2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "hw/sysbus.h"
32 #include "hw/arm/arm.h"
33 #include "hw/arm/primecell.h"
34 #include "hw/devices.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/sysemu.h"
38 #include "sysemu/kvm.h"
39 #include "hw/boards.h"
40 #include "exec/address-spaces.h"
41 #include "qemu/bitops.h"
42 #include "qemu/error-report.h"
44 #define NUM_VIRTIO_TRANSPORTS 32
46 /* Number of external interrupt lines to configure the GIC with */
49 #define GIC_FDT_IRQ_TYPE_SPI 0
50 #define GIC_FDT_IRQ_TYPE_PPI 1
52 #define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1
53 #define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2
54 #define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4
55 #define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8
57 #define GIC_FDT_IRQ_PPI_CPU_START 8
58 #define GIC_FDT_IRQ_PPI_CPU_WIDTH 8
70 typedef struct MemMapEntry
{
75 typedef struct VirtBoardInfo
{
76 struct arm_boot_info bootinfo
;
77 const char *cpu_model
;
79 const char *gic_compatible
;
80 const MemMapEntry
*memmap
;
85 uint32_t clock_phandle
;
88 /* Addresses and sizes of our components.
89 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
90 * 128MB..256MB is used for miscellaneous device I/O.
91 * 256MB..1GB is reserved for possible future PCI support (ie where the
92 * PCI memory window will go if we add a PCI host controller).
93 * 1GB and up is RAM (which may happily spill over into the
94 * high memory region beyond 4GB).
95 * This represents a compromise between how much RAM can be given to
96 * a 32 bit VM and leaving space for expansion and in particular for PCI.
98 static const MemMapEntry a15memmap
[] = {
99 /* Space up to 0x8000000 is reserved for a boot ROM */
100 [VIRT_FLASH
] = { 0, 0x8000000 },
101 [VIRT_CPUPERIPHS
] = { 0x8000000, 0x8000 },
102 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
103 [VIRT_GIC_DIST
] = { 0x8001000, 0x1000 },
104 [VIRT_GIC_CPU
] = { 0x8002000, 0x1000 },
105 [VIRT_UART
] = { 0x9000000, 0x1000 },
106 [VIRT_MMIO
] = { 0xa000000, 0x200 },
107 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
108 /* 0x10000000 .. 0x40000000 reserved for PCI */
109 [VIRT_MEM
] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
112 static const int a15irqmap
[] = {
114 [VIRT_MMIO
] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
117 static VirtBoardInfo machines
[] = {
119 .cpu_model
= "cortex-a15",
120 .qdevname
= "a15mpcore_priv",
121 .gic_compatible
= "arm,cortex-a15-gic",
127 /* We use the A15 private peripheral model to get a V2 GIC */
128 .qdevname
= "a15mpcore_priv",
129 .gic_compatible
= "arm,cortex-a15-gic",
135 static VirtBoardInfo
*find_machine_info(const char *cpu
)
139 for (i
= 0; i
< ARRAY_SIZE(machines
); i
++) {
140 if (strcmp(cpu
, machines
[i
].cpu_model
) == 0) {
147 static void create_fdt(VirtBoardInfo
*vbi
)
149 void *fdt
= create_device_tree(&vbi
->fdt_size
);
152 error_report("create_device_tree() failed");
159 qemu_fdt_setprop_string(fdt
, "/", "compatible", "linux,dummy-virt");
160 qemu_fdt_setprop_cell(fdt
, "/", "#address-cells", 0x2);
161 qemu_fdt_setprop_cell(fdt
, "/", "#size-cells", 0x2);
164 * /chosen and /memory nodes must exist for load_dtb
165 * to fill in necessary properties later
167 qemu_fdt_add_subnode(fdt
, "/chosen");
168 qemu_fdt_add_subnode(fdt
, "/memory");
169 qemu_fdt_setprop_string(fdt
, "/memory", "device_type", "memory");
171 /* Clock node, for the benefit of the UART. The kernel device tree
172 * binding documentation claims the PL011 node clock properties are
173 * optional but in practice if you omit them the kernel refuses to
174 * probe for the device.
176 vbi
->clock_phandle
= qemu_fdt_alloc_phandle(fdt
);
177 qemu_fdt_add_subnode(fdt
, "/apb-pclk");
178 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "compatible", "fixed-clock");
179 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "#clock-cells", 0x0);
180 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "clock-frequency", 24000000);
181 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "clock-output-names",
183 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "phandle", vbi
->clock_phandle
);
185 /* No PSCI for TCG yet */
187 qemu_fdt_add_subnode(fdt
, "/psci");
188 qemu_fdt_setprop_string(fdt
, "/psci", "compatible", "arm,psci");
189 qemu_fdt_setprop_string(fdt
, "/psci", "method", "hvc");
190 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_suspend",
191 PSCI_FN_CPU_SUSPEND
);
192 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_off", PSCI_FN_CPU_OFF
);
193 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_on", PSCI_FN_CPU_ON
);
194 qemu_fdt_setprop_cell(fdt
, "/psci", "migrate", PSCI_FN_MIGRATE
);
198 static void fdt_add_timer_nodes(const VirtBoardInfo
*vbi
)
200 /* Note that on A15 h/w these interrupts are level-triggered,
201 * but for the GIC implementation provided by both QEMU and KVM
202 * they are edge-triggered.
