2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
25 #if !defined(CONFIG_SOFTMMU)
37 #include <sys/ucontext.h>
41 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
42 // Work around ugly bugs in glibc that mangle global register contents
44 #define env cpu_single_env
47 int tb_invalidated_flag
;
49 //#define CONFIG_DEBUG_EXEC
50 //#define DEBUG_SIGNAL
52 int qemu_cpu_has_work(CPUState
*env
)
54 return cpu_has_work(env
);
57 void cpu_loop_exit(void)
59 env
->current_tb
= NULL
;
60 longjmp(env
->jmp_env
, 1);
63 /* exit the current TB from a signal handler. The host registers are
64 restored in a state compatible with the CPU emulator
66 void cpu_resume_from_signal(CPUState
*env1
, void *puc
)
68 #if !defined(CONFIG_SOFTMMU)
70 struct ucontext
*uc
= puc
;
71 #elif defined(__OpenBSD__)
72 struct sigcontext
*uc
= puc
;
78 /* XXX: restore cpu registers saved in host registers */
80 #if !defined(CONFIG_SOFTMMU)
82 /* XXX: use siglongjmp ? */
84 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
85 #elif defined(__OpenBSD__)
86 sigprocmask(SIG_SETMASK
, &uc
->sc_mask
, NULL
);
90 env
->exception_index
= -1;
91 longjmp(env
->jmp_env
, 1);
94 /* Execute the code without caching the generated code. An interpreter
95 could be used if available. */
96 static void cpu_exec_nocache(int max_cycles
, TranslationBlock
*orig_tb
)
98 unsigned long next_tb
;
101 /* Should never happen.
102 We only end up here when an existing TB is too long. */
103 if (max_cycles
> CF_COUNT_MASK
)
104 max_cycles
= CF_COUNT_MASK
;
106 tb
= tb_gen_code(env
, orig_tb
->pc
, orig_tb
->cs_base
, orig_tb
->flags
,
108 env
->current_tb
= tb
;
109 /* execute the generated code */
110 next_tb
= tcg_qemu_tb_exec(tb
->tc_ptr
);
111 env
->current_tb
= NULL
;
113 if ((next_tb
& 3) == 2) {
114 /* Restore PC. This may happen if async event occurs before
115 the TB starts executing. */
116 cpu_pc_from_tb(env
, tb
);
118 tb_phys_invalidate(tb
, -1);
122 static TranslationBlock
*tb_find_slow(target_ulong pc
,
123 target_ulong cs_base
,
126 TranslationBlock
*tb
, **ptb1
;
128 tb_page_addr_t phys_pc
, phys_page1
, phys_page2
;
129 target_ulong virt_page2
;
131 tb_invalidated_flag
= 0;
133 /* find translated block using physical mappings */
134 phys_pc
= get_page_addr_code(env
, pc
);
135 phys_page1
= phys_pc
& TARGET_PAGE_MASK
;
137 h
= tb_phys_hash_func(phys_pc
);
138 ptb1
= &tb_phys_hash
[h
];
144 tb
->page_addr
[0] == phys_page1
&&
145 tb
->cs_base
== cs_base
&&
146 tb
->flags
== flags
) {
147 /* check next page if needed */
148 if (tb
->page_addr
[1] != -1) {
149 virt_page2
= (pc
& TARGET_PAGE_MASK
) +
151 phys_page2
= get_page_addr_code(env
, virt_page2
);
152 if (tb
->page_addr
[1] == phys_page2
)
158 ptb1
= &tb
->phys_hash_next
;
161 /* if no translated code available, then translate it now */
162 tb
= tb_gen_code(env
, pc
, cs_base
, flags
, 0);
165 /* we add the TB in the virtual pc hash table */
166 env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)] = tb
;
170 static inline TranslationBlock
*tb_find_fast(void)
172 TranslationBlock
*tb
;
173 target_ulong cs_base
, pc
;
176 /* we record a subset of the CPU state. It will
177 always be the same before a given translated block
179 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &flags
);
180 tb
= env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)];
181 if (unlikely(!tb
|| tb
->pc
!= pc
|| tb
->cs_base
!= cs_base
||
182 tb
->flags
!= flags
)) {
183 tb
= tb_find_slow(pc
, cs_base
, flags
);
188 static CPUDebugExcpHandler
*debug_excp_handler
;
190 CPUDebugExcpHandler
*cpu_set_debug_excp_handler(CPUDebugExcpHandler
*handler
)
192 CPUDebugExcpHandler
*old_handler
= debug_excp_handler
;
194 debug_excp_handler
= handler
;
198 static void cpu_handle_debug_exception(CPUState
*env
)
202 if (!env
->watchpoint_hit
)
