2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include <sys/types.h>
36 #include "qemu-common.h"
41 #if defined(CONFIG_USER_ONLY)
45 //#define DEBUG_TB_INVALIDATE
48 //#define DEBUG_UNASSIGNED
50 /* make various TB consistency checks */
51 //#define DEBUG_TB_CHECK
52 //#define DEBUG_TLB_CHECK
54 //#define DEBUG_IOPORT
55 //#define DEBUG_SUBPAGE
57 #if !defined(CONFIG_USER_ONLY)
58 /* TB consistency checks only implemented for usermode emulation. */
62 #define SMC_BITMAP_USE_THRESHOLD 10
64 #if defined(TARGET_SPARC64)
65 #define TARGET_PHYS_ADDR_SPACE_BITS 41
66 #elif defined(TARGET_SPARC)
67 #define TARGET_PHYS_ADDR_SPACE_BITS 36
68 #elif defined(TARGET_ALPHA)
69 #define TARGET_PHYS_ADDR_SPACE_BITS 42
70 #define TARGET_VIRT_ADDR_SPACE_BITS 42
71 #elif defined(TARGET_PPC64)
72 #define TARGET_PHYS_ADDR_SPACE_BITS 42
73 #elif defined(TARGET_X86_64)
74 #define TARGET_PHYS_ADDR_SPACE_BITS 42
75 #elif defined(TARGET_I386)
76 #define TARGET_PHYS_ADDR_SPACE_BITS 36
78 #define TARGET_PHYS_ADDR_SPACE_BITS 32
81 static TranslationBlock
*tbs
;
82 int code_gen_max_blocks
;
83 TranslationBlock
*tb_phys_hash
[CODE_GEN_PHYS_HASH_SIZE
];
85 /* any access to the tbs or the page table must use this lock */
86 spinlock_t tb_lock
= SPIN_LOCK_UNLOCKED
;
88 #if defined(__arm__) || defined(__sparc_v9__)
89 /* The prologue must be reachable with a direct jump. ARM and Sparc64
90 have limited branch ranges (possibly also PPC) so place it in a
91 section close to code segment. */
92 #define code_gen_section \
93 __attribute__((__section__(".gen_code"))) \
94 __attribute__((aligned (32)))
96 /* Maximum alignment for Win32 is 16. */
97 #define code_gen_section \
98 __attribute__((aligned (16)))
100 #define code_gen_section \
101 __attribute__((aligned (32)))
104 uint8_t code_gen_prologue
[1024] code_gen_section
;
105 static uint8_t *code_gen_buffer
;
106 static unsigned long code_gen_buffer_size
;
107 /* threshold to flush the translated code buffer */
108 static unsigned long code_gen_buffer_max_size
;
109 uint8_t *code_gen_ptr
;
111 #if !defined(CONFIG_USER_ONLY)
113 uint8_t *phys_ram_dirty
;
114 static int in_migration
;
116 typedef struct RAMBlock
{
120 struct RAMBlock
*next
;
123 static RAMBlock
*ram_blocks
;
124 /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
125 then we can no longer assume contiguous ram offsets, and external uses
126 of this variable will break. */
127 ram_addr_t last_ram_offset
;
131 /* current CPU in the current thread. It is only valid inside
133 CPUState
*cpu_single_env
;
134 /* 0 = Do not count executed instructions.
135 1 = Precise instruction counting.
136 2 = Adaptive rate instruction counting. */
138 /* Current instruction counter. While executing translated code this may
139 include some instructions that have not yet been executed. */
142 typedef struct PageDesc
{
143 /* list of TBs intersecting this ram page */
144 TranslationBlock
*first_tb
;
145 /* in order to optimize self modifying code, we count the number
146 of lookups we do to a given page to use a bitmap */
147 unsigned int code_write_count
;
148 uint8_t *code_bitmap
;
149 #if defined(CONFIG_USER_ONLY)
154 typedef struct PhysPageDesc
{
155 /* offset in host memory of the page + io_index in the low bits */
156 ram_addr_t phys_offset
;
157 ram_addr_t region_offset
;
161 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
162 /* XXX: this is a temporary hack for alpha target.
163 * In the future, this is to be replaced by a multi-level table
164 * to actually be able to handle the complete 64 bits address space.
166 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
168 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
171 #define L1_SIZE (1 << L1_BITS)
172 #define L2_SIZE (1 << L2_BITS)
174 unsigned long qemu_real_host_page_size
;
175 unsigned long qemu_host_page_bits
;
176 unsigned long qemu_host_page_size
;
177 unsigned long qemu_host_page_mask
;
179 /* XXX: for system emulation, it could just be an array */
180 static PageDesc
*l1_map
[L1_SIZE
];
181 static PhysPageDesc
**l1_phys_map
;
183 #if !defined(CONFIG_USER_ONLY)
184 static void io_mem_init(void);
186 /* io memory support */
187 CPUWriteMemoryFunc
*io_mem_write
[IO_MEM_NB_ENTRIES
][4];
188 CPUReadMemoryFunc
*io_mem_read
[IO_MEM_NB_ENTRIES
][4];
189 void *io_mem_opaque
[IO_MEM_NB_ENTRIES
];
190 static char io_mem_used
[IO_MEM_NB_ENTRIES
];
191 static int io_mem_watch
;
195 static const char *logfilename
= "/tmp/qemu.log";
198 static int log_append
= 0;
201 static int tlb_flush_count
;
202 static int tb_flush_count
;
203 static int tb_phys_invalidate_count
;
205 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
206 typedef struct subpage_t
{
207 target_phys_addr_t base
;
208 CPUReadMemoryFunc
* const *mem_read
[TARGET_PAGE_SIZE
][4];
209 CPUWriteMemoryFunc
* const *mem_write
[TARGET_PAGE_SIZE
][4];
210 void *opaque
[TARGET_PAGE_SIZE
][2][4];
211 ram_addr_t region_offset
[TARGET_PAGE_SIZE
][2][4];
215 static void map_exec(void *addr
, long size
)
218 VirtualProtect(addr
, size
,
219 PAGE_EXECUTE_READWRITE
, &old_protect
);
223 static void map_exec(void *addr
, long size
)
225 unsigned long start
, end
, page_size
;
227 page_size
= getpagesize();
228 start
= (unsigned long)addr
;
229 start
&= ~(page_size
- 1);
231 end
= (unsigned long)addr
+ size
;
232 end
+= page_size
- 1;
233 end
&= ~(page_size
- 1);
235 mprotect((void *)start
, end
- start
,
236 PROT_READ
| PROT_WRITE
| PROT_EXEC
);
240 static void page_init(void)
242 /* NOTE: we can always suppose that qemu_host_page_size >=
246 SYSTEM_INFO system_info
;
248 GetSystemInfo(&system_info
);
249 qemu_real_host_page_size
= system_info
.dwPageSize
;
252 qemu_real_host_page_size
= getpagesize();
254 if (qemu_host_page_size
== 0)
255 qemu_host_page_size
= qemu_real_host_page_size
;
256 if (qemu_host_page_size
< TARGET_PAGE_SIZE
)
257 qemu_host_page_size
= TARGET_PAGE_SIZE
;
258 qemu_host_page_bits
= 0;
259 while ((1 << qemu_host_page_bits
) < qemu_host_page_size
)
260 qemu_host_page_bits
++;
261 qemu_host_page_mask
= ~(qemu_host_page_size
- 1);
262 l1_phys_map
= qemu_vmalloc(L1_SIZE
* sizeof(void *));
263 memset(l1_phys_map
, 0, L1_SIZE
* sizeof(void *));
265 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
267 long long startaddr
, endaddr
;
272 last_brk
= (unsigned long)sbrk(0);
273 f
= fopen("/proc/self/maps", "r");
276 n
= fscanf (f
, "%llx-%llx %*[^\n]\n", &startaddr
, &endaddr
);
278 startaddr
= MIN(startaddr
,
279 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS
) - 1);
280 endaddr
= MIN(endaddr
,
281 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS
) - 1);
282 page_set_flags(startaddr
& TARGET_PAGE_MASK
,
283 TARGET_PAGE_ALIGN(endaddr
),
294 static inline PageDesc
**page_l1_map(target_ulong index
)
296 #if TARGET_LONG_BITS > 32
297 /* Host memory outside guest VM. For 32-bit targets we have already
298 excluded high addresses. */
299 if (index
> ((target_ulong
)L2_SIZE
* L1_SIZE
))
302 return &l1_map
[index
>> L2_BITS
];
305 static inline PageDesc
*page_find_alloc(target_ulong index
)
308 lp
= page_l1_map(index
);
314 /* allocate if not found */
315 #if defined(CONFIG_USER_ONLY)
316 size_t len
= sizeof(PageDesc
) * L2_SIZE
;
317 /* Don't use qemu_malloc because it may recurse. */
318 p
= mmap(NULL
, len
, PROT_READ
| PROT_WRITE
,
319 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
322 unsigned long addr
= h2g(p
);
323 page_set_flags(addr
& TARGET_PAGE_MASK
,
324 TARGET_PAGE_ALIGN(addr
+ len
),
328 p
= qemu_mallocz(sizeof(PageDesc
) * L2_SIZE
);
332 return p
+ (index
& (L2_SIZE
- 1));
335 static inline PageDesc
*page_find(target_ulong index
)
338 lp
= page_l1_map(index
);
346 return p
+ (index
& (L2_SIZE
- 1));
349 static PhysPageDesc
*phys_page_find_alloc(target_phys_addr_t index
, int alloc
)
354 p
= (void **)l1_phys_map
;
355 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
357 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
358 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
360 lp
= p
+ ((index
>> (L1_BITS
+ L2_BITS
)) & (L1_SIZE
- 1));
363 /* allocate if not found */
366 p
= qemu_vmalloc(sizeof(void *) * L1_SIZE
);
367 memset(p
, 0, sizeof(void *) * L1_SIZE
);
371 lp
= p
+ ((index
>> L2_BITS
) & (L1_SIZE
- 1));
375 /* allocate if not found */
378 pd
= qemu_vmalloc(sizeof(PhysPageDesc
) * L2_SIZE
);
380 for (i
= 0; i
< L2_SIZE
; i
++) {
381 pd
[i
].phys_offset
= IO_MEM_UNASSIGNED
;
382 pd
[i
].region_offset
= (index
+ i
) << TARGET_PAGE_BITS
;
385 return ((PhysPageDesc
*)pd
) + (index
& (L2_SIZE
- 1));
388 static inline PhysPageDesc
*phys_page_find(target_phys_addr_t index
)
390 return phys_page_find_alloc(index
, 0);
393 #if !defined(CONFIG_USER_ONLY)
394 static void tlb_protect_code(ram_addr_t ram_addr
);
395 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
397 #define mmap_lock() do { } while(0)
398 #define mmap_unlock() do { } while(0)
401 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
403 #if defined(CONFIG_USER_ONLY)
404 /* Currently it is not recommended to allocate big chunks of data in
405 user mode. It will change when a dedicated libc will be used */
406 #define USE_STATIC_CODE_GEN_BUFFER
409 #ifdef USE_STATIC_CODE_GEN_BUFFER
410 static uint8_t static_code_gen_buffer
[DEFAULT_CODE_GEN_BUFFER_SIZE
];
413 static void code_gen_alloc(unsigned long tb_size
)
415 #ifdef USE_STATIC_CODE_GEN_BUFFER
416 code_gen_buffer
= static_code_gen_buffer
;
417 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
418 map_exec(code_gen_buffer
, code_gen_buffer_size
);
420 code_gen_buffer_size
= tb_size
;
421 if (code_gen_buffer_size
== 0) {
422 #if defined(CONFIG_USER_ONLY)
423 /* in user mode, phys_ram_size is not meaningful */
424 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
