for (i = 0; i < nbds; i++) {
272 bds[i] = boot_device2nibble(boot_device[i]);
273 if (bds[i] == 0) {
274 error_setg(errp, "Invalid boot device for PC: '%c'",
275 boot_device[i]);
276 return;
279 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
280 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
283 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
285 set_boot_dev(opaque, boot_device, errp);
288 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
290 int val, nb, i;
291 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
292 FLOPPY_DRIVE_TYPE_NONE };
294 /* floppy type */
295 if (floppy) {
296 for (i = 0; i < 2; i++) {
297 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
300 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
301 cmos_get_fd_drive_type(fd_type[1]);
302 rtc_set_memory(rtc_state, 0x10, val);
304 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
305 nb = 0;
306 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
307 nb++;
309 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
310 nb++;
312 switch (nb) {
313 case 0:
314 break;
315 case 1:
316 val |= 0x01; /* 1 drive, ready for boot */
317 break;
318 case 2:
319 val |= 0x41; /* 2 drives, ready for boot */
320 break;
322 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
325 typedef struct pc_cmos_init_late_arg {
326 ISADevice *rtc_state;
327 BusState *idebus[2];
328 } pc_cmos_init_late_arg;
330 typedef struct check_fdc_state {
331 ISADevice *floppy;
332 bool multiple;
333 } CheckFdcState;
335 static int check_fdc(Object *obj, void *opaque)
337 CheckFdcState *state = opaque;
338 Object *fdc;
339 uint32_t iobase;
340 Error *local_err = NULL;
342 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
343 if (!fdc) {
344 return 0;
347 iobase = object_property_get_int(obj, "iobase", &local_err);
348 if (local_err || iobase != 0x3f0) {
349 error_free(local_err);
350 return 0;
353 if (state->floppy) {
354 state->multiple = true;
355 } else {
356 state->floppy = ISA_DEVICE(obj);
358 return 0;
361 static const char * const fdc_container_path[] = {
362 "/unattached", "/peripheral", "/peripheral-anon"
366 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
367 * and ACPI objects.
369 ISADevice *pc_find_fdc0(void)
371 int i;
372 Object *container;
373 CheckFdcState state = { 0 };
375 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
376 container = container_get(qdev_get_machine(), fdc_container_path[i]);
377 object_child_foreach(container, check_fdc, &state);
380 if (state.multiple) {
381 error_report("warning: multiple floppy disk controllers with "
382 "iobase=0x3f0 have been found");
383 error_printf("the one being picked for CMOS setup might not reflect "
384 "your intent");
387 return state.floppy;
390 static void pc_cmos_init_late(void *opaque)
392 pc_cmos_init_late_arg *arg = opaque;
393 ISADevice *s = arg->rtc_state;
394 int16_t cylinders;
395 int8_t heads, sectors;
396 int val;
397 int i, trans;
399 val = 0;
400 if (ide_get_geometry(arg->idebus[0], 0,
401 &cylinders, &heads, &sectors) >= 0) {
402 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
403 val |= 0xf0;
405 if (ide_get_geometry(arg->idebus[0], 1,
406 &cylinders, &heads, &sectors) >= 0) {
407 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
408 val |= 0x0f;
410 rtc_set_memory(s, 0x12, val);
412 val = 0;
413 for (i = 0; i < 4; i++) {
414 /* NOTE: ide_get_geometry() returns the physical
415 geometry. It is always such that: 1 <= sects <= 63, 1
416 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
417 geometry can be different if a translation is done. */
418 if (ide_get_geometry(arg->idebus[i / 2], i % 2,
419 &cylinders, &heads, &sectors) >= 0) {
420 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
421 assert((trans & ~3) == 0);
422 val |= trans << (i * 2);
425 rtc_set_memory(s, 0x39, val);
427 pc_cmos_init_floppy(s, pc_find_fdc0());
429 qemu_unregister_reset(pc_cmos_init_late, opaque);
432 void pc_cmos_init(PCMachineState *pcms,
433 BusState *idebus0, BusState *idebus1,
434 ISADevice *s)
436 int val;
437 static pc_cmos_init_late_arg arg;
439 /* various important CMOS locations needed by PC/Bochs bios */
441 /* memory size */
442 /* base memory (first MiB) */
443 val = MIN(pcms->below_4g_mem_size / 1024, 640);
444 rtc_set_memory(s, 0x15, val);
445 rtc_set_memory(s, 0x16, val >> 8);
446 /* extended memory (next 64MiB) */
447 if (pcms->below_4g_mem_size > 1024 * 1024) {
448 val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024;
449 } else {
450 val = 0;
452 if (val > 65535)
453 val = 65535;
454 rtc_set_memory(s, 0x17, val);
455 rtc_set_memory(s, 0x18, val >> 8);
456 rtc_set_memory(s, 0x30, val);
457 rtc_set_memory(s, 0x31, val >> 8);
458 /* memory between 16MiB and 4GiB */
459 if (pcms->below_4g_mem_size > 16 * 1024 * 1024) {
460 val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536;
461 } else {
462 val = 0;
464 if (val > 65535)
465 val = 65535;
466 rtc_set_memory(s, 0x34, val);
467 rtc_set_memory(s, 0x35, val >> 8);
468 /* memory above 4GiB */
469 val = pcms->above_4g_mem_size / 65536;
470 rtc_set_memory(s, 0x5b, val);
471 rtc_set_memory(s, 0x5c, val >> 8);
472 rtc_set_memory(s, 0x5d, val >> 16);
474 /* set the number of CPU */
475 rtc_set_memory(s, 0x5f, smp_cpus - 1);
477 object_property_add_link(OBJECT(pcms), "rtc_state",
478 TYPE_ISA_DEVICE,
479 (Object **)&pcms->rtc,
480 object_property_allow_set_link,
481 OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
482 object_property_set_link(OBJECT(pcms), OBJECT(s),
483 "rtc_state", &error_abort);
485 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
487 val = 0;
488 val |= 0x02; /* FPU is there */
489 val |= 0x04; /* PS/2 mouse installed */
490 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
492 /* hard drives and FDC */
493 arg.rtc_state = s;
494 arg.idebus[0] = idebus0;
495 arg.idebus[1] = idebus1;
496 qemu_register_reset(pc_cmos_init_late, &arg);
499 #define TYPE_PORT92 "port92"
500 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
502 /* port 92 stuff: could be split off */
503 typedef struct Port92State {
504 ISADevice parent_obj;
506 MemoryRegion io;
507 uint8_t outport;
508 qemu_irq a20_out;
509 } Port92State;
511 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
512 unsigned size)
