smc91c111: mask register offset
[qemu/cris-port.git] / hw / omap1.c
bloba554d905f2fdba3623ac28f429943ce3f65fe360
1 /*
2 * TI OMAP processors emulation.
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License along
17 * with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "hw.h"
20 #include "arm-misc.h"
21 #include "omap.h"
22 #include "sysemu.h"
23 #include "qemu-timer.h"
24 #include "qemu-char.h"
25 #include "soc_dma.h"
26 /* We use pc-style serial ports. */
27 #include "pc.h"
29 /* Should signal the TCMI/GPMC */
30 uint32_t omap_badwidth_read8(void *opaque, target_phys_addr_t addr)
32 uint8_t ret;
34 OMAP_8B_REG(addr);
35 cpu_physical_memory_read(addr, (void *) &ret, 1);
36 return ret;
39 void omap_badwidth_write8(void *opaque, target_phys_addr_t addr,
40 uint32_t value)
42 uint8_t val8 = value;
44 OMAP_8B_REG(addr);
45 cpu_physical_memory_write(addr, (void *) &val8, 1);
48 uint32_t omap_badwidth_read16(void *opaque, target_phys_addr_t addr)
50 uint16_t ret;
52 OMAP_16B_REG(addr);
53 cpu_physical_memory_read(addr, (void *) &ret, 2);
54 return ret;
57 void omap_badwidth_write16(void *opaque, target_phys_addr_t addr,
58 uint32_t value)
60 uint16_t val16 = value;
62 OMAP_16B_REG(addr);
63 cpu_physical_memory_write(addr, (void *) &val16, 2);
66 uint32_t omap_badwidth_read32(void *opaque, target_phys_addr_t addr)
68 uint32_t ret;
70 OMAP_32B_REG(addr);
71 cpu_physical_memory_read(addr, (void *) &ret, 4);
72 return ret;
75 void omap_badwidth_write32(void *opaque, target_phys_addr_t addr,
76 uint32_t value)
78 OMAP_32B_REG(addr);
79 cpu_physical_memory_write(addr, (void *) &value, 4);
82 /* Interrupt Handlers */
83 struct omap_intr_handler_bank_s {
84 uint32_t irqs;
85 uint32_t inputs;
86 uint32_t mask;
87 uint32_t fiq;
88 uint32_t sens_edge;
89 uint32_t swi;
90 unsigned char priority[32];
93 struct omap_intr_handler_s {
94 qemu_irq *pins;
95 qemu_irq parent_intr[2];
96 unsigned char nbanks;
97 int level_only;
99 /* state */
100 uint32_t new_agr[2];
101 int sir_intr[2];
102 int autoidle;
103 uint32_t mask;
104 struct omap_intr_handler_bank_s bank[];
107 static void omap_inth_sir_update(struct omap_intr_handler_s *s, int is_fiq)
109 int i, j, sir_intr, p_intr, p, f;
110 uint32_t level;
111 sir_intr = 0;
112 p_intr = 255;
114 /* Find the interrupt line with the highest dynamic priority.
115 * Note: 0 denotes the hightest priority.
116 * If all interrupts have the same priority, the default order is IRQ_N,
117 * IRQ_N-1,...,IRQ_0. */
118 for (j = 0; j < s->nbanks; ++j) {
119 level = s->bank[j].irqs & ~s->bank[j].mask &
120 (is_fiq ? s->bank[j].fiq : ~s->bank[j].fiq);
121 for (f = ffs(level), i = f - 1, level >>= f - 1; f; i += f,
122 level >>= f) {
123 p = s->bank[j].priority[i];
124 if (p <= p_intr) {
125 p_intr = p;
126 sir_intr = 32 * j + i;
128 f = ffs(level >> 1);
131 s->sir_intr[is_fiq] = sir_intr;
134 static inline void omap_inth_update(struct omap_intr_handler_s *s, int is_fiq)
136 int i;
137 uint32_t has_intr = 0;
139 for (i = 0; i < s->nbanks; ++i)
140 has_intr |= s->bank[i].irqs & ~s->bank[i].mask &
141 (is_fiq ? s->bank[i].fiq : ~s->bank[i].fiq);
143 if (s->new_agr[is_fiq] & has_intr & s->mask) {
144 s->new_agr[is_fiq] = 0;
145 omap_inth_sir_update(s, is_fiq);
146 qemu_set_irq(s->parent_intr[is_fiq], 1);
150 #define INT_FALLING_EDGE 0
151 #define INT_LOW_LEVEL 1
153 static void omap_set_intr(void *opaque, int irq, int req)
155 struct omap_intr_handler_s *ih = (struct omap_intr_handler_s *) opaque;
156 uint32_t rise;
158 struct omap_intr_handler_bank_s *bank = &ih->bank[irq >> 5];
159 int n = irq & 31;
161 if (req) {
162 rise = ~bank->irqs & (1 << n);
163 if (~bank->sens_edge & (1 << n))
164 rise &= ~bank->inputs;
166 bank->inputs |= (1 << n);
167 if (rise) {
168 bank->irqs |= rise;
169 omap_inth_update(ih, 0);
170 omap_inth_update(ih, 1);
172 } else {
173 rise = bank->sens_edge & bank->irqs & (1 << n);
174 bank->irqs &= ~rise;
175 bank->inputs &= ~(1 << n);
179 /* Simplified version with no edge detection */
180 static void omap_set_intr_noedge(void *opaque, int irq, int req)
182 struct omap_intr_handler_s *ih = (struct omap_intr_handler_s *) opaque;
183 uint32_t rise;
185 struct omap_intr_handler_bank_s *bank = &ih->bank[irq >> 5];
186 int n = irq & 31;
188 if (req) {
189 rise = ~bank->inputs & (1 << n);
190 if (rise) {
191 bank->irqs |= bank->inputs |= rise;
192 omap_inth_update(ih, 0);
193 omap_inth_update(ih, 1);
195 } else
196 bank->irqs = (bank->inputs &= ~(1 << n)) | bank->swi;
199 static uint32_t omap_inth_read(void *opaque, target_phys_addr_t addr)
201 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
202 int i, offset = addr;
203 int bank_no = offset >> 8;
204 int line_no;
205 struct omap_intr_handler_bank_s *bank = &s->bank[bank_no];
206 offset &= 0xff;
208 switch (offset) {
209 case 0x00: /* ITR */
210 return bank->irqs;
212 case 0x04: /* MIR */
213 return bank->mask;
215 case 0x10: /* SIR_IRQ_CODE */
216 case 0x14: /* SIR_FIQ_CODE */
217 if (bank_no != 0)
218 break;
219 line_no = s->sir_intr[(offset - 0x10) >> 2];
220 bank = &s->bank[line_no >> 5];
221 i = line_no & 31;
222 if (((bank->sens_edge >> i) & 1) == INT_FALLING_EDGE)
223 bank->irqs &= ~(1 << i);
224 return line_no;
226 case 0x18: /* CONTROL_REG */
227 if (bank_no != 0)
228 break;
229 return 0;
231 case 0x1c: /* ILR0 */
232 case 0x20: /* ILR1 */
233 case 0x24: /* ILR2 */
234 case 0x28: /* ILR3 */
235 case 0x2c: /* ILR4 */
236 case 0x30: /* ILR5 */
237 case 0x34: /* ILR6 */
238 case 0x38: /* ILR7 */
239 case 0x3c: /* ILR8 */
240 case 0x40: /* ILR9 */
241 case 0x44: /* ILR10 */
242 case 0x48: /* ILR11 */
243 case 0x4c: /* ILR12 */
244 case 0x50: /* ILR13 */
245 case 0x54: /* ILR14 */
246 case 0x58: /* ILR15 */
247 case 0x5c: /* ILR16 */
248 case 0x60: /* ILR17 */
249 case 0x64: /* ILR18 */
250 case 0x68: /* ILR19 */
251 case 0x6c: /* ILR20 */
252 case 0x70: /* ILR21 */
253 case 0x74: /* ILR22 */
254 case 0x78: /* ILR23 */
255 case 0x7c: /* ILR24 */
256 case 0x80: /* ILR25 */
257 case 0x84: /* ILR26 */
258 case 0x88: /* ILR27 */
259 case 0x8c: /* ILR28 */
260 case 0x90: /* ILR29 */
261 case 0x94: /* ILR30 */
262 case 0x98: /* ILR31 */
263 i = (offset - 0x1c) >> 2;
264 return (bank->priority[i] << 2) |
265 (((bank->sens_edge >> i) & 1) << 1) |
266 ((bank->fiq >> i) & 1);
268 case 0x9c: /* ISR */
269 return 0x00000000;
272 OMAP_BAD_REG(addr);
273 return 0;
276 static void omap_inth_write(void *opaque, target_phys_addr_t addr,
277 uint32_t value)
279 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
280 int i, offset = addr;
281 int bank_no = offset >> 8;
282 struct omap_intr_handler_bank_s *bank = &s->bank[bank_no];
283 offset &= 0xff;
285 switch (offset) {
286 case 0x00: /* ITR */
287 /* Important: ignore the clearing if the IRQ is level-triggered and
288 the input bit is 1 */
289 bank->irqs &= value | (bank->inputs & bank->sens_edge);
290 return;
292 case 0x04: /* MIR */
293 bank->mask = value;
294 omap_inth_update(s, 0);
295 omap_inth_update(s, 1);
296 return;
298 case 0x10: /* SIR_IRQ_CODE */
299 case 0x14: /* SIR_FIQ_CODE */
300 OMAP_RO_REG(addr);
301 break;
303 case 0x18: /* CONTROL_REG */
304 if (bank_no != 0)
305 break;
306 if (value & 2) {
307 qemu_set_irq(s->parent_intr[1], 0);
308 s->new_agr[1] = ~0;
309 omap_inth_update(s, 1);
311 if (value & 1) {
312 qemu_set_irq(s->parent_intr[0], 0);
313 s->new_agr[0] = ~0;
314 omap_inth_update(s, 0);
316 return;
318 case 0x1c: /* ILR0 */
319 case 0x20: /* ILR1 */
320 case 0x24: /* ILR2 */
321 case 0x28: /* ILR3 */
322 case 0x2c: /* ILR4 */
323 case 0x30: /* ILR5 */
324 case 0x34: /* ILR6 */
325 case 0x38: /* ILR7 */
326 case 0x3c: /* ILR8 */
327 case 0x40: /* ILR9 */
328 case 0x44: /* ILR10 */
329 case 0x48: /* ILR11 */
330 case 0x4c: /* ILR12 */
331 case 0x50: /* ILR13 */
332 case 0x54: /* ILR14 */
333 case 0x58: /* ILR15 */
334 case 0x5c: /* ILR16 */
335 case 0x60: /* ILR17 */
336 case 0x64: /* ILR18 */
337 case 0x68: /* ILR19 */
338 case 0x6c: /* ILR20 */
339 case 0x70: /* ILR21 */
340 case 0x74: /* ILR22 */
341 case 0x78: /* ILR23 */
342 case 0x7c: /* ILR24 */
343 case 0x80: /* ILR25 */
344 case 0x84: /* ILR26 */
345 case 0x88: /* ILR27 */
346 case 0x8c: /* ILR28 */
347 case 0x90: /* ILR29 */
348 case 0x94: /* ILR30 */
349 case 0x98: /* ILR31 */
350 i = (offset - 0x1c) >> 2;
351 bank->priority[i] = (value >> 2) & 0x1f;
352 bank->sens_edge &= ~(1 << i);
353 bank->sens_edge |= ((value >> 1) & 1) << i;
354 bank->fiq &= ~(1 << i);
355 bank->fiq |= (value & 1) << i;
356 return;
358 case 0x9c: /* ISR */
359 for (i = 0; i < 32; i ++)
360 if (value & (1 << i)) {
361 omap_set_intr(s, 32 * bank_no + i, 1);
362 return;
364 return;
366 OMAP_BAD_REG(addr);
369 static CPUReadMemoryFunc * const omap_inth_readfn[] = {
370 omap_badwidth_read32,
371 omap_badwidth_read32,
372 omap_inth_read,
375 static CPUWriteMemoryFunc * const omap_inth_writefn[] = {
376 omap_inth_write,
377 omap_inth_write,
378 omap_inth_write,
381 void omap_inth_reset(struct omap_intr_handler_s *s)
383 int i;
385 for (i = 0; i < s->nbanks; ++i){
386 s->bank[i].irqs = 0x00000000;
387 s->bank[i].mask = 0xffffffff;
388 s->bank[i].sens_edge = 0x00000000;
389 s->bank[i].fiq = 0x00000000;
390 s->bank[i].inputs = 0x00000000;
391 s->bank[i].swi = 0x00000000;
392 memset(s->bank[i].priority, 0, sizeof(s->bank[i].priority));
394 if (s->level_only)
395 s->bank[i].sens_edge = 0xffffffff;
398 s->new_agr[0] = ~0;
399 s->new_agr[1] = ~0;
400 s->sir_intr[0] = 0;
401 s->sir_intr[1] = 0;
402 s->autoidle = 0;
403 s->mask = ~0;
405 qemu_set_irq(s->parent_intr[0], 0);
406 qemu_set_irq(s->parent_intr[1], 0);
409 struct omap_intr_handler_s *omap_inth_init(target_phys_addr_t base,
410 unsigned long size, unsigned char nbanks, qemu_irq **pins,
411 qemu_irq parent_irq, qemu_irq parent_fiq, omap_clk clk)
413 int iomemtype;
414 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *)
415 qemu_mallocz(sizeof(struct omap_intr_handler_s) +
416 sizeof(struct omap_intr_handler_bank_s) * nbanks);
418 s->parent_intr[0] = parent_irq;
419 s->parent_intr[1] = parent_fiq;
420 s->nbanks = nbanks;
421 s->pins = qemu_allocate_irqs(omap_set_intr, s, nbanks * 32);
422 if (pins)
423 *pins = s->pins;
425 omap_inth_reset(s);
427 iomemtype = cpu_register_io_memory(omap_inth_readfn,
428 omap_inth_writefn, s);
429 cpu_register_physical_memory(base, size, iomemtype);
431 return s;
434 static uint32_t omap2_inth_read(void *opaque, target_phys_addr_t addr)
436 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
437 int offset = addr;
438 int bank_no, line_no;
439 struct omap_intr_handler_bank_s *bank = NULL;
441 if ((offset & 0xf80) == 0x80) {
442 bank_no = (offset & 0x60) >> 5;
443 if (bank_no < s->nbanks) {
444 offset &= ~0x60;
445 bank = &s->bank[bank_no];
449 switch (offset) {
450 case 0x00: /* INTC_REVISION */
451 return 0x21;
453 case 0x10: /* INTC_SYSCONFIG */
454 return (s->autoidle >> 2) & 1;
456 case 0x14: /* INTC_SYSSTATUS */
457 return 1; /* RESETDONE */
459 case 0x40: /* INTC_SIR_IRQ */
460 return s->sir_intr[0];
462 case 0x44: /* INTC_SIR_FIQ */
463 return s->sir_intr[1];
465 case 0x48: /* INTC_CONTROL */
466 return (!s->mask) << 2; /* GLOBALMASK */
468 case 0x4c: /* INTC_PROTECTION */
469 return 0;
471 case 0x50: /* INTC_IDLE */
472 return s->autoidle & 3;
474 /* Per-bank registers */
475 case 0x80: /* INTC_ITR */
476 return bank->inputs;
478 case 0x84: /* INTC_MIR */
479 return bank->mask;
481 case 0x88: /* INTC_MIR_CLEAR */
482 case 0x8c: /* INTC_MIR_SET */
483 return 0;
485 case 0x90: /* INTC_ISR_SET */
486 return bank->swi;
488 case 0x94: /* INTC_ISR_CLEAR */
489 return 0;
491 case 0x98: /* INTC_PENDING_IRQ */
492 return bank->irqs & ~bank->mask & ~bank->fiq;
494 case 0x9c: /* INTC_PENDING_FIQ */
495 return bank->irqs & ~bank->mask & bank->fiq;
497 /* Per-line registers */
498 case 0x100 ... 0x300: /* INTC_ILR */
499 bank_no = (offset - 0x100) >> 7;
500 if (bank_no > s->nbanks)
501 break;
502 bank = &s->bank[bank_no];
503 line_no = (offset & 0x7f) >> 2;
504 return (bank->priority[line_no] << 2) |
505 ((bank->fiq >> line_no) & 1);
507 OMAP_BAD_REG(addr);
508 return 0;
511 static void omap2_inth_write(void *opaque, target_phys_addr_t addr,
512 uint32_t value)
514 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
515 int offset = addr;
516 int bank_no, line_no;
517 struct omap_intr_handler_bank_s *bank = NULL;
519 if ((offset & 0xf80) == 0x80) {
520 bank_no = (offset & 0x60) >> 5;
521 if (bank_no < s->nbanks) {
522 offset &= ~0x60;
523 bank = &s->bank[bank_no];
527 switch (offset) {
528 case 0x10: /* INTC_SYSCONFIG */
529 s->autoidle &= 4;
530 s->autoidle |= (value & 1) << 2;
531 if (value & 2) /* SOFTRESET */
532 omap_inth_reset(s);
533 return;
535 case 0x48: /* INTC_CONTROL */
536 s->mask = (value & 4) ? 0 : ~0; /* GLOBALMASK */
537 if (value & 2) { /* NEWFIQAGR */
538 qemu_set_irq(s->parent_intr[1], 0);
539 s->new_agr[1] = ~0;
540 omap_inth_update(s, 1);
542 if (value & 1) { /* NEWIRQAGR */
543 qemu_set_irq(s->parent_intr[0], 0);
544 s->new_agr[0] = ~0;
545 omap_inth_update(s, 0);
547 return;
549 case 0x4c: /* INTC_PROTECTION */
550 /* TODO: Make a bitmap (or sizeof(char)map) of access privileges
551 * for every register, see Chapter 3 and 4 for privileged mode. */
552 if (value & 1)
553 fprintf(stderr, "%s: protection mode enable attempt\n",
554 __FUNCTION__);
555 return;
557 case 0x50: /* INTC_IDLE */
558 s->autoidle &= ~3;
559 s->autoidle |= value & 3;
560 return;
562 /* Per-bank registers */
563 case 0x84: /* INTC_MIR */
564 bank->mask = value;
565 omap_inth_update(s, 0);
566 omap_inth_update(s, 1);
567 return;
569 case 0x88: /* INTC_MIR_CLEAR */
570 bank->mask &= ~value;
571 omap_inth_update(s, 0);
572 omap_inth_update(s, 1);
573 return;
575 case 0x8c: /* INTC_MIR_SET */
576 bank->mask |= value;
577 return;
579 case 0x90: /* INTC_ISR_SET */
580 bank->irqs |= bank->swi |= value;
581 omap_inth_update(s, 0);
582 omap_inth_update(s, 1);
583 return;
585 case 0x94: /* INTC_ISR_CLEAR */
586 bank->swi &= ~value;
587 bank->irqs = bank->swi & bank->inputs;
588 return;
590 /* Per-line registers */
591 case 0x100 ... 0x300: /* INTC_ILR */
592 bank_no = (offset - 0x100) >> 7;
593 if (bank_no > s->nbanks)
594 break;
595 bank = &s->bank[bank_no];
596 line_no = (offset & 0x7f) >> 2;
597 bank->priority[line_no] = (value >> 2) & 0x3f;
598 bank->fiq &= ~(1 << line_no);
599 bank->fiq |= (value & 1) << line_no;
600 return;
602 case 0x00: /* INTC_REVISION */
603 case 0x14: /* INTC_SYSSTATUS */
604 case 0x40: /* INTC_SIR_IRQ */
605 case 0x44: /* INTC_SIR_FIQ */
606 case 0x80: /* INTC_ITR */
607 case 0x98: /* INTC_PENDING_IRQ */
608 case 0x9c: /* INTC_PENDING_FIQ */
609 OMAP_RO_REG(addr);
610 return;
612 OMAP_BAD_REG(addr);
615 static CPUReadMemoryFunc * const omap2_inth_readfn[] = {
616 omap_badwidth_read32,
617 omap_badwidth_read32,
618 omap2_inth_read,
621 static CPUWriteMemoryFunc * const omap2_inth_writefn[] = {
622 omap2_inth_write,
623 omap2_inth_write,
624 omap2_inth_write,
627 struct omap_intr_handler_s *omap2_inth_init(target_phys_addr_t base,
628 int size, int nbanks, qemu_irq **pins,
629 qemu_irq parent_irq, qemu_irq parent_fiq,
630 omap_clk fclk, omap_clk iclk)
632 int iomemtype;
633 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *)
634 qemu_mallocz(sizeof(struct omap_intr_handler_s) +
635 sizeof(struct omap_intr_handler_bank_s) * nbanks);
637 s->parent_intr[0] = parent_irq;
638 s->parent_intr[1] = parent_fiq;
639 s->nbanks = nbanks;
640 s->level_only = 1;
641 s->pins = qemu_allocate_irqs(omap_set_intr_noedge, s, nbanks * 32);
642 if (pins)
643 *pins = s->pins;
645 omap_inth_reset(s);
647 iomemtype = cpu_register_io_memory(omap2_inth_readfn,
648 omap2_inth_writefn, s);
649 cpu_register_physical_memory(base, size, iomemtype);
651 return s;
654 /* MPU OS timers */
655 struct omap_mpu_timer_s {
656 qemu_irq irq;
657 omap_clk clk;
658 uint32_t val;
659 int64_t time;
660 QEMUTimer *timer;
661 QEMUBH *tick;
662 int64_t rate;
663 int it_ena;
665 int enable;
666 int ptv;
667 int ar;
668 int st;
669 uint32_t reset_val;
672 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
674 uint64_t distance = qemu_get_clock(vm_clock) - timer->time;
676 if (timer->st && timer->enable && timer->rate)
677 return timer->val - muldiv64(distance >> (timer->ptv + 1),
678 timer->rate, get_ticks_per_sec());
679 else
680 return timer->val;
683 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
685 timer->val = omap_timer_read(timer);
686 timer->time = qemu_get_clock(vm_clock);
689 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
691 int64_t expires;
693 if (timer->enable && timer->st && timer->rate) {
694 timer->val = timer->reset_val; /* Should skip this on clk enable */
695 expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
696 get_ticks_per_sec(), timer->rate);
698 /* If timer expiry would be sooner than in about 1 ms and
699 * auto-reload isn't set, then fire immediately. This is a hack
700 * to make systems like PalmOS run in acceptable time. PalmOS
701 * sets the interval to a very low value and polls the status bit
702 * in a busy loop when it wants to sleep just a couple of CPU
703 * ticks. */
704 if (expires > (get_ticks_per_sec() >> 10) || timer->ar)
705 qemu_mod_timer(timer->timer, timer->time + expires);
706 else
707 qemu_bh_schedule(timer->tick);
708 } else
709 qemu_del_timer(timer->timer);
712 static void omap_timer_fire(void *opaque)
714 struct omap_mpu_timer_s *timer = opaque;
716 if (!timer->ar) {
717 timer->val = 0;
718 timer->st = 0;
721 if (timer->it_ena)
722 /* Edge-triggered irq */
723 qemu_irq_pulse(timer->irq);
726 static void omap_timer_tick(void *opaque)
728 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
730 omap_timer_sync(timer);
731 omap_timer_fire(timer);
732 omap_timer_update(timer);
735 static void omap_timer_clk_update(void *opaque, int line, int on)
737 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
739 omap_timer_sync(timer);
740 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