426 /* XXX: needs adjustments */
427 code_gen_buffer_size
= (unsigned long)(ram_size
/ 4);
430 if (code_gen_buffer_size
< MIN_CODE_GEN_BUFFER_SIZE
)
431 code_gen_buffer_size
= MIN_CODE_GEN_BUFFER_SIZE
;
432 /* The code gen buffer location may have constraints depending on
433 the host cpu and OS */
434 #if defined(__linux__)
439 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
440 #if defined(__x86_64__)
442 /* Cannot map more than that */
443 if (code_gen_buffer_size
> (800 * 1024 * 1024))
444 code_gen_buffer_size
= (800 * 1024 * 1024);
445 #elif defined(__sparc_v9__)
446 // Map the buffer below 2G, so we can use direct calls and branches
448 start
= (void *) 0x60000000UL
;
449 if (code_gen_buffer_size
> (512 * 1024 * 1024))
450 code_gen_buffer_size
= (512 * 1024 * 1024);
451 #elif defined(__arm__)
452 /* Map the buffer below 32M, so we can use direct calls and branches */
454 start
= (void *) 0x01000000UL
;
455 if (code_gen_buffer_size
> 16 * 1024 * 1024)
456 code_gen_buffer_size
= 16 * 1024 * 1024;
458 code_gen_buffer
= mmap(start
, code_gen_buffer_size
,
459 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
461 if (code_gen_buffer
== MAP_FAILED
) {
462 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
466 #elif defined(__FreeBSD__) || defined(__DragonFly__)
470 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
471 #if defined(__x86_64__)
472 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
473 * 0x40000000 is free */
475 addr
= (void *)0x40000000;
476 /* Cannot map more than that */
477 if (code_gen_buffer_size
> (800 * 1024 * 1024))
478 code_gen_buffer_size
= (800 * 1024 * 1024);
480 code_gen_buffer
= mmap(addr
, code_gen_buffer_size
,
481 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
483 if (code_gen_buffer
== MAP_FAILED
) {
484 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
489 code_gen_buffer
= qemu_malloc(code_gen_buffer_size
);
490 map_exec(code_gen_buffer
, code_gen_buffer_size
);
492 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
493 map_exec(code_gen_prologue
, sizeof(code_gen_prologue
));
494 code_gen_buffer_max_size
= code_gen_buffer_size
-
495 code_gen_max_block_size();
496 code_gen_max_blocks
= code_gen_buffer_size
/ CODE_GEN_AVG_BLOCK_SIZE
;
497 tbs
= qemu_malloc(code_gen_max_blocks
* sizeof(TranslationBlock
));
500 /* Must be called before using the QEMU cpus. 'tb_size' is the size
501 (in bytes) allocated to the translation buffer. Zero means default
503 void cpu_exec_init_all(unsigned long tb_size
)
506 code_gen_alloc(tb_size
);
507 code_gen_ptr
= code_gen_buffer
;
509 #if !defined(CONFIG_USER_ONLY)
514 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
516 #define CPU_COMMON_SAVE_VERSION 1
518 static void cpu_common_save(QEMUFile
*f
, void *opaque
)
520 CPUState
*env
= opaque
;
522 cpu_synchronize_state(env
, 0);
524 qemu_put_be32s(f
, &env
->halted
);
525 qemu_put_be32s(f
, &env
->interrupt_request
);
528 static int cpu_common_load(QEMUFile
*f
, void *opaque
, int version_id
)
530 CPUState
*env
= opaque
;
532 if (version_id
!= CPU_COMMON_SAVE_VERSION
)
535 qemu_get_be32s(f
, &env
->halted
);
536 qemu_get_be32s(f
, &env
->interrupt_request
);
537 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
538 version_id is increased. */
539 env
->interrupt_request
&= ~0x01;
541 cpu_synchronize_state(env
, 1);
547 CPUState
*qemu_get_cpu(int cpu
)
549 CPUState
*env
= first_cpu
;
552 if (env
->cpu_index
== cpu
)
560 void cpu_exec_init(CPUState
*env
)
565 #if defined(CONFIG_USER_ONLY)
568 env
->next_cpu
= NULL
;
571 while (*penv
!= NULL
) {
572 penv
= &(*penv
)->next_cpu
;
575 env
->cpu_index
= cpu_index
;
577 TAILQ_INIT(&env
->breakpoints
);
578 TAILQ_INIT(&env
->watchpoints
);
580 #if defined(CONFIG_USER_ONLY)
583 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
584 register_savevm("cpu_common", cpu_index
, CPU_COMMON_SAVE_VERSION
,
585 cpu_common_save
, cpu_common_load
, env
);
586 register_savevm("cpu", cpu_index
, CPU_SAVE_VERSION
,
587 cpu_save
, cpu_load
, env
);
591 static inline void invalidate_page_bitmap(PageDesc
*p
)
593 if (p
->code_bitmap
) {
594 qemu_free(p
->code_bitmap
);
595 p
->code_bitmap
= NULL
;
597 p
->code_write_count
= 0;
600 /* set to NULL all the 'first_tb' fields in all PageDescs */
601 static void page_flush_tb(void)
606 for(i
= 0; i
< L1_SIZE
; i
++) {
609 for(j
= 0; j
< L2_SIZE
; j
++) {
611 invalidate_page_bitmap(p
);
618 /* flush all the translation blocks */
619 /* XXX: tb_flush is currently not thread safe */
620 void tb_flush(CPUState
*env1
)
623 #if defined(DEBUG_FLUSH)
624 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
625 (unsigned long)(code_gen_ptr
- code_gen_buffer
),
627 ((unsigned long)(code_gen_ptr
- code_gen_buffer
)) / nb_tbs
: 0);
629 if ((unsigned long)(code_gen_ptr
- code_gen_buffer
) > code_gen_buffer_size
)
630 cpu_abort(env1
, "Internal error: code buffer overflow\n");
634 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
635 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
638 memset (tb_phys_hash
, 0, CODE_GEN_PHYS_HASH_SIZE
* sizeof (void *));
641 code_gen_ptr
= code_gen_buffer
;
642 /* XXX: flush processor icache at this point if cache flush is
647 #ifdef DEBUG_TB_CHECK
649 static void tb_invalidate_check(target_ulong address
)
651 TranslationBlock
*tb
;
653 address
&= TARGET_PAGE_MASK
;
654 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
655 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
656 if (!(address
+ TARGET_PAGE_SIZE
<= tb
->pc
||
657 address
>= tb
->pc
+ tb
->size
)) {
658 printf("ERROR invalidate: address=" TARGET_FMT_lx
659 " PC=%08lx size=%04x\n",
660 address
, (long)tb
->pc
, tb
->size
);
666 /* verify that all the pages have correct rights for code */
667 static void tb_page_check(void)
669 TranslationBlock
*tb
;
670 int i
, flags1
, flags2
;
672 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
673 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
674 flags1
= page_get_flags(tb
->pc
);
675 flags2
= page_get_flags(tb
->pc
+ tb
->size
- 1);
676 if ((flags1
& PAGE_WRITE
) || (flags2
& PAGE_WRITE
)) {
677 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
678 (long)tb
->pc
, tb
->size
, flags1
, flags2
);
686 /* invalidate one TB */
687 static inline void tb_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
,
690 TranslationBlock
*tb1
;
694 *ptb
= *(TranslationBlock
**)((char *)tb1
+ next_offset
);
697 ptb
= (TranslationBlock
**)((char *)tb1
+ next_offset
);
701 static inline void tb_page_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
703 TranslationBlock
*tb1
;
709 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
711 *ptb
= tb1
->page_next
[n1
];
714 ptb
= &tb1
->page_next
[n1
];
718 static inline void tb_jmp_remove(TranslationBlock
*tb
, int n
)
720 TranslationBlock
*tb1
, **ptb
;
723 ptb
= &tb
->jmp_next
[n
];
726 /* find tb(n) in circular list */
730 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
731 if (n1
== n
&& tb1
== tb
)
734 ptb
= &tb1
->jmp_first
;
736 ptb
= &tb1
->jmp_next
[n1
];
739 /* now we can suppress tb(n) from the list */
740 *ptb
= tb
->jmp_next
[n
];
742 tb
->jmp_next
[n
] = NULL
;
746 /* reset the jump entry 'n' of a TB so that it is not chained to
748 static inline void tb_reset_jump(TranslationBlock
*tb
, int n
)
750 tb_set_jmp_target(tb
, n
, (unsigned long)(tb
->tc_ptr
+ tb
->tb_next_offset
[n
]));
753 void tb_phys_invalidate(TranslationBlock
*tb
, target_ulong page_addr
)
758 target_phys_addr_t phys_pc
;
759 TranslationBlock
*tb1
, *tb2
;
761 /* remove the TB from the hash list */
762 phys_pc
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
763 h
= tb_phys_hash_func(phys_pc
);
764 tb_remove(&tb_phys_hash
[h
], tb
,
765 offsetof(TranslationBlock
, phys_hash_next
));
767 /* remove the TB from the page list */
768 if (tb
->page_addr
[0] != page_addr
) {
769 p
= page_find(tb
->page_addr
[0] >> TARGET_PAGE_BITS
);
770 tb_page_remove(&p
->first_tb
, tb
);
771 invalidate_page_bitmap(p
);
773 if (tb
->page_addr
[1] != -1 && tb
->page_addr
[1] != page_addr
) {
774 p
= page_find(tb
->page_addr
[1] >> TARGET_PAGE_BITS
);
775 tb_page_remove(&p
->first_tb
, tb
);
776 invalidate_page_bitmap(p
);
779 tb_invalidated_flag
= 1;
781 /* remove the TB from the hash list */
782 h
= tb_jmp_cache_hash_func(tb
->pc
);
783 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
784 if (env
->tb_jmp_cache
[h
] == tb
)
785 env
->tb_jmp_cache
[h
] = NULL
;
788 /* suppress this TB from the two jump lists */
789 tb_jmp_remove(tb
, 0);
790 tb_jmp_remove(tb
, 1);
792 /* suppress any remaining jumps to this TB */
798 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
799 tb2
= tb1
->jmp_next
[n1
];
800 tb_reset_jump(tb1
, n1
);
801 tb1
->jmp_next
[n1
] = NULL
;
804 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2); /* fail safe */
806 tb_phys_invalidate_count
++;
809 static inline void set_bits(uint8_t *tab
, int start
, int len
)
815 mask
= 0xff << (start
& 7);
816 if ((start
& ~7) == (end
& ~7)) {
818 mask
&= ~(0xff << (end
& 7));
823 start
= (start
+ 8) & ~7;
825 while (start
< end1
) {
830 mask
= ~(0xff << (end
& 7));
836 static void build_page_bitmap(PageDesc
*p
)
838 int n
, tb_start
, tb_end
;
839 TranslationBlock
*tb
;
841 p
->code_bitmap
= qemu_mallocz(TARGET_PAGE_SIZE
/ 8);
846 tb
= (TranslationBlock
*)((long)tb
& ~3);
847 /* NOTE: this is subtle as a TB may span two physical pages */
849 /* NOTE: tb_end may be after the end of the page, but
850 it is not a problem */
851 tb_start
= tb
->pc
& ~TARGET_PAGE_MASK
;
852 tb_end
= tb_start
+ tb
->size
;
853 if (tb_end
> TARGET_PAGE_SIZE
)
854 tb_end
= TARGET_PAGE_SIZE
;
857 tb_end
= ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
859 set_bits(p
->code_bitmap
, tb_start
, tb_end
- tb_start
);
