2 * High Precisition Event Timer emulation
4 * Copyright (c) 2007 Alexander Graf
5 * Copyright (c) 2008 IBM Corporation
7 * Authors: Beth Kon <bkon@us.ibm.com>
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2 of the License, or (at your option) any later version.
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 * *****************************************************************
24 * This driver attempts to emulate an HPET device in software.
30 #include "qemu-timer.h"
31 #include "hpet_emul.h"
35 #define dprintf printf
40 static HPETState
*hpet_statep
;
42 uint32_t hpet_in_legacy_mode(void)
45 return hpet_statep
->config
& HPET_CFG_LEGACY
;
50 static uint32_t timer_int_route(struct HPETTimer
*timer
)
53 route
= (timer
->config
& HPET_TN_INT_ROUTE_MASK
) >> HPET_TN_INT_ROUTE_SHIFT
;
57 static uint32_t hpet_enabled(void)
59 return hpet_statep
->config
& HPET_CFG_ENABLE
;
62 static uint32_t timer_is_periodic(HPETTimer
*t
)
64 return t
->config
& HPET_TN_PERIODIC
;
67 static uint32_t timer_enabled(HPETTimer
*t
)
69 return t
->config
& HPET_TN_ENABLE
;
72 static uint32_t hpet_time_after(uint64_t a
, uint64_t b
)
74 return ((int32_t)(b
) - (int32_t)(a
) < 0);
77 static uint32_t hpet_time_after64(uint64_t a
, uint64_t b
)
79 return ((int64_t)(b
) - (int64_t)(a
) < 0);
82 static uint64_t ticks_to_ns(uint64_t value
)
84 return (muldiv64(value
, HPET_CLK_PERIOD
, FS_PER_NS
));
87 static uint64_t ns_to_ticks(uint64_t value
)
89 return (muldiv64(value
, FS_PER_NS
, HPET_CLK_PERIOD
));
92 static uint64_t hpet_fixup_reg(uint64_t new, uint64_t old
, uint64_t mask
)
99 static int activating_bit(uint64_t old
, uint64_t new, uint64_t mask
)
101 return (!(old
& mask
) && (new & mask
));
104 static int deactivating_bit(uint64_t old
, uint64_t new, uint64_t mask
)
106 return ((old
& mask
) && !(new & mask
));
109 static uint64_t hpet_get_ticks(void)
112 ticks
= ns_to_ticks(qemu_get_clock(vm_clock
) + hpet_statep
->hpet_offset
);
117 * calculate diff between comparator value and current ticks
119 static inline uint64_t hpet_calculate_diff(HPETTimer
*t
, uint64_t current
)
122 if (t
->config
& HPET_TN_32BIT
) {
124 cmp
= (uint32_t)t
->cmp
;
125 diff
= cmp
- (uint32_t)current
;
126 diff
= (int32_t)diff
> 0 ? diff
: (uint32_t)0;
127 return (uint64_t)diff
;
131 diff
= cmp
- current
;
132 diff
= (int64_t)diff
> 0 ? diff
: (uint64_t)0;
137 static void update_irq(struct HPETTimer
*timer
)
142 if (timer
->tn
<= 1 && hpet_in_legacy_mode()) {
143 /* if LegacyReplacementRoute bit is set, HPET specification requires
144 * timer0 be routed to IRQ0 in NON-APIC or IRQ2 in the I/O APIC,
145 * timer1 be routed to IRQ8 in NON-APIC or IRQ8 in the I/O APIC.