514 Port92State *s = opaque;
515 int oldval = s->outport;
517 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
518 s->outport = val;
519 qemu_set_irq(s->a20_out, (val >> 1) & 1);
520 if ((val & 1) && !(oldval & 1)) {
521 qemu_system_reset_request();
525 static uint64_t port92_read(void *opaque, hwaddr addr,
526 unsigned size)
528 Port92State *s = opaque;
529 uint32_t ret;
531 ret = s->outport;
532 DPRINTF("port92: read 0x%02x\n", ret);
533 return ret;
536 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
538 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, *a20_out);
541 static const VMStateDescription vmstate_port92_isa = {
542 .name = "port92",
543 .version_id = 1,
544 .minimum_version_id = 1,
545 .fields = (VMStateField[]) {
546 VMSTATE_UINT8(outport, Port92State),
547 VMSTATE_END_OF_LIST()
551 static void port92_reset(DeviceState *d)
553 Port92State *s = PORT92(d);
555 s->outport &= ~1;
558 static const MemoryRegionOps port92_ops = {
559 .read = port92_read,
560 .write = port92_write,
561 .impl = {
562 .min_access_size = 1,
563 .max_access_size = 1,
565 .endianness = DEVICE_LITTLE_ENDIAN,
568 static void port92_initfn(Object *obj)
570 Port92State *s = PORT92(obj);
572 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
574 s->outport = 0;
576 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
579 static void port92_realizefn(DeviceState *dev, Error **errp)
581 ISADevice *isadev = ISA_DEVICE(dev);
582 Port92State *s = PORT92(dev);
584 isa_register_ioport(isadev, &s->io, 0x92);
587 static void port92_class_initfn(ObjectClass *klass, void *data)
589 DeviceClass *dc = DEVICE_CLASS(klass);
591 dc->realize = port92_realizefn;
592 dc->reset = port92_reset;
593 dc->vmsd = &vmstate_port92_isa;
595 * Reason: unlike ordinary ISA devices, this one needs additional
596 * wiring: its A20 output line needs to be wired up by
597 * port92_init().
599 dc->cannot_instantiate_with_device_add_yet = true;
602 static const TypeInfo port92_info = {
603 .name = TYPE_PORT92,
604 .parent = TYPE_ISA_DEVICE,
605 .instance_size = sizeof(Port92State),
606 .instance_init = port92_initfn,
607 .class_init = port92_class_initfn,
610 static void port92_register_types(void)
612 type_register_static(&port92_info);
615 type_init(port92_register_types)
617 static void handle_a20_line_change(void *opaque, int irq, int level)
619 X86CPU *cpu = opaque;
621 /* XXX: send to all CPUs ? */
622 /* XXX: add logic to handle multiple A20 line sources */
623 x86_cpu_set_a20(cpu, level);
626 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
628 int index = le32_to_cpu(e820_reserve.count);
629 struct e820_entry *entry;
631 if (type != E820_RAM) {
632 /* old FW_CFG_E820_TABLE entry -- reservations only */
633 if (index >= E820_NR_ENTRIES) {
634 return -EBUSY;
636 entry = &e820_reserve.entry[index++];
638 entry->address = cpu_to_le64(address);
639 entry->length = cpu_to_le64(length);
640 entry->type = cpu_to_le32(type);
642 e820_reserve.count = cpu_to_le32(index);
645 /* new "etc/e820" file -- include ram too */
646 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
647 e820_table[e820_entries].address = cpu_to_le64(address);
648 e820_table[e820_entries].length = cpu_to_le64(length);
649 e820_table[e820_entries].type = cpu_to_le32(type);
650 e820_entries++;
652 return e820_entries;
655 int e820_get_num_entries(void)
657 return e820_entries;
660 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
662 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
663 *address = le64_to_cpu(e820_table[idx].address);
664 *length = le64_to_cpu(e820_table[idx].length);
665 return true;
667 return false;
670 /* Enables contiguous-apic-ID mode, for compatibility */
671 static bool compat_apic_id_mode;
673 void enable_compat_apic_id_mode(void)
675 compat_apic_id_mode = true;
678 /* Calculates initial APIC ID for a specific CPU index
680 * Currently we need to be able to calculate the APIC ID from the CPU index
681 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
682 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
683 * all CPUs up to max_cpus.
685 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
687 uint32_t correct_id;
688 static bool warned;
690 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
691 if (compat_apic_id_mode) {
692 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
693 error_report("APIC IDs set in compatibility mode, "
694 "CPU topology won't match the configuration");
695 warned = true;
697 return cpu_index;
698 } else {
699 return correct_id;
703 static void pc_build_smbios(FWCfgState *fw_cfg)
705 uint8_t *smbios_tables, *smbios_anchor;
706 size_t smbios_tables_len, smbios_anchor_len;
707 struct smbios_phys_mem_area *mem_array;
708 unsigned i, array_count;
710 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
711 if (smbios_tables) {
712 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
713 smbios_tables, smbios_tables_len);
716 /* build the array of physical mem area from e820 table */
717 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
718 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
719 uint64_t addr, len;
721 if (e820_get_entry(i, E820_RAM, &addr, &len)) {
722 mem_array[array_count].address = addr;
723 mem_array[array_count].length = len;
724 array_count++;
727 smbios_get_tables(mem_array, array_count,
728 &smbios_tables, &smbios_tables_len,
729 &smbios_anchor, &smbios_anchor_len);
730 g_free(mem_array);
732 if (smbios_anchor) {
733 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
734 smbios_tables, smbios_tables_len);
735 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
736 smbios_anchor, smbios_anchor_len);
740 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
742 FWCfgState *fw_cfg;
743 uint64_t *numa_fw_cfg;
744 int i, j;
746 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
748 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
750 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
751 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
752 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
753 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
754 * may see".
756 * So, this means we must not use max_cpus, here, but the maximum possible
757 * APIC ID value, plus one.