203 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
)
204 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
206 if (debug_excp_handler
)
207 debug_excp_handler(env
);
210 /* main execution loop */
212 int cpu_exec(CPUState
*env1
)
214 volatile host_reg_t saved_env_reg
;
215 int ret
, interrupt_request
;
216 TranslationBlock
*tb
;
218 unsigned long next_tb
;
220 if (cpu_halted(env1
) == EXCP_HALTED
)
223 cpu_single_env
= env1
;
225 /* the access to env below is actually saving the global register's
226 value, so that files not including target-xyz/exec.h are free to
228 QEMU_BUILD_BUG_ON (sizeof (saved_env_reg
) != sizeof (env
));
229 saved_env_reg
= (host_reg_t
) env
;
233 #if defined(TARGET_I386)
234 if (!kvm_enabled()) {
235 /* put eflags in CPU temporary format */
236 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
237 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
238 CC_OP
= CC_OP_EFLAGS
;
239 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
241 #elif defined(TARGET_SPARC)
242 #elif defined(TARGET_M68K)
243 env
->cc_op
= CC_OP_FLAGS
;
244 env
->cc_dest
= env
->sr
& 0xf;
245 env
->cc_x
= (env
->sr
>> 4) & 1;
246 #elif defined(TARGET_ALPHA)
247 #elif defined(TARGET_ARM)
248 #elif defined(TARGET_PPC)
249 #elif defined(TARGET_MICROBLAZE)
250 #elif defined(TARGET_MIPS)
251 #elif defined(TARGET_SH4)
252 #elif defined(TARGET_CRIS)
253 #elif defined(TARGET_S390X)
256 #error unsupported target CPU
258 env
->exception_index
= -1;
260 /* prepare setjmp context for exception handling */
262 if (setjmp(env
->jmp_env
) == 0) {
263 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
265 env
= cpu_single_env
;
266 #define env cpu_single_env
268 /* if an exception is pending, we execute it here */
269 if (env
->exception_index
>= 0) {
270 if (env
->exception_index
>= EXCP_INTERRUPT
) {
271 /* exit request from the cpu execution loop */
272 ret
= env
->exception_index
;
273 if (ret
== EXCP_DEBUG
)
274 cpu_handle_debug_exception(env
);
277 #if defined(CONFIG_USER_ONLY)
278 /* if user mode only, we simulate a fake exception
279 which will be handled outside the cpu execution
281 #if defined(TARGET_I386)
282 do_interrupt_user(env
->exception_index
,
283 env
->exception_is_int
,
285 env
->exception_next_eip
);
286 /* successfully delivered */
287 env
->old_exception
= -1;
289 ret
= env
->exception_index
;
292 #if defined(TARGET_I386)
293 /* simulate a real cpu exception. On i386, it can
294 trigger new exceptions, but we do not handle
295 double or triple faults yet. */
296 do_interrupt(env
->exception_index
,
297 env
->exception_is_int
,
299 env
->exception_next_eip
, 0);
300 /* successfully delivered */
301 env
->old_exception
= -1;
302 #elif defined(TARGET_PPC)
304 #elif defined(TARGET_MICROBLAZE)
306 #elif defined(TARGET_MIPS)
308 #elif defined(TARGET_SPARC)
310 #elif defined(TARGET_ARM)
312 #elif defined(TARGET_SH4)
314 #elif defined(TARGET_ALPHA)
316 #elif defined(TARGET_CRIS)
318 #elif defined(TARGET_M68K)
321 env
->exception_index
= -1;
328 longjmp(env
->jmp_env
, 1);
331 next_tb
= 0; /* force lookup of first TB */
333 interrupt_request
= env
->interrupt_request
;
334 if (unlikely(interrupt_request
)) {
335 if (unlikely(env
->singlestep_enabled
& SSTEP_NOIRQ
)) {
336 /* Mask out external interrupts for this step. */
337 interrupt_request
&= ~(CPU_INTERRUPT_HARD
|
342 if (interrupt_request
& CPU_INTERRUPT_DEBUG
) {
343 env
->interrupt_request
&= ~CPU_INTERRUPT_DEBUG
;
344 env
->exception_index
= EXCP_DEBUG
;
347 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
348 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
349 defined(TARGET_MICROBLAZE)
350 if (interrupt_request
& CPU_INTERRUPT_HALT
) {
351 env
->interrupt_request
&= ~CPU_INTERRUPT_HALT
;
353 env
->exception_index
= EXCP_HLT
;
357 #if defined(TARGET_I386)
358 if (interrupt_request
& CPU_INTERRUPT_INIT