741 omap_timer_update(timer);
744 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
746 omap_clk_adduser(timer->clk,
747 qemu_allocate_irqs(omap_timer_clk_update, timer, 1)[0]);
748 timer->rate = omap_clk_getrate(timer->clk);
751 static uint32_t omap_mpu_timer_read(void *opaque, target_phys_addr_t addr)
753 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
755 switch (addr) {
756 case 0x00: /* CNTL_TIMER */
757 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
759 case 0x04: /* LOAD_TIM */
760 break;
762 case 0x08: /* READ_TIM */
763 return omap_timer_read(s);
766 OMAP_BAD_REG(addr);
767 return 0;
770 static void omap_mpu_timer_write(void *opaque, target_phys_addr_t addr,
771 uint32_t value)
773 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
775 switch (addr) {
776 case 0x00: /* CNTL_TIMER */
777 omap_timer_sync(s);
778 s->enable = (value >> 5) & 1;
779 s->ptv = (value >> 2) & 7;
780 s->ar = (value >> 1) & 1;
781 s->st = value & 1;
782 omap_timer_update(s);
783 return;
785 case 0x04: /* LOAD_TIM */
786 s->reset_val = value;
787 return;
789 case 0x08: /* READ_TIM */
790 OMAP_RO_REG(addr);
791 break;
793 default:
794 OMAP_BAD_REG(addr);
798 static CPUReadMemoryFunc * const omap_mpu_timer_readfn[] = {
799 omap_badwidth_read32,
800 omap_badwidth_read32,
801 omap_mpu_timer_read,
804 static CPUWriteMemoryFunc * const omap_mpu_timer_writefn[] = {
805 omap_badwidth_write32,
806 omap_badwidth_write32,
807 omap_mpu_timer_write,
810 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
812 qemu_del_timer(s->timer);
813 s->enable = 0;
814 s->reset_val = 31337;
815 s->val = 0;
816 s->ptv = 0;
817 s->ar = 0;
818 s->st = 0;
819 s->it_ena = 1;
822 struct omap_mpu_timer_s *omap_mpu_timer_init(target_phys_addr_t base,
823 qemu_irq irq, omap_clk clk)
825 int iomemtype;
826 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *)
827 qemu_mallocz(sizeof(struct omap_mpu_timer_s));
829 s->irq = irq;
830 s->clk = clk;
831 s->timer = qemu_new_timer(vm_clock, omap_timer_tick, s);
832 s->tick = qemu_bh_new(omap_timer_fire, s);
833 omap_mpu_timer_reset(s);
834 omap_timer_clk_setup(s);
836 iomemtype = cpu_register_io_memory(omap_mpu_timer_readfn,
837 omap_mpu_timer_writefn, s);
838 cpu_register_physical_memory(base, 0x100, iomemtype);
840 return s;
843 /* Watchdog timer */
844 struct omap_watchdog_timer_s {
845 struct omap_mpu_timer_s timer;
846 uint8_t last_wr;
847 int mode;
848 int free;
849 int reset;
852 static uint32_t omap_wd_timer_read(void *opaque, target_phys_addr_t addr)
854 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
856 switch (addr) {
857 case 0x00: /* CNTL_TIMER */
858 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
859 (s->timer.st << 7) | (s->free << 1);
861 case 0x04: /* READ_TIMER */
862 return omap_timer_read(&s->timer);
864 case 0x08: /* TIMER_MODE */
865 return s->mode << 15;
868 OMAP_BAD_REG(addr);
869 return 0;
872 static void omap_wd_timer_write(void *opaque, target_phys_addr_t addr,
873 uint32_t value)
875 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
877 switch (addr) {
878 case 0x00: /* CNTL_TIMER */
879 omap_timer_sync(&s->timer);
880 s->timer.ptv = (value >> 9) & 7;
881 s->timer.ar = (value >> 8) & 1;
882 s->timer.st = (value >> 7) & 1;
883 s->free = (value >> 1) & 1;
884 omap_timer_update(&s->timer);
885 break;
887 case 0x04: /* LOAD_TIMER */
888 s->timer.reset_val = value & 0xffff;
889 break;
891 case 0x08: /* TIMER_MODE */
892 if (!s->mode && ((value >> 15) & 1))
893 omap_clk_get(s->timer.clk);
894 s->mode |= (value >> 15) & 1;
895 if (s->last_wr == 0xf5) {
896 if ((value & 0xff) == 0xa0) {
897 if (s->mode) {
898 s->mode = 0;
899 omap_clk_put(s->timer.clk);
901 } else {
902 /* XXX: on T|E hardware somehow this has no effect,
903 * on Zire 71 it works as specified. */
904 s->reset = 1;
905 qemu_system_reset_request();
908 s->last_wr = value & 0xff;
909 break;
911 default:
912 OMAP_BAD_REG(addr);
916 static CPUReadMemoryFunc * const omap_wd_timer_readfn[] = {
917 omap_badwidth_read16,
918 omap_wd_timer_read,
919 omap_badwidth_read16,
922 static CPUWriteMemoryFunc * const omap_wd_timer_writefn[] = {
923 omap_badwidth_write16,
924 omap_wd_timer_write,
925 omap_badwidth_write16,
928 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
930 qemu_del_timer(s->timer.timer);
931 if (!s->mode)
932 omap_clk_get(s->timer.clk);
933 s->mode = 1;
934 s->free = 1;
935 s->reset = 0;
936 s->timer.enable = 1;
937 s->timer.it_ena = 1;
938 s->timer.reset_val = 0xffff;
939 s->timer.val = 0;
940 s->timer.st = 0;
941 s->timer.ptv = 0;
942 s->timer.ar = 0;
943 omap_timer_update(&s->timer);
946 struct omap_watchdog_timer_s *omap_wd_timer_init(target_phys_addr_t base,
947 qemu_irq irq, omap_clk clk)
949 int iomemtype;
950 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *)
951 qemu_mallocz(sizeof(struct omap_watchdog_timer_s));
953 s->timer.irq = irq;
954 s->timer.clk = clk;
955 s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
956 omap_wd_timer_reset(s);
957 omap_timer_clk_setup(&s->timer);
959 iomemtype = cpu_register_io_memory(omap_wd_timer_readfn,
960 omap_wd_timer_writefn, s);
961 cpu_register_physical_memory(base, 0x100, iomemtype);
963 return s;
966 /* 32-kHz timer */
967 struct omap_32khz_timer_s {
968 struct omap_mpu_timer_s timer;
971 static uint32_t omap_os_timer_read(void *opaque, target_phys_addr_t addr)
973 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
974 int offset = addr & OMAP_MPUI_REG_MASK;
976 switch (offset) {
977 case 0x00: /* TVR */
978 return s->timer.reset_val;
980 case 0x04: /* TCR */
981 return omap_timer_read(&s->timer);
983 case 0x08: /* CR */
984 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
986 default:
987 break;
989 OMAP_BAD_REG(addr);
990 return 0;
993 static void omap_os_timer_write(void *opaque, target_phys_addr_t addr,
994 uint32_t value)
996 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
997 int offset = addr & OMAP_MPUI_REG_MASK;
999 switch (offset) {
1000 case 0x00: /* TVR */
1001 s->timer.reset_val = value & 0x00ffffff;
1002 break;
1004 case 0x04: /* TCR */
1005 OMAP_RO_REG(addr);
1006 break;
1008 case 0x08: /* CR */
1009 s->timer.ar = (value >> 3) & 1;
1010 s->timer.it_ena = (value >> 2) & 1;
1011 if (s->timer.st != (value & 1) || (value & 2)) {
1012 omap_timer_sync(&s->timer);
1013 s->timer.enable = value & 1;
1014 s->timer.st = value & 1;
1015 omap_timer_update(&s->timer);
1017 break;
1019 default:
1020 OMAP_BAD_REG(addr);
1024 static CPUReadMemoryFunc * const omap_os_timer_readfn[] = {
1025 omap_badwidth_read32,
1026 omap_badwidth_read32,
1027 omap_os_timer_read,
1030 static CPUWriteMemoryFunc * const omap_os_timer_writefn[] = {
1031 omap_badwidth_write32,
1032 omap_badwidth_write32,
1033 omap_os_timer_write,
1036 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
1038 qemu_del_timer(s->timer.timer);
1039 s->timer.enable = 0;
1040 s->timer.it_ena = 0;
1041 s->timer.reset_val = 0x00ffffff;
1042 s->timer.val = 0;
1043 s->timer.st = 0;
1044 s->timer.ptv = 0;
1045 s->timer.ar = 1;
1048 struct omap_32khz_timer_s *omap_os_timer_init(target_phys_addr_t base,
1049 qemu_irq irq, omap_clk clk)
1051 int iomemtype;
1052 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *)
1053 qemu_mallocz(sizeof(struct omap_32khz_timer_s));
1055 s->timer.irq = irq;
1056 s->timer.clk = clk;
1057 s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
1058 omap_os_timer_reset(s);
1059 omap_timer_clk_setup(&s->timer);
1061 iomemtype = cpu_register_io_memory(omap_os_timer_readfn,
1062 omap_os_timer_writefn, s);
1063 cpu_register_physical_memory(base, 0x800, iomemtype);
1065 return s;
1068 /* Ultra Low-Power Device Module */
1069 static uint32_t omap_ulpd_pm_read(void *opaque, target_phys_addr_t addr)
1071 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1072 uint16_t ret;
1074 switch (addr) {
1075 case 0x14: /* IT_STATUS */
1076 ret = s->ulpd_pm_regs[addr >> 2];
1077 s->ulpd_pm_regs[addr >> 2] = 0;
1078 qemu_irq_lower(s->irq[1][OMAP_INT_GAUGE_32K]);
1079 return ret;
1081 case 0x18: /* Reserved */
1082 case 0x1c: /* Reserved */
1083 case 0x20: /* Reserved */
1084 case 0x28: /* Reserved */
1085 case 0x2c: /* Reserved */
1086 OMAP_BAD_REG(addr);
1087 case 0x00: /* COUNTER_32_LSB */
1088 case 0x04: /* COUNTER_32_MSB */
1089 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
1090 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
1091 case 0x10: /* GAUGING_CTRL */
1092 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
1093 case 0x30: /* CLOCK_CTRL */
1094 case 0x34: /* SOFT_REQ */
1095 case 0x38: /* COUNTER_32_FIQ */
1096 case 0x3c: /* DPLL_CTRL */
1097 case 0x40: /* STATUS_REQ */
1098 /* XXX: check clk::usecount state for every clock */
1099 case 0x48: /* LOCL_TIME */
1100 case 0x4c: /* APLL_CTRL */
1101 case 0x50: /* POWER_CTRL */
1102 return s->ulpd_pm_regs[addr >> 2];
1105 OMAP_BAD_REG(addr);
1106 return 0;
1109 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
1110 uint16_t diff, uint16_t value)
1112 if (diff & (1 << 4)) /* USB_MCLK_EN */
1113 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
1114 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
1115 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
1118 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
1119 uint16_t diff, uint16_t value)
1121 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
1122 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
1123 if (diff & (1 << 1)) /* SOFT_COM_REQ */
1124 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
1125 if (diff & (1 << 2)) /* SOFT_SDW_REQ */
1126 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
1127 if (diff & (1 << 3)) /* SOFT_USB_REQ */
1128 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
1131 static void omap_ulpd_pm_write(void *opaque, target_phys_addr_t addr,
1132 uint32_t value)
1134 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1135 int64_t now, ticks;
1136 int div, mult;
1137 static const int bypass_div[4] = { 1, 2, 4, 4 };
1138 uint16_t diff;
1140 switch (addr) {
1141 case 0x00: /* COUNTER_32_LSB */
1142 case 0x04: /* COUNTER_32_MSB */
1143 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
1144 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
1145 case 0x14: /* IT_STATUS */
1146 case 0x40: /* STATUS_REQ */
1147 OMAP_RO_REG(addr);
1148 break;
1150 case 0x10: /* GAUGING_CTRL */
1151 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
1152 if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
1153 now = qemu_get_clock(vm_clock);
1155 if (value & 1)
1156 s->ulpd_gauge_start = now;
1157 else {
1158 now -= s->ulpd_gauge_start;
1160 /* 32-kHz ticks */
1161 ticks = muldiv64(now, 32768, get_ticks_per_sec());
1162 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
1163 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
1164 if (ticks >> 32) /* OVERFLOW_32K */
1165 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
1167 /* High frequency ticks */
1168 ticks = muldiv64(now, 12000000, get_ticks_per_sec());
1169 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
1170 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
1171 if (ticks >> 32) /* OVERFLOW_HI_FREQ */
1172 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
1174 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
1175 qemu_irq_raise(s->irq[1][OMAP_INT_GAUGE_32K]);
1178 s->ulpd_pm_regs[addr >> 2] = value;
1179 break;
1181 case 0x18: /* Reserved */
1182 case 0x1c: /* Reserved */
1183 case 0x20: /* Reserved */
1184 case 0x28: /* Reserved */
1185 case 0x2c: /* Reserved */
1186 OMAP_BAD_REG(addr);
1187 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
1188 case 0x38: /* COUNTER_32_FIQ */
1189 case 0x48: /* LOCL_TIME */
1190 case 0x50: /* POWER_CTRL */
1191 s->ulpd_pm_regs[addr >> 2] = value;
1192 break;
1194 case 0x30: /* CLOCK_CTRL */
1195 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
1196 s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
1197 omap_ulpd_clk_update(s, diff, value);
1198 break;
1200 case 0x34: /* SOFT_REQ */
1201 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
1202 s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
1203 omap_ulpd_req_update(s, diff, value);
1204 break;
1206 case 0x3c: /* DPLL_CTRL */
1207 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
1208 * omitted altogether, probably a typo. */
1209 /* This register has identical semantics with DPLL(1:3) control
1210 * registers, see omap_dpll_write() */
1211 diff = s->ulpd_pm_regs[addr >> 2] & value;
1212 s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
1213 if (diff & (0x3ff << 2)) {
1214 if (value & (1 << 4)) { /* PLL_ENABLE */
1215 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1216 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1217 } else {
1218 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1219 mult = 1;
1221 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
1224 /* Enter the desired mode. */
1225 s->ulpd_pm_regs[addr >> 2] =
1226 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
1227 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
1229 /* Act as if the lock is restored. */
1230 s->ulpd_pm_regs[addr >> 2] |= 2;
1231 break;
1233 case 0x4c: /* APLL_CTRL */
1234 diff = s->ulpd_pm_regs[addr >> 2] & value;
1235 s->ulpd_pm_regs[addr >> 2] = value & 0xf;
1236 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
1237 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
1238 (value & (1 << 0)) ? "apll" : "dpll4"));
1239 break;
1241 default:
1242 OMAP_BAD_REG(addr);
1246 static CPUReadMemoryFunc * const omap_ulpd_pm_readfn[] = {
1247 omap_badwidth_read16,
1248 omap_ulpd_pm_read,
1249 omap_badwidth_read16,
1252 static CPUWriteMemoryFunc * const omap_ulpd_pm_writefn[] = {
1253 omap_badwidth_write16,
1254 omap_ulpd_pm_write,
1255 omap_badwidth_write16,
1258 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
1260 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
1261 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
1262 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
1263 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
1264 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
1265 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
1266 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
1267 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
1268 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
1269 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
1270 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
1271 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
1272 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
1273 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
1274 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
1275 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
1276 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
1277 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
1278 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
1279 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
1280 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
1281 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
1282 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
1285 static void omap_ulpd_pm_init(target_phys_addr_t base,
1286 struct omap_mpu_state_s *mpu)
1288 int iomemtype = cpu_register_io_memory(omap_ulpd_pm_readfn,
1289 omap_ulpd_pm_writefn, mpu);
1291 cpu_register_physical_memory(base, 0x800, iomemtype);
1292 omap_ulpd_pm_reset(mpu);
1295 /* OMAP Pin Configuration */
1296 static uint32_t omap_pin_cfg_read(void *opaque, target_phys_addr_t addr)
1298 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1300 switch (addr) {
1301 case 0x00: /* FUNC_MUX_CTRL_0 */
1302 case 0x04: /* FUNC_MUX_CTRL_1 */
1303 case 0x08: /* FUNC_MUX_CTRL_2 */
1304 return s->func_mux_ctrl[addr >> 2];
1306 case 0x0c: /* COMP_MODE_CTRL_0 */
1307 return s->comp_mode_ctrl[0];
1309 case 0x10: /* FUNC_MUX_CTRL_3 */
1310 case 0x14: /* FUNC_MUX_CTRL_4 */
1311 case 0x18: /* FUNC_MUX_CTRL_5 */
1312 case 0x1c: /* FUNC_MUX_CTRL_6 */
1313 case 0x20: /* FUNC_MUX_CTRL_7 */
1314 case 0x24: /* FUNC_MUX_CTRL_8 */
1315 case 0x28: /* FUNC_MUX_CTRL_9 */
1316 case 0x2c: /* FUNC_MUX_CTRL_A */
1317 case 0x30: /* FUNC_MUX_CTRL_B */
1318 case 0x34: /* FUNC_MUX_CTRL_C */
1319 case 0x38: /* FUNC_MUX_CTRL_D */
1320 return s->func_mux_ctrl[(addr >> 2) - 1];
1322 case 0x40: /* PULL_DWN_CTRL_0 */
1323 case 0x44: /* PULL_DWN_CTRL_1 */
1324 case 0x48: /* PULL_DWN_CTRL_2 */
1325 case 0x4c: /* PULL_DWN_CTRL_3 */
1326 return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
1328 case 0x50: /* GATE_INH_CTRL_0 */
1329 return s->gate_inh_ctrl[0];
1331 case 0x60: /* VOLTAGE_CTRL_0 */
1332 return s->voltage_ctrl[0];
1334 case 0x70: /* TEST_DBG_CTRL_0 */
1335 return s->test_dbg_ctrl[0];
1337 case 0x80: /* MOD_CONF_CTRL_0 */
1338 return s->mod_conf_ctrl[0];
1341 OMAP_BAD_REG(addr);
1342 return 0;
1345 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
1346 uint32_t diff, uint32_t value)
1348 if (s->compat1509) {
1349 if (diff & (1 << 9)) /* BLUETOOTH */
1350 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
1351 (~value >> 9) & 1);
1352 if (diff & (1 << 7)) /* USB.CLKO */
1353 omap_clk_onoff(omap_findclk(s, "usb.clko"),
1354 (value >> 7) & 1);
1358 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
1359 uint32_t diff, uint32_t value)
1361 if (s->compat1509) {
1362 if (diff & (1 << 31)) /* MCBSP3_CLK_HIZ_DI */
1363 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"),
1364 (value >> 31) & 1);
1365 if (diff & (1 << 1)) /* CLK32K */
1366 omap_clk_onoff(omap_findclk(s, "clk32k_out"),
1367 (~value >> 1) & 1);
1371 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
1372 uint32_t diff, uint32_t value)
1374 if (diff & (1 << 31)) /* CONF_MOD_UART3_CLK_MODE_R */
1375 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
1376 omap_findclk(s, ((value >> 31) & 1) ?