759 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
760 * the APIC ID, not the "CPU index"
762 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
763 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
764 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
765 acpi_tables, acpi_tables_len);
766 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
768 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
769 &e820_reserve, sizeof(e820_reserve));
770 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
771 sizeof(struct e820_entry) * e820_entries);
773 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
774 /* allocate memory for the NUMA channel: one (64bit) word for the number
775 * of nodes, one word for each VCPU->node and one word for each node to
776 * hold the amount of memory.
778 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
779 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
780 for (i = 0; i < max_cpus; i++) {
781 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
782 assert(apic_id < pcms->apic_id_limit);
783 for (j = 0; j < nb_numa_nodes; j++) {
784 if (test_bit(i, numa_info[j].node_cpu)) {
785 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
786 break;
790 for (i = 0; i < nb_numa_nodes; i++) {
791 numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
792 cpu_to_le64(numa_info[i].node_mem);
794 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
795 (1 + pcms->apic_id_limit + nb_numa_nodes) *
796 sizeof(*numa_fw_cfg));
798 return fw_cfg;
801 static long get_file_size(FILE *f)
803 long where, size;
805 /* XXX: on Unix systems, using fstat() probably makes more sense */
807 where = ftell(f);
808 fseek(f, 0, SEEK_END);
809 size = ftell(f);
810 fseek(f, where, SEEK_SET);
812 return size;
815 /* setup_data types */
816 #define SETUP_NONE 0
817 #define SETUP_E820_EXT 1
818 #define SETUP_DTB 2
819 #define SETUP_PCI 3
820 #define SETUP_EFI 4
822 struct setup_data {
823 uint64_t next;
824 uint32_t type;
825 uint32_t len;
826 uint8_t data[0];
827 } __attribute__((packed));
829 static void load_linux(PCMachineState *pcms,
830 FWCfgState *fw_cfg)
832 uint16_t protocol;
833 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
834 int dtb_size, setup_data_offset;
835 uint32_t initrd_max;
836 uint8_t header[8192], *setup, *kernel, *initrd_data;
837 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
838 FILE *f;
839 char *vmode;
840 MachineState *machine = MACHINE(pcms);
841 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
842 struct setup_data *setup_data;
843 const char *kernel_filename = machine->kernel_filename;
844 const char *initrd_filename = machine->initrd_filename;
845 const char *dtb_filename = machine->dtb;
846 const char *kernel_cmdline = machine->kernel_cmdline;
848 /* Align to 16 bytes as a paranoia measure */
849 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
851 /* load the kernel header */
852 f = fopen(kernel_filename, "rb");
853 if (!f || !(kernel_size = get_file_size(f)) ||
854 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
855 MIN(ARRAY_SIZE(header), kernel_size)) {
856 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
857 kernel_filename, strerror(errno));
858 exit(1);
861 /* kernel protocol version */
862 #if 0
863 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
864 #endif
865 if (ldl_p(header+0x202) == 0x53726448) {
866 protocol = lduw_p(header+0x206);
867 } else {
868 /* This looks like a multiboot kernel. If it is, let's stop
869 treating it like a Linux kernel. */
870 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
871 kernel_cmdline, kernel_size, header)) {
872 return;
874 protocol = 0;
877 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
878 /* Low kernel */
879 real_addr = 0x90000;
880 cmdline_addr = 0x9a000 - cmdline_size;
881 prot_addr = 0x10000;
882 } else if (protocol < 0x202) {
883 /* High but ancient kernel */
884 real_addr = 0x90000;
885 cmdline_addr = 0x9a000 - cmdline_size;
886 prot_addr = 0x100000;
887 } else {
888 /* High and recent kernel */
889 real_addr = 0x10000;
890 cmdline_addr = 0x20000;
891 prot_addr = 0x100000;
894 #if 0
895 fprintf(stderr,
896 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
897 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
898 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
899 real_addr,
900 cmdline_addr,
901 prot_addr);
902 #endif
904 /* highest address for loading the initrd */
905 if (protocol >= 0x203) {
906 initrd_max = ldl_p(header+0x22c);
907 } else {
908 initrd_max = 0x37ffffff;
911 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
912 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
915 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
916 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
917 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
919 if (protocol >= 0x202) {
920 stl_p(header+0x228, cmdline_addr);
921 } else {
922 stw_p(header+0x20, 0xA33F);
923 stw_p(header+0x22, cmdline_addr-real_addr);
926 /* handle vga= parameter */
927 vmode = strstr(kernel_cmdline, "vga=");
928 if (vmode) {
929 unsigned int video_mode;
930 /* skip "vga=" */
931 vmode += 4;
932 if (!strncmp(vmode, "normal", 6)) {
933 video_mode = 0xffff;
934 } else if (!strncmp(vmode, "ext", 3)) {
935 video_mode = 0xfffe;
936 } else if (!strncmp(vmode, "ask", 3)) {
937 video_mode = 0xfffd;
938 } else {
939 video_mode = strtol(vmode, NULL, 0);
941 stw_p(header+0x1fa, video_mode);
944 /* loader type */
945 /* High nybble = B reserved for QEMU; low nybble is revision number.