860 tb
= tb
->page_next
[n
];
864 TranslationBlock
*tb_gen_code(CPUState
*env
,
865 target_ulong pc
, target_ulong cs_base
,
866 int flags
, int cflags
)
868 TranslationBlock
*tb
;
870 target_ulong phys_pc
, phys_page2
, virt_page2
;
873 phys_pc
= get_phys_addr_code(env
, pc
);
876 /* flush must be done */
878 /* cannot fail at this point */
880 /* Don't forget to invalidate previous TB info. */
881 tb_invalidated_flag
= 1;
883 tc_ptr
= code_gen_ptr
;
885 tb
->cs_base
= cs_base
;
888 cpu_gen_code(env
, tb
, &code_gen_size
);
889 code_gen_ptr
= (void *)(((unsigned long)code_gen_ptr
+ code_gen_size
+ CODE_GEN_ALIGN
- 1) & ~(CODE_GEN_ALIGN
- 1));
891 /* check next page if needed */
892 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
894 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
895 phys_page2
= get_phys_addr_code(env
, virt_page2
);
897 tb_link_phys(tb
, phys_pc
, phys_page2
);
901 /* invalidate all TBs which intersect with the target physical page
902 starting in range [start;end[. NOTE: start and end must refer to
903 the same physical page. 'is_cpu_write_access' should be true if called
904 from a real cpu write access: the virtual CPU will exit the current
905 TB if code is modified inside this TB. */
906 void tb_invalidate_phys_page_range(target_phys_addr_t start
, target_phys_addr_t end
,
907 int is_cpu_write_access
)
909 TranslationBlock
*tb
, *tb_next
, *saved_tb
;
910 CPUState
*env
= cpu_single_env
;
911 target_ulong tb_start
, tb_end
;
914 #ifdef TARGET_HAS_PRECISE_SMC
915 int current_tb_not_found
= is_cpu_write_access
;
916 TranslationBlock
*current_tb
= NULL
;
917 int current_tb_modified
= 0;
918 target_ulong current_pc
= 0;
919 target_ulong current_cs_base
= 0;
920 int current_flags
= 0;
921 #endif /* TARGET_HAS_PRECISE_SMC */
923 p
= page_find(start
>> TARGET_PAGE_BITS
);
926 if (!p
->code_bitmap
&&
927 ++p
->code_write_count
>= SMC_BITMAP_USE_THRESHOLD
&&
928 is_cpu_write_access
) {
929 /* build code bitmap */
930 build_page_bitmap(p
);
933 /* we remove all the TBs in the range [start, end[ */
934 /* XXX: see if in some cases it could be faster to invalidate all the code */
938 tb
= (TranslationBlock
*)((long)tb
& ~3);
939 tb_next
= tb
->page_next
[n
];
940 /* NOTE: this is subtle as a TB may span two physical pages */
942 /* NOTE: tb_end may be after the end of the page, but
943 it is not a problem */
944 tb_start
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
945 tb_end
= tb_start
+ tb
->size
;
947 tb_start
= tb
->page_addr
[1];
948 tb_end
= tb_start
+ ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
950 if (!(tb_end
<= start
|| tb_start
>= end
)) {
951 #ifdef TARGET_HAS_PRECISE_SMC
952 if (current_tb_not_found
) {
953 current_tb_not_found
= 0;
955 if (env
->mem_io_pc
) {
956 /* now we have a real cpu fault */
957 current_tb
= tb_find_pc(env
->mem_io_pc
);
960 if (current_tb
== tb
&&
961 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
962 /* If we are modifying the current TB, we must stop
963 its execution. We could be more precise by checking
964 that the modification is after the current PC, but it
965 would require a specialized function to partially
966 restore the CPU state */
968 current_tb_modified
= 1;
969 cpu_restore_state(current_tb
, env
,
970 env
->mem_io_pc
, NULL
);
971 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
974 #endif /* TARGET_HAS_PRECISE_SMC */
975 /* we need to do that to handle the case where a signal
976 occurs while doing tb_phys_invalidate() */
979 saved_tb
= env
->current_tb
;
980 env
->current_tb
= NULL
;
982 tb_phys_invalidate(tb
, -1);
984 env
->current_tb
= saved_tb
;
985 if (env
->interrupt_request
&& env
->current_tb
)
986 cpu_interrupt(env
, env
->interrupt_request
);
991 #if !defined(CONFIG_USER_ONLY)
992 /* if no code remaining, no need to continue to use slow writes */
994 invalidate_page_bitmap(p
);
995 if (is_cpu_write_access
) {
996 tlb_unprotect_code_phys(env
, start
, env
->mem_io_vaddr
);
1000 #ifdef TARGET_HAS_PRECISE_SMC
1001 if (current_tb_modified
) {
1002 /* we generate a block containing just the instruction
1003 modifying the memory. It will ensure that it cannot modify
1005 env
->current_tb
= NULL
;
1006 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1007 cpu_resume_from_signal(env
, NULL
);
1012 /* len must be <= 8 and start must be a multiple of len */
1013 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start
, int len
)
1019 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1020 cpu_single_env
->mem_io_vaddr
, len
,
1021 cpu_single_env
->eip
,
1022 cpu_single_env
->eip
+ (long)cpu_single_env
->segs
[R_CS
].base
);
1025 p
= page_find(start
>> TARGET_PAGE_BITS
);
1028 if (p
->code_bitmap
) {
1029 offset
= start
& ~TARGET_PAGE_MASK
;
1030 b
= p
->code_bitmap
[offset
>> 3] >> (offset
& 7);
1031 if (b
& ((1 << len
) - 1))
1035 tb_invalidate_phys_page_range(start
, start
+ len
, 1);
1039 #if !defined(CONFIG_SOFTMMU)
1040 static void tb_invalidate_phys_page(target_phys_addr_t addr
,
1041 unsigned long pc
, void *puc
)
1043 TranslationBlock
*tb
;
1046 #ifdef TARGET_HAS_PRECISE_SMC
1047 TranslationBlock
*current_tb
= NULL
;
1048 CPUState
*env
= cpu_single_env
;
1049 int current_tb_modified
= 0;
1050 target_ulong current_pc
= 0;
1051 target_ulong current_cs_base
= 0;
1052 int current_flags
= 0;
1055 addr
&= TARGET_PAGE_MASK
;
1056 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1060 #ifdef TARGET_HAS_PRECISE_SMC
1061 if (tb
&& pc
!= 0) {
1062 current_tb
= tb_find_pc(pc
);
1065 while (tb
!= NULL
) {
1067 tb
= (TranslationBlock
*)((long)tb
& ~3);
1068 #ifdef TARGET_HAS_PRECISE_SMC
1069 if (current_tb
== tb
&&
1070 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1071 /* If we are modifying the current TB, we must stop
1072 its execution. We could be more precise by checking
1073 that the modification is after the current PC, but it
1074 would require a specialized function to partially
1075 restore the CPU state */
1077 current_tb_modified
= 1;
1078 cpu_restore_state(current_tb
, env
, pc
, puc
);
1079 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1082 #endif /* TARGET_HAS_PRECISE_SMC */
1083 tb_phys_invalidate(tb
, addr
);
1084 tb
= tb
->page_next
[n
];
1087 #ifdef TARGET_HAS_PRECISE_SMC
1088 if (current_tb_modified
) {
1089 /* we generate a block containing just the instruction
1090 modifying the memory. It will ensure that it cannot modify
1092 env
->current_tb
= NULL
;
1093 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1094 cpu_resume_from_signal(env
, puc
);
1100 /* add the tb in the target page and protect it if necessary */
1101 static inline void tb_alloc_page(TranslationBlock
*tb
,
1102 unsigned int n
, target_ulong page_addr
)
1105 TranslationBlock
*last_first_tb
;
1107 tb
->page_addr
[n
] = page_addr
;
1108 p
= page_find_alloc(page_addr
>> TARGET_PAGE_BITS
);
1109 tb
->page_next
[n
] = p
->first_tb
;
1110 last_first_tb
= p
->first_tb
;
1111 p
->first_tb
= (TranslationBlock
*)((long)tb
| n
);
1112 invalidate_page_bitmap(p
);
1114 #if defined(TARGET_HAS_SMC) || 1
1116 #if defined(CONFIG_USER_ONLY)
1117 if (p
->flags
& PAGE_WRITE
) {
1122 /* force the host page as non writable (writes will have a
1123 page fault + mprotect overhead) */
1124 page_addr
&= qemu_host_page_mask
;
1126 for(addr
= page_addr
; addr
< page_addr
+ qemu_host_page_size
;
1127 addr
+= TARGET_PAGE_SIZE
) {
1129 p2
= page_find (addr
>> TARGET_PAGE_BITS
);
1133 p2
->flags
&= ~PAGE_WRITE
;
1134 page_get_flags(addr
);
1136 mprotect(g2h(page_addr
), qemu_host_page_size
,
1137 (prot
& PAGE_BITS
) & ~PAGE_WRITE
);
1138 #ifdef DEBUG_TB_INVALIDATE
1139 printf("protecting code page: 0x" TARGET_FMT_lx
"\n",
1144 /* if some code is already present, then the pages are already
1145 protected. So we handle the case where only the first TB is
1146 allocated in a physical page */
1147 if (!last_first_tb
) {
1148 tlb_protect_code(page_addr
);
1152 #endif /* TARGET_HAS_SMC */
1155 /* Allocate a new translation block. Flush the translation buffer if
1156 too many translation blocks or too much generated code. */
1157 TranslationBlock
*tb_alloc(target_ulong pc
)
1159 TranslationBlock
*tb
;
1161 if (nb_tbs
>= code_gen_max_blocks
||
1162 (code_gen_ptr
- code_gen_buffer
) >= code_gen_buffer_max_size
)
1164 tb
= &tbs
[nb_tbs
++];
1170 void tb_free(TranslationBlock
*tb
)
1172 /* In practice this is mostly used for single use temporary TB
1173 Ignore the hard cases and just back up if this TB happens to
1174 be the last one generated. */
1175 if (nb_tbs
> 0 && tb
== &tbs
[nb_tbs
- 1]) {
1176 code_gen_ptr
= tb
->tc_ptr
;
1181 /* add a new TB and link it to the physical page tables. phys_page2 is
1182 (-1) to indicate that only one page contains the TB. */
1183 void tb_link_phys(TranslationBlock
*tb
,
1184 target_ulong phys_pc
, target_ulong phys_page2
)
1187 TranslationBlock
**ptb
;
1189 /* Grab the mmap lock to stop another thread invalidating this TB
1190 before we are done. */
1192 /* add in the physical hash table */
1193 h
= tb_phys_hash_func(phys_pc
);
1194 ptb
= &tb_phys_hash
[h
];
1195 tb
->phys_hash_next
= *ptb
;
1198 /* add in the page list */
1199 tb_alloc_page(tb
, 0, phys_pc
& TARGET_PAGE_MASK
);
1200 if (phys_page2
!= -1)
1201 tb_alloc_page(tb
, 1, phys_page2
);
1203 tb
->page_addr
[1] = -1;
1205 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2);
1206 tb
->jmp_next
[0] = NULL
;
1207 tb
->jmp_next
[1] = NULL
;
1209 /* init original jump addresses */
1210 if (tb
->tb_next_offset
[0] != 0xffff)
1211 tb_reset_jump(tb
, 0);
1212 if (tb
->tb_next_offset
[1] != 0xffff)
1213 tb_reset_jump(tb
, 1);
1215 #ifdef DEBUG_TB_CHECK
1221 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1222 tb[1].tc_ptr. Return NULL if not found */
1223 TranslationBlock