1377 "ck_48m" : "armper_ck"));
1378 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
1379 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
1380 omap_findclk(s, ((value >> 30) & 1) ?
1381 "ck_48m" : "armper_ck"));
1382 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
1383 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
1384 omap_findclk(s, ((value >> 29) & 1) ?
1385 "ck_48m" : "armper_ck"));
1386 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
1387 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
1388 omap_findclk(s, ((value >> 23) & 1) ?
1389 "ck_48m" : "armper_ck"));
1390 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
1391 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
1392 omap_findclk(s, ((value >> 12) & 1) ?
1393 "ck_48m" : "armper_ck"));
1394 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
1395 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
1398 static void omap_pin_cfg_write(void *opaque, target_phys_addr_t addr,
1399 uint32_t value)
1401 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1402 uint32_t diff;
1404 switch (addr) {
1405 case 0x00: /* FUNC_MUX_CTRL_0 */
1406 diff = s->func_mux_ctrl[addr >> 2] ^ value;
1407 s->func_mux_ctrl[addr >> 2] = value;
1408 omap_pin_funcmux0_update(s, diff, value);
1409 return;
1411 case 0x04: /* FUNC_MUX_CTRL_1 */
1412 diff = s->func_mux_ctrl[addr >> 2] ^ value;
1413 s->func_mux_ctrl[addr >> 2] = value;
1414 omap_pin_funcmux1_update(s, diff, value);
1415 return;
1417 case 0x08: /* FUNC_MUX_CTRL_2 */
1418 s->func_mux_ctrl[addr >> 2] = value;
1419 return;
1421 case 0x0c: /* COMP_MODE_CTRL_0 */
1422 s->comp_mode_ctrl[0] = value;
1423 s->compat1509 = (value != 0x0000eaef);
1424 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
1425 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
1426 return;
1428 case 0x10: /* FUNC_MUX_CTRL_3 */
1429 case 0x14: /* FUNC_MUX_CTRL_4 */
1430 case 0x18: /* FUNC_MUX_CTRL_5 */
1431 case 0x1c: /* FUNC_MUX_CTRL_6 */
1432 case 0x20: /* FUNC_MUX_CTRL_7 */
1433 case 0x24: /* FUNC_MUX_CTRL_8 */
1434 case 0x28: /* FUNC_MUX_CTRL_9 */
1435 case 0x2c: /* FUNC_MUX_CTRL_A */
1436 case 0x30: /* FUNC_MUX_CTRL_B */
1437 case 0x34: /* FUNC_MUX_CTRL_C */
1438 case 0x38: /* FUNC_MUX_CTRL_D */
1439 s->func_mux_ctrl[(addr >> 2) - 1] = value;
1440 return;
1442 case 0x40: /* PULL_DWN_CTRL_0 */
1443 case 0x44: /* PULL_DWN_CTRL_1 */
1444 case 0x48: /* PULL_DWN_CTRL_2 */
1445 case 0x4c: /* PULL_DWN_CTRL_3 */
1446 s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
1447 return;
1449 case 0x50: /* GATE_INH_CTRL_0 */
1450 s->gate_inh_ctrl[0] = value;
1451 return;
1453 case 0x60: /* VOLTAGE_CTRL_0 */
1454 s->voltage_ctrl[0] = value;
1455 return;
1457 case 0x70: /* TEST_DBG_CTRL_0 */
1458 s->test_dbg_ctrl[0] = value;
1459 return;
1461 case 0x80: /* MOD_CONF_CTRL_0 */
1462 diff = s->mod_conf_ctrl[0] ^ value;
1463 s->mod_conf_ctrl[0] = value;
1464 omap_pin_modconf1_update(s, diff, value);
1465 return;
1467 default:
1468 OMAP_BAD_REG(addr);
1472 static CPUReadMemoryFunc * const omap_pin_cfg_readfn[] = {
1473 omap_badwidth_read32,
1474 omap_badwidth_read32,
1475 omap_pin_cfg_read,
1478 static CPUWriteMemoryFunc * const omap_pin_cfg_writefn[] = {
1479 omap_badwidth_write32,
1480 omap_badwidth_write32,
1481 omap_pin_cfg_write,
1484 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
1486 /* Start in Compatibility Mode. */
1487 mpu->compat1509 = 1;
1488 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
1489 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
1490 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
1491 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
1492 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
1493 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
1494 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
1495 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
1496 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
1497 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
1500 static void omap_pin_cfg_init(target_phys_addr_t base,
1501 struct omap_mpu_state_s *mpu)
1503 int iomemtype = cpu_register_io_memory(omap_pin_cfg_readfn,
1504 omap_pin_cfg_writefn, mpu);
1506 cpu_register_physical_memory(base, 0x800, iomemtype);
1507 omap_pin_cfg_reset(mpu);
1510 /* Device Identification, Die Identification */
1511 static uint32_t omap_id_read(void *opaque, target_phys_addr_t addr)
1513 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1515 switch (addr) {
1516 case 0xfffe1800: /* DIE_ID_LSB */
1517 return 0xc9581f0e;
1518 case 0xfffe1804: /* DIE_ID_MSB */
1519 return 0xa8858bfa;
1521 case 0xfffe2000: /* PRODUCT_ID_LSB */
1522 return 0x00aaaafc;
1523 case 0xfffe2004: /* PRODUCT_ID_MSB */
1524 return 0xcafeb574;
1526 case 0xfffed400: /* JTAG_ID_LSB */
1527 switch (s->mpu_model) {
1528 case omap310:
1529 return 0x03310315;
1530 case omap1510:
1531 return 0x03310115;
1532 default:
1533 hw_error("%s: bad mpu model\n", __FUNCTION__);
1535 break;
1537 case 0xfffed404: /* JTAG_ID_MSB */
1538 switch (s->mpu_model) {
1539 case omap310:
1540 return 0xfb57402f;
1541 case omap1510:
1542 return 0xfb47002f;
1543 default:
1544 hw_error("%s: bad mpu model\n", __FUNCTION__);
1546 break;
1549 OMAP_BAD_REG(addr);
1550 return 0;
1553 static void omap_id_write(void *opaque, target_phys_addr_t addr,
1554 uint32_t value)
1556 OMAP_BAD_REG(addr);
1559 static CPUReadMemoryFunc * const omap_id_readfn[] = {
1560 omap_badwidth_read32,
1561 omap_badwidth_read32,
1562 omap_id_read,
1565 static CPUWriteMemoryFunc * const omap_id_writefn[] = {
1566 omap_badwidth_write32,
1567 omap_badwidth_write32,
1568 omap_id_write,
1571 static void omap_id_init(struct omap_mpu_state_s *mpu)
1573 int iomemtype = cpu_register_io_memory(omap_id_readfn,
1574 omap_id_writefn, mpu);
1575 cpu_register_physical_memory_offset(0xfffe1800, 0x800, iomemtype, 0xfffe1800);
1576 cpu_register_physical_memory_offset(0xfffed400, 0x100, iomemtype, 0xfffed400);
1577 if (!cpu_is_omap15xx(mpu))
1578 cpu_register_physical_memory_offset(0xfffe2000, 0x800, iomemtype, 0xfffe2000);
1581 /* MPUI Control (Dummy) */
1582 static uint32_t omap_mpui_read(void *opaque, target_phys_addr_t addr)
1584 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1586 switch (addr) {
1587 case 0x00: /* CTRL */
1588 return s->mpui_ctrl;
1589 case 0x04: /* DEBUG_ADDR */
1590 return 0x01ffffff;
1591 case 0x08: /* DEBUG_DATA */
1592 return 0xffffffff;
1593 case 0x0c: /* DEBUG_FLAG */
1594 return 0x00000800;
1595 case 0x10: /* STATUS */
1596 return 0x00000000;
1598 /* Not in OMAP310 */
1599 case 0x14: /* DSP_STATUS */
1600 case 0x18: /* DSP_BOOT_CONFIG */
1601 return 0x00000000;
1602 case 0x1c: /* DSP_MPUI_CONFIG */
1603 return 0x0000ffff;
1606 OMAP_BAD_REG(addr);
1607 return 0;
1610 static void omap_mpui_write(void *opaque, target_phys_addr_t addr,
1611 uint32_t value)
1613 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1615 switch (addr) {
1616 case 0x00: /* CTRL */
1617 s->mpui_ctrl = value & 0x007fffff;
1618 break;
1620 case 0x04: /* DEBUG_ADDR */
1621 case 0x08: /* DEBUG_DATA */
1622 case 0x0c: /* DEBUG_FLAG */
1623 case 0x10: /* STATUS */
1624 /* Not in OMAP310 */
1625 case 0x14: /* DSP_STATUS */
1626 OMAP_RO_REG(addr);
1627 case 0x18: /* DSP_BOOT_CONFIG */
1628 case 0x1c: /* DSP_MPUI_CONFIG */
1629 break;
1631 default:
1632 OMAP_BAD_REG(addr);
1636 static CPUReadMemoryFunc * const omap_mpui_readfn[] = {
1637 omap_badwidth_read32,
1638 omap_badwidth_read32,
1639 omap_mpui_read,
1642 static CPUWriteMemoryFunc * const omap_mpui_writefn[] = {
1643 omap_badwidth_write32,
1644 omap_badwidth_write32,
1645 omap_mpui_write,
1648 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1650 s->mpui_ctrl = 0x0003ff1b;
1653 static void omap_mpui_init(target_phys_addr_t base,
1654 struct omap_mpu_state_s *mpu)
1656 int iomemtype = cpu_register_io_memory(omap_mpui_readfn,
1657 omap_mpui_writefn, mpu);
1659 cpu_register_physical_memory(base, 0x100, iomemtype);
1661 omap_mpui_reset(mpu);
1664 /* TIPB Bridges */
1665 struct omap_tipb_bridge_s {
1666 qemu_irq abort;
1668 int width_intr;
1669 uint16_t control;
1670 uint16_t alloc;
1671 uint16_t buffer;
1672 uint16_t enh_control;
1675 static uint32_t omap_tipb_bridge_read(void *opaque, target_phys_addr_t addr)
1677 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1679 switch (addr) {
1680 case 0x00: /* TIPB_CNTL */
1681 return s->control;
1682 case 0x04: /* TIPB_BUS_ALLOC */
1683 return s->alloc;
1684 case 0x08: /* MPU_TIPB_CNTL */
1685 return s->buffer;
1686 case 0x0c: /* ENHANCED_TIPB_CNTL */
1687 return s->enh_control;
1688 case 0x10: /* ADDRESS_DBG */
1689 case 0x14: /* DATA_DEBUG_LOW */
1690 case 0x18: /* DATA_DEBUG_HIGH */
1691 return 0xffff;
1692 case 0x1c: /* DEBUG_CNTR_SIG */
1693 return 0x00f8;
1696 OMAP_BAD_REG(addr);
1697 return 0;
1700 static void omap_tipb_bridge_write(void *opaque, target_phys_addr_t addr,
1701 uint32_t value)
1703 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1705 switch (addr) {
1706 case 0x00: /* TIPB_CNTL */
1707 s->control = value & 0xffff;
1708 break;
1710 case 0x04: /* TIPB_BUS_ALLOC */
1711 s->alloc = value & 0x003f;
1712 break;
1714 case 0x08: /* MPU_TIPB_CNTL */
1715 s->buffer = value & 0x0003;
1716 break;
1718 case 0x0c: /* ENHANCED_TIPB_CNTL */
1719 s->width_intr = !(value & 2);
1720 s->enh_control = value & 0x000f;
1721 break;
1723 case 0x10: /* ADDRESS_DBG */
1724 case 0x14: /* DATA_DEBUG_LOW */
1725 case 0x18: /* DATA_DEBUG_HIGH */
1726 case 0x1c: /* DEBUG_CNTR_SIG */
1727 OMAP_RO_REG(addr);
1728 break;
1730 default:
1731 OMAP_BAD_REG(addr);
1735 static CPUReadMemoryFunc * const omap_tipb_bridge_readfn[] = {
1736 omap_badwidth_read16,
1737 omap_tipb_bridge_read,
1738 omap_tipb_bridge_read,
1741 static CPUWriteMemoryFunc * const omap_tipb_bridge_writefn[] = {
1742 omap_badwidth_write16,
1743 omap_tipb_bridge_write,
1744 omap_tipb_bridge_write,
1747 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1749 s->control = 0xffff;
1750 s->alloc = 0x0009;
1751 s->buffer = 0x0000;
1752 s->enh_control = 0x000f;
1755 struct omap_tipb_bridge_s *omap_tipb_bridge_init(target_phys_addr_t base,
1756 qemu_irq abort_irq, omap_clk clk)
1758 int iomemtype;
1759 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *)
1760 qemu_mallocz(sizeof(struct omap_tipb_bridge_s));
1762 s->abort = abort_irq;
1763 omap_tipb_bridge_reset(s);
1765 iomemtype = cpu_register_io_memory(omap_tipb_bridge_readfn,
1766 omap_tipb_bridge_writefn, s);
1767 cpu_register_physical_memory(base, 0x100, iomemtype);
1769 return s;
1772 /* Dummy Traffic Controller's Memory Interface */
1773 static uint32_t omap_tcmi_read(void *opaque, target_phys_addr_t addr)
1775 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1776 uint32_t ret;
1778 switch (addr) {
1779 case 0x00: /* IMIF_PRIO */
1780 case 0x04: /* EMIFS_PRIO */
1781 case 0x08: /* EMIFF_PRIO */
1782 case 0x0c: /* EMIFS_CONFIG */
1783 case 0x10: /* EMIFS_CS0_CONFIG */
1784 case 0x14: /* EMIFS_CS1_CONFIG */
1785 case 0x18: /* EMIFS_CS2_CONFIG */
1786 case 0x1c: /* EMIFS_CS3_CONFIG */
1787 case 0x24: /* EMIFF_MRS */
1788 case 0x28: /* TIMEOUT1 */
1789 case 0x2c: /* TIMEOUT2 */
1790 case 0x30: /* TIMEOUT3 */
1791 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1792 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1793 return s->tcmi_regs[addr >> 2];
1795 case 0x20: /* EMIFF_SDRAM_CONFIG */
1796 ret = s->tcmi_regs[addr >> 2];
1797 s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1798 /* XXX: We can try using the VGA_DIRTY flag for this */
1799 return ret;
1802 OMAP_BAD_REG(addr);
1803 return 0;
1806 static void omap_tcmi_write(void *opaque, target_phys_addr_t addr,
1807 uint32_t value)
1809 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1811 switch (addr) {
1812 case 0x00: /* IMIF_PRIO */
1813 case 0x04: /* EMIFS_PRIO */
1814 case 0x08: /* EMIFF_PRIO */
1815 case 0x10: /* EMIFS_CS0_CONFIG */
1816 case 0x14: /* EMIFS_CS1_CONFIG */
1817 case 0x18: /* EMIFS_CS2_CONFIG */
1818 case 0x1c: /* EMIFS_CS3_CONFIG */
1819 case 0x20: /* EMIFF_SDRAM_CONFIG */
1820 case 0x24: /* EMIFF_MRS */
1821 case 0x28: /* TIMEOUT1 */
1822 case 0x2c: /* TIMEOUT2 */
1823 case 0x30: /* TIMEOUT3 */
1824 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1825 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1826 s->tcmi_regs[addr >> 2] = value;
1827 break;
1828 case 0x0c: /* EMIFS_CONFIG */
1829 s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1830 break;
1832 default:
1833 OMAP_BAD_REG(addr);
1837 static CPUReadMemoryFunc * const omap_tcmi_readfn[] = {
1838 omap_badwidth_read32,
1839 omap_badwidth_read32,
1840 omap_tcmi_read,
1843 static CPUWriteMemoryFunc * const omap_tcmi_writefn[] = {
1844 omap_badwidth_write32,
1845 omap_badwidth_write32,
1846 omap_tcmi_write,
1849 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1851 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1852 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1853 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1854 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1855 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1856 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1857 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1858 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1859 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1860 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1861 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1862 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1863 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1864 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1865 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1868 static void omap_tcmi_init(target_phys_addr_t base,
1869 struct omap_mpu_state_s *mpu)
1871 int iomemtype = cpu_register_io_memory(omap_tcmi_readfn,
1872 omap_tcmi_writefn, mpu);
1874 cpu_register_physical_memory(base, 0x100, iomemtype);
1875 omap_tcmi_reset(mpu);
1878 /* Digital phase-locked loops control */
1879 static uint32_t omap_dpll_read(void *opaque, target_phys_addr_t addr)
1881 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1883 if (addr == 0x00) /* CTL_REG */
1884 return s->mode;
1886 OMAP_BAD_REG(addr);
1887 return 0;
1890 static void omap_dpll_write(void *opaque, target_phys_addr_t addr,
1891 uint32_t value)
1893 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1894 uint16_t diff;
1895 static const int bypass_div[4] = { 1, 2, 4, 4 };
1896 int div, mult;
1898 if (addr == 0x00) { /* CTL_REG */
1899 /* See omap_ulpd_pm_write() too */
1900 diff = s->mode & value;
1901 s->mode = value & 0x2fff;
1902 if (diff & (0x3ff << 2)) {
1903 if (value & (1 << 4)) { /* PLL_ENABLE */
1904 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1905 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1906 } else {