147 if (timer
->tn
== 0) {
148 irq
=timer
->state
->irqs
[0];
150 irq
=timer
->state
->irqs
[8];
152 route
=timer_int_route(timer
);
153 irq
=timer
->state
->irqs
[route
];
155 if (timer_enabled(timer
) && hpet_enabled()) {
160 static void hpet_save(QEMUFile
*f
, void *opaque
)
162 HPETState
*s
= opaque
;
164 qemu_put_be64s(f
, &s
->config
);
165 qemu_put_be64s(f
, &s
->isr
);
166 /* save current counter value */
167 s
->hpet_counter
= hpet_get_ticks();
168 qemu_put_be64s(f
, &s
->hpet_counter
);
170 for (i
= 0; i
< HPET_NUM_TIMERS
; i
++) {
171 qemu_put_8s(f
, &s
->timer
[i
].tn
);
172 qemu_put_be64s(f
, &s
->timer
[i
].config
);
173 qemu_put_be64s(f
, &s
->timer
[i
].cmp
);
174 qemu_put_be64s(f
, &s
->timer
[i
].fsb
);
175 qemu_put_be64s(f
, &s
->timer
[i
].period
);
176 qemu_put_8s(f
, &s
->timer
[i
].wrap_flag
);
177 if (s
->timer
[i
].qemu_timer
) {
178 qemu_put_timer(f
, s
->timer
[i
].qemu_timer
);
183 static int hpet_load(QEMUFile
*f
, void *opaque
, int version_id
)
185 HPETState
*s
= opaque
;
191 qemu_get_be64s(f
, &s
->config
);
192 qemu_get_be64s(f
, &s
->isr
);
193 qemu_get_be64s(f
, &s
->hpet_counter
);
194 /* Recalculate the offset between the main counter and guest time */
195 s
->hpet_offset
= ticks_to_ns(s
->hpet_counter
) - qemu_get_clock(vm_clock
);
197 for (i
= 0; i
< HPET_NUM_TIMERS
; i
++) {
198 qemu_get_8s(f
, &s
->timer
[i
].tn
);
199 qemu_get_be64s(f
, &s
->timer
[i
].config
);
200 qemu_get_be64s(f
, &s
->timer
[i
].cmp
);
201 qemu_get_be64s(f
, &s
->timer
[i
].fsb
);
202 qemu_get_be64s(f
, &s
->timer
[i
].period
);
203 qemu_get_8s(f
, &s
->timer
[i
].wrap_flag
);
204 if (s
->timer
[i
].qemu_timer
) {
205 qemu_get_timer(f
, s
->timer
[i
].qemu_timer
);
212 * timer expiration callback
214 static void hpet_timer(void *opaque
)
216 HPETTimer
*t
= (HPETTimer
*)opaque
;
219 uint64_t period
= t
->period
;
220 uint64_t cur_tick
= hpet_get_ticks();
222 if (timer_is_periodic(t
) && period
!= 0) {
223 if (t
->config
& HPET_TN_32BIT
) {
224 while (hpet_time_after(cur_tick
, t
->cmp
))
225 t
->cmp
= (uint32_t)(t
->cmp
+ t
->period
);
227 while (hpet_time_after64(cur_tick
, t
->cmp
))
230 diff
= hpet_calculate_diff(t
, cur_tick
);
231 qemu_mod_timer(t
->qemu_timer
, qemu_get_clock(vm_clock
)
232 + (int64_t)ticks_to_ns(diff
));
233 } else if (t
->config
& HPET_TN_32BIT
&& !timer_is_periodic(t
)) {
235 diff
= hpet_calculate_diff(t
, cur_tick
);
236 qemu_mod_timer(t
->qemu_timer
, qemu_get_clock(vm_clock
)
237 + (int64_t)ticks_to_ns(diff
));
244 static void hpet_set_timer(HPETTimer
*t
)
247 uint32_t wrap_diff
; /* how many ticks until we wrap? */
248 uint64_t cur_tick
= hpet_get_ticks();
250 /* whenever new timer is being set up, make sure wrap_flag is 0 */
252 diff
= hpet_calculate_diff(t
, cur_tick
);
254 /* hpet spec says in one-shot 32-bit mode, generate an interrupt when
255 * counter wraps in addition to an interrupt with comparator match.
257 if (t
->config
& HPET_TN_32BIT
&& !timer_is_periodic(t
)) {
258 wrap_diff
= 0xffffffff - (uint32_t)cur_tick
;
259 if (wrap_diff
< (uint32_t)diff
) {
264 qemu_mod_timer(t
->qemu_timer
, qemu_get_clock(vm_clock
)
265 + (int64_t)ticks_to_ns(diff
));
268 static void hpet_del_timer(HPETTimer
*t
)
270 qemu_del_timer(t
->qemu_timer
);
274 static uint32_t hpet_ram_readb(void *opaque
, target_phys_addr_t addr
)
276 printf("qemu: hpet_read b at %" PRIx64
"\n", addr
);
280 static uint32_t hpet_ram_readw(void *opaque
, target_phys_addr_t addr
)
282 printf("qemu: hpet_read w at %" PRIx64
"\n", addr
);
287 static uint32_t hpet_ram_readl(void *opaque