946 If this code is substantially changed, you may want to consider
947 incrementing the revision. */
948 if (protocol >= 0x200) {
949 header[0x210] = 0xB0;
951 /* heap */
952 if (protocol >= 0x201) {
953 header[0x211] |= 0x80; /* CAN_USE_HEAP */
954 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
957 /* load initrd */
958 if (initrd_filename) {
959 if (protocol < 0x200) {
960 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
961 exit(1);
964 initrd_size = get_image_size(initrd_filename);
965 if (initrd_size < 0) {
966 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
967 initrd_filename, strerror(errno));
968 exit(1);
971 initrd_addr = (initrd_max-initrd_size) & ~4095;
973 initrd_data = g_malloc(initrd_size);
974 load_image(initrd_filename, initrd_data);
976 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
977 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
978 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
980 stl_p(header+0x218, initrd_addr);
981 stl_p(header+0x21c, initrd_size);
984 /* load kernel and setup */
985 setup_size = header[0x1f1];
986 if (setup_size == 0) {
987 setup_size = 4;
989 setup_size = (setup_size+1)*512;
990 if (setup_size > kernel_size) {
991 fprintf(stderr, "qemu: invalid kernel header\n");
992 exit(1);
994 kernel_size -= setup_size;
996 setup = g_malloc(setup_size);
997 kernel = g_malloc(kernel_size);
998 fseek(f, 0, SEEK_SET);
999 if (fread(setup, 1, setup_size, f) != setup_size) {
1000 fprintf(stderr, "fread() failed\n");
1001 exit(1);
1003 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1004 fprintf(stderr, "fread() failed\n");
1005 exit(1);
1007 fclose(f);
1009 /* append dtb to kernel */
1010 if (dtb_filename) {
1011 if (protocol < 0x209) {
1012 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1013 exit(1);
1016 dtb_size = get_image_size(dtb_filename);
1017 if (dtb_size <= 0) {
1018 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1019 dtb_filename, strerror(errno));
1020 exit(1);
1023 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1024 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1025 kernel = g_realloc(kernel, kernel_size);
1027 stq_p(header+0x250, prot_addr + setup_data_offset);
1029 setup_data = (struct setup_data *)(kernel + setup_data_offset);
1030 setup_data->next = 0;
1031 setup_data->type = cpu_to_le32(SETUP_DTB);
1032 setup_data->len = cpu_to_le32(dtb_size);
1034 load_image_size(dtb_filename, setup_data->data, dtb_size);
1037 memcpy(setup, header, MIN(sizeof(header), setup_size));
1039 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1040 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1041 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1043 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1044 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1045 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1047 if (fw_cfg_dma_enabled(fw_cfg)) {
1048 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1049 option_rom[nb_option_roms].bootindex = 0;
1050 } else {
1051 option_rom[nb_option_roms].name = "linuxboot.bin";
1052 option_rom[nb_option_roms].bootindex = 0;
1054 nb_option_roms++;
1057 #define NE2000_NB_MAX 6
1059 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1060 0x280, 0x380 };
1061 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1063 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1065 static int nb_ne2k = 0;
1067 if (nb_ne2k == NE2000_NB_MAX)
1068 return;
1069 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1070 ne2000_irq[nb_ne2k], nd);
1071 nb_ne2k++;
1074 DeviceState *cpu_get_current_apic(void)
1076 if (current_cpu) {
1077 X86CPU *cpu = X86_CPU(current_cpu);
1078 return cpu->apic_state;
1079 } else {
1080 return NULL;
1084 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1086 X86CPU *cpu = opaque;
1088 if (level) {
1089 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1093 static X86CPU *pc_new_cpu(const char *typename, int64_t apic_id,
1094 Error **errp)
1096 X86CPU *cpu = NULL;
1097 Error *local_err = NULL;
1099 cpu = X86_CPU(object_new(typename));
1101 object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
1102 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
1104 if (local_err) {
1105 error_propagate(errp, local_err);
1106 object_unref(OBJECT(cpu));
1107 cpu = NULL;
1109 return cpu;
1112 void pc_hot_add_cpu(const int64_t id, Error **errp)
1114 X86CPU *cpu;
1115 ObjectClass *oc;
1116 PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1117 int64_t apic_id = x86_cpu_apic_id_from_index(id);
1118 Error *local_err = NULL;
1120 if (id < 0) {
1121 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1122 return;
1125 if (cpu_exists(apic_id)) {
1126 error_setg(errp, "Unable to add CPU: %" PRIi64
1127 ", it already exists", id);
1128 return;
1131 if (id >= max_cpus) {
1132 error_setg(errp, "Unable to add CPU: %" PRIi64
1133 ", max allowed: %d", id, max_cpus - 1);
1134 return;
1137 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1138 error_setg(errp, "Unable to add CPU: %" PRIi64
1139 ", resulting APIC ID (%" PRIi64 ") is too large",
1140 id, apic_id);
1141 return;
1144 assert(pcms->possible_cpus->cpus[0].cpu); /* BSP is always present */
1145 oc = OBJECT_CLASS(CPU_GET_CLASS(pcms->possible_cpus->cpus[0].cpu));
1146 cpu = pc_new_cpu(object_class_get_name(oc), apic_id, &local_err);
1147 if (local_err) {
1148 error_propagate(errp, local_err);
1149 return;
1151 object_unref(OBJECT(cpu));
1154 void pc_cpus_init(PCMachineState *pcms)
1156 int i;
1157 CPUClass *cc;
1158 ObjectClass *oc;
1159 const char *typename;
1160 gchar **model_pieces;
1161 X86CPU *cpu = NULL;
1162 MachineState *machine = MACHINE(pcms);
1164 /* init CPUs */
1165 if (machine->cpu_model == NULL) {
1166 #ifdef TARGET_X86_64
1167 machine->cpu_model = "qemu64";
1168 #else
1169 machine->cpu_model = "qemu32";
1170 #endif
1173 model_pieces = g_strsplit(machine->cpu_model, ",", 2);
1174 if (!model_pieces[0]) {
1175 error_report("Invalid/empty CPU model name");
1176 exit(1);
1179 oc = cpu_class_by_name(TYPE_X86_CPU, model_pieces[0]);
1180 if (oc == NULL) {
1181 error_report("Unable to find CPU definition: %s", model_pieces[0]);
1182 exit(1);
1184 typename = object_class_get_name(oc);
1185 cc = CPU_CLASS(oc);
1186 cc->parse_features(typename, model_pieces[1], &error_fatal);
1187 g_strfreev(model_pieces);
1189 /* Calculates the limit to CPU APIC ID values
1191 * Limit for the APIC ID value, so that all
1192 * CPU APIC IDs are < pcms->apic_id_limit.