) {
359 svm_check_intercept(SVM_EXIT_INIT
);
361 env
->exception_index
= EXCP_HALTED
;
363 } else if (interrupt_request
& CPU_INTERRUPT_SIPI
) {
365 } else if (env
->hflags2
& HF2_GIF_MASK
) {
366 if ((interrupt_request
& CPU_INTERRUPT_SMI
) &&
367 !(env
->hflags
& HF_SMM_MASK
)) {
368 svm_check_intercept(SVM_EXIT_SMI
);
369 env
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
372 } else if ((interrupt_request
& CPU_INTERRUPT_NMI
) &&
373 !(env
->hflags2
& HF2_NMI_MASK
)) {
374 env
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
375 env
->hflags2
|= HF2_NMI_MASK
;
376 do_interrupt(EXCP02_NMI
, 0, 0, 0, 1);
378 } else if (interrupt_request
& CPU_INTERRUPT_MCE
) {
379 env
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
380 do_interrupt(EXCP12_MCHK
, 0, 0, 0, 0);
382 } else if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
383 (((env
->hflags2
& HF2_VINTR_MASK
) &&
384 (env
->hflags2
& HF2_HIF_MASK
)) ||
385 (!(env
->hflags2
& HF2_VINTR_MASK
) &&
386 (env
->eflags
& IF_MASK
&&
387 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
))))) {
389 svm_check_intercept(SVM_EXIT_INTR
);
390 env
->interrupt_request
&= ~(CPU_INTERRUPT_HARD
| CPU_INTERRUPT_VIRQ
);
391 intno
= cpu_get_pic_interrupt(env
);
392 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing hardware INT=0x%02x\n", intno
);
393 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
395 env
= cpu_single_env
;
396 #define env cpu_single_env
398 do_interrupt(intno
, 0, 0, 0, 1);
399 /* ensure that no TB jump will be modified as
400 the program flow was changed */
402 #if !defined(CONFIG_USER_ONLY)
403 } else if ((interrupt_request
& CPU_INTERRUPT_VIRQ
) &&
404 (env
->eflags
& IF_MASK
) &&
405 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
407 /* FIXME: this should respect TPR */
408 svm_check_intercept(SVM_EXIT_VINTR
);
409 intno
= ldl_phys(env
->vm_vmcb
+ offsetof(struct vmcb
, control
.int_vector
));
410 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing virtual hardware INT=0x%02x\n", intno
);
411 do_interrupt(intno
, 0, 0, 0, 1);
412 env
->interrupt_request
&= ~CPU_INTERRUPT_VIRQ
;
417 #elif defined(TARGET_PPC)
419 if ((interrupt_request
& CPU_INTERRUPT_RESET
)) {
423 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
424 ppc_hw_interrupt(env
);
425 if (env
->pending_interrupts
== 0)
426 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
429 #elif defined(TARGET_MICROBLAZE)
430 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
431 && (env
->sregs
[SR_MSR
] & MSR_IE
)
432 && !(env
->sregs
[SR_MSR
] & (MSR_EIP
| MSR_BIP
))
433 && !(env
->iflags
& (D_FLAG
| IMM_FLAG
))) {
434 env
->exception_index
= EXCP_IRQ
;
438 #elif defined(TARGET_MIPS)
439 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
440 (env
->CP0_Status
& env
->CP0_Cause
& CP0Ca_IP_mask
) &&
441 (env
->CP0_Status
& (1 << CP0St_IE
)) &&
442 !(env
->CP0_Status
& (1 << CP0St_EXL
)) &&
443 !(env
->CP0_Status
& (1 << CP0St_ERL
)) &&
444 !(env
->hflags
& MIPS_HFLAG_DM
)) {
446 env
->exception_index
= EXCP_EXT_INTERRUPT
;
451 #elif defined(TARGET_SPARC)
452 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
453 if (cpu_interrupts_enabled(env
) &&
454 env
->interrupt_index
> 0) {
455 int pil
= env
->interrupt_index
& 0xf;
456 int type
= env
->interrupt_index
& 0xf0;
458 if (((type
== TT_EXTINT
) &&
459 cpu_pil_allowed(env
, pil
)) ||
461 env
->exception_index
= env
->interrupt_index
;
466 } else if (interrupt_request
& CPU_INTERRUPT_TIMER
) {
467 //do_interrupt(0, 0, 0, 0, 0);
468 env
->interrupt_request
&= ~CPU_INTERRUPT_TIMER
;
470 #elif defined(TARGET_ARM)
471 if (interrupt_request
& CPU_INTERRUPT_FIQ
472 && !(env
->uncached_cpsr
& CPSR_F
)) {
473 env
->exception_index
= EXCP_FIQ
;
477 /* ARMv7-M interrupt return works by loading a magic value
478 into the PC. On real hardware the load causes the