*tb_find_pc(unsigned long tc_ptr
)
1225 int m_min
, m_max
, m
;
1227 TranslationBlock
*tb
;
1231 if (tc_ptr
< (unsigned long)code_gen_buffer
||
1232 tc_ptr
>= (unsigned long)code_gen_ptr
)
1234 /* binary search (cf Knuth) */
1237 while (m_min
<= m_max
) {
1238 m
= (m_min
+ m_max
) >> 1;
1240 v
= (unsigned long)tb
->tc_ptr
;
1243 else if (tc_ptr
< v
) {
1252 static void tb_reset_jump_recursive(TranslationBlock
*tb
);
1254 static inline void tb_reset_jump_recursive2(TranslationBlock
*tb
, int n
)
1256 TranslationBlock
*tb1
, *tb_next
, **ptb
;
1259 tb1
= tb
->jmp_next
[n
];
1261 /* find head of list */
1264 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1267 tb1
= tb1
->jmp_next
[n1
];
1269 /* we are now sure now that tb jumps to tb1 */
1272 /* remove tb from the jmp_first list */
1273 ptb
= &tb_next
->jmp_first
;
1277 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1278 if (n1
== n
&& tb1
== tb
)
1280 ptb
= &tb1
->jmp_next
[n1
];
1282 *ptb
= tb
->jmp_next
[n
];
1283 tb
->jmp_next
[n
] = NULL
;
1285 /* suppress the jump to next tb in generated code */
1286 tb_reset_jump(tb
, n
);
1288 /* suppress jumps in the tb on which we could have jumped */
1289 tb_reset_jump_recursive(tb_next
);
1293 static void tb_reset_jump_recursive(TranslationBlock
*tb
)
1295 tb_reset_jump_recursive2(tb
, 0);
1296 tb_reset_jump_recursive2(tb
, 1);
1299 #if defined(TARGET_HAS_ICE)
1300 static void breakpoint_invalidate(CPUState
*env
, target_ulong pc
)
1302 target_phys_addr_t addr
;
1304 ram_addr_t ram_addr
;
1307 addr
= cpu_get_phys_page_debug(env
, pc
);
1308 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
1310 pd
= IO_MEM_UNASSIGNED
;
1312 pd
= p
->phys_offset
;
1314 ram_addr
= (pd
& TARGET_PAGE_MASK
) | (pc
& ~TARGET_PAGE_MASK
);
1315 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1, 0);
1319 /* Add a watchpoint. */
1320 int cpu_watchpoint_insert(CPUState
*env
, target_ulong addr
, target_ulong len
,
1321 int flags
, CPUWatchpoint
**watchpoint
)
1323 target_ulong len_mask
= ~(len
- 1);
1326 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1327 if ((len
!= 1 && len
!= 2 && len
!= 4 && len
!= 8) || (addr
& ~len_mask
)) {
1328 fprintf(stderr
, "qemu: tried to set invalid watchpoint at "
1329 TARGET_FMT_lx
", len=" TARGET_FMT_lu
"\n", addr
, len
);
1332 wp
= qemu_malloc(sizeof(*wp
));
1335 wp
->len_mask
= len_mask
;
1338 /* keep all GDB-injected watchpoints in front */
1340 TAILQ_INSERT_HEAD(&env
->watchpoints
, wp
, entry
);
1342 TAILQ_INSERT_TAIL(&env
->watchpoints
, wp
, entry
);
1344 tlb_flush_page(env
, addr
);
1351 /* Remove a specific watchpoint. */
1352 int cpu_watchpoint_remove(CPUState
*env
, target_ulong addr
, target_ulong len
,
1355 target_ulong len_mask
= ~(len
- 1);
1358 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1359 if (addr
== wp
->vaddr
&& len_mask
== wp
->len_mask
1360 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
1361 cpu_watchpoint_remove_by_ref(env
, wp
);
1368 /* Remove a specific watchpoint by reference. */
1369 void cpu_watchpoint_remove_by_ref(CPUState
*env
, CPUWatchpoint
*watchpoint
)
1371 TAILQ_REMOVE(&env
->watchpoints
, watchpoint
, entry
);
1373 tlb_flush_page(env
, watchpoint
->vaddr
);
1375 qemu_free(watchpoint
);
1378 /* Remove all matching watchpoints. */
1379 void cpu_watchpoint_remove_all(CPUState
*env
, int mask
)
1381 CPUWatchpoint
*wp
, *next
;
1383 TAILQ_FOREACH_SAFE(wp
, &env
->watchpoints
, entry
, next
) {
1384 if (wp
->flags
& mask
)
1385 cpu_watchpoint_remove_by_ref(env
, wp
);
1389 /* Add a breakpoint. */
1390 int cpu_breakpoint_insert(CPUState
*env
, target_ulong pc
, int flags
,
1391 CPUBreakpoint
**breakpoint
)
1393 #if defined(TARGET_HAS_ICE)
1396 bp
= qemu_malloc(sizeof(*bp
));
1401 /* keep all GDB-injected breakpoints in front */
1403 TAILQ_INSERT_HEAD(&env
->breakpoints
, bp
, entry
);
1405 TAILQ_INSERT_TAIL(&env
->breakpoints
, bp
, entry
);
1407 breakpoint_invalidate(env
, pc
);
1417 /* Remove a specific breakpoint. */
1418 int cpu_breakpoint_remove(CPUState
*env
, target_ulong pc
, int flags
)
1420 #if defined(TARGET_HAS_ICE)
1423 TAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1424 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
1425 cpu_breakpoint_remove_by_ref(env
, bp
);
1435 /* Remove a specific breakpoint by reference. */
1436 void cpu_breakpoint_remove_by_ref(CPUState
*env
, CPUBreakpoint
*breakpoint
)
1438 #if defined(TARGET_HAS_ICE)
1439 TAILQ_REMOVE(&env
->breakpoints
, breakpoint
, entry
);
1441 breakpoint_invalidate(env
, breakpoint
->pc
);
1443 qemu_free(breakpoint
);
1447 /* Remove all matching breakpoints. */
1448 void cpu_breakpoint_remove_all(CPUState
*env
, int mask
)
1450 #if defined(TARGET_HAS_ICE)
1451 CPUBreakpoint
*bp
, *next
;
1453 TAILQ_FOREACH_SAFE(bp
, &env
->breakpoints
, entry
, next
) {
1454 if (bp
->flags
& mask
)
1455 cpu_breakpoint_remove_by_ref(env
, bp
);
1460 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1461 CPU loop after each instruction */
1462 void cpu_single_step(CPUState
*env
, int enabled
)
1464 #if defined(TARGET_HAS_ICE)
1465 if (env
->singlestep_enabled
!= enabled
) {
1466 env
->singlestep_enabled
= enabled
;
1468 kvm_update_guest_debug(env
, 0);
1470 /* must flush all the translated code to avoid inconsistencies */
1471 /* XXX: only flush what is necessary */
1478 /* enable or disable low levels log */
1479 void cpu_set_log(int log_flags
)
1481 loglevel
= log_flags
;
1482 if (loglevel
&& !logfile
) {
1483 logfile
= fopen(logfilename
, log_append
? "a" : "w");
1485 perror(logfilename
);
1488 #if !defined(CONFIG_SOFTMMU)
1489 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1491 static char logfile_buf
[4096];
1492 setvbuf(logfile
, logfile_buf
, _IOLBF
, sizeof(logfile_buf
));
1494 #elif !defined(_WIN32)
1495 /* Win32 doesn't support line-buffering and requires size >= 2 */
1496 setvbuf(logfile
, NULL
, _IOLBF
, 0);
1500 if (!loglevel
&& logfile
) {
1506 void cpu_set_log_filename(const char *filename
)
1508 logfilename
= strdup(filename
);
1513 cpu_set_log(loglevel
);
1516 static void cpu_unlink_tb(CPUState
*env
)
1518 #if defined(CONFIG_USE_NPTL)
1519 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1520 problem and hope the cpu will stop of its own accord. For userspace
1521 emulation this often isn't actually as bad as it sounds. Often
1522 signals are used primarily to interrupt blocking syscalls. */
1524 TranslationBlock
*tb
;
1525 static spinlock_t interrupt_lock
= SPIN_LOCK_UNLOCKED
;
1527 tb
= env
->current_tb
;
1528 /* if the cpu is currently executing code, we must unlink it and
1529 all the potentially executing TB */
1530 if (tb
&& !testandset(&interrupt_lock
)) {
1531 env
->current_tb
= NULL
;
1532 tb_reset_jump_recursive(tb
);
1533 resetlock(&interrupt_lock
);
1538 /* mask must never be zero, except for A20 change call */
1539 void cpu_interrupt(CPUState
*env
, int mask
)
1543 old_mask
= env
->interrupt_request
;
1544 env
->interrupt_request
|= mask
;
1546 #ifndef CONFIG_USER_ONLY
1548 * If called from iothread context, wake the target cpu in
1551 if (!qemu_cpu_self(env
)) {
1558 env
->icount_decr
.u16
.high
= 0xffff;
1559 #ifndef CONFIG_USER_ONLY
1561 && (mask
& ~old_mask
) != 0) {
1562 cpu_abort(env
, "Raised interrupt while not in I/O function");
1570 void cpu_reset_interrupt(CPUState
*env
, int mask
)
1572 env
->interrupt_request
&= ~mask
;
1575 void cpu_exit(CPUState
*env
)
1577 env
->exit_request
= 1;
1581 const CPULogItem cpu_log_items
[] = {
1582 { CPU_LOG_TB_OUT_ASM
, "out_asm",
1583 "show generated host assembly code for each compiled TB" },
1584 { CPU_LOG_TB_IN_ASM
, "in_asm",
1585 "show target assembly code for each compiled TB" },
1586 { CPU_LOG_TB_OP
, "op",
1587 "show micro ops for each compiled TB" },
1588 { CPU_LOG_TB_OP_OPT
, "op_opt",
1591 "before eflags optimization and "
1593 "after liveness analysis" },
1594 { CPU_LOG_INT
, "int",
1595 "show interrupts/exceptions in short format" },
1596 { CPU_LOG_EXEC
, "exec",
1597 "show trace before each executed TB (lots of logs)" },
1598 { CPU_LOG_TB_CPU
, "cpu",
1599 "show CPU state before block translation" },
1601 { CPU_LOG_PCALL
, "pcall",
1602 "show protected mode far calls/returns/exceptions" },
1603 { CPU_LOG_RESET
, "cpu_reset",
1604 "show CPU state before CPU resets" },
1607 { CPU_LOG_IOPORT
, "ioport",
1608 "show all i/o ports accesses" },
1613 static int cmp1(const char *s1
, int n
, const char *s2
)
1615 if (strlen(s2
) != n
)
1617 return memcmp(s1
, s2
, n
) == 0;
1620 /* takes a comma separated list of log masks. Return 0 if error. */
1621 int cpu_str_to_log_mask(const char *str
)
1623 const CPULogItem
*item
;
1630 p1
= strchr(p
, ',');
1633 if(cmp1(p
,p1
-p
,"all")) {
1634 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1638 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1639 if (cmp1(p
, p1
- p
, item
->name
))
1653 void cpu_abort(CPUState
*env
, const char *fmt
, ...)
1660 fprintf(stderr
, "qemu: fatal: ");
1661 vfprintf(stderr
, fmt
, ap
);
1662 fprintf(stderr
, "\n");
1664 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1666 cpu_dump_state(env
, stderr
, fprintf
, 0);
1668 if (qemu_log_enabled()) {
1669 qemu_log("qemu: fatal: ");
1670 qemu_log_vprintf(fmt
, ap2
);
1673 log_cpu_state(env
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1675 log_cpu_state(env
, 0);
1685 CPUState
*cpu_copy(CPUState
*env
)
1687 CPUState
*new_env
= cpu_init(env
->cpu_model_str
);
1688 CPUState
*next_cpu
= new_env
->next_cpu
;
1689 int cpu_index
= new_env
->cpu_index
;
1690 #if defined(TARGET_HAS_ICE)
1695 memcpy(new_env
, env
, sizeof(CPUState
));
1697 /* Preserve chaining and index. */
1698 new_env
->next_cpu
= next_cpu
;
1699 new_env
->cpu_index
= cpu_index
;
1701 /* Clone all break/watchpoints.