1194 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1196 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1197 if (pcms->apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1198 error_report("max_cpus is too large. APIC ID of last CPU is %u",
1199 pcms->apic_id_limit - 1);
1200 exit(1);
1203 pcms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1204 sizeof(CPUArchId) * max_cpus);
1205 for (i = 0; i < max_cpus; i++) {
1206 pcms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
1207 pcms->possible_cpus->len++;
1208 if (i < smp_cpus) {
1209 cpu = pc_new_cpu(typename, x86_cpu_apic_id_from_index(i),
1210 &error_fatal);
1211 pcms->possible_cpus->cpus[i].cpu = CPU(cpu);
1212 object_unref(OBJECT(cpu));
1216 /* tell smbios about cpuid version and features */
1217 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1220 static void pc_build_feature_control_file(PCMachineState *pcms)
1222 X86CPU *cpu = X86_CPU(pcms->possible_cpus->cpus[0].cpu);
1223 CPUX86State *env = &cpu->env;
1224 uint32_t unused, ecx, edx;
1225 uint64_t feature_control_bits = 0;
1226 uint64_t *val;
1228 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1229 if (ecx & CPUID_EXT_VMX) {
1230 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1233 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1234 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1235 (env->mcg_cap & MCG_LMCE_P)) {
1236 feature_control_bits |= FEATURE_CONTROL_LMCE;
1239 if (!feature_control_bits) {
1240 return;
1243 val = g_malloc(sizeof(*val));
1244 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1245 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1248 static
1249 void pc_machine_done(Notifier *notifier, void *data)
1251 PCMachineState *pcms = container_of(notifier,
1252 PCMachineState, machine_done);
1253 PCIBus *bus = pcms->bus;
1255 if (bus) {
1256 int extra_hosts = 0;
1258 QLIST_FOREACH(bus, &bus->child, sibling) {
1259 /* look for expander root buses */
1260 if (pci_bus_is_root(bus)) {
1261 extra_hosts++;
1264 if (extra_hosts && pcms->fw_cfg) {
1265 uint64_t *val = g_malloc(sizeof(*val));
1266 *val = cpu_to_le64(extra_hosts);
1267 fw_cfg_add_file(pcms->fw_cfg,
1268 "etc/extra-pci-roots", val, sizeof(*val));
1272 acpi_setup();
1273 if (pcms->fw_cfg) {
1274 pc_build_smbios(pcms->fw_cfg);
1275 pc_build_feature_control_file(pcms);
1279 void pc_guest_info_init(PCMachineState *pcms)
1281 int i;
1283 pcms->apic_xrupt_override = kvm_allows_irq0_override();
1284 pcms->numa_nodes = nb_numa_nodes;
1285 pcms->node_mem = g_malloc0(pcms->numa_nodes *
1286 sizeof *pcms->node_mem);
1287 for (i = 0; i < nb_numa_nodes; i++) {
1288 pcms->node_mem[i] = numa_info[i].node_mem;
1291 pcms->machine_done.notify = pc_machine_done;
1292 qemu_add_machine_init_done_notifier(&pcms->machine_done);
1295 /* setup pci memory address space mapping into system address space */
1296 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1297 MemoryRegion *pci_address_space)
1299 /* Set to lower priority than RAM */
1300 memory_region_add_subregion_overlap(system_memory, 0x0,
1301 pci_address_space, -1);
1304 void pc_acpi_init(const char *default_dsdt)
1306 char *filename;
1308 if (acpi_tables != NULL) {
1309 /* manually set via -acpitable, leave it alone */
1310 return;
1313 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1314 if (filename == NULL) {
1315 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1316 } else {
1317 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1318 &error_abort);
1319 Error *err = NULL;
1321 qemu_opt_set(opts, "file", filename, &error_abort);
1323 acpi_table_add_builtin(opts, &err);
1324 if (err) {
1325 error_reportf_err(err, "WARNING: failed to load %s: ",
1326 filename);
1328 g_free(filename);
1332 void xen_load_linux(PCMachineState *pcms)
1334 int i;
1335 FWCfgState *fw_cfg;
1337 assert(MACHINE(pcms)->kernel_filename != NULL);
1339 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1340 rom_set_fw(fw_cfg);
1342 load_linux(pcms, fw_cfg);
1343 for (i = 0; i < nb_option_roms; i++) {
1344 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1345 !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1346 !strcmp(option_rom[i].name, "multiboot.bin"));
1347 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1349 pcms->fw_cfg = fw_cfg;
1352 void pc_memory_init(PCMachineState *pcms,
1353 MemoryRegion *system_memory,
1354 MemoryRegion *rom_memory,
1355 MemoryRegion **ram_memory)
1357 int linux_boot, i;
1358 MemoryRegion *ram, *option_rom_mr;
1359 MemoryRegion *ram_below_4g, *ram_above_4g;
1360 FWCfgState *fw_cfg;
1361 MachineState *machine = MACHINE(pcms);
1362 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1364 assert(machine->ram_size == pcms->below_4g_mem_size +
1365 pcms->above_4g_mem_size);
1367 linux_boot = (machine->kernel_filename != NULL);
1369 /* Allocate RAM. We allocate it as a single memory region and use
1370 * aliases to address portions of it, mostly for backwards compatibility
1371 * with older qemus that used qemu_ram_alloc().
1373 ram = g_malloc(sizeof(*ram));
1374 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1375 machine->ram_size);
1376 *ram_memory = ram;
1377 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1378 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1379 0, pcms->below_4g_mem_size);
1380 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1381 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1382 if (pcms->above_4g_mem_size > 0) {
1383 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1384 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1385 pcms->below_4g_mem_size,
1386 pcms->above_4g_mem_size);
1387 memory_region_add_subregion(system_memory, 0x100000000ULL,
1388 ram_above_4g);
1389 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1392 if (!pcmc->has_reserved_memory &&
1393 (machine->ram_slots ||
1394 (machine->maxram_size > machine->ram_size))) {
1395 MachineClass *mc = MACHINE_GET_CLASS(machine);
1397 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1398 mc->name);
1399 exit(EXIT_FAILURE);
1402 /* initialize hotplug memory address space */
1403 if (pcmc->has_reserved_memory &&
1404 (machine->ram_size < machine->maxram_size)) {
1405 ram_addr_t hotplug_mem_size =
1406 machine->maxram_size - machine->ram_size;
1408 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1409 error_report("unsupported amount of memory slots: %"PRIu64,
1410 machine->ram_slots);
1411 exit(EXIT_FAILURE);
1414 if (QEMU_ALIGN_UP(machine->maxram_size,
1415 TARGET_PAGE_SIZE) != machine->maxram_size) {