1907 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1908 mult = 1;
1910 omap_clk_setrate(s->dpll, div, mult);
1913 /* Enter the desired mode. */
1914 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1916 /* Act as if the lock is restored. */
1917 s->mode |= 2;
1918 } else {
1919 OMAP_BAD_REG(addr);
1923 static CPUReadMemoryFunc * const omap_dpll_readfn[] = {
1924 omap_badwidth_read16,
1925 omap_dpll_read,
1926 omap_badwidth_read16,
1929 static CPUWriteMemoryFunc * const omap_dpll_writefn[] = {
1930 omap_badwidth_write16,
1931 omap_dpll_write,
1932 omap_badwidth_write16,
1935 static void omap_dpll_reset(struct dpll_ctl_s *s)
1937 s->mode = 0x2002;
1938 omap_clk_setrate(s->dpll, 1, 1);
1941 static void omap_dpll_init(struct dpll_ctl_s *s, target_phys_addr_t base,
1942 omap_clk clk)
1944 int iomemtype = cpu_register_io_memory(omap_dpll_readfn,
1945 omap_dpll_writefn, s);
1947 s->dpll = clk;
1948 omap_dpll_reset(s);
1950 cpu_register_physical_memory(base, 0x100, iomemtype);
1953 /* UARTs */
1954 struct omap_uart_s {
1955 target_phys_addr_t base;
1956 SerialState *serial; /* TODO */
1957 struct omap_target_agent_s *ta;
1958 omap_clk fclk;
1959 qemu_irq irq;
1961 uint8_t eblr;
1962 uint8_t syscontrol;
1963 uint8_t wkup;
1964 uint8_t cfps;
1965 uint8_t mdr[2];
1966 uint8_t scr;
1967 uint8_t clksel;
1970 void omap_uart_reset(struct omap_uart_s *s)
1972 s->eblr = 0x00;
1973 s->syscontrol = 0;
1974 s->wkup = 0x3f;
1975 s->cfps = 0x69;
1976 s->clksel = 0;
1979 struct omap_uart_s *omap_uart_init(target_phys_addr_t base,
1980 qemu_irq irq, omap_clk fclk, omap_clk iclk,
1981 qemu_irq txdma, qemu_irq rxdma, CharDriverState *chr)
1983 struct omap_uart_s *s = (struct omap_uart_s *)
1984 qemu_mallocz(sizeof(struct omap_uart_s));
1986 s->base = base;
1987 s->fclk = fclk;
1988 s->irq = irq;
1989 #ifdef TARGET_WORDS_BIGENDIAN
1990 s->serial = serial_mm_init(base, 2, irq, omap_clk_getrate(fclk)/16,
1991 chr ?: qemu_chr_open("null", "null", NULL), 1,
1993 #else
1994 s->serial = serial_mm_init(base, 2, irq, omap_clk_getrate(fclk)/16,
1995 chr ?: qemu_chr_open("null", "null", NULL), 1,
1997 #endif
1998 return s;
2001 static uint32_t omap_uart_read(void *opaque, target_phys_addr_t addr)
2003 struct omap_uart_s *s = (struct omap_uart_s *) opaque;
2005 addr &= 0xff;
2006 switch (addr) {
2007 case 0x20: /* MDR1 */
2008 return s->mdr[0];
2009 case 0x24: /* MDR2 */
2010 return s->mdr[1];
2011 case 0x40: /* SCR */
2012 return s->scr;
2013 case 0x44: /* SSR */
2014 return 0x0;
2015 case 0x48: /* EBLR (OMAP2) */
2016 return s->eblr;
2017 case 0x4C: /* OSC_12M_SEL (OMAP1) */
2018 return s->clksel;
2019 case 0x50: /* MVR */
2020 return 0x30;
2021 case 0x54: /* SYSC (OMAP2) */
2022 return s->syscontrol;
2023 case 0x58: /* SYSS (OMAP2) */
2024 return 1;
2025 case 0x5c: /* WER (OMAP2) */
2026 return s->wkup;
2027 case 0x60: /* CFPS (OMAP2) */
2028 return s->cfps;
2031 OMAP_BAD_REG(addr);
2032 return 0;
2035 static void omap_uart_write(void *opaque, target_phys_addr_t addr,
2036 uint32_t value)
2038 struct omap_uart_s *s = (struct omap_uart_s *) opaque;
2040 addr &= 0xff;
2041 switch (addr) {
2042 case 0x20: /* MDR1 */
2043 s->mdr[0] = value & 0x7f;
2044 break;
2045 case 0x24: /* MDR2 */
2046 s->mdr[1] = value & 0xff;
2047 break;
2048 case 0x40: /* SCR */
2049 s->scr = value & 0xff;
2050 break;
2051 case 0x48: /* EBLR (OMAP2) */
2052 s->eblr = value & 0xff;
2053 break;
2054 case 0x4C: /* OSC_12M_SEL (OMAP1) */
2055 s->clksel = value & 1;
2056 break;
2057 case 0x44: /* SSR */
2058 case 0x50: /* MVR */
2059 case 0x58: /* SYSS (OMAP2) */
2060 OMAP_RO_REG(addr);
2061 break;
2062 case 0x54: /* SYSC (OMAP2) */
2063 s->syscontrol = value & 0x1d;
2064 if (value & 2)
2065 omap_uart_reset(s);
2066 break;
2067 case 0x5c: /* WER (OMAP2) */
2068 s->wkup = value & 0x7f;
2069 break;
2070 case 0x60: /* CFPS (OMAP2) */
2071 s->cfps = value & 0xff;
2072 break;
2073 default:
2074 OMAP_BAD_REG(addr);
2078 static CPUReadMemoryFunc * const omap_uart_readfn[] = {
2079 omap_uart_read,
2080 omap_uart_read,
2081 omap_badwidth_read8,
2084 static CPUWriteMemoryFunc * const omap_uart_writefn[] = {
2085 omap_uart_write,
2086 omap_uart_write,
2087 omap_badwidth_write8,
2090 struct omap_uart_s *omap2_uart_init(struct omap_target_agent_s *ta,
2091 qemu_irq irq, omap_clk fclk, omap_clk iclk,
2092 qemu_irq txdma, qemu_irq rxdma, CharDriverState *chr)
2094 target_phys_addr_t base = omap_l4_attach(ta, 0, 0);
2095 struct omap_uart_s *s = omap_uart_init(base, irq,
2096 fclk, iclk, txdma, rxdma, chr);
2097 int iomemtype = cpu_register_io_memory(omap_uart_readfn,
2098 omap_uart_writefn, s);
2100 s->ta = ta;
2102 cpu_register_physical_memory(base + 0x20, 0x100, iomemtype);
2104 return s;
2107 void omap_uart_attach(struct omap_uart_s *s, CharDriverState *chr)
2109 /* TODO: Should reuse or destroy current s->serial */
2110 #ifdef TARGET_WORDS_BIGENDIAN
2111 s->serial = serial_mm_init(s->base, 2, s->irq,
2112 omap_clk_getrate(s->fclk) / 16,
2113 chr ?: qemu_chr_open("null", "null", NULL), 1,
2115 #else
2116 s->serial = serial_mm_init(s->base, 2, s->irq,
2117 omap_clk_getrate(s->fclk) / 16,
2118 chr ?: qemu_chr_open("null", "null", NULL), 1,
2120 #endif
2123 /* MPU Clock/Reset/Power Mode Control */
2124 static uint32_t omap_clkm_read(void *opaque, target_phys_addr_t addr)
2126 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2128 switch (addr) {
2129 case 0x00: /* ARM_CKCTL */
2130 return s->clkm.arm_ckctl;
2132 case 0x04: /* ARM_IDLECT1 */
2133 return s->clkm.arm_idlect1;
2135 case 0x08: /* ARM_IDLECT2 */
2136 return s->clkm.arm_idlect2;
2138 case 0x0c: /* ARM_EWUPCT */
2139 return s->clkm.arm_ewupct;
2141 case 0x10: /* ARM_RSTCT1 */
2142 return s->clkm.arm_rstct1;
2144 case 0x14: /* ARM_RSTCT2 */
2145 return s->clkm.arm_rstct2;
2147 case 0x18: /* ARM_SYSST */
2148 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
2150 case 0x1c: /* ARM_CKOUT1 */
2151 return s->clkm.arm_ckout1;
2153 case 0x20: /* ARM_CKOUT2 */
2154 break;
2157 OMAP_BAD_REG(addr);
2158 return 0;
2161 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
2162 uint16_t diff, uint16_t value)
2164 omap_clk clk;
2166 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
2167 if (value & (1 << 14))
2168 /* Reserved */;
2169 else {
2170 clk = omap_findclk(s, "arminth_ck");
2171 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
2174 if (diff & (1 << 12)) { /* ARM_TIMXO */
2175 clk = omap_findclk(s, "armtim_ck");
2176 if (value & (1 << 12))
2177 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
2178 else
2179 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
2181 /* XXX: en_dspck */
2182 if (diff & (3 << 10)) { /* DSPMMUDIV */
2183 clk = omap_findclk(s, "dspmmu_ck");
2184 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
2186 if (diff & (3 << 8)) { /* TCDIV */
2187 clk = omap_findclk(s, "tc_ck");
2188 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
2190 if (diff & (3 << 6)) { /* DSPDIV */
2191 clk = omap_findclk(s, "dsp_ck");
2192 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
2194 if (diff & (3 << 4)) { /* ARMDIV */
2195 clk = omap_findclk(s, "arm_ck");
2196 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
2198 if (diff & (3 << 2)) { /* LCDDIV */
2199 clk = omap_findclk(s, "lcd_ck");
2200 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
2202 if (diff & (3 << 0)) { /* PERDIV */
2203 clk = omap_findclk(s, "armper_ck");
2204 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
2208 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
2209 uint16_t diff, uint16_t value)
2211 omap_clk clk;
2213 if (value & (1 << 11)) /* SETARM_IDLE */
2214 cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
2215 if (!(value & (1 << 10))) /* WKUP_MODE */
2216 qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
2218 #define SET_CANIDLE(clock, bit) \
2219 if (diff & (1 << bit)) { \
2220 clk = omap_findclk(s, clock); \
2221 omap_clk_canidle(clk, (value >> bit) & 1); \
2223 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
2224 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
2225 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
2226 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
2227 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
2228 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
2229 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
2230 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
2231 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
2232 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
2233 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
2234 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
2235 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
2236 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
2239 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
2240 uint16_t diff, uint16_t value)
2242 omap_clk clk;
2244 #define SET_ONOFF(clock, bit) \
2245 if (diff & (1 << bit)) { \
2246 clk = omap_findclk(s, clock); \
2247 omap_clk_onoff(clk, (value >> bit) & 1); \
2249 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
2250 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
2251 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
2252 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
2253 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
2254 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
2255 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
2256 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
2257 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
2258 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
2259 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
2262 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
2263 uint16_t diff, uint16_t value)
2265 omap_clk clk;
2267 if (diff & (3 << 4)) { /* TCLKOUT */
2268 clk = omap_findclk(s, "tclk_out");
2269 switch ((value >> 4) & 3) {
2270 case 1:
2271 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
2272 omap_clk_onoff(clk, 1);
2273 break;
2274 case 2:
2275 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
2276 omap_clk_onoff(clk, 1);
2277 break;
2278 default:
2279 omap_clk_onoff(clk, 0);
2282 if (diff & (3 << 2)) { /* DCLKOUT */
2283 clk = omap_findclk(s, "dclk_out");
2284 switch ((value >> 2) & 3) {
2285 case 0:
2286 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
2287 break;
2288 case 1:
2289 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
2290 break;
2291 case 2:
2292 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
2293 break;
2294 case 3:
2295 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
2296 break;
2299 if (diff & (3 << 0)) { /* ACLKOUT */
2300 clk = omap_findclk(s, "aclk_out");
2301 switch ((value >> 0) & 3) {
2302 case 1:
2303 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
2304 omap_clk_onoff(clk, 1);
2305 break;
2306 case 2:
2307 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
2308 omap_clk_onoff(clk, 1);
2309 break;
2310 case 3:
2311 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
2312 omap_clk_onoff(clk, 1);
2313 break;
2314 default:
2315 omap_clk_onoff(clk, 0);
2320 static void omap_clkm_write(void *opaque, target_phys_addr_t addr,
2321 uint32_t value)
2323 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2324 uint16_t diff;
2325 omap_clk clk;
2326 static const char *clkschemename[8] = {
2327 "fully synchronous", "fully asynchronous", "synchronous scalable",
2328 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
2331 switch (addr) {
2332 case 0x00: /* ARM_CKCTL */
2333 diff = s->clkm.arm_ckctl ^ value;
2334 s->clkm.arm_ckctl = value & 0x7fff;
2335 omap_clkm_ckctl_update(s, diff, value);
2336 return;
2338 case 0x04: /* ARM_IDLECT1 */
2339 diff = s->clkm.arm_idlect1 ^ value;
2340 s->clkm.arm_idlect1 = value & 0x0fff;
2341 omap_clkm_idlect1_update(s, diff, value);
2342 return;
2344 case 0x08: /* ARM_IDLECT2 */
2345 diff = s->clkm.arm_idlect2 ^ value;
2346 s->clkm.arm_idlect2 = value & 0x07ff;
2347 omap_clkm_idlect2_update(s, diff, value);
2348 return;
2350 case 0x0c: /* ARM_EWUPCT */
2351 diff = s->clkm.arm_ewupct ^ value;
2352 s->clkm.arm_ewupct = value & 0x003f;
2353 return;
2355 case 0x10: /* ARM_RSTCT1 */
2356 diff = s->clkm.arm_rstct1 ^ value;
2357 s->clkm.arm_rstct1 = value & 0x0007;
2358 if (value & 9) {
2359 qemu_system_reset_request();
2360 s->clkm.cold_start = 0xa;
2362 if (diff & ~value & 4) { /* DSP_RST */
2363 omap_mpui_reset(s);
2364 omap_tipb_bridge_reset(s->private_tipb);
2365 omap_tipb_bridge_reset(s->public_tipb);
2367 if (diff & 2) { /* DSP_EN */
2368 clk = omap_findclk(s, "dsp_ck");
2369 omap_clk_canidle(clk, (~value >> 1) & 1);
2371 return;
2373 case 0x14: /* ARM_RSTCT2 */
2374 s->clkm.arm_rstct2 = value & 0x0001;
2375 return;
2377 case 0x18: /* ARM_SYSST */
2378 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
2379 s->clkm.clocking_scheme = (value >> 11) & 7;
2380 printf("%s: clocking scheme set to %s\n", __FUNCTION__,
2381 clkschemename[s->clkm.clocking_scheme]);
2383 s->clkm.cold_start &= value & 0x3f;
2384 return;
2386 case 0x1c: /* ARM_CKOUT1 */
2387 diff = s->clkm.arm_ckout1 ^ value;
2388 s->clkm.arm_ckout1 = value & 0x003f;
2389 omap_clkm_ckout1_update(s, diff, value);
2390 return;
2392 case 0x20: /* ARM_CKOUT2 */
2393 default:
2394 OMAP_BAD_REG(addr);
2398 static CPUReadMemoryFunc * const omap_clkm_readfn[] = {
2399 omap_badwidth_read16,
2400 omap_clkm_read,
2401 omap_badwidth_read16,
2404 static CPUWriteMemoryFunc * const omap_clkm_writefn[] = {
2405 omap_badwidth_write16,
2406 omap_clkm_write,
2407 omap_badwidth_write16,
2410 static uint32_t omap_clkdsp_read(void *opaque, target_phys_addr_t addr)
2412 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2414 switch (addr) {
2415 case 0x04: /* DSP_IDLECT1 */
2416 return s->clkm.dsp_idlect1;
2418 case 0x08: /* DSP_IDLECT2 */
2419 return s->clkm.dsp_idlect2;
2421 case 0x14: /* DSP_RSTCT2 */
2422 return s->clkm.dsp_rstct2;
2424 case 0x18: /* DSP_SYSST */
2425 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
2426 (s->env->halted << 6); /* Quite useless... */
2429 OMAP_BAD_REG(addr);
2430 return 0;
2433 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
2434 uint16_t diff, uint16_t value)
2436 omap_clk clk;
2438 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
2441 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
2442 uint16_t diff, uint16_t value)
2444 omap_clk clk;
2446 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
2449 static void omap_clkdsp_write(void *opaque, target_phys_addr_t addr,
2450 uint32_t value)
2452 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2453 uint16_t diff;
2455 switch (addr) {
2456 case 0x04: /* DSP_IDLECT1 */
2457 diff = s->clkm.dsp_idlect1 ^ value;
2458 s->clkm.dsp_idlect1 = value & 0x01f7;
2459 omap_clkdsp_idlect1_update(s, diff, value);