479 return to occur. The qemu implementation performs the
480 jump normally, then does the exception return when the
481 CPU tries to execute code at the magic address.
482 This will cause the magic PC value to be pushed to
483 the stack if an interrupt occured at the wrong time.
484 We avoid this by disabling interrupts when
485 pc contains a magic address. */
486 if (interrupt_request
& CPU_INTERRUPT_HARD
487 && ((IS_M(env
) && env
->regs
[15] < 0xfffffff0)
488 || !(env
->uncached_cpsr
& CPSR_I
))) {
489 env
->exception_index
= EXCP_IRQ
;
493 #elif defined(TARGET_SH4)
494 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
498 #elif defined(TARGET_ALPHA)
499 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
503 #elif defined(TARGET_CRIS)
504 if (interrupt_request
& CPU_INTERRUPT_HARD
505 && (env
->pregs
[PR_CCS
] & I_FLAG
)
506 && !env
->locked_irq
) {
507 env
->exception_index
= EXCP_IRQ
;
511 if (interrupt_request
& CPU_INTERRUPT_NMI
512 && (env
->pregs
[PR_CCS
] & M_FLAG
)) {
513 env
->exception_index
= EXCP_NMI
;
517 #elif defined(TARGET_M68K)
518 if (interrupt_request
& CPU_INTERRUPT_HARD
519 && ((env
->sr
& SR_I
) >> SR_I_SHIFT
)
520 < env
->pending_level
) {
521 /* Real hardware gets the interrupt vector via an
522 IACK cycle at this point. Current emulated
523 hardware doesn't rely on this, so we
524 provide/save the vector when the interrupt is
526 env
->exception_index
= env
->pending_vector
;
531 /* Don't use the cached interupt_request value,
532 do_interrupt may have updated the EXITTB flag. */
533 if (env
->interrupt_request
& CPU_INTERRUPT_EXITTB
) {
534 env
->interrupt_request
&= ~CPU_INTERRUPT_EXITTB
;
535 /* ensure that no TB jump will be modified as
536 the program flow was changed */
540 if (unlikely(env
->exit_request
)) {
541 env
->exit_request
= 0;
542 env
->exception_index
= EXCP_INTERRUPT
;
545 #ifdef CONFIG_DEBUG_EXEC
546 if (qemu_loglevel_mask(CPU_LOG_TB_CPU
)) {
547 /* restore flags in standard format */
548 #if defined(TARGET_I386)
549 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
550 log_cpu_state(env
, X86_DUMP_CCOP
);
551 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
552 #elif defined(TARGET_ARM)
553 log_cpu_state(env
, 0);
554 #elif defined(TARGET_SPARC)
555 log_cpu_state(env
, 0);
556 #elif defined(TARGET_PPC)
557 log_cpu_state(env
, 0);
558 #elif defined(TARGET_M68K)
559 cpu_m68k_flush_flags(env
, env
->cc_op
);
560 env
->cc_op
= CC_OP_FLAGS
;
561 env
->sr
= (env
->sr
& 0xffe0)
562 | env
->cc_dest
| (env
->cc_x
<< 4);
563 log_cpu_state(env
, 0);
564 #elif defined(TARGET_MICROBLAZE)
565 log_cpu_state(env
, 0);
566 #elif defined(TARGET_MIPS)
567 log_cpu_state(env
, 0);
568 #elif defined(TARGET_SH4)
569 log_cpu_state(env
, 0);
570 #elif defined(TARGET_ALPHA)
571 log_cpu_state(env
, 0);
572 #elif defined(TARGET_CRIS)
573 log_cpu_state(env
, 0);
575 #error unsupported target CPU
581 /* Note: we do it here to avoid a gcc bug on Mac OS X when
582 doing it in tb_find_slow */
583 if (tb_invalidated_flag
) {
584 /* as some TB could have been invalidated because
585 of memory exceptions while generating the code, we
586 must recompute the hash index here */
588 tb_invalidated_flag
= 0;
590 #ifdef CONFIG_DEBUG_EXEC
591 qemu_log_mask(CPU_LOG_EXEC
, "Trace 0x%08lx [" TARGET_FMT_lx
"] %s\n",
592 (long)tb
->tc_ptr
, tb
->pc
,
593 lookup_symbol(tb
->pc
));
595 /* see if we can patch the calling TB. When the TB
596 spans two pages, we cannot safely do a direct
598 if (next_tb
!= 0 && tb
->page_addr
[1] == -1) {
599 tb_add_jump((TranslationBlock
*)(next_tb
& ~3), next_tb
& 3, tb
);
601 spin_unlock(&tb_lock
);
603 /* cpu_interrupt might be called while translating the
604 TB, but before it is linked into a potentially
605 infinite loop and becomes env->current_tb. Avoid
606 starting execution if there is a pending interrupt. */