1416 error_report("maximum memory size must by aligned to multiple of "
1417 "%d bytes", TARGET_PAGE_SIZE);
1418 exit(EXIT_FAILURE);
1421 pcms->hotplug_memory.base =
1422 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30);
1424 if (pcmc->enforce_aligned_dimm) {
1425 /* size hotplug region assuming 1G page max alignment per slot */
1426 hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1429 if ((pcms->hotplug_memory.base + hotplug_mem_size) <
1430 hotplug_mem_size) {
1431 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1432 machine->maxram_size);
1433 exit(EXIT_FAILURE);
1436 memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
1437 "hotplug-memory", hotplug_mem_size);
1438 memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
1439 &pcms->hotplug_memory.mr);
1442 /* Initialize PC system firmware */
1443 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1445 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1446 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1447 &error_fatal);
1448 vmstate_register_ram_global(option_rom_mr);
1449 memory_region_add_subregion_overlap(rom_memory,
1450 PC_ROM_MIN_VGA,
1451 option_rom_mr,
1454 fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1456 rom_set_fw(fw_cfg);
1458 if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) {
1459 uint64_t *val = g_malloc(sizeof(*val));
1460 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1461 uint64_t res_mem_end = pcms->hotplug_memory.base;
1463 if (!pcmc->broken_reserved_end) {
1464 res_mem_end += memory_region_size(&pcms->hotplug_memory.mr);
1466 *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30));
1467 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1470 if (linux_boot) {
1471 load_linux(pcms, fw_cfg);
1474 for (i = 0; i < nb_option_roms; i++) {
1475 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1477 pcms->fw_cfg = fw_cfg;
1480 qemu_irq pc_allocate_cpu_irq(void)
1482 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1485 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1487 DeviceState *dev = NULL;
1489 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1490 if (pci_bus) {
1491 PCIDevice *pcidev = pci_vga_init(pci_bus);
1492 dev = pcidev ? &pcidev->qdev : NULL;
1493 } else if (isa_bus) {
1494 ISADevice *isadev = isa_vga_init(isa_bus);
1495 dev = isadev ? DEVICE(isadev) : NULL;
1497 rom_reset_order_override();
1498 return dev;
1501 static const MemoryRegionOps ioport80_io_ops = {
1502 .write = ioport80_write,
1503 .read = ioport80_read,
1504 .endianness = DEVICE_NATIVE_ENDIAN,
1505 .impl = {
1506 .min_access_size = 1,
1507 .max_access_size = 1,
1511 static const MemoryRegionOps ioportF0_io_ops = {
1512 .write = ioportF0_write,
1513 .read = ioportF0_read,
1514 .endianness = DEVICE_NATIVE_ENDIAN,
1515 .impl = {
1516 .min_access_size = 1,
1517 .max_access_size = 1,
1521 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1522 ISADevice **rtc_state,
1523 bool create_fdctrl,
1524 bool no_vmport,
1525 uint32_t hpet_irqs)
1527 int i;
1528 DriveInfo *fd[MAX_FD];
1529 DeviceState *hpet = NULL;
1530 int pit_isa_irq = 0;
1531 qemu_irq pit_alt_irq = NULL;
1532 qemu_irq rtc_irq = NULL;
1533 qemu_irq *a20_line;
1534 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1535 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1536 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1538 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1539 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1541 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1542 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1545 * Check if an HPET shall be created.
1547 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1548 * when the HPET wants to take over. Thus we have to disable the latter.
1550 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1551 /* In order to set property, here not using sysbus_try_create_simple */
1552 hpet = qdev_try_create(NULL, TYPE_HPET);
1553 if (hpet) {
1554 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1555 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1556 * IRQ8 and IRQ2.
1558 uint8_t compat = object_property_get_int(OBJECT(hpet),
1559 HPET_INTCAP, NULL);
1560 if (!compat) {
1561 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1563 qdev_init_nofail(hpet);
1564 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1566 for (i = 0; i < GSI_NUM_PINS; i++) {
1567 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1569 pit_isa_irq = -1;
1570 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1571 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1574 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1576 qemu_register_boot_set(pc_boot_set, *rtc_state);
1578 if (!xen_enabled()) {
1579 if (kvm_pit_in_kernel()) {
1580 pit = kvm_pit_init(isa_bus, 0x40);
1581 } else {
1582 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1584 if (hpet) {
1585 /* connect PIT to output control line of the HPET */
1586 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1588 pcspk_init(isa_bus, pit);
1591 serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
1592 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1594 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1595 i8042 = isa_create_simple(isa_bus, "i8042");
1596 i8042_setup_a20_line(i8042, &a20_line[0]);
1597 if (!no_vmport) {
1598 vmport_init(isa_bus);
1599 vmmouse = isa_try_create(isa_bus, "vmmouse");
1600 } else {
1601 vmmouse = NULL;
1603 if (vmmouse) {
1604 DeviceState *dev = DEVICE(vmmouse);
1605 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1606 qdev_init_nofail(dev);
1608 port92 = isa_create_simple(isa_bus, "port92");
1609 port92_init(port92, &a20_line[1]);
1611 DMA_init(isa_bus, 0);
1613 for(i = 0; i < MAX_FD; i++) {
1614 fd[i] = drive_get(IF_FLOPPY, 0, i);
1615 create_fdctrl |= !!fd[i];
1617 if (create_fdctrl) {
1618 fdctrl_init_isa(isa_bus, fd);
1622 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1624 int i;
1626 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
1627 for (i = 0; i < nb_nics; i++) {
1628 NICInfo *nd = &nd_table[i];
1630 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1631 pc_init_ne2k_isa(isa_bus, nd);
1632 } else {
1633 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1636 rom_reset_order_override();
1639 void pc_pci_device_init(PCIBus *pci_bus)
1641 int max_bus;
1642 int bus;
1644 max_bus = drive_get_max_bus(IF_SCSI);
1645 for (bus = 0; bus <= max_bus; bus++) {
1646 pci_create_simple(pci_bus, -1, "lsi53c895a");
