acpi: do not use TARGET_PAGE_SIZE
[qemu/cris-port.git] / target-ppc / mem_helper.c
blob6d584c91268ee204aa44a65622a9bc6eb84e1066
1 /*
2 * PowerPC memory access emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "qemu/host-utils.h"
22 #include "exec/helper-proto.h"
24 #include "helper_regs.h"
25 #include "exec/cpu_ldst.h"
27 //#define DEBUG_OP
29 static inline bool needs_byteswap(const CPUPPCState *env)
31 #if defined(TARGET_WORDS_BIGENDIAN)
32 return msr_le;
33 #else
34 return !msr_le;
35 #endif
38 /*****************************************************************************/
39 /* Memory load and stores */
41 static inline target_ulong addr_add(CPUPPCState *env, target_ulong addr,
42 target_long arg)
44 #if defined(TARGET_PPC64)
45 if (!msr_is_64bit(env, env->msr)) {
46 return (uint32_t)(addr + arg);
47 } else
48 #endif
50 return addr + arg;
54 void helper_lmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
56 for (; reg < 32; reg++) {
57 if (needs_byteswap(env)) {
58 env->gpr[reg] = bswap32(cpu_ldl_data(env, addr));
59 } else {
60 env->gpr[reg] = cpu_ldl_data(env, addr);
62 addr = addr_add(env, addr, 4);
66 void helper_stmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
68 for (; reg < 32; reg++) {
69 if (needs_byteswap(env)) {
70 cpu_stl_data(env, addr, bswap32((uint32_t)env->gpr[reg]));
71 } else {
72 cpu_stl_data(env, addr, (uint32_t)env->gpr[reg]);
74 addr = addr_add(env, addr, 4);
78 void helper_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb, uint32_t reg)
80 int sh;
82 for (; nb > 3; nb -= 4) {
83 env->gpr[reg] = cpu_ldl_data(env, addr);
84 reg = (reg + 1) % 32;
85 addr = addr_add(env, addr, 4);
87 if (unlikely(nb > 0)) {
88 env->gpr[reg] = 0;
89 for (sh = 24; nb > 0; nb--, sh -= 8) {
90 env->gpr[reg] |= cpu_ldub_data(env, addr) << sh;
91 addr = addr_add(env, addr, 1);
95 /* PPC32 specification says we must generate an exception if
96 * rA is in the range of registers to be loaded.
97 * In an other hand, IBM says this is valid, but rA won't be loaded.
98 * For now, I'll follow the spec...
100 void helper_lswx(CPUPPCState *env, target_ulong addr, uint32_t reg,
101 uint32_t ra, uint32_t rb)
103 if (likely(xer_bc != 0)) {
104 int num_used_regs = (xer_bc + 3) / 4;
105 if (unlikely((ra != 0 && lsw_reg_in_range(reg, num_used_regs, ra)) ||
106 lsw_reg_in_range(reg, num_used_regs, rb))) {
107 env->nip += 4; /* Compensate the "nip - 4" from gen_lswx() */
108 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
109 POWERPC_EXCP_INVAL |
110 POWERPC_EXCP_INVAL_LSWX);
111 } else {
112 helper_lsw(env, addr, xer_bc, reg);
117 void helper_stsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
118 uint32_t reg)
120 int sh;
122 for (; nb > 3; nb -= 4) {
123 cpu_stl_data(env, addr, env->gpr[reg]);
124 reg = (reg + 1) % 32;
125 addr = addr_add(env, addr, 4);
127 if (unlikely(nb > 0)) {
128 for (sh = 24; nb > 0; nb--, sh -= 8) {
129 cpu_stb_data(env, addr, (env->gpr[reg] >> sh) & 0xFF);
130 addr = addr_add(env, addr, 1);
135 static void do_dcbz(CPUPPCState *env, target_ulong addr, int dcache_line_size)
137 int i;
139 addr &= ~(dcache_line_size - 1);
140 for (i = 0; i < dcache_line_size; i += 4) {
141 cpu_stl_data(env, addr + i, 0);
143 if (env->reserve_addr == addr) {
144 env->reserve_addr = (target_ulong)-1ULL;
148 void helper_dcbz(CPUPPCState *env, target_ulong addr, uint32_t is_dcbzl)
150 int dcbz_size = env->dcache_line_size;
152 #if defined(TARGET_PPC64)
153 if (!is_dcbzl &&
154 (env->excp_model == POWERPC_EXCP_970) &&
155 ((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) {
156 dcbz_size = 32;
158 #endif
160 /* XXX add e500mc support */
162 do_dcbz(env, addr, dcbz_size);
165 void helper_icbi(CPUPPCState *env, target_ulong addr)
167 addr &= ~(env->dcache_line_size - 1);
168 /* Invalidate one cache line :
169 * PowerPC specification says this is to be treated like a load
170 * (not a fetch) by the MMU. To be sure it will be so,
171 * do the load "by hand".