607 if (!unlikely (env
->exit_request
)) {
608 env
->current_tb
= tb
;
610 /* execute the generated code */
611 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
613 env
= cpu_single_env
;
614 #define env cpu_single_env
616 next_tb
= tcg_qemu_tb_exec(tc_ptr
);
617 env
->current_tb
= NULL
;
618 if ((next_tb
& 3) == 2) {
619 /* Instruction counter expired. */
621 tb
= (TranslationBlock
*)(long)(next_tb
& ~3);
623 cpu_pc_from_tb(env
, tb
);
624 insns_left
= env
->icount_decr
.u32
;
625 if (env
->icount_extra
&& insns_left
>= 0) {
626 /* Refill decrementer and continue execution. */
627 env
->icount_extra
+= insns_left
;
628 if (env
->icount_extra
> 0xffff) {
631 insns_left
= env
->icount_extra
;
633 env
->icount_extra
-= insns_left
;
634 env
->icount_decr
.u16
.low
= insns_left
;
636 if (insns_left
> 0) {
637 /* Execute remaining instructions. */
638 cpu_exec_nocache(insns_left
, tb
);
640 env
->exception_index
= EXCP_INTERRUPT
;
646 /* reset soft MMU for next block (it can currently
647 only be set by a memory fault) */
653 #if defined(TARGET_I386)
654 /* restore flags in standard format */
655 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
656 #elif defined(TARGET_ARM)
657 /* XXX: Save/restore host fpu exception state?. */
658 #elif defined(TARGET_SPARC)
659 #elif defined(TARGET_PPC)
660 #elif defined(TARGET_M68K)
661 cpu_m68k_flush_flags(env
, env
->cc_op
);
662 env
->cc_op
= CC_OP_FLAGS
;
663 env
->sr
= (env
->sr
& 0xffe0)
664 | env
->cc_dest
| (env
->cc_x
<< 4);
665 #elif defined(TARGET_MICROBLAZE)
666 #elif defined(TARGET_MIPS)
667 #elif defined(TARGET_SH4)
668 #elif defined(TARGET_ALPHA)
669 #elif defined(TARGET_CRIS)
670 #elif defined(TARGET_S390X)
673 #error unsupported target CPU
676 /* restore global registers */
678 env
= (void *) saved_env_reg
;
680 /* fail safe : never use cpu_single_env outside cpu_exec() */
681 cpu_single_env
= NULL
;
685 /* must only be called from the generated code as an exception can be
687 void tb_invalidate_page_range(target_ulong start
, target_ulong end
)
689 /* XXX: cannot enable it yet because it yields to MMU exception
690 where NIP != read address on PowerPC */
692 target_ulong phys_addr
;
693 phys_addr
= get_phys_addr_code(env
, start
);
694 tb_invalidate_phys_page_range(phys_addr
, phys_addr
+ end
- start
, 0);
698 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
700 void cpu_x86_load_seg(CPUX86State
*s
, int seg_reg
, int selector
)
702 CPUX86State
*saved_env
;
706 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
708 cpu_x86_load_seg_cache(env
, seg_reg
, selector
,
709 (selector
<< 4), 0xffff, 0);
711 helper_load_seg(seg_reg
, selector
);
716 void cpu_x86_fsave(CPUX86State
*s
, target_ulong ptr
, int data32
)
718 CPUX86State
*saved_env
;
723 helper_fsave(ptr
, data32
);
728 void cpu_x86_frstor(CPUX86State
*s
, target_ulong ptr
, int data32
)
730 CPUX86State
*saved_env
;
735 helper_frstor(ptr
, data32
);
740 #endif /* TARGET_I386 */
742 #if !defined(CONFIG_SOFTMMU)
744 #if defined(TARGET_I386)
745 #define EXCEPTION_ACTION raise_exception_err(env->exception_index, env->error_code)
747 #define EXCEPTION_ACTION cpu_loop_exit()
750 /* 'pc' is the host PC at which the exception was raised. 'address' is
751 the effective address of the memory exception. 'is_write' is 1 if a
752 write caused the exception and otherwise 0'. 'old_set' is the
753 signal set which should be restored */
754 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
755 int is_write
, sigset_t
*old_set
,
758 TranslationBlock
*tb
;
762 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
763 #if defined(DEBUG_SIGNAL)
764 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
765 pc
, address
, is_write
, *(unsigned long *)old_set
);
767 /* XXX: locking issue */
768 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