1650 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1652 DeviceState *dev;
1653 SysBusDevice *d;
1654 unsigned int i;
1656 if (kvm_ioapic_in_kernel()) {
1657 dev = qdev_create(NULL, "kvm-ioapic");
1658 } else {
1659 dev = qdev_create(NULL, "ioapic");
1661 if (parent_name) {
1662 object_property_add_child(object_resolve_path(parent_name, NULL),
1663 "ioapic", OBJECT(dev), NULL);
1665 qdev_init_nofail(dev);
1666 d = SYS_BUS_DEVICE(dev);
1667 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1669 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1670 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1674 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1675 DeviceState *dev, Error **errp)
1677 HotplugHandlerClass *hhc;
1678 Error *local_err = NULL;
1679 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1680 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1681 PCDIMMDevice *dimm = PC_DIMM(dev);
1682 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1683 MemoryRegion *mr = ddc->get_memory_region(dimm);
1684 uint64_t align = TARGET_PAGE_SIZE;
1686 if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) {
1687 align = memory_region_get_alignment(mr);
1690 if (!pcms->acpi_dev) {
1691 error_setg(&local_err,
1692 "memory hotplug is not enabled: missing acpi device");
1693 goto out;
1696 pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err);
1697 if (local_err) {
1698 goto out;
1701 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1702 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1703 out:
1704 error_propagate(errp, local_err);
1707 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1708 DeviceState *dev, Error **errp)
1710 HotplugHandlerClass *hhc;
1711 Error *local_err = NULL;
1712 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1714 if (!pcms->acpi_dev) {
1715 error_setg(&local_err,
1716 "memory hotplug is not enabled: missing acpi device");
1717 goto out;
1720 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1721 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1723 out:
1724 error_propagate(errp, local_err);
1727 static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1728 DeviceState *dev, Error **errp)
1730 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1731 PCDIMMDevice *dimm = PC_DIMM(dev);
1732 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1733 MemoryRegion *mr = ddc->get_memory_region(dimm);
1734 HotplugHandlerClass *hhc;
1735 Error *local_err = NULL;
1737 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1738 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1740 if (local_err) {
1741 goto out;
1744 pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
1745 object_unparent(OBJECT(dev));
1747 out:
1748 error_propagate(errp, local_err);
1751 static int pc_apic_cmp(const void *a, const void *b)
1753 CPUArchId *apic_a = (CPUArchId *)a;
1754 CPUArchId *apic_b = (CPUArchId *)b;
1756 return apic_a->arch_id - apic_b->arch_id;
1759 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1760 DeviceState *dev, Error **errp)
1762 CPUClass *cc = CPU_GET_CLASS(dev);
1763 CPUArchId apic_id, *found_cpu;
1764 HotplugHandlerClass *hhc;
1765 Error *local_err = NULL;
1766 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1768 if (!dev->hotplugged) {
1769 goto out;
1772 if (!pcms->acpi_dev) {
1773 error_setg(&local_err,
1774 "cpu hotplug is not enabled: missing acpi device");
1775 goto out;
1778 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1779 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1780 if (local_err) {
1781 goto out;
1784 /* increment the number of CPUs */
1785 rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1);
1787 apic_id.arch_id = cc->get_arch_id(CPU(dev));
1788 found_cpu = bsearch(&apic_id, pcms->possible_cpus->cpus,
1789 pcms->possible_cpus->len, sizeof(*pcms->possible_cpus->cpus),
1790 pc_apic_cmp);
1791 assert(found_cpu);
1792 found_cpu->cpu = CPU(dev);
1793 out:
1794 error_propagate(errp, local_err);
1796 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
1797 DeviceState *dev, Error **errp)
1799 HotplugHandlerClass *hhc;
1800 Error *local_err = NULL;
1801 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1803 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1804 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1806 if (local_err) {
1807 goto out;
1810 out:
1811 error_propagate(errp, local_err);
1815 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
1816 DeviceState *dev, Error **errp)
1818 HotplugHandlerClass *hhc;
1819 Error *local_err = NULL;
1820 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1822 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1823 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1825 if (local_err) {
1826 goto out;
1830 * TODO: enable unplug once generic CPU remove bits land
1831 * for now guest will be able to eject CPU ACPI wise but
1832 * it will come back again on machine reset.
1834 /* object_unparent(OBJECT(dev)); */
1836 out:
1837 error_propagate(errp, local_err);
1840 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1841 DeviceState *dev, Error **errp)
1843 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1844 pc_dimm_plug(hotplug_dev, dev, errp);
1845 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1846 pc_cpu_plug(hotplug_dev, dev, errp);
1850 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
1851 DeviceState *dev, Error **errp)
1853 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1854 pc_dimm_unplug_request(hotplug_dev, dev, errp);
1855 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1856 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
1857 } else {
1858 error_setg(errp, "acpi: device unplug request for not supported device"
1859 " type: %s", object_get_typename(OBJECT(dev)));
1863 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
1864 DeviceState *dev, Error **errp)
1866 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1867 pc_dimm_unplug(hotplug_dev, dev, errp);
1868 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1869 pc_cpu_unplug_cb(hotplug_dev, dev, errp);
1870 } else {
1871 error_setg(errp, "acpi: device unplug for not supported device"
1872 " type: %s", object_get_typename(OBJECT(dev)));
1876 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1877 DeviceState *dev)
1879 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
1881 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
1882 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1883 return HOTPLUG_HANDLER(machine);
1886 return pcmc->get_hotplug_handler ?