173 cpu_ldl_data(env, addr);
176 /* XXX: to be tested */
177 target_ulong helper_lscbx(CPUPPCState *env, target_ulong addr, uint32_t reg,
178 uint32_t ra, uint32_t rb)
180 int i, c, d;
182 d = 24;
183 for (i = 0; i < xer_bc; i++) {
184 c = cpu_ldub_data(env, addr);
185 addr = addr_add(env, addr, 1);
186 /* ra (if not 0) and rb are never modified */
187 if (likely(reg != rb && (ra == 0 || reg != ra))) {
188 env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
190 if (unlikely(c == xer_cmp)) {
191 break;
193 if (likely(d != 0)) {
194 d -= 8;
195 } else {
196 d = 24;
197 reg++;
198 reg = reg & 0x1F;
201 return i;
204 /*****************************************************************************/
205 /* Altivec extension helpers */
206 #if defined(HOST_WORDS_BIGENDIAN)
207 #define HI_IDX 0
208 #define LO_IDX 1
209 #else
210 #define HI_IDX 1
211 #define LO_IDX 0
212 #endif
214 /* We use msr_le to determine index ordering in a vector. However,
215 byteswapping is not simply controlled by msr_le. We also need to take
216 into account endianness of the target. This is done for the little-endian
217 PPC64 user-mode target. */
219 #define LVE(name, access, swap, element) \
220 void helper_##name(CPUPPCState *env, ppc_avr_t *r, \
221 target_ulong addr) \
223 size_t n_elems = ARRAY_SIZE(r->element); \
224 int adjust = HI_IDX*(n_elems - 1); \
225 int sh = sizeof(r->element[0]) >> 1; \
226 int index = (addr & 0xf) >> sh; \
227 if (msr_le) { \
228 index = n_elems - index - 1; \
231 if (needs_byteswap(env)) { \
232 r->element[LO_IDX ? index : (adjust - index)] = \
233 swap(access(env, addr)); \
234 } else { \
235 r->element[LO_IDX ? index : (adjust - index)] = \
236 access(env, addr); \
239 #define I(x) (x)
240 LVE(lvebx, cpu_ldub_data, I, u8)
241 LVE(lvehx, cpu_lduw_data, bswap16, u16)
242 LVE(lvewx, cpu_ldl_data, bswap32, u32)
243 #undef I
244 #undef LVE
246 #define STVE(name, access, swap, element) \
247 void helper_##name(CPUPPCState *env, ppc_avr_t *r, \
248 target_ulong addr) \
250 size_t n_elems = ARRAY_SIZE(r->element); \
251 int adjust = HI_IDX * (n_elems - 1); \
252 int sh = sizeof(r->element[0]) >> 1; \
253 int index = (addr & 0xf) >> sh; \
254 if (msr_le) { \
255 index = n_elems - index - 1; \
258 if (needs_byteswap(env)) { \
259 access(env, addr, swap(r->element[LO_IDX ? index : \
260 (adjust - index)])); \
261 } else { \
262 access(env, addr, r->element[LO_IDX ? index : \
263 (adjust - index)]); \
266 #define I(x) (x)
267 STVE(stvebx, cpu_stb_data, I, u8)
268 STVE(stvehx, cpu_stw_data, bswap16, u16)
269 STVE(stvewx, cpu_stl_data, bswap32, u32)
270 #undef I
271 #undef LVE
273 #undef HI_IDX
274 #undef LO_IDX
276 void helper_tbegin(CPUPPCState *env)
278 /* As a degenerate implementation, always fail tbegin. The reason
279 * given is "Nesting overflow". The "persistent" bit is set,
280 * providing a hint to the error handler to not retry. The TFIAR
281 * captures the address of the failure, which is this tbegin
282 * instruction. Instruction execution will continue with the
283 * next instruction in memory, which is precisely what we want.
286 env->spr[SPR_TEXASR] =
287 (1ULL << TEXASR_FAILURE_PERSISTENT) |
288 (1ULL << TEXASR_NESTING_OVERFLOW) |
289 (msr_hv << TEXASR_PRIVILEGE_HV) |
290 (msr_pr << TEXASR_PRIVILEGE_PR) |
291 (1ULL << TEXASR_FAILURE_SUMMARY) |
292 (1ULL << TEXASR_TFIAR_EXACT);
293 env->spr[SPR_TFIAR] = env->nip | (msr_hv << 1) | msr_pr;
294 env->spr[SPR_TFHAR] = env->nip + 4;
295 env->crf[0] = 0xB; /* 0b1010 = transaction failure */