772 /* see if it is an MMU fault */
773 ret
= cpu_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
775 return 0; /* not an MMU fault */
777 return 1; /* the MMU fault was handled without causing real CPU fault */
778 /* now we have a real cpu fault */
781 /* the PC is inside the translated code. It means that we have
782 a virtual CPU fault */
783 cpu_restore_state(tb
, env
, pc
, puc
);
786 /* we restore the process signal mask as the sigreturn should
787 do it (XXX: use sigsetjmp) */
788 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
791 /* never comes here */
795 #if defined(__i386__)
797 #if defined(__APPLE__)
798 # include <sys/ucontext.h>
800 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
801 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
802 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
803 # define MASK_sig(context) ((context)->uc_sigmask)
804 #elif defined (__NetBSD__)
805 # include <ucontext.h>
807 # define EIP_sig(context) ((context)->uc_mcontext.__gregs[_REG_EIP])
808 # define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
809 # define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
810 # define MASK_sig(context) ((context)->uc_sigmask)
811 #elif defined (__FreeBSD__) || defined(__DragonFly__)
812 # include <ucontext.h>
814 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_eip))
815 # define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
816 # define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
817 # define MASK_sig(context) ((context)->uc_sigmask)
818 #elif defined(__OpenBSD__)
819 # define EIP_sig(context) ((context)->sc_eip)
820 # define TRAP_sig(context) ((context)->sc_trapno)
821 # define ERROR_sig(context) ((context)->sc_err)
822 # define MASK_sig(context) ((context)->sc_mask)
824 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
825 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
826 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
827 # define MASK_sig(context) ((context)->uc_sigmask)
830 int cpu_signal_handler(int host_signum
, void *pinfo
,
833 siginfo_t
*info
= pinfo
;
834 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
835 ucontext_t
*uc
= puc
;
836 #elif defined(__OpenBSD__)
837 struct sigcontext
*uc
= puc
;
839 struct ucontext
*uc
= puc
;
848 #define REG_TRAPNO TRAPNO
851 trapno
= TRAP_sig(uc
);
852 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
854 (ERROR_sig(uc
) >> 1) & 1 : 0,
858 #elif defined(__x86_64__)
861 #define PC_sig(context) _UC_MACHINE_PC(context)
862 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
863 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
864 #define MASK_sig(context) ((context)->uc_sigmask)
865 #elif defined(__OpenBSD__)
866 #define PC_sig(context) ((context)->sc_rip)
867 #define TRAP_sig(context) ((context)->sc_trapno)
868 #define ERROR_sig(context) ((context)->sc_err)
869 #define MASK_sig(context) ((context)->sc_mask)
870 #elif defined (__FreeBSD__) || defined(__DragonFly__)
871 #include <ucontext.h>
873 #define PC_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_rip))
874 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
875 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
876 #define MASK_sig(context) ((context)->uc_sigmask)
878 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
879 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
880 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
881 #define MASK_sig(context) ((context)->uc_sigmask)
884 int cpu_signal_handler(int host_signum
, void *pinfo
,
887 siginfo_t
*info
= pinfo
;
889 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
890 ucontext_t
*uc
= puc
;
891 #elif defined(__OpenBSD__)
892 struct sigcontext
*uc
= puc
;
894 struct ucontext
*uc
= puc
;
898 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
899 TRAP_sig(uc
) == 0xe ?