204 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
;
206 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
207 GIC_FDT_IRQ_PPI_CPU_WIDTH
, (1 << vbi
->smp_cpus
) - 1);
209 qemu_fdt_add_subnode(vbi
->fdt
, "/timer");
210 qemu_fdt_setprop_string(vbi
->fdt
, "/timer",
211 "compatible", "arm,armv7-timer");
212 qemu_fdt_setprop_cells(vbi
->fdt
, "/timer", "interrupts",
213 GIC_FDT_IRQ_TYPE_PPI
, 13, irqflags
,
214 GIC_FDT_IRQ_TYPE_PPI
, 14, irqflags
,
215 GIC_FDT_IRQ_TYPE_PPI
, 11, irqflags
,
216 GIC_FDT_IRQ_TYPE_PPI
, 10, irqflags
);
219 static void fdt_add_cpu_nodes(const VirtBoardInfo
*vbi
)
223 qemu_fdt_add_subnode(vbi
->fdt
, "/cpus");
224 qemu_fdt_setprop_cell(vbi
->fdt
, "/cpus", "#address-cells", 0x1);
225 qemu_fdt_setprop_cell(vbi
->fdt
, "/cpus", "#size-cells", 0x0);
227 for (cpu
= vbi
->smp_cpus
- 1; cpu
>= 0; cpu
--) {
228 char *nodename
= g_strdup_printf("/cpus/cpu@%d", cpu
);
229 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
231 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
232 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "device_type", "cpu");
233 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "compatible",
234 armcpu
->dtb_compatible
);
236 if (vbi
->smp_cpus
> 1) {
237 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
238 "enable-method", "psci");
241 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "reg", cpu
);
246 static void fdt_add_gic_node(const VirtBoardInfo
*vbi
)
248 uint32_t gic_phandle
;
250 gic_phandle
= qemu_fdt_alloc_phandle(vbi
->fdt
);
251 qemu_fdt_setprop_cell(vbi
->fdt
, "/", "interrupt-parent", gic_phandle
);
253 qemu_fdt_add_subnode(vbi
->fdt
, "/intc");
254 qemu_fdt_setprop_string(vbi
->fdt
, "/intc", "compatible",
255 vbi
->gic_compatible
);
256 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "#interrupt-cells", 3);
257 qemu_fdt_setprop(vbi
->fdt
, "/intc", "interrupt-controller", NULL
, 0);
258 qemu_fdt_setprop_sized_cells(vbi
->fdt
, "/intc", "reg",
259 2, vbi
->memmap
[VIRT_GIC_DIST
].base
,
260 2, vbi
->memmap
[VIRT_GIC_DIST
].size
,
261 2, vbi
->memmap
[VIRT_GIC_CPU
].base
,
262 2, vbi
->memmap
[VIRT_GIC_CPU
].size
);
263 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "phandle", gic_phandle
);
266 static void create_uart(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
269 hwaddr base
= vbi
->memmap
[VIRT_UART
].base
;
270 hwaddr size
= vbi
->memmap
[VIRT_UART
].size
;
271 int irq
= vbi
->irqmap
[VIRT_UART
];
272 const char compat
[] = "arm,pl011\0arm,primecell";
273 const char clocknames
[] = "uartclk\0apb_pclk";
275 sysbus_create_simple("pl011", base
, pic
[irq
]);
277 nodename
= g_strdup_printf("/pl011@%" PRIx64
, base
);
278 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
279 /* Note that we can't use setprop_string because of the embedded NUL */
280 qemu_fdt_setprop(vbi
->fdt
, nodename
, "compatible",
281 compat
, sizeof(compat
));
282 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
284 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
285 GIC_FDT_IRQ_TYPE_SPI
, irq
,
286 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
287 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "clocks",
288 vbi
->clock_phandle
, vbi
->clock_phandle
);
289 qemu_fdt_setprop(vbi
->fdt
, nodename
, "clock-names",
290 clocknames
, sizeof(clocknames
));
294 static void create_virtio_devices(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
297 hwaddr size
= vbi
->memmap
[VIRT_MMIO
].size
;
299 /* Note that we have to create the transports in forwards order
300 * so that command line devices are inserted lowest address first,
301 * and then add dtb nodes in reverse order so that they appear in
302 * the finished device tree lowest address first.