1702 Note: Once we support ptrace with hw-debug register access, make sure
1703 BP_CPU break/watchpoints are handled correctly on clone. */
1704 TAILQ_INIT(&env
->breakpoints
);
1705 TAILQ_INIT(&env
->watchpoints
);
1706 #if defined(TARGET_HAS_ICE)
1707 TAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1708 cpu_breakpoint_insert(new_env
, bp
->pc
, bp
->flags
, NULL
);
1710 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1711 cpu_watchpoint_insert(new_env
, wp
->vaddr
, (~wp
->len_mask
) + 1,
1719 #if !defined(CONFIG_USER_ONLY)
1721 static inline void tlb_flush_jmp_cache(CPUState
*env
, target_ulong addr
)
1725 /* Discard jump cache entries for any tb which might potentially
1726 overlap the flushed page. */
1727 i
= tb_jmp_cache_hash_page(addr
- TARGET_PAGE_SIZE
);
1728 memset (&env
->tb_jmp_cache
[i
], 0,
1729 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1731 i
= tb_jmp_cache_hash_page(addr
);
1732 memset (&env
->tb_jmp_cache
[i
], 0,
1733 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1736 static CPUTLBEntry s_cputlb_empty_entry
= {
1743 /* NOTE: if flush_global is true, also flush global entries (not
1745 void tlb_flush(CPUState
*env
, int flush_global
)
1749 #if defined(DEBUG_TLB)
1750 printf("tlb_flush:\n");
1752 /* must reset current TB so that interrupts cannot modify the
1753 links while we are modifying them */
1754 env
->current_tb
= NULL
;
1756 for(i
= 0; i
< CPU_TLB_SIZE
; i
++) {
1758 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
1759 env
->tlb_table
[mmu_idx
][i
] = s_cputlb_empty_entry
;
1763 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
1768 static inline void tlb_flush_entry(CPUTLBEntry
*tlb_entry
, target_ulong addr
)
1770 if (addr
== (tlb_entry
->addr_read
&
1771 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1772 addr
== (tlb_entry
->addr_write
&
1773 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1774 addr
== (tlb_entry
->addr_code
&
1775 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
))) {
1776 *tlb_entry
= s_cputlb_empty_entry
;
1780 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
1785 #if defined(DEBUG_TLB)
1786 printf("tlb_flush_page: " TARGET_FMT_lx
"\n", addr
);
1788 /* must reset current TB so that interrupts cannot modify the
1789 links while we are modifying them */
1790 env
->current_tb
= NULL
;
1792 addr
&= TARGET_PAGE_MASK
;
1793 i
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
1794 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++)
1795 tlb_flush_entry(&env
->tlb_table
[mmu_idx
][i
], addr
);
1797 tlb_flush_jmp_cache(env
, addr
);
1800 /* update the TLBs so that writes to code in the virtual page 'addr'
1802 static void tlb_protect_code(ram_addr_t ram_addr
)
1804 cpu_physical_memory_reset_dirty(ram_addr
,
1805 ram_addr
+ TARGET_PAGE_SIZE
,
1809 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1810 tested for self modifying code */
1811 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
1814 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] |= CODE_DIRTY_FLAG
;
1817 static inline void tlb_reset_dirty_range(CPUTLBEntry
*tlb_entry
,
1818 unsigned long start
, unsigned long length
)
1821 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
1822 addr
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) + tlb_entry
->addend
;
1823 if ((addr
- start
) < length
) {
1824 tlb_entry
->addr_write
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) | TLB_NOTDIRTY
;
1829 /* Note: start and end must be within the same ram block. */
1830 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
1834 unsigned long length
, start1
;
1838 start
&= TARGET_PAGE_MASK
;
1839 end
= TARGET_PAGE_ALIGN(end
);
1841 length
= end
- start
;
1844 len
= length
>> TARGET_PAGE_BITS
;
1845 mask
= ~dirty_flags
;
1846 p
= phys_ram_dirty
+ (start
>> TARGET_PAGE_BITS
);
1847 for(i
= 0; i
< len
; i
++)
1850 /* we modify the TLB cache so that the dirty bit will be set again
1851 when accessing the range */
1852 start1
= (unsigned long)qemu_get_ram_ptr(start
);
1853 /* Chek that we don't span multiple blocks - this breaks the
1854 address comparisons below. */
1855 if ((unsigned long)qemu_get_ram_ptr(end
- 1) - start1
1856 != (end
- 1) - start
) {
1860 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1862 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
1863 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1864 tlb_reset_dirty_range(&env
->tlb_table
[mmu_idx
][i
],
1870 int cpu_physical_memory_set_dirty_tracking(int enable
)
1872 in_migration
= enable
;
1873 if (kvm_enabled()) {
1874 return kvm_set_migration_log(enable
);
1879 int cpu_physical_memory_get_dirty_tracking(void)
1881 return in_migration
;
1884 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
,
1885 target_phys_addr_t end_addr
)
1890 ret
= kvm_physical_sync_dirty_bitmap(start_addr
, end_addr
);
1894 static inline void tlb_update_dirty(CPUTLBEntry
*tlb_entry
)
1896 ram_addr_t ram_addr
;
1899 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
1900 p
= (void *)(unsigned long)((tlb_entry
->addr_write
& TARGET_PAGE_MASK
)
1901 + tlb_entry
->addend
);
1902 ram_addr
= qemu_ram_addr_from_host(p
);
1903 if (!cpu_physical_memory_is_dirty(ram_addr
)) {
1904 tlb_entry
->addr_write
|= TLB_NOTDIRTY
;
1909 /* update the TLB according to the current state of the dirty bits */
1910 void cpu_tlb_update_dirty(CPUState
*env
)
1914 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
1915 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1916 tlb_update_dirty(&env
->tlb_table
[mmu_idx
][i
]);
1920 static inline void tlb_set_dirty1(CPUTLBEntry
*tlb_entry
, target_ulong vaddr
)
1922 if (tlb_entry
->addr_write
== (vaddr
| TLB_NOTDIRTY
))
1923 tlb_entry
->addr_write
= vaddr
;
1926 /* update the TLB corresponding to virtual page vaddr
1927 so that it is no longer dirty */
1928 static inline void tlb_set_dirty(CPUState
*env
, target_ulong vaddr
)
1933 vaddr
&= TARGET_PAGE_MASK
;
1934 i
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
1935 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++)
1936 tlb_set_dirty1(&env
->tlb_table
[mmu_idx
][i
], vaddr
);
1939 /* add a new TLB entry. At most one entry for a given virtual address
1940 is permitted. Return 0 if OK or 2 if the page could not be mapped
1941 (can only happen in non SOFTMMU mode for I/O pages or pages
1942 conflicting with the host address space). */
1943 int tlb_set_page_exec(CPUState
*env
, target_ulong vaddr
,
1944 target_phys_addr_t paddr
, int prot
,
1945 int mmu_idx
, int is_softmmu
)
1950 target_ulong address
;
1951 target_ulong code_address
;
1952 target_phys_addr_t addend
;
1956 target_phys_addr_t iotlb
;
1958 p
= phys_page_find(paddr
>> TARGET_PAGE_BITS
);
1960 pd
= IO_MEM_UNASSIGNED
;
1962 pd
= p
->phys_offset
;
1964 #if defined(DEBUG_TLB)
1965 printf("tlb_set_page: vaddr=" TARGET_FMT_lx
" paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1966 vaddr
, (int)paddr
, prot
, mmu_idx
, is_softmmu
, pd
);
1971 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&& !(pd
& IO_MEM_ROMD
)) {
1972 /* IO memory case (romd handled later) */
1973 address
|= TLB_MMIO
;
1975 addend
= (unsigned long)qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
);
1976 if ((pd
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
) {
1978 iotlb
= pd
& TARGET_PAGE_MASK
;
1979 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
)
1980 iotlb
|= IO_MEM_NOTDIRTY
;
1982 iotlb
|= IO_MEM_ROM
;
1984 /* IO handlers are currently passed a physical address.
1985 It would be nice to pass an offset from the base address
1986 of that region. This would avoid having to special case RAM,
1987 and avoid full address decoding in every device.
1988 We can't use the high bits of pd for this because
1989 IO_MEM_ROMD uses these as a ram address. */
1990 iotlb
= (pd
& ~TARGET_PAGE_MASK
);
1992 iotlb
+= p
->region_offset
;
1998 code_address
= address
;
1999 /* Make accesses to pages with watchpoints go via the
2000 watchpoint trap routines. */
2001 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
2002 if (vaddr
== (wp
->vaddr
& TARGET_PAGE_MASK
)) {
2003 iotlb
= io_mem_watch
+ paddr
;
2004 /* TODO: The memory case can be optimized by not trapping
2005 reads of pages with a write breakpoint. */
2006 address
|= TLB_MMIO
;
2010 index
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
2011 env
->iotlb
[mmu_idx
][index
] = iotlb
- vaddr
;
2012 te
= &env
->tlb_table
[mmu_idx
][index
];
2013 te
->addend
= addend
- vaddr
;
2014 if (prot
& PAGE_READ
) {
2015 te
->addr_read
= address
;
2020 if (prot
& PAGE_EXEC
) {
2021 te
->addr_code
= code_address
;
2025 if (prot
& PAGE_WRITE
) {
2026 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_ROM
||
2027 (pd
& IO_MEM_ROMD
)) {
2028 /* Write access calls the I/O callback. */
2029 te
->addr_write
= address
| TLB_MMIO
;
2030 } else if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
&&
2031 !cpu_physical_memory_is_dirty(pd
)) {
2032 te
->addr_write
= address
| TLB_NOTDIRTY
;
2034 te
->addr_write
= address
;
2037 te
->addr_write
= -1;
2044 void tlb_flush(CPUState
*env
, int flush_global
)
2048 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
2052 int tlb_set_page_exec(CPUState
*env
, target_ulong vaddr
,
2053 target_phys_addr_t paddr
, int prot
,
2054 int mmu_idx
, int is_softmmu
)
2060 * Walks guest process memory "regions" one by one
2061 * and calls callback function 'fn' for each region.
2063 int walk_memory_regions(void *priv
,
2064 int (*fn
)(void *, unsigned long, unsigned long, unsigned long))
2066 unsigned long start
, end
;
2068 int i
, j
, prot
, prot1
;
2074 for (i
= 0; i
<= L1_SIZE
; i
++) {
2075 p
= (i
< L1_SIZE
) ? l1_map
[i
] : NULL
;
2076 for (j
= 0; j
< L2_SIZE
; j
++) {
2077 prot1
= (p
== NULL
) ? 0 : p
[j
].flags
;
2079 * "region" is one continuous chunk of memory
2080 * that has same protection flags set.
2082 if (prot1
!= prot
) {
2083 end
= (i
<< (32 - L1_BITS
)) | (j
<< TARGET_PAGE_BITS
);
2085 rc
= (*fn
)(priv
, start
, end
, prot
);
2086 /* callback can stop iteration by returning != 0 */
2103 static int dump_region(void *priv
, unsigned long start
,
2104 unsigned long end
, unsigned long prot
)
2106 FILE *f
= (FILE *)priv
;
2108 (void) fprintf(f
, "%08lx-%08lx %08lx %c%c%c\n",
2109 start
, end
, end
- start
,
2110 ((prot
& PAGE_READ
) ? 'r' : '-'),
2111 ((prot
& PAGE_WRITE
) ? 'w' : '-'),
2112 ((prot
& PAGE_EXEC
) ? 'x' : '-'));
2117 /* dump memory mappings */
2118 void page_dump(FILE *f
)
2120 (void) fprintf(f
, "%-8s %-8s %-8s %s\n",
2121 "start", "end", "size", "prot");
2122 walk_memory_regions(f
, dump_region
);
2125 int page_get_flags(target_ulong address
)
2129 p
= page_find(address
>> TARGET_PAGE_BITS
);
2135 /* modify the flags of a page and invalidate the code if
2136 necessary. The flag PAGE_WRITE_ORG is positioned automatically
2137 depending on PAGE_WRITE */
2138 void page_set_flags(target_ulong start
, target_ulong end
, int flags
)
2143 /* mmap_lock should already be held. */
2144 start
= start
& TARGET_PAGE_MASK
;
2145 end
= TARGET_PAGE_ALIGN(end
);
2146 if (flags
& PAGE_WRITE
)
2147 flags
|= PAGE_WRITE_ORG
;
2148 for(addr
= start
; addr
< end
; addr
+= TARGET_PAGE_SIZE
) {
2149 p
= page_find_alloc(addr
>> TARGET_PAGE_BITS
);
2150 /* We may be called for host regions that are outside guest
2154 /* if the write protection is set, then we invalidate the code
2156 if (!(p
->flags
& PAGE_WRITE
) &&
2157 (flags
& PAGE_WRITE
) &&
2159 tb_invalidate_phys_page(addr
, 0, NULL
);
2165 int page_check_range(target_ulong start
, target_ulong len
, int flags
)
2171 if (start
+ len
< start
)
2172 /* we've wrapped around */
2175 end
= TARGET_PAGE_ALIGN(start
+len
); /* must do before we loose bits in the next step */
2176 start
= start
& TARGET_PAGE_MASK
;
2178 for(addr
= start
; addr
< end
; addr
+= TARGET_PAGE_SIZE
) {
2179 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2182 if( !(p
->flags
& PAGE_VALID
) )
2185 if ((flags
& PAGE_READ
) && !(p
->flags
& PAGE_READ
))
2187 if (flags
& PAGE_WRITE
) {
2188 if (!(p
->flags
& PAGE_WRITE_ORG
))
2190 /* unprotect the page if it was put read-only because it
2191 contains translated code */
2192 if (!(p
->flags
& PAGE_WRITE
)) {
2193 if (!page_unprotect(addr
, 0, NULL
))
2202 /* called from signal handler: invalidate the code and unprotect the
2203 page. Return TRUE if the fault was successfully handled. */
2204 int page_unprotect(target_ulong address