900 (ERROR_sig(uc
) >> 1) & 1 : 0,
904 #elif defined(_ARCH_PPC)
906 /***********************************************************************
907 * signal context platform-specific definitions
911 /* All Registers access - only for local access */
912 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
913 /* Gpr Registers access */
914 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
915 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
916 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
917 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
918 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
919 # define LR_sig(context) REG_sig(link, context) /* Link register */
920 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
921 /* Float Registers access */
922 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
923 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
924 /* Exception Registers access */
925 # define DAR_sig(context) REG_sig(dar, context)
926 # define DSISR_sig(context) REG_sig(dsisr, context)
927 # define TRAP_sig(context) REG_sig(trap, context)
930 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
931 #include <ucontext.h>
932 # define IAR_sig(context) ((context)->uc_mcontext.mc_srr0)
933 # define MSR_sig(context) ((context)->uc_mcontext.mc_srr1)
934 # define CTR_sig(context) ((context)->uc_mcontext.mc_ctr)
935 # define XER_sig(context) ((context)->uc_mcontext.mc_xer)
936 # define LR_sig(context) ((context)->uc_mcontext.mc_lr)
937 # define CR_sig(context) ((context)->uc_mcontext.mc_cr)
938 /* Exception Registers access */
939 # define DAR_sig(context) ((context)->uc_mcontext.mc_dar)
940 # define DSISR_sig(context) ((context)->uc_mcontext.mc_dsisr)
941 # define TRAP_sig(context) ((context)->uc_mcontext.mc_exc)
942 #endif /* __FreeBSD__|| __FreeBSD_kernel__ */
945 # include <sys/ucontext.h>
946 typedef struct ucontext SIGCONTEXT
;
947 /* All Registers access - only for local access */
948 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
949 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
950 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
951 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
952 /* Gpr Registers access */
953 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
954 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
955 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
956 # define CTR_sig(context) REG_sig(ctr, context)
957 # define XER_sig(context) REG_sig(xer, context) /* Link register */
958 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
959 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
960 /* Float Registers access */
961 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
962 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
963 /* Exception Registers access */
964 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
965 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
966 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
967 #endif /* __APPLE__ */
969 int cpu_signal_handler(int host_signum
, void *pinfo
,
972 siginfo_t
*info
= pinfo
;
973 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
974 ucontext_t
*uc
= puc
;
976 struct ucontext
*uc
= puc
;
985 if (DSISR_sig(uc
) & 0x00800000)
988 if (TRAP_sig(uc
) != 0x400 && (DSISR_sig(uc
) & 0x02000000))
991 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
992 is_write
, &uc
->uc_sigmask
, puc
);
995 #elif defined(__alpha__)
997 int cpu_signal_handler(int host_signum
, void *pinfo
,
1000 siginfo_t