304 for (i
= 0; i
< NUM_VIRTIO_TRANSPORTS
; i
++) {
305 int irq
= vbi
->irqmap
[VIRT_MMIO
] + i
;
306 hwaddr base
= vbi
->memmap
[VIRT_MMIO
].base
+ i
* size
;
308 sysbus_create_simple("virtio-mmio", base
, pic
[irq
]);
311 for (i
= NUM_VIRTIO_TRANSPORTS
- 1; i
>= 0; i
--) {
313 int irq
= vbi
->irqmap
[VIRT_MMIO
] + i
;
314 hwaddr base
= vbi
->memmap
[VIRT_MMIO
].base
+ i
* size
;
316 nodename
= g_strdup_printf("/virtio_mmio@%" PRIx64
, base
);
317 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
318 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
319 "compatible", "virtio,mmio");
320 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
322 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
323 GIC_FDT_IRQ_TYPE_SPI
, irq
,
324 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
329 static void *machvirt_dtb(const struct arm_boot_info
*binfo
, int *fdt_size
)
331 const VirtBoardInfo
*board
= (const VirtBoardInfo
*)binfo
;
333 *fdt_size
= board
->fdt_size
;
337 static void machvirt_init(QEMUMachineInitArgs
*args
)
339 qemu_irq pic
[NUM_IRQS
];
340 MemoryRegion
*sysmem
= get_system_memory();
342 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
344 SysBusDevice
*busdev
;
345 const char *cpu_model
= args
->cpu_model
;
349 cpu_model
= "cortex-a15";
352 vbi
= find_machine_info(cpu_model
);
355 error_report("mach-virt: CPU %s not supported", cpu_model
);
359 vbi
->smp_cpus
= smp_cpus
;
362 * Only supported method of starting secondary CPUs is PSCI and
363 * PSCI is not yet supported with TCG, so limit smp_cpus to 1
364 * if we're not using KVM.
366 if (!kvm_enabled() && smp_cpus
> 1) {
367 error_report("mach-virt: must enable KVM to use multiple CPUs");
371 if (args
->ram_size
> vbi
->memmap
[VIRT_MEM
].size
) {
372 error_report("mach-virt: cannot model more than 30GB RAM");
377 fdt_add_timer_nodes(vbi
);
379 for (n
= 0; n
< smp_cpus
; n
++) {
380 ObjectClass
*oc
= cpu_class_by_name(TYPE_ARM_CPU
, cpu_model
);
384 fprintf(stderr
, "Unable to find CPU definition\n");
387 cpuobj
= object_new(object_class_get_name(oc
));
389 /* Secondary CPUs start in PSCI powered-down state */
391 object_property_set_bool(cpuobj
, true, "start-powered-off", NULL
);
393 object_property_set_bool(cpuobj
, true, "realized", NULL
);
395 fdt_add_cpu_nodes(vbi
);
397 memory_region_init_ram(ram
, NULL
, "mach-virt.ram", args
->ram_size
);
398 vmstate_register_ram_global(ram
);
399 memory_region_add_subregion(sysmem
, vbi
->memmap
[VIRT_MEM
].base
, ram
);
401 dev
= qdev_create(NULL
, vbi
->qdevname
);
402 qdev_prop_set_uint32(dev
, "num-cpu", smp_cpus
);
403 /* Note that the num-irq property counts both internal and external
404 * interrupts; there are always 32 of the former (mandated by GIC spec).
406 qdev_prop_set_uint32(dev
, "num-irq", NUM_IRQS
+ 32);
407 qdev_init_nofail(dev
);
408 busdev
= SYS_BUS_DEVICE(dev
);
409 sysbus_mmio_map(busdev
, 0, vbi
->memmap
[VIRT_CPUPERIPHS
].base
);
410 fdt_add_gic_node(vbi
);
411 for (n
= 0; n
< smp_cpus
; n
++) {
412 DeviceState
*cpudev
= DEVICE(qemu_get_cpu(n
));
414 sysbus_connect_irq(busdev
, n
, qdev_get_gpio_in(cpudev
, ARM_CPU_IRQ
));
417 for (n
= 0; n
< NUM_IRQS
; n
++) {
418 pic
[n
] = qdev_get_gpio_in(dev
, n
);
421 create_uart(vbi
, pic
);
423 /* Create mmio transports, so the user can create virtio backends
424 * (which will be automatically plugged in to the transports). If
425 * no backend is created the transport will just sit harmlessly idle.
427 create_virtio_devices(vbi
, pic
);
429 vbi
->bootinfo
.ram_size
= args
->ram_size
;
430 vbi
->bootinfo
.kernel_filename
= args
->kernel_filename
;
431 vbi
->bootinfo
.kernel_cmdline
= args
->kernel_cmdline
;
432 vbi
->bootinfo
.initrd_filename
= args
->initrd_filename
;
433 vbi
->bootinfo
.nb_cpus
= smp_cpus
;
434 vbi
->bootinfo
.board_id
= -1;
435 vbi
->bootinfo
.loader_start
= vbi
->memmap
[VIRT_MEM
].base
;
436 vbi
->bootinfo
.get_dtb
= machvirt_dtb
;
437 arm_load_kernel(ARM_CPU(first_cpu
), &vbi
->bootinfo
);
440 static QEMUMachine machvirt_a15_machine
= {
442 .desc
= "ARM Virtual Machine",
443 .init
= machvirt_init
,
447 static void machvirt_machine_init(void)
449 qemu_register_machine(&machvirt_a15_machine
);
452 machine_init(machvirt_machine_init
);