, target_phys_addr_t addr
)
289 HPETState
*s
= (HPETState
*)opaque
;
290 uint64_t cur_tick
, index
;
292 dprintf("qemu: Enter hpet_ram_readl at %" PRIx64
"\n", addr
);
294 /*address range of all TN regs*/
295 if (index
>= 0x100 && index
<= 0x3ff) {
296 uint8_t timer_id
= (addr
- 0x100) / 0x20;
297 if (timer_id
> HPET_NUM_TIMERS
- 1) {
298 printf("qemu: timer id out of range\n");
301 HPETTimer
*timer
= &s
->timer
[timer_id
];
303 switch ((addr
- 0x100) % 0x20) {
305 return timer
->config
;
306 case HPET_TN_CFG
+ 4: // Interrupt capabilities
307 return timer
->config
>> 32;
308 case HPET_TN_CMP
: // comparator register
310 case HPET_TN_CMP
+ 4:
311 return timer
->cmp
>> 32;
313 return timer
->fsb
>> 32;
315 dprintf("qemu: invalid hpet_ram_readl\n");
321 return s
->capability
;
323 return s
->capability
>> 32;
327 dprintf("qemu: invalid HPET_CFG + 4 hpet_ram_readl \n");
331 cur_tick
= hpet_get_ticks();
333 cur_tick
= s
->hpet_counter
;
334 dprintf("qemu: reading counter = %" PRIx64
"\n", cur_tick
);
336 case HPET_COUNTER
+ 4:
338 cur_tick
= hpet_get_ticks();
340 cur_tick
= s
->hpet_counter
;
341 dprintf("qemu: reading counter + 4 = %" PRIx64
"\n", cur_tick
);
342 return cur_tick
>> 32;
346 dprintf("qemu: invalid hpet_ram_readl\n");
354 static void hpet_ram_writeb(void *opaque
, target_phys_addr_t addr
,
357 printf("qemu: invalid hpet_write b at %" PRIx64
" = %#x\n",
361 static void hpet_ram_writew(void *opaque
, target_phys_addr_t addr
,
364 printf("qemu: invalid hpet_write w at %" PRIx64
" = %#x\n",
369 static void hpet_ram_writel(void *opaque
, target_phys_addr_t addr
,
373 HPETState
*s
= (HPETState
*)opaque
;
374 uint64_t old_val
, new_val
, val
, index
;
376 dprintf("qemu: Enter hpet_ram_writel at %" PRIx64
" = %#x\n", addr
, value
);
378 old_val
= hpet_ram_readl(opaque
, addr
);
381 /*address range of all TN regs*/
382 if (index
>= 0x100 && index
<= 0x3ff) {
383 uint8_t timer_id
= (addr
- 0x100) / 0x20;
384 dprintf("qemu: hpet_ram_writel timer_id = %#x \n", timer_id
);
385 HPETTimer
*timer
= &s
->timer
[timer_id
];
387 switch ((addr
- 0x100) % 0x20) {
389 dprintf("qemu: hpet_ram_writel HPET_TN_CFG\n");
390 val
= hpet_fixup_reg(new_val
, old_val
, HPET_TN_CFG_WRITE_MASK
);
391 timer
->config
= (timer
->config
& 0xffffffff00000000ULL
) | val
;
392 if (new_val
& HPET_TN_32BIT
) {
393 timer
->cmp
= (uint32_t)timer
->cmp
;
394 timer
->period
= (uint32_t)timer
->period
;
396 if (new_val
& HPET_TIMER_TYPE_LEVEL
) {
397 printf("qemu: level-triggered hpet not supported\n");
402 case HPET_TN_CFG
+ 4: // Interrupt capabilities
403 dprintf("qemu: invalid HPET_TN_CFG+4 write\n");
405 case HPET_TN_CMP
: // comparator register
406 dprintf("qemu: hpet_ram_writel HPET_TN_CMP \n");
407 if (timer
->config
& HPET_TN_32BIT
)
408 new_val
= (uint32_t)new_val
;
409 if (!timer_is_periodic(timer
) ||
410 (timer
->config
& HPET_TN_SETVAL
))
411 timer
->cmp
= (timer
->cmp
& 0xffffffff00000000ULL
)
413 if (timer_is_periodic(timer
)) {
415 * FIXME: Clamp period to reasonable min value?
416 * Clamp period to reasonable max value
418 new_val
&= (timer
->config
& HPET_TN_32BIT
? ~0u : ~0ull) >> 1;
419 timer
->period
= (timer
->period
& 0xffffffff00000000ULL
)
422 timer
->config
&= ~HPET_TN_SETVAL
;
424 hpet_set_timer(timer
);
426 case HPET_TN_CMP
+ 4: // comparator register high order
427 dprintf("qemu: hpet_ram_writel HPET_TN_CMP + 4\n");
428 if (!timer_is_periodic(timer
) ||
429 (timer
->config
& HPET_TN_SETVAL
))
430 timer
->cmp
= (timer
->cmp
& 0xffffffffULL
)
434 * FIXME: Clamp period to reasonable min value?