2460 break;
2462 case 0x08: /* DSP_IDLECT2 */
2463 s->clkm.dsp_idlect2 = value & 0x0037;
2464 diff = s->clkm.dsp_idlect1 ^ value;
2465 omap_clkdsp_idlect2_update(s, diff, value);
2466 break;
2468 case 0x14: /* DSP_RSTCT2 */
2469 s->clkm.dsp_rstct2 = value & 0x0001;
2470 break;
2472 case 0x18: /* DSP_SYSST */
2473 s->clkm.cold_start &= value & 0x3f;
2474 break;
2476 default:
2477 OMAP_BAD_REG(addr);
2481 static CPUReadMemoryFunc * const omap_clkdsp_readfn[] = {
2482 omap_badwidth_read16,
2483 omap_clkdsp_read,
2484 omap_badwidth_read16,
2487 static CPUWriteMemoryFunc * const omap_clkdsp_writefn[] = {
2488 omap_badwidth_write16,
2489 omap_clkdsp_write,
2490 omap_badwidth_write16,
2493 static void omap_clkm_reset(struct omap_mpu_state_s *s)
2495 if (s->wdt && s->wdt->reset)
2496 s->clkm.cold_start = 0x6;
2497 s->clkm.clocking_scheme = 0;
2498 omap_clkm_ckctl_update(s, ~0, 0x3000);
2499 s->clkm.arm_ckctl = 0x3000;
2500 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
2501 s->clkm.arm_idlect1 = 0x0400;
2502 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
2503 s->clkm.arm_idlect2 = 0x0100;
2504 s->clkm.arm_ewupct = 0x003f;
2505 s->clkm.arm_rstct1 = 0x0000;
2506 s->clkm.arm_rstct2 = 0x0000;
2507 s->clkm.arm_ckout1 = 0x0015;
2508 s->clkm.dpll1_mode = 0x2002;
2509 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
2510 s->clkm.dsp_idlect1 = 0x0040;
2511 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
2512 s->clkm.dsp_idlect2 = 0x0000;
2513 s->clkm.dsp_rstct2 = 0x0000;
2516 static void omap_clkm_init(target_phys_addr_t mpu_base,
2517 target_phys_addr_t dsp_base, struct omap_mpu_state_s *s)
2519 int iomemtype[2] = {
2520 cpu_register_io_memory(omap_clkm_readfn, omap_clkm_writefn, s),
2521 cpu_register_io_memory(omap_clkdsp_readfn, omap_clkdsp_writefn, s),
2524 s->clkm.arm_idlect1 = 0x03ff;
2525 s->clkm.arm_idlect2 = 0x0100;
2526 s->clkm.dsp_idlect1 = 0x0002;
2527 omap_clkm_reset(s);
2528 s->clkm.cold_start = 0x3a;
2530 cpu_register_physical_memory(mpu_base, 0x100, iomemtype[0]);
2531 cpu_register_physical_memory(dsp_base, 0x1000, iomemtype[1]);
2534 /* MPU I/O */
2535 struct omap_mpuio_s {
2536 qemu_irq irq;
2537 qemu_irq kbd_irq;
2538 qemu_irq *in;
2539 qemu_irq handler[16];
2540 qemu_irq wakeup;
2542 uint16_t inputs;
2543 uint16_t outputs;
2544 uint16_t dir;
2545 uint16_t edge;
2546 uint16_t mask;
2547 uint16_t ints;
2549 uint16_t debounce;
2550 uint16_t latch;
2551 uint8_t event;
2553 uint8_t buttons[5];
2554 uint8_t row_latch;
2555 uint8_t cols;
2556 int kbd_mask;
2557 int clk;
2560 static void omap_mpuio_set(void *opaque, int line, int level)
2562 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2563 uint16_t prev = s->inputs;
2565 if (level)
2566 s->inputs |= 1 << line;
2567 else
2568 s->inputs &= ~(1 << line);
2570 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
2571 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
2572 s->ints |= 1 << line;
2573 qemu_irq_raise(s->irq);
2574 /* TODO: wakeup */
2576 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
2577 (s->event >> 1) == line) /* PIN_SELECT */
2578 s->latch = s->inputs;
2582 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
2584 int i;
2585 uint8_t *row, rows = 0, cols = ~s->cols;
2587 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
2588 if (*row & cols)
2589 rows |= i;
2591 qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
2592 s->row_latch = ~rows;
2595 static uint32_t omap_mpuio_read(void *opaque, target_phys_addr_t addr)
2597 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2598 int offset = addr & OMAP_MPUI_REG_MASK;
2599 uint16_t ret;
2601 switch (offset) {
2602 case 0x00: /* INPUT_LATCH */
2603 return s->inputs;
2605 case 0x04: /* OUTPUT_REG */
2606 return s->outputs;
2608 case 0x08: /* IO_CNTL */
2609 return s->dir;
2611 case 0x10: /* KBR_LATCH */
2612 return s->row_latch;
2614 case 0x14: /* KBC_REG */
2615 return s->cols;
2617 case 0x18: /* GPIO_EVENT_MODE_REG */
2618 return s->event;
2620 case 0x1c: /* GPIO_INT_EDGE_REG */
2621 return s->edge;
2623 case 0x20: /* KBD_INT */
2624 return (~s->row_latch & 0x1f) && !s->kbd_mask;
2626 case 0x24: /* GPIO_INT */
2627 ret = s->ints;
2628 s->ints &= s->mask;
2629 if (ret)
2630 qemu_irq_lower(s->irq);
2631 return ret;
2633 case 0x28: /* KBD_MASKIT */
2634 return s->kbd_mask;
2636 case 0x2c: /* GPIO_MASKIT */
2637 return s->mask;
2639 case 0x30: /* GPIO_DEBOUNCING_REG */
2640 return s->debounce;
2642 case 0x34: /* GPIO_LATCH_REG */
2643 return s->latch;
2646 OMAP_BAD_REG(addr);
2647 return 0;
2650 static void omap_mpuio_write(void *opaque, target_phys_addr_t addr,
2651 uint32_t value)
2653 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2654 int offset = addr & OMAP_MPUI_REG_MASK;
2655 uint16_t diff;
2656 int ln;
2658 switch (offset) {
2659 case 0x04: /* OUTPUT_REG */
2660 diff = (s->outputs ^ value) & ~s->dir;
2661 s->outputs = value;
2662 while ((ln = ffs(diff))) {
2663 ln --;
2664 if (s->handler[ln])
2665 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2666 diff &= ~(1 << ln);
2668 break;
2670 case 0x08: /* IO_CNTL */
2671 diff = s->outputs & (s->dir ^ value);
2672 s->dir = value;
2674 value = s->outputs & ~s->dir;
2675 while ((ln = ffs(diff))) {
2676 ln --;
2677 if (s->handler[ln])
2678 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2679 diff &= ~(1 << ln);
2681 break;
2683 case 0x14: /* KBC_REG */
2684 s->cols = value;
2685 omap_mpuio_kbd_update(s);
2686 break;
2688 case 0x18: /* GPIO_EVENT_MODE_REG */
2689 s->event = value & 0x1f;
2690 break;
2692 case 0x1c: /* GPIO_INT_EDGE_REG */
2693 s->edge = value;
2694 break;
2696 case 0x28: /* KBD_MASKIT */
2697 s->kbd_mask = value & 1;
2698 omap_mpuio_kbd_update(s);
2699 break;
2701 case 0x2c: /* GPIO_MASKIT */
2702 s->mask = value;
2703 break;
2705 case 0x30: /* GPIO_DEBOUNCING_REG */
2706 s->debounce = value & 0x1ff;
2707 break;
2709 case 0x00: /* INPUT_LATCH */
2710 case 0x10: /* KBR_LATCH */
2711 case 0x20: /* KBD_INT */
2712 case 0x24: /* GPIO_INT */
2713 case 0x34: /* GPIO_LATCH_REG */
2714 OMAP_RO_REG(addr);
2715 return;
2717 default:
2718 OMAP_BAD_REG(addr);
2719 return;
2723 static CPUReadMemoryFunc * const omap_mpuio_readfn[] = {
2724 omap_badwidth_read16,
2725 omap_mpuio_read,
2726 omap_badwidth_read16,
2729 static CPUWriteMemoryFunc * const omap_mpuio_writefn[] = {
2730 omap_badwidth_write16,
2731 omap_mpuio_write,
2732 omap_badwidth_write16,
2735 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2737 s->inputs = 0;
2738 s->outputs = 0;
2739 s->dir = ~0;
2740 s->event = 0;
2741 s->edge = 0;
2742 s->kbd_mask = 0;
2743 s->mask = 0;
2744 s->debounce = 0;
2745 s->latch = 0;
2746 s->ints = 0;
2747 s->row_latch = 0x1f;
2748 s->clk = 1;
2751 static void omap_mpuio_onoff(void *opaque, int line, int on)
2753 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2755 s->clk = on;
2756 if (on)
2757 omap_mpuio_kbd_update(s);
2760 struct omap_mpuio_s *omap_mpuio_init(target_phys_addr_t base,
2761 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2762 omap_clk clk)
2764 int iomemtype;
2765 struct omap_mpuio_s *s = (struct omap_mpuio_s *)
2766 qemu_mallocz(sizeof(struct omap_mpuio_s));
2768 s->irq = gpio_int;
2769 s->kbd_irq = kbd_int;
2770 s->wakeup = wakeup;
2771 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2772 omap_mpuio_reset(s);
2774 iomemtype = cpu_register_io_memory(omap_mpuio_readfn,
2775 omap_mpuio_writefn, s);
2776 cpu_register_physical_memory(base, 0x800, iomemtype);
2778 omap_clk_adduser(clk, qemu_allocate_irqs(omap_mpuio_onoff, s, 1)[0]);
2780 return s;
2783 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2785 return s->in;
2788 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2790 if (line >= 16 || line < 0)
2791 hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
2792 s->handler[line] = handler;
2795 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2797 if (row >= 5 || row < 0)
2798 hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row);
2800 if (down)
2801 s->buttons[row] |= 1 << col;
2802 else
2803 s->buttons[row] &= ~(1 << col);
2805 omap_mpuio_kbd_update(s);
2808 /* General-Purpose I/O */
2809 struct omap_gpio_s {
2810 qemu_irq irq;
2811 qemu_irq *in;
2812 qemu_irq handler[16];
2814 uint16_t inputs;
2815 uint16_t outputs;
2816 uint16_t dir;
2817 uint16_t edge;
2818 uint16_t mask;
2819 uint16_t ints;
2820 uint16_t pins;
2823 static void omap_gpio_set(void *opaque, int line, int level)
2825 struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
2826 uint16_t prev = s->inputs;
2828 if (level)
2829 s->inputs |= 1 << line;
2830 else
2831 s->inputs &= ~(1 << line);
2833 if (((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) &
2834 (1 << line) & s->dir & ~s->mask) {
2835 s->ints |= 1 << line;
2836 qemu_irq_raise(s->irq);
2840 static uint32_t omap_gpio_read(void *opaque, target_phys_addr_t addr)
2842 struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
2843 int offset = addr & OMAP_MPUI_REG_MASK;
2845 switch (offset) {
2846 case 0x00: /* DATA_INPUT */
2847 return s->inputs & s->pins;
2849 case 0x04: /* DATA_OUTPUT */
2850 return s->outputs;
2852 case 0x08: /* DIRECTION_CONTROL */
2853 return s->dir;
2855 case 0x0c: /* INTERRUPT_CONTROL */
2856 return s->edge;
2858 case 0x10: /* INTERRUPT_MASK */
2859 return s->mask;
2861 case 0x14: /* INTERRUPT_STATUS */
2862 return s->ints;
2864 case 0x18: /* PIN_CONTROL (not in OMAP310) */
2865 OMAP_BAD_REG(addr);
2866 return s->pins;
2869 OMAP_BAD_REG(addr);
2870 return 0;
2873 static void omap_gpio_write(void *opaque, target_phys_addr_t addr,
2874 uint32_t value)
2876 struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
2877 int offset = addr & OMAP_MPUI_REG_MASK;
2878 uint16_t diff;
2879 int ln;
2881 switch (offset) {
2882 case 0x00: /* DATA_INPUT */
2883 OMAP_RO_REG(addr);
2884 return;
2886 case 0x04: /* DATA_OUTPUT */
2887 diff = (s->outputs ^ value) & ~s->dir;
2888 s->outputs = value;
2889 while ((ln = ffs(diff))) {
2890 ln --;
2891 if (s->handler[ln])
2892 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2893 diff &= ~(1 << ln);
2895 break;
2897 case 0x08: /* DIRECTION_CONTROL */
2898 diff = s->outputs & (s->dir ^ value);
2899 s->dir = value;
2901 value = s->outputs & ~s->dir;
2902 while ((ln = ffs(diff))) {
2903 ln --;
2904 if (s->handler[ln])
2905 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2906 diff &= ~(1 << ln);
2908 break;
2910 case 0x0c: /* INTERRUPT_CONTROL */
2911 s->edge = value;
2912 break;
2914 case 0x10: /* INTERRUPT_MASK */
2915 s->mask = value;
2916 break;
2918 case 0x14: /* INTERRUPT_STATUS */
2919 s->ints &= ~value;
2920 if (!s->ints)
2921 qemu_irq_lower(s->irq);
2922 break;
2924 case 0x18: /* PIN_CONTROL (not in OMAP310 TRM) */
2925 OMAP_BAD_REG(addr);
2926 s->pins = value;
2927 break;
2929 default:
2930 OMAP_BAD_REG(addr);
2931 return;
2935 /* *Some* sources say the memory region is 32-bit. */
2936 static CPUReadMemoryFunc * const omap_gpio_readfn[] = {
2937 omap_badwidth_read16,
2938 omap_gpio_read,
2939 omap_badwidth_read16,
2942 static CPUWriteMemoryFunc * const omap_gpio_writefn[] = {
2943 omap_badwidth_write16,
2944 omap_gpio_write,
2945 omap_badwidth_write16,
2948 static void omap_gpio_reset(struct omap_gpio_s *s)
2950 s->inputs = 0;
2951 s->outputs = ~0;
2952 s->dir = ~0;
2953 s->edge = ~0;
2954 s->mask = ~0;
2955 s->ints = 0;
2956 s->pins = ~0;
2959 struct omap_gpio_s *omap_gpio_init(target_phys_addr_t base,
2960 qemu_irq irq, omap_clk clk)
2962 int iomemtype;
2963 struct omap_gpio_s *s = (struct omap_gpio_s *)
2964 qemu_mallocz(sizeof(struct omap_gpio_s));
2966 s->irq = irq;
2967 s->in = qemu_allocate_irqs(omap_gpio_set, s, 16);
2968 omap_gpio_reset(s);
2970 iomemtype = cpu_register_io_memory(omap_gpio_readfn,
2971 omap_gpio_writefn, s);
2972 cpu_register_physical_memory(base, 0x1000, iomemtype);
2974 return s;
2977 qemu_irq *omap_gpio_in_get(struct omap_gpio_s *s)
2979 return s->in;
2982 void omap_gpio_out_set(struct omap_gpio_s *s, int line, qemu_irq handler)
2984 if (line >= 16 || line < 0)
2985 hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
2986 s->handler[line] = handler;
2989 /* MicroWire Interface */
2990 struct omap_uwire_s {
2991 qemu_irq txirq;
2992 qemu_irq rxirq;
2993 qemu_irq txdrq;
2995 uint16_t txbuf;
2996 uint16_t rxbuf;
2997 uint16_t control;
2998 uint16_t setup[5];
3000 uWireSlave *chip[4];
3003 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
3005 int chipselect = (s->control >> 10) & 3; /* INDEX */
3006 uWireSlave *slave = s->chip[chipselect];
3008 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
3009 if (s->control & (1 << 12)) /* CS_CMD */
3010 if (slave && slave->send)
3011 slave->send(slave->opaque,
3012 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
3013 s->control &= ~(1 << 14); /* CSRB */
3014 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
3015 * a DRQ. When is the level IRQ supposed to be reset? */
3018 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
3019 if (s->control & (1 << 12)) /* CS_CMD */
3020 if (slave && slave->receive)
3021 s->rxbuf = slave->receive(slave->opaque);
3022 s->control |= 1 << 15; /* RDRB */
3023 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
3024 * a DRQ. When is the level IRQ supposed to be reset? */
3028 static uint32_t omap_uwire_read(void *opaque, target_phys_addr_t addr)
3030 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
3031 int offset = addr & OMAP_MPUI_REG_MASK;
3033 switch (offset) {
3034 case 0x00: /* RDR */
3035 s->control &= ~(1 << 15); /* RDRB */
3036 return s->rxbuf;
3038 case 0x04: /* CSR */
3039 return s->control;
3041 case 0x08: /* SR1 */
3042 return s->setup[0];
3043 case 0x0c: /* SR2 */
3044 return s->setup[1];
3045 case 0x10: /* SR3 */
3046 return s->setup[2];
3047 case 0x14: /* SR4 */
3048 return s->setup[3];
3049 case 0x18: /* SR5 */
3050 return s->setup[4];
3053 OMAP_BAD_REG(addr);
3054 return 0;
3057 static void omap_uwire_write(void *opaque, target_phys_addr_t addr,
3058 uint32_t value)
3060 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
3061 int offset = addr & OMAP_MPUI_REG_MASK;
3063 switch (offset) {
3064 case 0x00: /* TDR */
3065 s->txbuf = value; /* TD */
3066 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
3067 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
3068 (s->control & (1 << 12)))) { /* CS_CMD */
3069 s->control |= 1 << 14; /* CSRB */
3070 omap_uwire_transfer_start(s);
3072 break;
3074 case 0x04: /* CSR */
3075 s->control = value & 0x1fff;
3076 if (value & (1 << 13)) /* START */
3077 omap_uwire_transfer_start(s);
3078 break;
3080 case 0x08: /* SR1 */
3081 s->setup[0] = value & 0x003f;
3082 break;
3084 case 0x0c: /* SR2 */
3085 s->setup[1] = value & 0x0fc0;
3086 break;
3088 case 0x10: /* SR3 */
3089 s->setup[2] = value & 0x0003;
3090 break;
3092 case 0x14: /* SR4 */
3093 s->setup[3] = value & 0x0001;