*info
= pinfo
;
1001 struct ucontext
*uc
= puc
;
1002 uint32_t *pc
= uc
->uc_mcontext
.sc_pc
;
1003 uint32_t insn
= *pc
;
1006 /* XXX: need kernel patch to get write flag faster */
1007 switch (insn
>> 26) {
1022 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1023 is_write
, &uc
->uc_sigmask
, puc
);
1025 #elif defined(__sparc__)
1027 int cpu_signal_handler(int host_signum
, void *pinfo
,
1030 siginfo_t
*info
= pinfo
;
1033 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
1034 uint32_t *regs
= (uint32_t *)(info
+ 1);
1035 void *sigmask
= (regs
+ 20);
1036 /* XXX: is there a standard glibc define ? */
1037 unsigned long pc
= regs
[1];
1040 struct sigcontext
*sc
= puc
;
1041 unsigned long pc
= sc
->sigc_regs
.tpc
;
1042 void *sigmask
= (void *)sc
->sigc_mask
;
1043 #elif defined(__OpenBSD__)
1044 struct sigcontext
*uc
= puc
;
1045 unsigned long pc
= uc
->sc_pc
;
1046 void *sigmask
= (void *)(long)uc
->sc_mask
;
1050 /* XXX: need kernel patch to get write flag faster */
1052 insn
= *(uint32_t *)pc
;
1053 if ((insn
>> 30) == 3) {
1054 switch((insn
>> 19) & 0x3f) {
1078 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1079 is_write
, sigmask
, NULL
);
1082 #elif defined(__arm__)
1084 int cpu_signal_handler(int host_signum
, void *pinfo
,
1087 siginfo_t
*info
= pinfo
;
1088 struct ucontext
*uc
= puc
;
1092 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1093 pc
= uc
->uc_mcontext
.gregs
[R15
];
1095 pc
= uc
->uc_mcontext
.arm_pc
;
1097 /* XXX: compute is_write */
1099 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1101 &uc
->uc_sigmask
, puc
);
1104 #elif defined(__mc68000)
1106 int cpu_signal_handler(int host_signum
, void *pinfo
,
1109 siginfo_t
*info
= pinfo
;
1110 struct ucontext
*uc
= puc
;
1114 pc
= uc
->uc_mcontext
.gregs
[16];
1115 /* XXX: compute is_write */
1117 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1119 &uc
->uc_sigmask
, puc
);
1122 #elif defined(__ia64)
1125 /* This ought to be in <bits/siginfo.h>... */
1126 # define __ISR_VALID 1
1129 int cpu_signal_handler(int host_signum
, void *pinfo
, void *puc
)
1131 siginfo_t
*info
= pinfo
;
1132 struct ucontext
*uc
= puc
;
1136 ip
= uc
->uc_mcontext
.sc_ip
;
1137 switch (host_signum
) {
1143 if (info
->si_code
&& (info
->si_segvflags
& __ISR_VALID
))
1144 /* ISR.W (write-access) is bit 33: */
1145 is_write
= (info
->si_isr
>> 33) & 1;
1151 return handle_cpu_signal(ip
, (unsigned long)info
->si_addr
,
1153 &uc
->uc_sigmask
, puc
);
1156 #elif defined(__s390__)
1158 int cpu_signal_handler(int host_signum
, void *pinfo
,
1161 siginfo_t
*info
= pinfo
;
1162 struct ucontext
*uc
= puc
;
1166 pc
= uc
->uc_mcontext
.psw
.addr
;
1167 /* XXX: compute is_write */
1169 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1170 is_write
, &uc
->uc_sigmask
, puc
);
1173 #elif defined(__mips__)
1175 int cpu_signal_handler(int host_signum
, void *pinfo
,
1178 siginfo_t
*info
= pinfo
;
1179 struct ucontext
*uc
= puc
;
1180 greg_t pc
= uc
->uc_mcontext
.pc
;
1183 /* XXX: compute is_write */
1185 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1186 is_write
, &uc
->uc_sigmask
, puc
);
1189 #elif defined(__hppa__)
1191 int cpu_signal_handler(int host_signum
, void *pinfo
,
1194 struct siginfo
*info
= pinfo
;
1195 struct ucontext
*uc
= puc
;
1199 pc
= uc
->uc_mcontext
.sc_iaoq
[0];
1200 /* FIXME: compute is_write */
1202 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1204 &uc
->uc_sigmask
, puc
);
1209 #error host CPU specific signal handler needed
1213 #endif /* !defined(CONFIG_SOFTMMU) */