1887 pcmc->get_hotplug_handler(machine, dev) : NULL;
1890 static void
1891 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v,
1892 const char *name, void *opaque,
1893 Error **errp)
1895 PCMachineState *pcms = PC_MACHINE(obj);
1896 int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
1898 visit_type_int(v, name, &value, errp);
1901 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
1902 const char *name, void *opaque,
1903 Error **errp)
1905 PCMachineState *pcms = PC_MACHINE(obj);
1906 uint64_t value = pcms->max_ram_below_4g;
1908 visit_type_size(v, name, &value, errp);
1911 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
1912 const char *name, void *opaque,
1913 Error **errp)
1915 PCMachineState *pcms = PC_MACHINE(obj);
1916 Error *error = NULL;
1917 uint64_t value;
1919 visit_type_size(v, name, &value, &error);
1920 if (error) {
1921 error_propagate(errp, error);
1922 return;
1924 if (value > (1ULL << 32)) {
1925 error_setg(&error,
1926 "Machine option 'max-ram-below-4g=%"PRIu64
1927 "' expects size less than or equal to 4G", value);
1928 error_propagate(errp, error);
1929 return;
1932 if (value < (1ULL << 20)) {
1933 error_report("Warning: small max_ram_below_4g(%"PRIu64
1934 ") less than 1M. BIOS may not work..",
1935 value);
1938 pcms->max_ram_below_4g = value;
1941 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
1942 void *opaque, Error **errp)
1944 PCMachineState *pcms = PC_MACHINE(obj);
1945 OnOffAuto vmport = pcms->vmport;
1947 visit_type_OnOffAuto(v, name, &vmport, errp);
1950 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
1951 void *opaque, Error **errp)
1953 PCMachineState *pcms = PC_MACHINE(obj);
1955 visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
1958 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
1960 bool smm_available = false;
1962 if (pcms->smm == ON_OFF_AUTO_OFF) {
1963 return false;
1966 if (tcg_enabled() || qtest_enabled()) {
1967 smm_available = true;
1968 } else if (kvm_enabled()) {
1969 smm_available = kvm_has_smm();
1972 if (smm_available) {
1973 return true;
1976 if (pcms->smm == ON_OFF_AUTO_ON) {
1977 error_report("System Management Mode not supported by this hypervisor.");
1978 exit(1);
1980 return false;
1983 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
1984 void *opaque, Error **errp)
1986 PCMachineState *pcms = PC_MACHINE(obj);
1987 OnOffAuto smm = pcms->smm;
1989 visit_type_OnOffAuto(v, name, &smm, errp);
1992 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
1993 void *opaque, Error **errp)
1995 PCMachineState *pcms = PC_MACHINE(obj);
1997 visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2000 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
2002 PCMachineState *pcms = PC_MACHINE(obj);
2004 return pcms->acpi_nvdimm_state.is_enabled;
2007 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
2009 PCMachineState *pcms = PC_MACHINE(obj);
2011 pcms->acpi_nvdimm_state.is_enabled = value;
2014 static void pc_machine_initfn(Object *obj)
2016 PCMachineState *pcms = PC_MACHINE(obj);
2018 object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
2019 pc_machine_get_hotplug_memory_region_size,
2020 NULL, NULL, NULL, &error_abort);
2022 pcms->max_ram_below_4g = 0; /* use default */
2023 object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2024 pc_machine_get_max_ram_below_4g,
2025 pc_machine_set_max_ram_below_4g,
2026 NULL, NULL, &error_abort);
2027 object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G,
2028 "Maximum ram below the 4G boundary (32bit boundary)",
2029 &error_abort);
2031 pcms->smm = ON_OFF_AUTO_AUTO;
2032 object_property_add(obj, PC_MACHINE_SMM, "OnOffAuto",
2033 pc_machine_get_smm,
2034 pc_machine_set_smm,
2035 NULL, NULL, &error_abort);
2036 object_property_set_description(obj, PC_MACHINE_SMM,
2037 "Enable SMM (pc & q35)",
2038 &error_abort);
2040 pcms->vmport = ON_OFF_AUTO_AUTO;
2041 object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto",
2042 pc_machine_get_vmport,
2043 pc_machine_set_vmport,
2044 NULL, NULL, &error_abort);
2045 object_property_set_description(obj, PC_MACHINE_VMPORT,
2046 "Enable vmport (pc & q35)",
2047 &error_abort);
2049 /* nvdimm is disabled on default. */
2050 pcms->acpi_nvdimm_state.is_enabled = false;
2051 object_property_add_bool(obj, PC_MACHINE_NVDIMM, pc_machine_get_nvdimm,
2052 pc_machine_set_nvdimm, &error_abort);
2055 static void pc_machine_reset(void)
2057 CPUState *cs;
2058 X86CPU *cpu;
2060 qemu_devices_reset();
2062 /* Reset APIC after devices have been reset to cancel
2063 * any changes that qemu_devices_reset() might have done.
2065 CPU_FOREACH(cs) {
2066 cpu = X86_CPU(cs);
2068 if (cpu->apic_state) {
2069 device_reset(cpu->apic_state);
2074 static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index)
2076 X86CPUTopoInfo topo;
2077 x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index,
2078 &topo);
2079 return topo.pkg_id;
2082 static CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *machine)
2084 PCMachineState *pcms = PC_MACHINE(machine);
2085 int len = sizeof(CPUArchIdList) +
2086 sizeof(CPUArchId) * (pcms->possible_cpus->len);
2087 CPUArchIdList *list = g_malloc(len);
2089 memcpy(list, pcms->possible_cpus, len);
2090 return list;
2093 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2095 /* cpu index isn't used */
2096 CPUState *cs;
2098 CPU_FOREACH(cs) {
2099 X86CPU *cpu = X86_CPU(cs);
2101 if (!cpu->apic_state) {
2102 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2103 } else {
2104 apic_deliver_nmi(cpu->apic_state);
2109 static void pc_machine_class_init(ObjectClass *oc, void *data)
2111 MachineClass *mc = MACHINE_CLASS(oc);
2112 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2113 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2114 NMIClass *nc = NMI_CLASS(oc);
2116 pcmc->get_hotplug_handler = mc->get_hotplug_handler;
2117 pcmc->pci_enabled = true;
2118 pcmc->has_acpi_build = true;
2119 pcmc->rsdp_in_ram = true;
2120 pcmc->smbios_defaults = true;
2121 pcmc->smbios_uuid_encoded = true;
2122 pcmc->gigabyte_align = true;
2123 pcmc->has_reserved_memory = true;
2124 pcmc->kvmclock_enabled = true;
2125 pcmc->enforce_aligned_dimm = true;
2126 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2127 * to be used at the moment, 32K should be enough for a while. */
2128 pcmc->acpi_data_size = 0x20000 + 0x8000;
2129 pcmc->save_tsc_khz = true;
2130 mc->get_hotplug_handler = pc_get_hotpug_handler;
2131 mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id;
2132 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2133 mc->default_boot_order = "cad";
2134 mc->hot_add_cpu = pc_hot_add_cpu;
2135 mc->max_cpus = 255;
2136 mc->reset = pc_machine_reset;
2137 hc->plug = pc_machine_device_plug_cb;
2138 hc->unplug_request = pc_machine_device_unplug_request_cb;
2139 hc->unplug = pc_machine_device_unplug_cb;
2140 nc->nmi_monitor_handler = x86_nmi;
2143 static const TypeInfo pc_machine_info = {
2144 .name = TYPE_PC_MACHINE,
2145 .parent = TYPE_MACHINE,
2146 .abstract = true,
2147 .instance_size = sizeof(PCMachineState),
2148 .instance_init = pc_machine_initfn,
2149 .class_size = sizeof(PCMachineClass),
2150 .class_init = pc_machine_class_init,
2151 .interfaces = (InterfaceInfo[]) {
2152 { TYPE_HOTPLUG_HANDLER },
2153 { TYPE_NMI },
2158 static void pc_machine_register_types(void)
2160 type_register_static(&pc_machine_info);
2163 type_init(pc_machine_register_types)