, unsigned long pc
, void *puc
)
2206 unsigned int page_index
, prot
, pindex
;
2208 target_ulong host_start
, host_end
, addr
;
2210 /* Technically this isn't safe inside a signal handler. However we
2211 know this only ever happens in a synchronous SEGV handler, so in
2212 practice it seems to be ok. */
2215 host_start
= address
& qemu_host_page_mask
;
2216 page_index
= host_start
>> TARGET_PAGE_BITS
;
2217 p1
= page_find(page_index
);
2222 host_end
= host_start
+ qemu_host_page_size
;
2225 for(addr
= host_start
;addr
< host_end
; addr
+= TARGET_PAGE_SIZE
) {
2229 /* if the page was really writable, then we change its
2230 protection back to writable */
2231 if (prot
& PAGE_WRITE_ORG
) {
2232 pindex
= (address
- host_start
) >> TARGET_PAGE_BITS
;
2233 if (!(p1
[pindex
].flags
& PAGE_WRITE
)) {
2234 mprotect((void *)g2h(host_start
), qemu_host_page_size
,
2235 (prot
& PAGE_BITS
) | PAGE_WRITE
);
2236 p1
[pindex
].flags
|= PAGE_WRITE
;
2237 /* and since the content will be modified, we must invalidate
2238 the corresponding translated code. */
2239 tb_invalidate_phys_page(address
, pc
, puc
);
2240 #ifdef DEBUG_TB_CHECK
2241 tb_invalidate_check(address
);
2251 static inline void tlb_set_dirty(CPUState
*env
,
2252 unsigned long addr
, target_ulong vaddr
)
2255 #endif /* defined(CONFIG_USER_ONLY) */
2257 #if !defined(CONFIG_USER_ONLY)
2259 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2260 ram_addr_t memory
, ram_addr_t region_offset
);
2261 static void *subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
2262 ram_addr_t orig_memory
, ram_addr_t region_offset
);
2263 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2266 if (addr > start_addr) \
2269 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2270 if (start_addr2 > 0) \
2274 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2275 end_addr2 = TARGET_PAGE_SIZE - 1; \
2277 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2278 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2283 /* register physical memory. 'size' must be a multiple of the target
2284 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2285 io memory page. The address used when calling the IO function is
2286 the offset from the start of the region, plus region_offset. Both
2287 start_addr and region_offset are rounded down to a page boundary
2288 before calculating this offset. This should not be a problem unless
2289 the low bits of start_addr and region_offset differ. */
2290 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr
,
2292 ram_addr_t phys_offset
,
2293 ram_addr_t region_offset
)
2295 target_phys_addr_t addr
, end_addr
;
2298 ram_addr_t orig_size
= size
;
2302 kvm_set_phys_mem(start_addr
, size
, phys_offset
);
2304 if (phys_offset
== IO_MEM_UNASSIGNED
) {
2305 region_offset
= start_addr
;
2307 region_offset
&= TARGET_PAGE_MASK
;
2308 size
= (size
+ TARGET_PAGE_SIZE
- 1) & TARGET_PAGE_MASK
;
2309 end_addr
= start_addr
+ (target_phys_addr_t
)size
;
2310 for(addr
= start_addr
; addr
!= end_addr
; addr
+= TARGET_PAGE_SIZE
) {
2311 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2312 if (p
&& p
->phys_offset
!= IO_MEM_UNASSIGNED
) {
2313 ram_addr_t orig_memory
= p
->phys_offset
;
2314 target_phys_addr_t start_addr2
, end_addr2
;
2315 int need_subpage
= 0;
2317 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
, end_addr2
,
2319 if (need_subpage
|| phys_offset
& IO_MEM_SUBWIDTH
) {
2320 if (!(orig_memory
& IO_MEM_SUBPAGE
)) {
2321 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2322 &p
->phys_offset
, orig_memory
,
2325 subpage
= io_mem_opaque
[(orig_memory
& ~TARGET_PAGE_MASK
)
2328 subpage_register(subpage
, start_addr2
, end_addr2
, phys_offset
,
2330 p
->region_offset
= 0;
2332 p
->phys_offset
= phys_offset
;
2333 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2334 (phys_offset
& IO_MEM_ROMD
))
2335 phys_offset
+= TARGET_PAGE_SIZE
;
2338 p
= phys_page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
2339 p
->phys_offset
= phys_offset
;
2340 p
->region_offset
= region_offset
;
2341 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2342 (phys_offset
& IO_MEM_ROMD
)) {
2343 phys_offset
+= TARGET_PAGE_SIZE
;
2345 target_phys_addr_t start_addr2
, end_addr2
;
2346 int need_subpage
= 0;
2348 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
,
2349 end_addr2
, need_subpage
);
2351 if (need_subpage
|| phys_offset
& IO_MEM_SUBWIDTH
) {
2352 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2353 &p
->phys_offset
, IO_MEM_UNASSIGNED
,
2354 addr
& TARGET_PAGE_MASK
);
2355 subpage_register(subpage
, start_addr2
, end_addr2
,
2356 phys_offset
, region_offset
);
2357 p
->region_offset
= 0;
2361 region_offset
+= TARGET_PAGE_SIZE
;
2364 /* since each CPU stores ram addresses in its TLB cache, we must
2365 reset the modified entries */
2367 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2372 /* XXX: temporary until new memory mapping API */
2373 ram_addr_t
cpu_get_physical_page_desc(target_phys_addr_t addr
)
2377 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2379 return IO_MEM_UNASSIGNED
;
2380 return p
->phys_offset
;
2383 void qemu_register_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2386 kvm_coalesce_mmio_region(addr
, size
);
2389 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2392 kvm_uncoalesce_mmio_region(addr
, size
);
2395 ram_addr_t
qemu_ram_alloc(ram_addr_t size
)
2397 RAMBlock
*new_block
;
2399 size
= TARGET_PAGE_ALIGN(size
);
2400 new_block
= qemu_malloc(sizeof(*new_block
));
2402 new_block
->host
= qemu_vmalloc(size
);
2403 new_block
->offset
= last_ram_offset
;
2404 new_block
->length
= size
;
2406 new_block
->next
= ram_blocks
;
2407 ram_blocks
= new_block
;
2409 phys_ram_dirty
= qemu_realloc(phys_ram_dirty
,
2410 (last_ram_offset
+ size
) >> TARGET_PAGE_BITS
);
2411 memset(phys_ram_dirty
+ (last_ram_offset
>> TARGET_PAGE_BITS
),
2412 0xff, size
>> TARGET_PAGE_BITS
);
2414 last_ram_offset
+= size
;
2417 kvm_setup_guest_memory(new_block
->host
, size
);
2419 return new_block
->offset
;
2422 void qemu_ram_free(ram_addr_t addr
)
2424 /* TODO: implement this. */
2427 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2428 With the exception of the softmmu code in this file, this should
2429 only be used for local memory (e.g. video ram) that the device owns,
2430 and knows it isn't going to access beyond the end of the block.
2432 It should not be used for general purpose DMA.
2433 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2435 void *qemu_get_ram_ptr(ram_addr_t addr
)
2442 prevp
= &ram_blocks
;
2444 while (block
&& (block
->offset
> addr
2445 || block
->offset
+ block
->length
<= addr
)) {
2447 prevp
= &prev
->next
;
2449 block
= block
->next
;
2452 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
2455 /* Move this entry to to start of the list. */
2457 prev
->next
= block
->next
;
2458 block
->next
= *prevp
;
2461 return block
->host
+ (addr
- block
->offset
);
2464 /* Some of the softmmu routines need to translate from a host pointer
2465 (typically a TLB entry) back to a ram offset. */
2466 ram_addr_t
qemu_ram_addr_from_host(void *ptr
)
2471 uint8_t *host
= ptr
;
2474 prevp
= &ram_blocks
;
2476 while (block
&& (block
->host
> host
2477 || block
->host
+ block
->length
<= host
)) {
2479 prevp
= &prev
->next
;
2481 block
= block
->next
;
2484 fprintf(stderr
, "Bad ram pointer %p\n", ptr
);
2487 return block
->offset
+ (host
- block
->host
);
2490 static uint32_t unassigned_mem_readb(void *opaque
, target_phys_addr_t addr
)
2492 #ifdef DEBUG_UNASSIGNED
2493 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2495 #if defined(TARGET_SPARC)
2496 do_unassigned_access(addr
, 0, 0, 0, 1);
2501 static uint32_t unassigned_mem_readw(void *opaque
, target_phys_addr_t addr
)
2503 #ifdef DEBUG_UNASSIGNED
2504 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2506 #if defined(TARGET_SPARC)
2507 do_unassigned_access(addr
, 0, 0, 0, 2);
2512 static uint32_t unassigned_mem_readl(void *opaque
, target_phys_addr_t addr
)
2514 #ifdef DEBUG_UNASSIGNED
2515 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2517 #if defined(TARGET_SPARC)
2518 do_unassigned_access(addr
, 0, 0, 0, 4);
2523 static void unassigned_mem_writeb(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2525 #ifdef DEBUG_UNASSIGNED
2526 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2528 #if defined(TARGET_SPARC)
2529 do_unassigned_access(addr
, 1, 0, 0, 1);
2533 static void unassigned_mem_writew(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2535 #ifdef DEBUG_UNASSIGNED
2536 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2538 #if defined(TARGET_SPARC)
2539 do_unassigned_access(addr
, 1, 0, 0, 2);
2543 static void unassigned_mem_writel(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2545 #ifdef DEBUG_UNASSIGNED
2546 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2548 #if defined(TARGET_SPARC)
2549 do_unassigned_access(addr
, 1, 0, 0, 4);
2553 static CPUReadMemoryFunc
* const unassigned_mem_read
[3] = {
2554 unassigned_mem_readb
,
2555 unassigned_mem_readw
,
2556 unassigned_mem_readl
,
2559 static CPUWriteMemoryFunc
* const unassigned_mem_write
[3] = {
2560 unassigned_mem_writeb
,
2561 unassigned_mem_writew
,
2562 unassigned_mem_writel
,
2565 static void notdirty_mem_writeb(void *opaque
, target_phys_addr_t ram_addr
,
2569 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2570 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2571 #if !defined(CONFIG_USER_ONLY)
2572 tb_invalidate_phys_page_fast(ram_addr
, 1);
2573 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2576 stb_p(qemu_get_ram_ptr(ram_addr
), val
);
2577 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2578 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2579 /* we remove the notdirty callback only if the code has been
2581 if (dirty_flags
== 0xff)
2582 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2585 static void notdirty_mem_writew(void *opaque
, target_phys_addr_t ram_addr
,
2589 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2590 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2591 #if !defined(CONFIG_USER_ONLY)
2592 tb_invalidate_phys_page_fast(ram_addr
, 2);
2593 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2596 stw_p(qemu_get_ram_ptr(ram_addr
), val
);
2597 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2598 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2599 /* we remove the notdirty callback only if the code has been
2601 if (dirty_flags
== 0xff)
2602 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2605 static void notdirty_mem_writel(void *opaque
, target_phys_addr_t ram_addr
,
2609 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2610 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2611 #if !defined(CONFIG_USER_ONLY)
2612 tb_invalidate_phys_page_fast(ram_addr
, 4);
2613 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2616 stl_p(qemu_get_ram_ptr(ram_addr
), val
);
2617 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2618 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2619 /* we remove the notdirty callback only if the code has been
2621 if (dirty_flags
== 0xff)
2622 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2625 static CPUReadMemoryFunc
* const error_mem_read
[3] = {
2626 NULL
, /* never used */
2627 NULL
, /* never used */
2628 NULL
, /* never used */
2631 static CPUWriteMemoryFunc
* const notdirty_mem_write
[3] = {
2632 notdirty_mem_writeb
,
2633 notdirty_mem_writew
,
2634 notdirty_mem_writel
,
2637 /* Generate a debug exception if a watchpoint has been hit. */
2638 static void check_watchpoint(int offset
, int len_mask
, int flags
)
2640 CPUState
*env
= cpu_single_env
;
2641 target_ulong pc
, cs_base
;
2642 TranslationBlock
*tb
;
2647 if (env
->watchpoint_hit
) {
2648 /* We re-entered the check after replacing the TB. Now raise
2649 * the debug interrupt so that is will trigger after the
2650 * current instruction. */
2651 cpu_interrupt(env
, CPU_INTERRUPT_DEBUG
);
2654 vaddr
= (env
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2655 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
2656 if ((vaddr
== (wp
->vaddr
& len_mask
) ||
2657 (vaddr
& wp
->len_mask
) == wp
->vaddr
) && (wp
->flags
& flags
)) {
2658 wp
->flags
|= BP_WATCHPOINT_HIT
;
2659 if (!env
->watchpoint_hit
) {
2660 env
->watchpoint_hit
= wp
;
2661 tb
= tb_find_pc(env
->mem_io_pc
);
2663 cpu_abort(env