3094 break;
3096 case 0x18: /* SR5 */
3097 s->setup[4] = value & 0x000f;
3098 break;
3100 default:
3101 OMAP_BAD_REG(addr);
3102 return;
3106 static CPUReadMemoryFunc * const omap_uwire_readfn[] = {
3107 omap_badwidth_read16,
3108 omap_uwire_read,
3109 omap_badwidth_read16,
3112 static CPUWriteMemoryFunc * const omap_uwire_writefn[] = {
3113 omap_badwidth_write16,
3114 omap_uwire_write,
3115 omap_badwidth_write16,
3118 static void omap_uwire_reset(struct omap_uwire_s *s)
3120 s->control = 0;
3121 s->setup[0] = 0;
3122 s->setup[1] = 0;
3123 s->setup[2] = 0;
3124 s->setup[3] = 0;
3125 s->setup[4] = 0;
3128 struct omap_uwire_s *omap_uwire_init(target_phys_addr_t base,
3129 qemu_irq *irq, qemu_irq dma, omap_clk clk)
3131 int iomemtype;
3132 struct omap_uwire_s *s = (struct omap_uwire_s *)
3133 qemu_mallocz(sizeof(struct omap_uwire_s));
3135 s->txirq = irq[0];
3136 s->rxirq = irq[1];
3137 s->txdrq = dma;
3138 omap_uwire_reset(s);
3140 iomemtype = cpu_register_io_memory(omap_uwire_readfn,
3141 omap_uwire_writefn, s);
3142 cpu_register_physical_memory(base, 0x800, iomemtype);
3144 return s;
3147 void omap_uwire_attach(struct omap_uwire_s *s,
3148 uWireSlave *slave, int chipselect)
3150 if (chipselect < 0 || chipselect > 3) {
3151 fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
3152 exit(-1);
3155 s->chip[chipselect] = slave;
3158 /* Pseudonoise Pulse-Width Light Modulator */
3159 static void omap_pwl_update(struct omap_mpu_state_s *s)
3161 int output = (s->pwl.clk && s->pwl.enable) ? s->pwl.level : 0;
3163 if (output != s->pwl.output) {
3164 s->pwl.output = output;
3165 printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
3169 static uint32_t omap_pwl_read(void *opaque, target_phys_addr_t addr)
3171 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3172 int offset = addr & OMAP_MPUI_REG_MASK;
3174 switch (offset) {
3175 case 0x00: /* PWL_LEVEL */
3176 return s->pwl.level;
3177 case 0x04: /* PWL_CTRL */
3178 return s->pwl.enable;
3180 OMAP_BAD_REG(addr);
3181 return 0;
3184 static void omap_pwl_write(void *opaque, target_phys_addr_t addr,
3185 uint32_t value)
3187 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3188 int offset = addr & OMAP_MPUI_REG_MASK;
3190 switch (offset) {
3191 case 0x00: /* PWL_LEVEL */
3192 s->pwl.level = value;
3193 omap_pwl_update(s);
3194 break;
3195 case 0x04: /* PWL_CTRL */
3196 s->pwl.enable = value & 1;
3197 omap_pwl_update(s);
3198 break;
3199 default:
3200 OMAP_BAD_REG(addr);
3201 return;
3205 static CPUReadMemoryFunc * const omap_pwl_readfn[] = {
3206 omap_pwl_read,
3207 omap_badwidth_read8,
3208 omap_badwidth_read8,
3211 static CPUWriteMemoryFunc * const omap_pwl_writefn[] = {
3212 omap_pwl_write,
3213 omap_badwidth_write8,
3214 omap_badwidth_write8,
3217 static void omap_pwl_reset(struct omap_mpu_state_s *s)
3219 s->pwl.output = 0;
3220 s->pwl.level = 0;
3221 s->pwl.enable = 0;
3222 s->pwl.clk = 1;
3223 omap_pwl_update(s);
3226 static void omap_pwl_clk_update(void *opaque, int line, int on)
3228 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3230 s->pwl.clk = on;
3231 omap_pwl_update(s);
3234 static void omap_pwl_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
3235 omap_clk clk)
3237 int iomemtype;
3239 omap_pwl_reset(s);
3241 iomemtype = cpu_register_io_memory(omap_pwl_readfn,
3242 omap_pwl_writefn, s);
3243 cpu_register_physical_memory(base, 0x800, iomemtype);
3245 omap_clk_adduser(clk, qemu_allocate_irqs(omap_pwl_clk_update, s, 1)[0]);
3248 /* Pulse-Width Tone module */
3249 static uint32_t omap_pwt_read(void *opaque, target_phys_addr_t addr)
3251 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3252 int offset = addr & OMAP_MPUI_REG_MASK;
3254 switch (offset) {
3255 case 0x00: /* FRC */
3256 return s->pwt.frc;
3257 case 0x04: /* VCR */
3258 return s->pwt.vrc;
3259 case 0x08: /* GCR */
3260 return s->pwt.gcr;
3262 OMAP_BAD_REG(addr);
3263 return 0;
3266 static void omap_pwt_write(void *opaque, target_phys_addr_t addr,
3267 uint32_t value)
3269 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3270 int offset = addr & OMAP_MPUI_REG_MASK;
3272 switch (offset) {
3273 case 0x00: /* FRC */
3274 s->pwt.frc = value & 0x3f;
3275 break;
3276 case 0x04: /* VRC */
3277 if ((value ^ s->pwt.vrc) & 1) {
3278 if (value & 1)
3279 printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
3280 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
3281 ((omap_clk_getrate(s->pwt.clk) >> 3) /
3282 /* Pre-multiplexer divider */
3283 ((s->pwt.gcr & 2) ? 1 : 154) /
3284 /* Octave multiplexer */
3285 (2 << (value & 3)) *
3286 /* 101/107 divider */
3287 ((value & (1 << 2)) ? 101 : 107) *
3288 /* 49/55 divider */
3289 ((value & (1 << 3)) ? 49 : 55) *
3290 /* 50/63 divider */
3291 ((value & (1 << 4)) ? 50 : 63) *
3292 /* 80/127 divider */
3293 ((value & (1 << 5)) ? 80 : 127) /
3294 (107 * 55 * 63 * 127)));
3295 else
3296 printf("%s: silence!\n", __FUNCTION__);
3298 s->pwt.vrc = value & 0x7f;
3299 break;
3300 case 0x08: /* GCR */
3301 s->pwt.gcr = value & 3;
3302 break;
3303 default:
3304 OMAP_BAD_REG(addr);
3305 return;
3309 static CPUReadMemoryFunc * const omap_pwt_readfn[] = {
3310 omap_pwt_read,
3311 omap_badwidth_read8,
3312 omap_badwidth_read8,
3315 static CPUWriteMemoryFunc * const omap_pwt_writefn[] = {
3316 omap_pwt_write,
3317 omap_badwidth_write8,
3318 omap_badwidth_write8,
3321 static void omap_pwt_reset(struct omap_mpu_state_s *s)
3323 s->pwt.frc = 0;
3324 s->pwt.vrc = 0;
3325 s->pwt.gcr = 0;
3328 static void omap_pwt_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
3329 omap_clk clk)
3331 int iomemtype;
3333 s->pwt.clk = clk;
3334 omap_pwt_reset(s);
3336 iomemtype = cpu_register_io_memory(omap_pwt_readfn,
3337 omap_pwt_writefn, s);
3338 cpu_register_physical_memory(base, 0x800, iomemtype);
3341 /* Real-time Clock module */
3342 struct omap_rtc_s {
3343 qemu_irq irq;
3344 qemu_irq alarm;
3345 QEMUTimer *clk;
3347 uint8_t interrupts;
3348 uint8_t status;
3349 int16_t comp_reg;
3350 int running;
3351 int pm_am;
3352 int auto_comp;
3353 int round;
3354 struct tm alarm_tm;
3355 time_t alarm_ti;
3357 struct tm current_tm;
3358 time_t ti;
3359 uint64_t tick;
3362 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
3364 /* s->alarm is level-triggered */
3365 qemu_set_irq(s->alarm, (s->status >> 6) & 1);
3368 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
3370 s->alarm_ti = mktimegm(&s->alarm_tm);
3371 if (s->alarm_ti == -1)
3372 printf("%s: conversion failed\n", __FUNCTION__);
3375 static uint32_t omap_rtc_read(void *opaque, target_phys_addr_t addr)
3377 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
3378 int offset = addr & OMAP_MPUI_REG_MASK;
3379 uint8_t i;
3381 switch (offset) {
3382 case 0x00: /* SECONDS_REG */
3383 return to_bcd(s->current_tm.tm_sec);
3385 case 0x04: /* MINUTES_REG */
3386 return to_bcd(s->current_tm.tm_min);
3388 case 0x08: /* HOURS_REG */
3389 if (s->pm_am)
3390 return ((s->current_tm.tm_hour > 11) << 7) |
3391 to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
3392 else
3393 return to_bcd(s->current_tm.tm_hour);
3395 case 0x0c: /* DAYS_REG */
3396 return to_bcd(s->current_tm.tm_mday);
3398 case 0x10: /* MONTHS_REG */
3399 return to_bcd(s->current_tm.tm_mon + 1);
3401 case 0x14: /* YEARS_REG */
3402 return to_bcd(s->current_tm.tm_year % 100);
3404 case 0x18: /* WEEK_REG */
3405 return s->current_tm.tm_wday;
3407 case 0x20: /* ALARM_SECONDS_REG */
3408 return to_bcd(s->alarm_tm.tm_sec);
3410 case 0x24: /* ALARM_MINUTES_REG */
3411 return to_bcd(s->alarm_tm.tm_min);
3413 case 0x28: /* ALARM_HOURS_REG */
3414 if (s->pm_am)
3415 return ((s->alarm_tm.tm_hour > 11) << 7) |
3416 to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
3417 else
3418 return to_bcd(s->alarm_tm.tm_hour);
3420 case 0x2c: /* ALARM_DAYS_REG */
3421 return to_bcd(s->alarm_tm.tm_mday);
3423 case 0x30: /* ALARM_MONTHS_REG */
3424 return to_bcd(s->alarm_tm.tm_mon + 1);
3426 case 0x34: /* ALARM_YEARS_REG */
3427 return to_bcd(s->alarm_tm.tm_year % 100);
3429 case 0x40: /* RTC_CTRL_REG */
3430 return (s->pm_am << 3) | (s->auto_comp << 2) |
3431 (s->round << 1) | s->running;
3433 case 0x44: /* RTC_STATUS_REG */
3434 i = s->status;
3435 s->status &= ~0x3d;
3436 return i;
3438 case 0x48: /* RTC_INTERRUPTS_REG */
3439 return s->interrupts;
3441 case 0x4c: /* RTC_COMP_LSB_REG */
3442 return ((uint16_t) s->comp_reg) & 0xff;
3444 case 0x50: /* RTC_COMP_MSB_REG */
3445 return ((uint16_t) s->comp_reg) >> 8;
3448 OMAP_BAD_REG(addr);
3449 return 0;
3452 static void omap_rtc_write(void *opaque, target_phys_addr_t addr,
3453 uint32_t value)
3455 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
3456 int offset = addr & OMAP_MPUI_REG_MASK;
3457 struct tm new_tm;
3458 time_t ti[2];
3460 switch (offset) {
3461 case 0x00: /* SECONDS_REG */
3462 #ifdef ALMDEBUG
3463 printf("RTC SEC_REG <-- %02x\n", value);
3464 #endif
3465 s->ti -= s->current_tm.tm_sec;
3466 s->ti += from_bcd(value);
3467 return;
3469 case 0x04: /* MINUTES_REG */
3470 #ifdef ALMDEBUG
3471 printf("RTC MIN_REG <-- %02x\n", value);
3472 #endif
3473 s->ti -= s->current_tm.tm_min * 60;
3474 s->ti += from_bcd(value) * 60;
3475 return;
3477 case 0x08: /* HOURS_REG */
3478 #ifdef ALMDEBUG
3479 printf("RTC HRS_REG <-- %02x\n", value);
3480 #endif
3481 s->ti -= s->current_tm.tm_hour * 3600;
3482 if (s->pm_am) {
3483 s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
3484 s->ti += ((value >> 7) & 1) * 43200;
3485 } else
3486 s->ti += from_bcd(value & 0x3f) * 3600;
3487 return;
3489 case 0x0c: /* DAYS_REG */
3490 #ifdef ALMDEBUG
3491 printf("RTC DAY_REG <-- %02x\n", value);
3492 #endif
3493 s->ti -= s->current_tm.tm_mday * 86400;
3494 s->ti += from_bcd(value) * 86400;
3495 return;
3497 case 0x10: /* MONTHS_REG */
3498 #ifdef ALMDEBUG
3499 printf("RTC MTH_REG <-- %02x\n", value);
3500 #endif
3501 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
3502 new_tm.tm_mon = from_bcd(value);
3503 ti[0] = mktimegm(&s->current_tm);
3504 ti[1] = mktimegm(&new_tm);
3506 if (ti[0] != -1 && ti[1] != -1) {
3507 s->ti -= ti[0];
3508 s->ti += ti[1];
3509 } else {
3510 /* A less accurate version */
3511 s->ti -= s->current_tm.tm_mon * 2592000;
3512 s->ti += from_bcd(value) * 2592000;
3514 return;
3516 case 0x14: /* YEARS_REG */
3517 #ifdef ALMDEBUG
3518 printf("RTC YRS_REG <-- %02x\n", value);
3519 #endif
3520 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
3521 new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
3522 ti[0] = mktimegm(&s->current_tm);
3523 ti[1] = mktimegm(&new_tm);
3525 if (ti[0] != -1 && ti[1] != -1) {
3526 s->ti -= ti[0];
3527 s->ti += ti[1];
3528 } else {
3529 /* A less accurate version */
3530 s->ti -= (s->current_tm.tm_year % 100) * 31536000;
3531 s->ti += from_bcd(value) * 31536000;
3533 return;
3535 case 0x18: /* WEEK_REG */
3536 return; /* Ignored */
3538 case 0x20: /* ALARM_SECONDS_REG */
3539 #ifdef ALMDEBUG
3540 printf("ALM SEC_REG <-- %02x\n", value);
3541 #endif
3542 s->alarm_tm.tm_sec = from_bcd(value);
3543 omap_rtc_alarm_update(s);
3544 return;
3546 case 0x24: /* ALARM_MINUTES_REG */
3547 #ifdef ALMDEBUG
3548 printf("ALM MIN_REG <-- %02x\n", value);
3549 #endif
3550 s->alarm_tm.tm_min = from_bcd(value);
3551 omap_rtc_alarm_update(s);
3552 return;
3554 case 0x28: /* ALARM_HOURS_REG */
3555 #ifdef ALMDEBUG
3556 printf("ALM HRS_REG <-- %02x\n", value);
3557 #endif
3558 if (s->pm_am)
3559 s->alarm_tm.tm_hour =
3560 ((from_bcd(value & 0x3f)) % 12) +
3561 ((value >> 7) & 1) * 12;
3562 else
3563 s->alarm_tm.tm_hour = from_bcd(value);
3564 omap_rtc_alarm_update(s);
3565 return;
3567 case 0x2c: /* ALARM_DAYS_REG */
3568 #ifdef ALMDEBUG
3569 printf("ALM DAY_REG <-- %02x\n", value);
3570 #endif
3571 s->alarm_tm.tm_mday = from_bcd(value);
3572 omap_rtc_alarm_update(s);
3573 return;
3575 case 0x30: /* ALARM_MONTHS_REG */
3576 #ifdef ALMDEBUG
3577 printf("ALM MON_REG <-- %02x\n", value);
3578 #endif
3579 s->alarm_tm.tm_mon = from_bcd(value);
3580 omap_rtc_alarm_update(s);
3581 return;
3583 case 0x34: /* ALARM_YEARS_REG */
3584 #ifdef ALMDEBUG
3585 printf("ALM YRS_REG <-- %02x\n", value);
3586 #endif
3587 s->alarm_tm.tm_year = from_bcd(value);
3588 omap_rtc_alarm_update(s);
3589 return;
3591 case 0x40: /* RTC_CTRL_REG */
3592 #ifdef ALMDEBUG
3593 printf("RTC CONTROL <-- %02x\n", value);
3594 #endif
3595 s->pm_am = (value >> 3) & 1;
3596 s->auto_comp = (value >> 2) & 1;
3597 s->round = (value >> 1) & 1;
3598 s->running = value & 1;
3599 s->status &= 0xfd;
3600 s->status |= s->running << 1;
3601 return;
3603 case 0x44: /* RTC_STATUS_REG */
3604 #ifdef ALMDEBUG
3605 printf("RTC STATUSL <-- %02x\n", value);
3606 #endif
3607 s->status &= ~((value & 0xc0) ^ 0x80);
3608 omap_rtc_interrupts_update(s);
3609 return;
3611 case 0x48: /* RTC_INTERRUPTS_REG */
3612 #ifdef ALMDEBUG
3613 printf("RTC INTRS <-- %02x\n", value);
3614 #endif
3615 s->interrupts = value;
3616 return;
3618 case 0x4c: /* RTC_COMP_LSB_REG */
3619 #ifdef ALMDEBUG
3620 printf("RTC COMPLSB <-- %02x\n", value);
3621 #endif
3622 s->comp_reg &= 0xff00;
3623 s->comp_reg |= 0x00ff & value;
3624 return;
3626 case 0x50: /* RTC_COMP_MSB_REG */
3627 #ifdef ALMDEBUG
3628 printf("RTC COMPMSB <-- %02x\n", value);
3629 #endif
3630 s->comp_reg &= 0x00ff;
3631 s->comp_reg |= 0xff00 & (value << 8);
3632 return;
3634 default:
3635 OMAP_BAD_REG(addr);
3636 return;
3640 static CPUReadMemoryFunc * const omap_rtc_readfn[] = {
3641 omap_rtc_read,
3642 omap_badwidth_read8,
3643 omap_badwidth_read8,
3646 static CPUWriteMemoryFunc * const omap_rtc_writefn[] = {
3647 omap_rtc_write,
3648 omap_badwidth_write8,
3649 omap_badwidth_write8,
3652 static void omap_rtc_tick(void *opaque)
3654 struct omap_rtc_s *s = opaque;
3656 if (s->round) {
3657 /* Round to nearest full minute. */
3658 if (s->current_tm.tm_sec < 30)
3659 s->ti -= s->current_tm.tm_sec;
3660 else
3661 s->ti += 60 - s->current_tm.tm_sec;
3663 s->round = 0;
3666 memcpy(&s->current_tm, localtime(&s->ti), sizeof(s->current_tm));
3668 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
3669 s->status |= 0x40;
3670 omap_rtc_interrupts_update(s);
3673 if (s->interrupts & 0x04)
3674 switch (s->interrupts & 3) {
3675 case 0:
3676 s->status |= 0x04;
3677 qemu_irq_pulse(s->irq);
3678 break;
3679 case 1:
3680 if (s->current_tm.tm_sec)
3681 break;
3682 s->status |= 0x08;
3683 qemu_irq_pulse(s->irq);
3684 break;
3685 case 2:
3686 if (s->current_tm.tm_sec || s->current_tm.tm_min)
3687 break;
3688 s->status |= 0x10;
3689 qemu_irq_pulse(s->irq);
3690 break;
3691 case 3:
3692 if (s->current_tm.tm_sec ||
3693 s->current_tm.tm_min || s->current_tm.tm_hour)
3694 break;
3695 s->status |= 0x20;
3696 qemu_irq_pulse(s->irq);
3697 break;
3700 /* Move on */
3701 if (s->running)
3702 s->ti ++;
3703 s->tick += 1000;
3706 * Every full hour add a rough approximation of the compensation
3707 * register to the 32kHz Timer (which drives the RTC) value.