435 * Clamp period to reasonable max value
437 new_val
&= (timer
->config
438 & HPET_TN_32BIT
? ~0u : ~0ull) >> 1;
439 timer
->period
= (timer
->period
& 0xffffffffULL
)
442 timer
->config
&= ~HPET_TN_SETVAL
;
444 hpet_set_timer(timer
);
446 case HPET_TN_ROUTE
+ 4:
447 dprintf("qemu: hpet_ram_writel HPET_TN_ROUTE + 4\n");
450 dprintf("qemu: invalid hpet_ram_writel\n");
459 val
= hpet_fixup_reg(new_val
, old_val
, HPET_CFG_WRITE_MASK
);
460 s
->config
= (s
->config
& 0xffffffff00000000ULL
) | val
;
461 if (activating_bit(old_val
, new_val
, HPET_CFG_ENABLE
)) {
462 /* Enable main counter and interrupt generation. */
463 s
->hpet_offset
= ticks_to_ns(s
->hpet_counter
)
464 - qemu_get_clock(vm_clock
);
465 for (i
= 0; i
< HPET_NUM_TIMERS
; i
++)
466 if ((&s
->timer
[i
])->cmp
!= ~0ULL)
467 hpet_set_timer(&s
->timer
[i
]);
469 else if (deactivating_bit(old_val
, new_val
, HPET_CFG_ENABLE
)) {
470 /* Halt main counter and disable interrupt generation. */
471 s
->hpet_counter
= hpet_get_ticks();
472 for (i
= 0; i
< HPET_NUM_TIMERS
; i
++)
473 hpet_del_timer(&s
->timer
[i
]);
475 /* i8254 and RTC are disabled when HPET is in legacy mode */
476 if (activating_bit(old_val
, new_val
, HPET_CFG_LEGACY
)) {
478 } else if (deactivating_bit(old_val
, new_val
, HPET_CFG_LEGACY
)) {
483 dprintf("qemu: invalid HPET_CFG+4 write \n");
486 /* FIXME: need to handle level-triggered interrupts */
490 printf("qemu: Writing counter while HPET enabled!\n");
491 s
->hpet_counter
= (s
->hpet_counter
& 0xffffffff00000000ULL
)
493 dprintf("qemu: HPET counter written. ctr = %#x -> %" PRIx64
"\n",
494 value
, s
->hpet_counter
);
496 case HPET_COUNTER
+ 4:
498 printf("qemu: Writing counter while HPET enabled!\n");
499 s
->hpet_counter
= (s
->hpet_counter
& 0xffffffffULL
)
500 | (((uint64_t)value
) << 32);
501 dprintf("qemu: HPET counter + 4 written. ctr = %#x -> %" PRIx64
"\n",
502 value
, s
->hpet_counter
);
505 dprintf("qemu: invalid hpet_ram_writel\n");
511 static CPUReadMemoryFunc
* const hpet_ram_read
[] = {
522 static CPUWriteMemoryFunc
* const hpet_ram_write
[] = {
533 static void hpet_reset(void *opaque
) {
534 HPETState
*s
= opaque
;
536 static int count
= 0;
538 for (i
=0; i
<HPET_NUM_TIMERS
; i
++) {
539 HPETTimer
*timer
= &s
->timer
[i
];
540 hpet_del_timer(timer
);
543 timer
->config
= HPET_TN_PERIODIC_CAP
| HPET_TN_SIZE_CAP
;
544 /* advertise availability of ioapic inti2 */
545 timer
->config
|= 0x00000004ULL
<< 32;
547 timer
->period
= 0ULL;
548 timer
->wrap_flag
= 0;
551 s
->hpet_counter
= 0ULL;
552 s
->hpet_offset
= 0ULL;
553 /* 64-bit main counter; 3 timers supported; LegacyReplacementRoute. */
554 s
->capability
= 0x8086a201ULL
;
555 s
->capability
|= ((HPET_CLK_PERIOD
) << 32);
558 /* we don't enable pit when hpet_reset is first called (by hpet_init)
559 * because hpet is taking over for pit here. On subsequent invocations,
560 * hpet_reset is called due to system reset. At this point control must
561 * be returned to pit until SW reenables hpet.
568 void hpet_init(qemu_irq
*irq
) {
572 dprintf ("hpet_init\n");
574 s
= qemu_mallocz(sizeof(HPETState
));
577 for (i
=0; i
<HPET_NUM_TIMERS
; i
++) {
578 HPETTimer
*timer
= &s
->timer
[i
];
579 timer
->qemu_timer
= qemu_new_timer(vm_clock
, hpet_timer
, timer
);
582 register_savevm("hpet", -1, 1, hpet_save
, hpet_load
, s
);
583 qemu_register_reset(hpet_reset
, s
);
585 iomemtype
= cpu_register_io_memory(hpet_ram_read
,
587 cpu_register_physical_memory(HPET_BASE
, 0x400, iomemtype
);