, "check_watchpoint: could not find TB for "
2664 "pc=%p", (void *)env
->mem_io_pc
);
2666 cpu_restore_state(tb
, env
, env
->mem_io_pc
, NULL
);
2667 tb_phys_invalidate(tb
, -1);
2668 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2669 env
->exception_index
= EXCP_DEBUG
;
2671 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
2672 tb_gen_code(env
, pc
, cs_base
, cpu_flags
, 1);
2674 cpu_resume_from_signal(env
, NULL
);
2677 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2682 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2683 so these check for a hit then pass through to the normal out-of-line
2685 static uint32_t watch_mem_readb(void *opaque
, target_phys_addr_t addr
)
2687 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_READ
);
2688 return ldub_phys(addr
);
2691 static uint32_t watch_mem_readw(void *opaque
, target_phys_addr_t addr
)
2693 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_READ
);
2694 return lduw_phys(addr
);
2697 static uint32_t watch_mem_readl(void *opaque
, target_phys_addr_t addr
)
2699 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_READ
);
2700 return ldl_phys(addr
);
2703 static void watch_mem_writeb(void *opaque
, target_phys_addr_t addr
,
2706 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_WRITE
);
2707 stb_phys(addr
, val
);
2710 static void watch_mem_writew(void *opaque
, target_phys_addr_t addr
,
2713 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_WRITE
);
2714 stw_phys(addr
, val
);
2717 static void watch_mem_writel(void *opaque
, target_phys_addr_t addr
,
2720 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_WRITE
);
2721 stl_phys(addr
, val
);
2724 static CPUReadMemoryFunc
* const watch_mem_read
[3] = {
2730 static CPUWriteMemoryFunc
* const watch_mem_write
[3] = {
2736 static inline uint32_t subpage_readlen (subpage_t
*mmio
, target_phys_addr_t addr
,
2742 idx
= SUBPAGE_IDX(addr
);
2743 #if defined(DEBUG_SUBPAGE)
2744 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d\n", __func__
,
2745 mmio
, len
, addr
, idx
);
2747 ret
= (**mmio
->mem_read
[idx
][len
])(mmio
->opaque
[idx
][0][len
],
2748 addr
+ mmio
->region_offset
[idx
][0][len
]);
2753 static inline void subpage_writelen (subpage_t
*mmio
, target_phys_addr_t addr
,
2754 uint32_t value
, unsigned int len
)
2758 idx
= SUBPAGE_IDX(addr
);
2759 #if defined(DEBUG_SUBPAGE)
2760 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d value %08x\n", __func__
,
2761 mmio
, len
, addr
, idx
, value
);
2763 (**mmio
->mem_write
[idx
][len
])(mmio
->opaque
[idx
][1][len
],
2764 addr
+ mmio
->region_offset
[idx
][1][len
],
2768 static uint32_t subpage_readb (void *opaque
, target_phys_addr_t addr
)
2770 #if defined(DEBUG_SUBPAGE)
2771 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2774 return subpage_readlen(opaque
, addr
, 0);
2777 static void subpage_writeb (void *opaque
, target_phys_addr_t addr
,
2780 #if defined(DEBUG_SUBPAGE)
2781 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2783 subpage_writelen(opaque
, addr
, value
, 0);
2786 static uint32_t subpage_readw (void *opaque
, target_phys_addr_t addr
)
2788 #if defined(DEBUG_SUBPAGE)
2789 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2792 return subpage_readlen(opaque
, addr
, 1);
2795 static void subpage_writew (void *opaque
, target_phys_addr_t addr
,
2798 #if defined(DEBUG_SUBPAGE)
2799 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2801 subpage_writelen(opaque
, addr
, value
, 1);
2804 static uint32_t subpage_readl (void *opaque
, target_phys_addr_t addr
)
2806 #if defined(DEBUG_SUBPAGE)
2807 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2810 return subpage_readlen(opaque
, addr
, 2);
2813 static void subpage_writel (void *opaque
,
2814 target_phys_addr_t addr
, uint32_t value
)
2816 #if defined(DEBUG_SUBPAGE)
2817 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2819 subpage_writelen(opaque
, addr
, value
, 2);
2822 static CPUReadMemoryFunc
* const subpage_read
[] = {
2828 static CPUWriteMemoryFunc
* const subpage_write
[] = {
2834 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2835 ram_addr_t memory
, ram_addr_t region_offset
)
2840 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2842 idx
= SUBPAGE_IDX(start
);
2843 eidx
= SUBPAGE_IDX(end
);
2844 #if defined(DEBUG_SUBPAGE)
2845 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__
,
2846 mmio
, start
, end
, idx
, eidx
, memory
);
2848 memory
>>= IO_MEM_SHIFT
;
2849 for (; idx
<= eidx
; idx
++) {
2850 for (i
= 0; i
< 4; i
++) {
2851 if (io_mem_read
[memory
][i
]) {
2852 mmio
->mem_read
[idx
][i
] = &io_mem_read
[memory
][i
];
2853 mmio
->opaque
[idx
][0][i
] = io_mem_opaque
[memory
];
2854 mmio
->region_offset
[idx
][0][i
] = region_offset
;
2856 if (io_mem_write
[memory
][i
]) {
2857 mmio
->mem_write
[idx
][i
] = &io_mem_write
[memory
][i
];
2858 mmio
->opaque
[idx
][1][i
] = io_mem_opaque
[memory
];
2859 mmio
->region_offset
[idx
][1][i
] = region_offset
;
2867 static void *subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
2868 ram_addr_t orig_memory
, ram_addr_t region_offset
)
2873 mmio
= qemu_mallocz(sizeof(subpage_t
));
2876 subpage_memory
= cpu_register_io_memory(subpage_read
, subpage_write
, mmio
);
2877 #if defined(DEBUG_SUBPAGE)
2878 printf("%s: %p base " TARGET_FMT_plx
" len %08x %d\n", __func__
,
2879 mmio
, base
, TARGET_PAGE_SIZE
, subpage_memory
);
2881 *phys
= subpage_memory
| IO_MEM_SUBPAGE
;
2882 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
- 1, orig_memory
,
2888 static int get_free_io_mem_idx(void)
2892 for (i
= 0; i
<IO_MEM_NB_ENTRIES
; i
++)
2893 if (!io_mem_used
[i
]) {
2901 /* mem_read and mem_write are arrays of functions containing the
2902 function to access byte (index 0), word (index 1) and dword (index
2903 2). Functions can be omitted with a NULL function pointer.
2904 If io_index is non zero, the corresponding io zone is
2905 modified. If it is zero, a new io zone is allocated. The return
2906 value can be used with cpu_register_physical_memory(). (-1) is
2907 returned if error. */
2908 static int cpu_register_io_memory_fixed(int io_index
,
2909 CPUReadMemoryFunc
* const *mem_read
,
2910 CPUWriteMemoryFunc
* const *mem_write
,
2913 int i
, subwidth
= 0;
2915 if (io_index
<= 0) {
2916 io_index
= get_free_io_mem_idx();
2920 io_index
>>= IO_MEM_SHIFT
;
2921 if (io_index
>= IO_MEM_NB_ENTRIES
)
2925 for(i
= 0;i
< 3; i
++) {
2926 if (!mem_read
[i
] || !mem_write
[i
])
2927 subwidth
= IO_MEM_SUBWIDTH
;
2928 io_mem_read
[io_index
][i
] = mem_read
[i
];
2929 io_mem_write
[io_index
][i
] = mem_write
[i
];
2931 io_mem_opaque
[io_index
] = opaque
;
2932 return (io_index
<< IO_MEM_SHIFT
) | subwidth
;
2935 int cpu_register_io_memory(CPUReadMemoryFunc
* const *mem_read
,
2936 CPUWriteMemoryFunc
* const *mem_write
,
2939 return cpu_register_io_memory_fixed(0, mem_read
, mem_write
, opaque
);
2942 void cpu_unregister_io_memory(int io_table_address
)
2945 int io_index
= io_table_address
>> IO_MEM_SHIFT
;
2947 for (i
=0;i
< 3; i
++) {
2948 io_mem_read
[io_index
][i
] = unassigned_mem_read
[i
];
2949 io_mem_write
[io_index
][i
] = unassigned_mem_write
[i
];
2951 io_mem_opaque
[io_index
] = NULL
;
2952 io_mem_used
[io_index
] = 0;
2955 static void io_mem_init(void)
2959 cpu_register_io_memory_fixed(IO_MEM_ROM
, error_mem_read
, unassigned_mem_write
, NULL
);
2960 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED
, unassigned_mem_read
, unassigned_mem_write
, NULL
);
2961 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY
, error_mem_read
, notdirty_mem_write
, NULL
);
2965 io_mem_watch
= cpu_register_io_memory(watch_mem_read
,
2966 watch_mem_write
, NULL
);
2969 #endif /* !defined(CONFIG_USER_ONLY) */
2971 /* physical memory access (slow version, mainly for debug) */
2972 #if defined(CONFIG_USER_ONLY)
2973 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
2974 int len
, int is_write
)
2981 page
= addr
& TARGET_PAGE_MASK
;
2982 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2985 flags
= page_get_flags(page
);
2986 if (!(flags
& PAGE_VALID
))
2989 if (!(flags
& PAGE_WRITE
))
2991 /* XXX: this code should not depend on lock_user */
2992 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2993 /* FIXME - should this return an error rather than just fail? */
2996 unlock_user(p
, addr
, l
);
2998 if (!(flags
& PAGE_READ
))
3000 /* XXX: this code should not depend on lock_user */
3001 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
3002 /* FIXME - should this return an error rather than just fail? */
3005 unlock_user(p
, addr
, 0);
3014 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
3015 int len
, int is_write
)
3020 target_phys_addr_t page
;
3025 page
= addr
& TARGET_PAGE_MASK
;
3026 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3029 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3031 pd
= IO_MEM_UNASSIGNED
;
3033 pd
= p
->phys_offset
;
3037 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3038 target_phys_addr_t addr1
= addr
;
3039 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3041 addr1
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3042 /* XXX: could force cpu_single_env to NULL to avoid
3044 if (l
>= 4 && ((addr1
& 3) == 0)) {
3045 /* 32 bit write access */
3047 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr1
, val
);
3049 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
3050 /* 16 bit write access */
3052 io_mem_write
[io_index
][1](io_mem_opaque
[io_index
], addr1
, val
);
3055 /* 8 bit write access */
3057 io_mem_write
[io_index
][0](io_mem_opaque
[io_index
], addr1
, val
);
3061 unsigned long addr1
;
3062 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3064 ptr
= qemu_get_ram_ptr(addr1
);
3065 memcpy(ptr
, buf
, l
);
3066 if (!cpu_physical_memory_is_dirty(addr1
)) {
3067 /* invalidate code */
3068 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
3070 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3071 (0xff & ~CODE_DIRTY_FLAG
);
3075 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3076 !(pd
& IO_MEM_ROMD
)) {
3077 target_phys_addr_t addr1
= addr
;
3079 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3081 addr1
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3082 if (l
>= 4 && ((addr1
& 3) == 0)) {
3083 /* 32 bit read access */
3084 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr1
);
3087 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
3088 /* 16 bit read access */
3089 val
= io_mem_read
[io_index
][1](io_mem_opaque
[io_index
], addr1
);
3093 /* 8 bit read access */
3094 val
= io_mem_read
[io_index
][0](io_mem_opaque
[io_index
], addr1
);
3100 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3101 (addr
& ~TARGET_PAGE_MASK
);
3102 memcpy(buf
, ptr
, l
);
3111 /* used for ROM loading : can write in RAM and ROM */
3112 void cpu_physical_memory_write_rom(target_phys_addr_t addr
,
3113 const uint8_t *buf
, int len
)
3117 target_phys_addr_t page
;
3122 page
= addr
& TARGET_PAGE_MASK
;
3123 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3126 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3128 pd
= IO_MEM_UNASSIGNED
;
3130 pd
= p
->phys_offset
;
3133 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
&&
3134 (pd
& ~TARGET_PAGE_MASK
) != IO_MEM_ROM
&&
3135 !(pd
& IO_MEM_ROMD
)) {
3138 unsigned long addr1
;
3139 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3141 ptr
= qemu_get_ram_ptr(addr1
);
3142 memcpy(ptr
, buf
, l
);
3152 target_phys_addr_t addr
;
3153 target_phys_addr_t len
;
3156 static BounceBuffer bounce
;
3158 typedef struct MapClient
{
3160 void (*callback
)(void *opaque
);
3161 LIST_ENTRY(MapClient
) link
;
3164 static LIST_HEAD(map_client_list
, MapClient
) map_client_list
3165 = LIST_HEAD_INITIALIZER(map_client_list
);
3167 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
))
3169 MapClient
*client
= qemu_malloc(sizeof(*client
));
3171 client
->opaque
= opaque
;
3172 client
->callback
= callback
;
3173 LIST_INSERT_HEAD(&map_client_list
, client
, link
);
3177 void cpu_unregister_map_client(void *_client
)
3179 MapClient
*client
= (MapClient
*)_client
;
3181 LIST_REMOVE(client
, link
);
3185 static void cpu_notify_map_clients(void)
3189 while (!LIST_EMPTY(&map_client_list
)) {
3190 client
= LIST_FIRST(&map_client_list
);
3191 client
->callback(client
->opaque
);
3192 cpu_unregister_map_client(client
);
3196 /* Map a physical memory region into a host virtual address.