3709 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
3710 s->tick += s->comp_reg * 1000 / 32768;
3712 qemu_mod_timer(s->clk, s->tick);
3715 static void omap_rtc_reset(struct omap_rtc_s *s)
3717 struct tm tm;
3719 s->interrupts = 0;
3720 s->comp_reg = 0;
3721 s->running = 0;
3722 s->pm_am = 0;
3723 s->auto_comp = 0;
3724 s->round = 0;
3725 s->tick = qemu_get_clock(rt_clock);
3726 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
3727 s->alarm_tm.tm_mday = 0x01;
3728 s->status = 1 << 7;
3729 qemu_get_timedate(&tm, 0);
3730 s->ti = mktimegm(&tm);
3732 omap_rtc_alarm_update(s);
3733 omap_rtc_tick(s);
3736 struct omap_rtc_s *omap_rtc_init(target_phys_addr_t base,
3737 qemu_irq *irq, omap_clk clk)
3739 int iomemtype;
3740 struct omap_rtc_s *s = (struct omap_rtc_s *)
3741 qemu_mallocz(sizeof(struct omap_rtc_s));
3743 s->irq = irq[0];
3744 s->alarm = irq[1];
3745 s->clk = qemu_new_timer(rt_clock, omap_rtc_tick, s);
3747 omap_rtc_reset(s);
3749 iomemtype = cpu_register_io_memory(omap_rtc_readfn,
3750 omap_rtc_writefn, s);
3751 cpu_register_physical_memory(base, 0x800, iomemtype);
3753 return s;
3756 /* Multi-channel Buffered Serial Port interfaces */
3757 struct omap_mcbsp_s {
3758 qemu_irq txirq;
3759 qemu_irq rxirq;
3760 qemu_irq txdrq;
3761 qemu_irq rxdrq;
3763 uint16_t spcr[2];
3764 uint16_t rcr[2];
3765 uint16_t xcr[2];
3766 uint16_t srgr[2];
3767 uint16_t mcr[2];
3768 uint16_t pcr;
3769 uint16_t rcer[8];
3770 uint16_t xcer[8];
3771 int tx_rate;
3772 int rx_rate;
3773 int tx_req;
3774 int rx_req;
3776 I2SCodec *codec;
3777 QEMUTimer *source_timer;
3778 QEMUTimer *sink_timer;
3781 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
3783 int irq;
3785 switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
3786 case 0:
3787 irq = (s->spcr[0] >> 1) & 1; /* RRDY */
3788 break;
3789 case 3:
3790 irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
3791 break;
3792 default:
3793 irq = 0;
3794 break;
3797 if (irq)
3798 qemu_irq_pulse(s->rxirq);
3800 switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
3801 case 0:
3802 irq = (s->spcr[1] >> 1) & 1; /* XRDY */
3803 break;
3804 case 3:
3805 irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
3806 break;
3807 default:
3808 irq = 0;
3809 break;
3812 if (irq)
3813 qemu_irq_pulse(s->txirq);
3816 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3818 if ((s->spcr[0] >> 1) & 1) /* RRDY */
3819 s->spcr[0] |= 1 << 2; /* RFULL */
3820 s->spcr[0] |= 1 << 1; /* RRDY */
3821 qemu_irq_raise(s->rxdrq);
3822 omap_mcbsp_intr_update(s);
3825 static void omap_mcbsp_source_tick(void *opaque)
3827 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3828 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3830 if (!s->rx_rate)
3831 return;
3832 if (s->rx_req)
3833 printf("%s: Rx FIFO overrun\n", __FUNCTION__);
3835 s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3837 omap_mcbsp_rx_newdata(s);
3838 qemu_mod_timer(s->source_timer, qemu_get_clock(vm_clock) +
3839 get_ticks_per_sec());
3842 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3844 if (!s->codec || !s->codec->rts)
3845 omap_mcbsp_source_tick(s);
3846 else if (s->codec->in.len) {
3847 s->rx_req = s->codec->in.len;
3848 omap_mcbsp_rx_newdata(s);
3852 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3854 qemu_del_timer(s->source_timer);
3857 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3859 s->spcr[0] &= ~(1 << 1); /* RRDY */
3860 qemu_irq_lower(s->rxdrq);
3861 omap_mcbsp_intr_update(s);
3864 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3866 s->spcr[1] |= 1 << 1; /* XRDY */
3867 qemu_irq_raise(s->txdrq);
3868 omap_mcbsp_intr_update(s);
3871 static void omap_mcbsp_sink_tick(void *opaque)
3873 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3874 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3876 if (!s->tx_rate)
3877 return;
3878 if (s->tx_req)
3879 printf("%s: Tx FIFO underrun\n", __FUNCTION__);
3881 s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3883 omap_mcbsp_tx_newdata(s);
3884 qemu_mod_timer(s->sink_timer, qemu_get_clock(vm_clock) +
3885 get_ticks_per_sec());
3888 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3890 if (!s->codec || !s->codec->cts)
3891 omap_mcbsp_sink_tick(s);
3892 else if (s->codec->out.size) {
3893 s->tx_req = s->codec->out.size;
3894 omap_mcbsp_tx_newdata(s);
3898 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3900 s->spcr[1] &= ~(1 << 1); /* XRDY */
3901 qemu_irq_lower(s->txdrq);
3902 omap_mcbsp_intr_update(s);
3903 if (s->codec && s->codec->cts)
3904 s->codec->tx_swallow(s->codec->opaque);
3907 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3909 s->tx_req = 0;
3910 omap_mcbsp_tx_done(s);
3911 qemu_del_timer(s->sink_timer);
3914 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3916 int prev_rx_rate, prev_tx_rate;
3917 int rx_rate = 0, tx_rate = 0;
3918 int cpu_rate = 1500000; /* XXX */
3920 /* TODO: check CLKSTP bit */
3921 if (s->spcr[1] & (1 << 6)) { /* GRST */
3922 if (s->spcr[0] & (1 << 0)) { /* RRST */
3923 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3924 (s->pcr & (1 << 8))) { /* CLKRM */
3925 if (~s->pcr & (1 << 7)) /* SCLKME */
3926 rx_rate = cpu_rate /
3927 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3928 } else
3929 if (s->codec)
3930 rx_rate = s->codec->rx_rate;
3933 if (s->spcr[1] & (1 << 0)) { /* XRST */
3934 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3935 (s->pcr & (1 << 9))) { /* CLKXM */
3936 if (~s->pcr & (1 << 7)) /* SCLKME */
3937 tx_rate = cpu_rate /
3938 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3939 } else
3940 if (s->codec)
3941 tx_rate = s->codec->tx_rate;
3944 prev_tx_rate = s->tx_rate;
3945 prev_rx_rate = s->rx_rate;
3946 s->tx_rate = tx_rate;
3947 s->rx_rate = rx_rate;
3949 if (s->codec)
3950 s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3952 if (!prev_tx_rate && tx_rate)
3953 omap_mcbsp_tx_start(s);
3954 else if (s->tx_rate && !tx_rate)
3955 omap_mcbsp_tx_stop(s);
3957 if (!prev_rx_rate && rx_rate)
3958 omap_mcbsp_rx_start(s);
3959 else if (prev_tx_rate && !tx_rate)
3960 omap_mcbsp_rx_stop(s);
3963 static uint32_t omap_mcbsp_read(void *opaque, target_phys_addr_t addr)
3965 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3966 int offset = addr & OMAP_MPUI_REG_MASK;
3967 uint16_t ret;
3969 switch (offset) {
3970 case 0x00: /* DRR2 */
3971 if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
3972 return 0x0000;
3973 /* Fall through. */
3974 case 0x02: /* DRR1 */
3975 if (s->rx_req < 2) {
3976 printf("%s: Rx FIFO underrun\n", __FUNCTION__);
3977 omap_mcbsp_rx_done(s);
3978 } else {
3979 s->tx_req -= 2;
3980 if (s->codec && s->codec->in.len >= 2) {
3981 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3982 ret |= s->codec->in.fifo[s->codec->in.start ++];
3983 s->codec->in.len -= 2;
3984 } else
3985 ret = 0x0000;
3986 if (!s->tx_req)
3987 omap_mcbsp_rx_done(s);
3988 return ret;
3990 return 0x0000;
3992 case 0x04: /* DXR2 */
3993 case 0x06: /* DXR1 */
3994 return 0x0000;
3996 case 0x08: /* SPCR2 */
3997 return s->spcr[1];
3998 case 0x0a: /* SPCR1 */
3999 return s->spcr[0];
4000 case 0x0c: /* RCR2 */
4001 return s->rcr[1];
4002 case 0x0e: /* RCR1 */
4003 return s->rcr[0];
4004 case 0x10: /* XCR2 */
4005 return s->xcr[1];
4006 case 0x12: /* XCR1 */
4007 return s->xcr[0];
4008 case 0x14: /* SRGR2 */
4009 return s->srgr[1];
4010 case 0x16: /* SRGR1 */
4011 return s->srgr[0];
4012 case 0x18: /* MCR2 */
4013 return s->mcr[1];
4014 case 0x1a: /* MCR1 */
4015 return s->mcr[0];
4016 case 0x1c: /* RCERA */
4017 return s->rcer[0];
4018 case 0x1e: /* RCERB */
4019 return s->rcer[1];
4020 case 0x20: /* XCERA */
4021 return s->xcer[0];
4022 case 0x22: /* XCERB */
4023 return s->xcer[1];
4024 case 0x24: /* PCR0 */
4025 return s->pcr;
4026 case 0x26: /* RCERC */
4027 return s->rcer[2];
4028 case 0x28: /* RCERD */
4029 return s->rcer[3];
4030 case 0x2a: /* XCERC */
4031 return s->xcer[2];
4032 case 0x2c: /* XCERD */
4033 return s->xcer[3];
4034 case 0x2e: /* RCERE */
4035 return s->rcer[4];
4036 case 0x30: /* RCERF */
4037 return s->rcer[5];
4038 case 0x32: /* XCERE */
4039 return s->xcer[4];
4040 case 0x34: /* XCERF */
4041 return s->xcer[5];
4042 case 0x36: /* RCERG */
4043 return s->rcer[6];
4044 case 0x38: /* RCERH */
4045 return s->rcer[7];
4046 case 0x3a: /* XCERG */
4047 return s->xcer[6];
4048 case 0x3c: /* XCERH */
4049 return s->xcer[7];
4052 OMAP_BAD_REG(addr);
4053 return 0;
4056 static void omap_mcbsp_writeh(void *opaque, target_phys_addr_t addr,
4057 uint32_t value)
4059 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4060 int offset = addr & OMAP_MPUI_REG_MASK;
4062 switch (offset) {
4063 case 0x00: /* DRR2 */
4064 case 0x02: /* DRR1 */
4065 OMAP_RO_REG(addr);
4066 return;
4068 case 0x04: /* DXR2 */
4069 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
4070 return;
4071 /* Fall through. */
4072 case 0x06: /* DXR1 */
4073 if (s->tx_req > 1) {
4074 s->tx_req -= 2;
4075 if (s->codec && s->codec->cts) {
4076 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
4077 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
4079 if (s->tx_req < 2)
4080 omap_mcbsp_tx_done(s);
4081 } else
4082 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
4083 return;
4085 case 0x08: /* SPCR2 */
4086 s->spcr[1] &= 0x0002;
4087 s->spcr[1] |= 0x03f9 & value;
4088 s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
4089 if (~value & 1) /* XRST */
4090 s->spcr[1] &= ~6;
4091 omap_mcbsp_req_update(s);
4092 return;
4093 case 0x0a: /* SPCR1 */
4094 s->spcr[0] &= 0x0006;
4095 s->spcr[0] |= 0xf8f9 & value;
4096 if (value & (1 << 15)) /* DLB */
4097 printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
4098 if (~value & 1) { /* RRST */
4099 s->spcr[0] &= ~6;
4100 s->rx_req = 0;
4101 omap_mcbsp_rx_done(s);
4103 omap_mcbsp_req_update(s);
4104 return;
4106 case 0x0c: /* RCR2 */
4107 s->rcr[1] = value & 0xffff;
4108 return;
4109 case 0x0e: /* RCR1 */
4110 s->rcr[0] = value & 0x7fe0;
4111 return;
4112 case 0x10: /* XCR2 */
4113 s->xcr[1] = value & 0xffff;
4114 return;
4115 case 0x12: /* XCR1 */
4116 s->xcr[0] = value & 0x7fe0;
4117 return;
4118 case 0x14: /* SRGR2 */
4119 s->srgr[1] = value & 0xffff;
4120 omap_mcbsp_req_update(s);
4121 return;
4122 case 0x16: /* SRGR1 */
4123 s->srgr[0] = value & 0xffff;
4124 omap_mcbsp_req_update(s);
4125 return;
4126 case 0x18: /* MCR2 */
4127 s->mcr[1] = value & 0x03e3;
4128 if (value & 3) /* XMCM */
4129 printf("%s: Tx channel selection mode enable attempt\n",
4130 __FUNCTION__);
4131 return;
4132 case 0x1a: /* MCR1 */
4133 s->mcr[0] = value & 0x03e1;
4134 if (value & 1) /* RMCM */
4135 printf("%s: Rx channel selection mode enable attempt\n",
4136 __FUNCTION__);
4137 return;
4138 case 0x1c: /* RCERA */
4139 s->rcer[0] = value & 0xffff;
4140 return;
4141 case 0x1e: /* RCERB */
4142 s->rcer[1] = value & 0xffff;
4143 return;
4144 case 0x20: /* XCERA */
4145 s->xcer[0] = value & 0xffff;
4146 return;
4147 case 0x22: /* XCERB */
4148 s->xcer[1] = value & 0xffff;
4149 return;
4150 case 0x24: /* PCR0 */
4151 s->pcr = value & 0x7faf;
4152 return;
4153 case 0x26: /* RCERC */
4154 s->rcer[2] = value & 0xffff;
4155 return;
4156 case 0x28: /* RCERD */
4157 s->rcer[3] = value & 0xffff;
4158 return;
4159 case 0x2a: /* XCERC */
4160 s->xcer[2] = value & 0xffff;
4161 return;
4162 case 0x2c: /* XCERD */
4163 s->xcer[3] = value & 0xffff;
4164 return;
4165 case 0x2e: /* RCERE */
4166 s->rcer[4] = value & 0xffff;
4167 return;
4168 case 0x30: /* RCERF */
4169 s->rcer[5] = value & 0xffff;
4170 return;
4171 case 0x32: /* XCERE */
4172 s->xcer[4] = value & 0xffff;
4173 return;
4174 case 0x34: /* XCERF */
4175 s->xcer[5] = value & 0xffff;
4176 return;
4177 case 0x36: /* RCERG */
4178 s->rcer[6] = value & 0xffff;
4179 return;
4180 case 0x38: /* RCERH */
4181 s->rcer[7] = value & 0xffff;
4182 return;
4183 case 0x3a: /* XCERG */
4184 s->xcer[6] = value & 0xffff;
4185 return;
4186 case 0x3c: /* XCERH */
4187 s->xcer[7] = value & 0xffff;
4188 return;
4191 OMAP_BAD_REG(addr);
4194 static void omap_mcbsp_writew(void *opaque, target_phys_addr_t addr,
4195 uint32_t value)
4197 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4198 int offset = addr & OMAP_MPUI_REG_MASK;
4200 if (offset == 0x04) { /* DXR */
4201 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
4202 return;
4203 if (s->tx_req > 3) {
4204 s->tx_req -= 4;
4205 if (s->codec && s->codec->cts) {
4206 s->codec->out.fifo[s->codec->out.len ++] =
4207 (value >> 24) & 0xff;
4208 s->codec->out.fifo[s->codec->out.len ++] =
4209 (value >> 16) & 0xff;
4210 s->codec->out.fifo[s->codec->out.len ++] =
4211 (value >> 8) & 0xff;
4212 s->codec->out.fifo[s->codec->out.len ++] =
4213 (value >> 0) & 0xff;
4215 if (s->tx_req < 4)
4216 omap_mcbsp_tx_done(s);
4217 } else
4218 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
4219 return;
4222 omap_badwidth_write16(opaque, addr, value);
4225 static CPUReadMemoryFunc * const omap_mcbsp_readfn[] = {
4226 omap_badwidth_read16,
4227 omap_mcbsp_read,
4228 omap_badwidth_read16,
4231 static CPUWriteMemoryFunc * const omap_mcbsp_writefn[] = {
4232 omap_badwidth_write16,
4233 omap_mcbsp_writeh,
4234 omap_mcbsp_writew,
4237 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
4239 memset(&s->spcr, 0, sizeof(s->spcr));
4240 memset(&s->rcr, 0, sizeof(s->rcr));
4241 memset(&s->xcr, 0, sizeof(s->xcr));
4242 s->srgr[0] = 0x0001;
4243 s->srgr[1] = 0x2000;
4244 memset(&s->mcr, 0, sizeof(s->mcr));
4245 memset(&s->pcr, 0, sizeof(s->pcr));
4246 memset(&s->rcer, 0, sizeof(s->rcer));
4247 memset(&s->xcer, 0, sizeof(s->xcer));
4248 s->tx_req = 0;
4249 s->rx_req = 0;
4250 s->tx_rate = 0;
4251 s->rx_rate = 0;
4252 qemu_del_timer(s->source_timer);
4253 qemu_del_timer(s->sink_timer);
4256 struct omap_mcbsp_s *omap_mcbsp_init(target_phys_addr_t base,
4257 qemu_irq *irq, qemu_irq *dma, omap_clk clk)
4259 int iomemtype;
4260 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *)
4261 qemu_mallocz(sizeof(struct omap_mcbsp_s));
4263 s->txirq = irq[0];
4264 s->rxirq = irq[1];
4265 s->txdrq = dma[0];
4266 s->rxdrq = dma[1];
4267 s->sink_timer = qemu_new_timer(vm_clock, omap_mcbsp_sink_tick, s);
4268 s->source_timer = qemu_new_timer(vm_clock, omap_mcbsp_source_tick, s);
4269 omap_mcbsp_reset(s);
4271 iomemtype = cpu_register_io_memory(omap_mcbsp_readfn,
4272 omap_mcbsp_writefn, s);
4273 cpu_register_physical_memory(base, 0x800, iomemtype);
4275 return s;
4278 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
4280 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4282 if (s->rx_rate) {
4283 s->rx_req = s->codec->in.len;
4284 omap_mcbsp_rx_newdata(s);
4288 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
4290 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4292 if (s->tx_rate) {
4293 s->tx_req = s->codec->out.size;
4294 omap_mcbsp_tx_newdata(s);
4298 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
4300 s->codec = slave;
4301 slave->rx_swallow = qemu_allocate_irqs(omap_mcbsp_i2s_swallow, s, 1)[0];
4302 slave->tx_start = qemu_allocate_irqs(omap_mcbsp_i2s_start, s, 1)[0];
4305 /* LED Pulse Generators */
4306 struct omap_lpg_s {
4307 QEMUTimer *tm;
4309 uint8_t control;
4310 uint8_t power;
4311 int64_t on;
4312 int64_t period;
4313 int clk;
4314 int cycle;
4317 static void omap_lpg_tick(void *opaque)
4319 struct omap_lpg_s *s = opaque;
4321 if (s->cycle)
4322 qemu_mod_timer(s->tm, qemu_get_clock(rt_clock) + s->period - s->on);
4323 else
4324 qemu_mod_timer(s->tm, qemu_get_clock(rt_clock) + s->on);
4326 s->cycle = !s->cycle;
4327 printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
4330 static void omap_lpg_update(struct omap_lpg_s *s)
4332 int64_t on, period = 1, ticks = 1000;
4333 static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
4335 if (~s->control & (1 << 6)) /* LPGRES */
4336 on = 0;
4337 else if (s->control & (1 << 7)) /* PERM_ON */
4338 on = period;
4339 else {
4340 period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
4341 256 / 32);
4342 on = (s->clk && s->power) ? muldiv64(ticks,
4343 per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
4346 qemu_del_timer(s->tm);
4347 if (on == period && s->on < s->period)
4348 printf("%s: LED is on\n", __FUNCTION__);
4349 else if (on == 0 && s->on)
4350 printf("%s: LED is off\n", __FUNCTION__);
4351 else if (on && (on != s->on || period != s->period)) {
4352 s->cycle = 0;
4353 s->on = on;
4354 s->period = period;
4355 omap_lpg_tick(s);
4356 return;
4359 s->on = on;
4360 s->period = period;
4363 static void omap_lpg_reset(struct omap_lpg_s *s)
4365 s->control = 0x00;
4366 s->power = 0x00;
4367 s->clk = 1;
4368 omap_lpg_update(s);
4371 static uint32_t omap_lpg_read(void *opaque, target_phys_addr_t addr)
4373 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
4374 int offset = addr & OMAP_MPUI_REG_MASK;
4376 switch (offset) {
4377 case 0x00: /* LCR */
4378 return s->control;
4380 case 0x04: /* PMR */
4381 return s->power;
4384 OMAP_BAD_REG(addr);
4385 return 0;
4388 static void omap_lpg_write(void *opaque, target_phys_addr_t addr,
4389 uint32_t value)
4391 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
4392 int offset = addr & OMAP_MPUI_REG_MASK;
4394 switch (offset) {
4395 case 0x00: /* LCR */
4396 if (~value & (1 << 6)) /* LPGRES */
4397 omap_lpg_reset(s);
4398 s->control = value & 0xff;
4399 omap_lpg_update(s);
4400 return;
4402 case 0x04: /* PMR */
4403 s->power = value & 0x01;
4404 omap_lpg_update(s);
4405 return;
4407 default:
4408 OMAP_BAD_REG(addr);
4409 return;
4413 static CPUReadMemoryFunc * const omap_lpg_readfn[] = {
4414 omap_lpg_read,
4415 omap_badwidth_read8,
4416 omap_badwidth_read8,
4419 static CPUWriteMemoryFunc * const omap_lpg_writefn[] = {
4420 omap_lpg_write,
4421 omap_badwidth_write8,
4422 omap_badwidth_write8,
4425 static void omap_lpg_clk_update(void *opaque, int line, int on)
4427 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
4429 s->clk = on;
4430 omap_lpg_update(s);
4433 struct omap_lpg_s *omap_lpg_init(target_phys_addr_t base, omap_clk clk)
4435 int iomemtype;
4436 struct omap_lpg_s *s = (struct omap_lpg_s *)
4437 qemu_mallocz(sizeof(struct omap_lpg_s));
4439 s->tm = qemu_new_timer(rt_clock, omap_lpg_tick, s);
4441 omap_lpg_reset(s);
4443 iomemtype = cpu_register_io_memory(omap_lpg_readfn,
4444 omap_lpg_writefn, s);
4445 cpu_register_physical_memory(base, 0x800, iomemtype);
4447 omap_clk_adduser(clk, qemu_allocate_irqs(omap_lpg_clk_update, s, 1)[0]);
4449 return s;
4452 /* MPUI Peripheral Bridge configuration */
4453 static uint32_t omap_mpui_io_read(void *opaque, target_phys_addr_t addr)
4455 if (addr == OMAP_MPUI_BASE) /* CMR */
4456 return 0xfe4d;
4458 OMAP_BAD_REG(addr);
4459 return 0;
4462 static CPUReadMemoryFunc * const omap_mpui_io_readfn[] = {
4463 omap_badwidth_read16,
4464 omap_mpui_io_read,
4465 omap_badwidth_read16,
4468 static CPUWriteMemoryFunc * const omap_mpui_io_writefn[] = {
4469 omap_badwidth_write16,
4470 omap_badwidth_write16,
4471 omap_badwidth_write16,
4474 static void omap_setup_mpui_io(struct omap_mpu_state_s *mpu)
4476 int iomemtype = cpu_register_io_memory(omap_mpui_io_readfn,
4477 omap_mpui_io_writefn, mpu);
4478 cpu_register_physical_memory(OMAP_MPUI_BASE, 0x7fff, iomemtype);
4481 /* General chip reset */
4482 static void omap1_mpu_reset(void *opaque)
4484 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
4486 omap_inth_reset(mpu->ih[0]);
4487 omap_inth_reset(mpu->ih[1]);
4488 omap_dma_reset(mpu->dma);
4489 omap_mpu_timer_reset(mpu->timer[0]);
4490 omap_mpu_timer_reset(mpu->timer[1]);
4491 omap_mpu_timer_reset(mpu->timer[2]);
4492 omap_wd_timer_reset(mpu->wdt);
4493 omap_os_timer_reset(mpu->os_timer);
4494 omap_lcdc_reset(mpu->lcd);
4495 omap_ulpd_pm_reset(mpu);
4496 omap_pin_cfg_reset(mpu);
4497 omap_mpui_reset(mpu);
4498 omap_tipb_bridge_reset(mpu->private_tipb);
4499 omap_tipb_bridge_reset(mpu->public_tipb);
4500 omap_dpll_reset(&mpu->dpll[0]);
4501 omap_dpll_reset(&mpu->dpll[1]);
4502 omap_dpll_reset(&mpu->dpll[2]);
4503 omap_uart_reset(mpu->uart[0]);
4504 omap_uart_reset(mpu->uart[1]);
4505 omap_uart_reset(mpu->uart[2]);
4506 omap_mmc_reset(mpu->mmc);
4507 omap_mpuio_reset(mpu->mpuio);
4508 omap_gpio_reset(mpu->gpio);
4509 omap_uwire_reset(mpu->microwire);
4510 omap_pwl_reset(mpu);
4511 omap_pwt_reset(mpu);
4512 omap_i2c_reset(mpu->i2c[0]);
4513 omap_rtc_reset(mpu->rtc);
4514 omap_mcbsp_reset(mpu->mcbsp1);
4515 omap_mcbsp_reset(mpu->mcbsp2);
4516 omap_mcbsp_reset(mpu->mcbsp3);
4517 omap_lpg_reset(mpu->led[0]);
4518 omap_lpg_reset(mpu->led[1]);
4519 omap_clkm_reset(mpu);
4520 cpu_reset(mpu->env);
4523 static const struct omap_map_s {
4524 target_phys_addr_t phys_dsp;
4525 target_phys_addr_t phys_mpu;
4526 uint32_t size;
4527 const char *name;
4528 } omap15xx_dsp_mm[] = {
4529 /* Strobe 0 */
4530 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
4531 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
4532 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
4533 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
4534 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
4535 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
4536 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
4537 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
4538 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
4539 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
4540 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
4541 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
4542 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
4543 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
4544 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
4545 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
4546 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
4547 /* Strobe 1 */
4548 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
4550 { 0 }
4553 static void omap_setup_dsp_mapping(const struct omap_map_s *map)
4555 int io;
4557 for (; map->phys_dsp; map ++) {
4558 io = cpu_get_physical_page_desc(map->phys_mpu);
4560 cpu_register_physical_memory(map->phys_dsp, map->size, io);
4564 void omap_mpu_wakeup(void *opaque, int irq, int req)
4566 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
4568 if (mpu->env->halted)
4569 cpu_interrupt(mpu->env, CPU_INTERRUPT_EXITTB);
4572 static const struct dma_irq_map omap1_dma_irq_map[] = {
4573 { 0, OMAP_INT_DMA_CH0_6 },
4574 { 0, OMAP_INT_DMA_CH1_7 },
4575 { 0, OMAP_INT_DMA_CH2_8 },
4576 { 0, OMAP_INT_DMA_CH3 },
4577 { 0, OMAP_INT_DMA_CH4 },
4578 { 0, OMAP_INT_DMA_CH5 },
4579 { 1, OMAP_INT_1610_DMA_CH6 },
4580 { 1, OMAP_INT_1610_DMA_CH7 },
4581 { 1, OMAP_INT_1610_DMA_CH8 },
4582 { 1, OMAP_INT_1610_DMA_CH9 },
4583 { 1, OMAP_INT_1610_DMA_CH10 },
4584 { 1, OMAP_INT_1610_DMA_CH11 },
4585 { 1, OMAP_INT_1610_DMA_CH12 },
4586 { 1, OMAP_INT_1610_DMA_CH13 },
4587 { 1, OMAP_INT_1610_DMA_CH14 },
4588 { 1, OMAP_INT_1610_DMA_CH15 }
4591 /* DMA ports for OMAP1 */
4592 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
4593 target_phys_addr_t addr)
4595 return addr >= OMAP_EMIFF_BASE && addr < OMAP_EMIFF_BASE + s->sdram_size;
4598 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
4599 target_phys_addr_t addr)
4601 return addr >= OMAP_EMIFS_BASE && addr < OMAP_EMIFF_BASE;
4604 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
4605 target_phys_addr_t addr)
4607 return addr >= OMAP_IMIF_BASE && addr < OMAP_IMIF_BASE + s->sram_size;
4610 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
4611 target_phys_addr_t addr)
4613 return addr >= 0xfffb0000 && addr < 0xffff0000;
4616 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
4617 target_phys_addr_t addr)
4619 return addr >= OMAP_LOCALBUS_BASE && addr < OMAP_LOCALBUS_BASE + 0x1000000;
4622 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
4623 target_phys_addr_t addr)
4625 return addr >= 0xe1010000 && addr < 0xe1020004;
4628 struct omap_mpu_state_s *omap310_mpu_init(unsigned long sdram_size,
4629 const char *core)
4631 int i;
4632 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
4633 qemu_mallocz(sizeof(struct omap_mpu_state_s));
4634 ram_addr_t imif_base, emiff_base;
4635 qemu_irq *cpu_irq;
4636 qemu_irq dma_irqs[6];
4637 DriveInfo *dinfo;
4639 if (!core)
4640 core = "ti925t";
4642 /* Core */
4643 s->mpu_model = omap310;
4644 s->env = cpu_init(core);
4645 if (!s->env) {
4646 fprintf(stderr, "Unable to find CPU definition\n");
4647 exit(1);
4649 s->sdram_size = sdram_size;
4650 s->sram_size = OMAP15XX_SRAM_SIZE;
4652 s->wakeup = qemu_allocate_irqs(omap_mpu_wakeup, s, 1)[0];
4654 /* Clocks */
4655 omap_clk_init(s);
4657 /* Memory-mapped stuff */
4658 cpu_register_physical_memory(OMAP_EMIFF_BASE, s->sdram_size,
4659 (emiff_base = qemu_ram_alloc(s->sdram_size)) | IO_MEM_RAM);
4660 cpu_register_physical_memory(OMAP_IMIF_BASE, s->sram_size,
4661 (imif_base = qemu_ram_alloc(s->sram_size)) | IO_MEM_RAM);
4663 omap_clkm_init(0xfffece00, 0xe1008000, s);
4665 cpu_irq = arm_pic_init_cpu(s->env);
4666 s->ih[0] = omap_inth_init(0xfffecb00, 0x100, 1, &s->irq[0],
4667 cpu_irq[ARM_PIC_CPU_IRQ], cpu_irq[ARM_PIC_CPU_FIQ],
4668 omap_findclk(s, "arminth_ck"));
4669 s->ih[1] = omap_inth_init(0xfffe0000, 0x800, 1, &s->irq[1],
4670 s->ih[0]->pins[OMAP_INT_15XX_IH2_IRQ], NULL,
4671 omap_findclk(s, "arminth_ck"));
4673 for (i = 0; i < 6; i ++)
4674 dma_irqs[i] =
4675 s->irq[omap1_dma_irq_map[i].ih][omap1_dma_irq_map[i].intr];
4676 s->dma = omap_dma_init(0xfffed800, dma_irqs, s->irq[0][OMAP_INT_DMA_LCD],
4677 s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
4679 s->port[emiff ].addr_valid = omap_validate_emiff_addr;
4680 s->port[emifs ].addr_valid = omap_validate_emifs_addr;
4681 s->port[imif ].addr_valid = omap_validate_imif_addr;
4682 s->port[tipb ].addr_valid = omap_validate_tipb_addr;
4683 s->port[local ].addr_valid = omap_validate_local_addr;
4684 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
4686 /* Register SDRAM and SRAM DMA ports for fast transfers. */
4687 soc_dma_port_add_mem_ram(s->dma,
4688 emiff_base, OMAP_EMIFF_BASE, s->sdram_size);
4689 soc_dma_port_add_mem_ram(s->dma,
4690 imif_base, OMAP_IMIF_BASE, s->sram_size);
4692 s->timer[0] = omap_mpu_timer_init(0xfffec500,
4693 s->irq[0][OMAP_INT_TIMER1],
4694 omap_findclk(s, "mputim_ck"));
4695 s->timer[1] = omap_mpu_timer_init(0xfffec600,
4696 s->irq[0][OMAP_INT_TIMER2],
4697 omap_findclk(s, "mputim_ck"));
4698 s->timer[2] = omap_mpu_timer_init(0xfffec700,
4699 s->irq[0][OMAP_INT_TIMER3],
4700 omap_findclk(s, "mputim_ck"));
4702 s->wdt = omap_wd_timer_init(0xfffec800,
4703 s->irq[0][OMAP_INT_WD_TIMER],
4704 omap_findclk(s, "armwdt_ck"));
4706 s->os_timer = omap_os_timer_init(0xfffb9000,
4707 s->irq[1][OMAP_INT_OS_TIMER],
4708 omap_findclk(s, "clk32-kHz"));
4710 s->lcd = omap_lcdc_init(0xfffec000, s->irq[0][OMAP_INT_LCD_CTRL],
4711 omap_dma_get_lcdch(s->dma), imif_base, emiff_base,
4712 omap_findclk(s, "lcd_ck"));
4714 omap_ulpd_pm_init(0xfffe0800, s);
4715 omap_pin_cfg_init(0xfffe1000, s);
4716 omap_id_init(s);
4718 omap_mpui_init(0xfffec900, s);
4720 s->private_tipb = omap_tipb_bridge_init(0xfffeca00,
4721 s->irq[0][OMAP_INT_BRIDGE_PRIV],
4722 omap_findclk(s, "tipb_ck"));
4723 s->public_tipb = omap_tipb_bridge_init(0xfffed300,
4724 s->irq[0][OMAP_INT_BRIDGE_PUB],
4725 omap_findclk(s, "tipb_ck"));
4727 omap_tcmi_init(0xfffecc00, s);
4729 s->uart[0] = omap_uart_init(0xfffb0000, s->irq[1][OMAP_INT_UART1],
4730 omap_findclk(s, "uart1_ck"),
4731 omap_findclk(s, "uart1_ck"),
4732 s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
4733 serial_hds[0]);
4734 s->uart[1] = omap_uart_init(0xfffb0800, s->irq[1][OMAP_INT_UART2],
4735 omap_findclk(s, "uart2_ck"),
4736 omap_findclk(s, "uart2_ck"),
4737 s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
4738 serial_hds[0] ? serial_hds[1] : NULL);
4739 s->uart[2] = omap_uart_init(0xfffb9800, s->irq[0][OMAP_INT_UART3],
4740 omap_findclk(s, "uart3_ck"),
4741 omap_findclk(s, "uart3_ck"),
4742 s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
4743 serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL);
4745 omap_dpll_init(&s->dpll[0], 0xfffecf00, omap_findclk(s, "dpll1"));
4746 omap_dpll_init(&s->dpll[1], 0xfffed000, omap_findclk(s, "dpll2"));
4747 omap_dpll_init(&s->dpll[2], 0xfffed100, omap_findclk(s, "dpll3"));
4749 dinfo = drive_get(IF_SD, 0, 0);
4750 if (!dinfo) {
4751 fprintf(stderr, "qemu: missing SecureDigital device\n");
4752 exit(1);
4754 s->mmc = omap_mmc_init(0xfffb7800, dinfo->bdrv,
4755 s->irq[1][OMAP_INT_OQN], &s->drq[OMAP_DMA_MMC_TX],
4756 omap_findclk(s, "mmc_ck"));
4758 s->mpuio = omap_mpuio_init(0xfffb5000,
4759 s->irq[1][OMAP_INT_KEYBOARD], s->irq[1][OMAP_INT_MPUIO],
4760 s->wakeup, omap_findclk(s, "clk32-kHz"));
4762 s->gpio = omap_gpio_init(0xfffce000, s->irq[0][OMAP_INT_GPIO_BANK1],
4763 omap_findclk(s, "arm_gpio_ck"));
4765 s->microwire = omap_uwire_init(0xfffb3000, &s->irq[1][OMAP_INT_uWireTX],
4766 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4768 omap_pwl_init(0xfffb5800, s, omap_findclk(s, "armxor_ck"));
4769 omap_pwt_init(0xfffb6000, s, omap_findclk(s, "armxor_ck"));
4771 s->i2c[0] = omap_i2c_init(0xfffb3800, s->irq[1][OMAP_INT_I2C],
4772 &s->drq[OMAP_DMA_I2C_RX], omap_findclk(s, "mpuper_ck"));
4774 s->rtc = omap_rtc_init(0xfffb4800, &s->irq[1][OMAP_INT_RTC_TIMER],
4775 omap_findclk(s, "clk32-kHz"));
4777 s->mcbsp1 = omap_mcbsp_init(0xfffb1800, &s->irq[1][OMAP_INT_McBSP1TX],
4778 &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4779 s->mcbsp2 = omap_mcbsp_init(0xfffb1000, &s->irq[0][OMAP_INT_310_McBSP2_TX],
4780 &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4781 s->mcbsp3 = omap_mcbsp_init(0xfffb7000, &s->irq[1][OMAP_INT_McBSP3TX],
4782 &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4784 s->led[0] = omap_lpg_init(0xfffbd000, omap_findclk(s, "clk32-kHz"));
4785 s->led[1] = omap_lpg_init(0xfffbd800, omap_findclk(s, "clk32-kHz"));
4787 /* Register mappings not currenlty implemented:
4788 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
4789 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
4790 * USB W2FC fffb4000 - fffb47ff
4791 * Camera Interface fffb6800 - fffb6fff
4792 * USB Host fffba000 - fffba7ff
4793 * FAC fffba800 - fffbafff
4794 * HDQ/1-Wire fffbc000 - fffbc7ff
4795 * TIPB switches fffbc800 - fffbcfff
4796 * Mailbox fffcf000 - fffcf7ff
4797 * Local bus IF fffec100 - fffec1ff
4798 * Local bus MMU fffec200 - fffec2ff
4799 * DSP MMU fffed200 - fffed2ff
4802 omap_setup_dsp_mapping(omap15xx_dsp_mm);
4803 omap_setup_mpui_io(s);
4805 qemu_register_reset(omap1_mpu_reset, s);
4807 return s;