3197 * May map a subset of the requested range, given by and returned in *plen.
3198 * May return NULL if resources needed to perform the mapping are exhausted.
3199 * Use only for reads OR writes - not for read-modify-write operations.
3200 * Use cpu_register_map_client() to know when retrying the map operation is
3201 * likely to succeed.
3203 void *cpu_physical_memory_map(target_phys_addr_t addr
,
3204 target_phys_addr_t
*plen
,
3207 target_phys_addr_t len
= *plen
;
3208 target_phys_addr_t done
= 0;
3210 uint8_t *ret
= NULL
;
3212 target_phys_addr_t page
;
3215 unsigned long addr1
;
3218 page
= addr
& TARGET_PAGE_MASK
;
3219 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3222 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3224 pd
= IO_MEM_UNASSIGNED
;
3226 pd
= p
->phys_offset
;
3229 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3230 if (done
|| bounce
.buffer
) {
3233 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, TARGET_PAGE_SIZE
);
3237 cpu_physical_memory_rw(addr
, bounce
.buffer
, l
, 0);
3239 ptr
= bounce
.buffer
;
3241 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3242 ptr
= qemu_get_ram_ptr(addr1
);
3246 } else if (ret
+ done
!= ptr
) {
3258 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3259 * Will also mark the memory as dirty if is_write == 1. access_len gives
3260 * the amount of memory that was actually read or written by the caller.
3262 void cpu_physical_memory_unmap(void *buffer
, target_phys_addr_t len
,
3263 int is_write
, target_phys_addr_t access_len
)
3265 if (buffer
!= bounce
.buffer
) {
3267 ram_addr_t addr1
= qemu_ram_addr_from_host(buffer
);
3268 while (access_len
) {
3270 l
= TARGET_PAGE_SIZE
;
3273 if (!cpu_physical_memory_is_dirty(addr1
)) {
3274 /* invalidate code */
3275 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
3277 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3278 (0xff & ~CODE_DIRTY_FLAG
);
3287 cpu_physical_memory_write(bounce
.addr
, bounce
.buffer
, access_len
);
3289 qemu_free(bounce
.buffer
);
3290 bounce
.buffer
= NULL
;
3291 cpu_notify_map_clients();
3294 /* warning: addr must be aligned */
3295 uint32_t ldl_phys(target_phys_addr_t addr
)
3303 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3305 pd
= IO_MEM_UNASSIGNED
;
3307 pd
= p
->phys_offset
;
3310 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3311 !(pd
& IO_MEM_ROMD
)) {
3313 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3315 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3316 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
3319 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3320 (addr
& ~TARGET_PAGE_MASK
);
3326 /* warning: addr must be aligned */
3327 uint64_t ldq_phys(target_phys_addr_t addr
)
3335 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3337 pd
= IO_MEM_UNASSIGNED
;
3339 pd
= p
->phys_offset
;
3342 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3343 !(pd
& IO_MEM_ROMD
)) {
3345 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3347 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3348 #ifdef TARGET_WORDS_BIGENDIAN
3349 val
= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
) << 32;
3350 val
|= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4);
3352 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
3353 val
|= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4) << 32;
3357 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3358 (addr
& ~TARGET_PAGE_MASK
);
3365 uint32_t ldub_phys(target_phys_addr_t addr
)
3368 cpu_physical_memory_read(addr
, &val
, 1);
3373 uint32_t lduw_phys(target_phys_addr_t addr
)
3376 cpu_physical_memory_read(addr
, (uint8_t *)&val
, 2);
3377 return tswap16(val
);
3380 /* warning: addr must be aligned. The ram page is not masked as dirty
3381 and the code inside is not invalidated. It is useful if the dirty
3382 bits are used to track modified PTEs */
3383 void stl_phys_notdirty(target_phys_addr_t addr
, uint32_t val
)
3390 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3392 pd
= IO_MEM_UNASSIGNED
;
3394 pd
= p
->phys_offset
;
3397 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3398 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3400 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3401 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3403 unsigned long addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3404 ptr
= qemu_get_ram_ptr(addr1
);
3407 if (unlikely(in_migration
)) {
3408 if (!cpu_physical_memory_is_dirty(addr1
)) {
3409 /* invalidate code */
3410 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
3412 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3413 (0xff & ~CODE_DIRTY_FLAG
);
3419 void stq_phys_notdirty(target_phys_addr_t addr
, uint64_t val
)
3426 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3428 pd
= IO_MEM_UNASSIGNED
;
3430 pd
= p
->phys_offset
;
3433 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3434 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3436 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3437 #ifdef TARGET_WORDS_BIGENDIAN
3438 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
>> 32);
3439 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
);
3441 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3442 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
>> 32);
3445 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3446 (addr
& ~TARGET_PAGE_MASK
);
3451 /* warning: addr must be aligned */
3452 void stl_phys(target_phys_addr_t addr
, uint32_t val
)
3459 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3461 pd
= IO_MEM_UNASSIGNED
;
3463 pd
= p
->phys_offset
;
3466 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3467 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3469 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3470 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3472 unsigned long addr1
;
3473 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3475 ptr
= qemu_get_ram_ptr(addr1
);
3477 if (!cpu_physical_memory_is_dirty(addr1
)) {
3478 /* invalidate code */
3479 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
3481 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3482 (0xff & ~CODE_DIRTY_FLAG
);
3488 void stb_phys(target_phys_addr_t addr
, uint32_t val
)
3491 cpu_physical_memory_write(addr
, &v
, 1);
3495 void stw_phys(target_phys_addr_t addr
, uint32_t val
)
3497 uint16_t v
= tswap16(val
);
3498 cpu_physical_memory_write(addr
, (const uint8_t *)&v
, 2);
3502 void stq_phys(target_phys_addr_t addr
, uint64_t val
)
3505 cpu_physical_memory_write(addr
, (const uint8_t *)&val
, 8);
3510 /* virtual memory access for debug (includes writing to ROM) */
3511 int cpu_memory_rw_debug(CPUState
*env
, target_ulong addr
,
3512 uint8_t *buf
, int len
, int is_write
)
3515 target_phys_addr_t phys_addr
;
3519 page
= addr
& TARGET_PAGE_MASK
;
3520 phys_addr
= cpu_get_phys_page_debug(env
, page
);
3521 /* if no physical page mapped, return an error */
3522 if (phys_addr
== -1)
3524 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3527 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3528 #if !defined(CONFIG_USER_ONLY)
3530 cpu_physical_memory_write_rom(phys_addr
, buf
, l
);
3533 cpu_physical_memory_rw(phys_addr
, buf
, l
, is_write
);
3541 /* in deterministic execution mode, instructions doing device I/Os
3542 must be at the end of the TB */
3543 void cpu_io_recompile(CPUState
*env
, void *retaddr
)
3545 TranslationBlock
*tb
;
3547 target_ulong pc
, cs_base
;
3550 tb
= tb_find_pc((unsigned long)retaddr
);
3552 cpu_abort(env
, "cpu_io_recompile: could not find TB for pc=%p",
3555 n
= env
->icount_decr
.u16
.low
+ tb
->icount
;
3556 cpu_restore_state(tb
, env
, (unsigned long)retaddr
, NULL
);
3557 /* Calculate how many instructions had been executed before the fault
3559 n
= n
- env
->icount_decr
.u16
.low
;
3560 /* Generate a new TB ending on the I/O insn. */
3562 /* On MIPS and SH, delay slot instructions can only be restarted if
3563 they were already the first instruction in the TB. If this is not
3564 the first instruction in a TB then re-execute the preceding
3566 #if defined(TARGET_MIPS)
3567 if ((env
->hflags
& MIPS_HFLAG_BMASK
) != 0 && n
> 1) {
3568 env
->active_tc
.PC
-= 4;
3569 env
->icount_decr
.u16
.low
++;
3570 env
->hflags
&= ~MIPS_HFLAG_BMASK
;
3572 #elif defined(TARGET_SH4)
3573 if ((env
->flags
& ((DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
))) != 0
3576 env
->icount_decr
.u16
.low
++;
3577 env
->flags
&= ~(DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
);
3580 /* This should never happen. */
3581 if (n
> CF_COUNT_MASK
)
3582 cpu_abort(env
, "TB too big during recompile");
3584 cflags
= n
| CF_LAST_IO
;
3586 cs_base
= tb
->cs_base
;
3588 tb_phys_invalidate(tb
, -1);
3589 /* FIXME: In theory this could raise an exception. In practice
3590 we have already translated the block once so it's probably ok. */
3591 tb_gen_code(env
, pc
, cs_base
, flags
, cflags
);
3592 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3593 the first in the TB) then we end up generating a whole new TB and
3594 repeating the fault, which is horribly inefficient.
3595 Better would be to execute just this insn uncached, or generate a
3597 cpu_resume_from_signal(env
, NULL
);
3600 void dump_exec_info(FILE *f
,
3601 int (*cpu_fprintf
)(FILE *f
, const char *fmt
, ...))
3603 int i
, target_code_size
, max_target_code_size
;
3604 int direct_jmp_count
, direct_jmp2_count
, cross_page
;
3605 TranslationBlock
*tb
;
3607 target_code_size
= 0;
3608 max_target_code_size
= 0;
3610 direct_jmp_count
= 0;
3611 direct_jmp2_count
= 0;
3612 for(i
= 0; i
< nb_tbs
; i
++) {
3614 target_code_size
+= tb
->size
;
3615 if (tb
->size
> max_target_code_size
)
3616 max_target_code_size
= tb
->size
;
3617 if (tb
->page_addr
[1] != -1)
3619 if (tb
->tb_next_offset
[0] != 0xffff) {
3621 if (tb
->tb_next_offset
[1] != 0xffff) {
3622 direct_jmp2_count
++;
3626 /* XXX: avoid using doubles ? */
3627 cpu_fprintf(f
, "Translation buffer state:\n");
3628 cpu_fprintf(f
, "gen code size %ld/%ld\n",
3629 code_gen_ptr
- code_gen_buffer
, code_gen_buffer_max_size
);
3630 cpu_fprintf(f
, "TB count %d/%d\n",
3631 nb_tbs
, code_gen_max_blocks
);
3632 cpu_fprintf(f
, "TB avg target size %d max=%d bytes\n",
3633 nb_tbs
? target_code_size
/ nb_tbs
: 0,
3634 max_target_code_size
);
3635 cpu_fprintf(f
, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3636 nb_tbs
? (code_gen_ptr
- code_gen_buffer
) / nb_tbs
: 0,
3637 target_code_size
? (double) (code_gen_ptr
- code_gen_buffer
) / target_code_size
: 0);
3638 cpu_fprintf(f
, "cross page TB count %d (%d%%)\n",
3640 nb_tbs
? (cross_page
* 100) / nb_tbs
: 0);
3641 cpu_fprintf(f
, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3643 nb_tbs
? (direct_jmp_count
* 100) / nb_tbs
: 0,
3645 nb_tbs
? (direct_jmp2_count
* 100) / nb_tbs
: 0);
3646 cpu_fprintf(f
, "\nStatistics:\n");
3647 cpu_fprintf(f
, "TB flush count %d\n", tb_flush_count
);
3648 cpu_fprintf(f
, "TB invalidate count %d\n", tb_phys_invalidate_count
);
3649 cpu_fprintf(f
, "TLB flush count %d\n", tlb_flush_count
);
3650 tcg_dump_info(f
, cpu_fprintf
);
3653 #if !defined(CONFIG_USER_ONLY)
3655 #define MMUSUFFIX _cmmu
3656 #define GETPC() NULL
3657 #define env cpu_single_env
3658 #define SOFTMMU_CODE_ACCESS
3661 #include "softmmu_template.h"
3664 #include "softmmu_template.h"
3667 #include "softmmu_template.h"
3670 #include "softmmu_template.h"