target-arm: A64: add support for ld/st with reg offset
[qemu/cris-port.git] / target-arm / cpu.h
blob56ed59116494a68d436909979f6db55a74bec9d0
1 /*
2 * ARM virtual CPU header
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #ifndef CPU_ARM_H
20 #define CPU_ARM_H
22 #include "config.h"
24 #include "kvm-consts.h"
26 #if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28 # define TARGET_LONG_BITS 64
29 # define ELF_MACHINE EM_AARCH64
30 #else
31 # define TARGET_LONG_BITS 32
32 # define ELF_MACHINE EM_ARM
33 #endif
35 #define CPUArchState struct CPUARMState
37 #include "qemu-common.h"
38 #include "exec/cpu-defs.h"
40 #include "fpu/softfloat.h"
42 #define TARGET_HAS_ICE 1
44 #define EXCP_UDEF 1 /* undefined instruction */
45 #define EXCP_SWI 2 /* software interrupt */
46 #define EXCP_PREFETCH_ABORT 3
47 #define EXCP_DATA_ABORT 4
48 #define EXCP_IRQ 5
49 #define EXCP_FIQ 6
50 #define EXCP_BKPT 7
51 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
52 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
53 #define EXCP_STREX 10
55 #define ARMV7M_EXCP_RESET 1
56 #define ARMV7M_EXCP_NMI 2
57 #define ARMV7M_EXCP_HARD 3
58 #define ARMV7M_EXCP_MEM 4
59 #define ARMV7M_EXCP_BUS 5
60 #define ARMV7M_EXCP_USAGE 6
61 #define ARMV7M_EXCP_SVC 11
62 #define ARMV7M_EXCP_DEBUG 12
63 #define ARMV7M_EXCP_PENDSV 14
64 #define ARMV7M_EXCP_SYSTICK 15
66 /* ARM-specific interrupt pending bits. */
67 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
69 /* Meanings of the ARMCPU object's two inbound GPIO lines */
70 #define ARM_CPU_IRQ 0
71 #define ARM_CPU_FIQ 1
73 typedef void ARMWriteCPFunc(void *opaque, int cp_info,
74 int srcreg, int operand, uint32_t value);
75 typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
76 int dstreg, int operand);
78 struct arm_boot_info;
80 #define NB_MMU_MODES 2
82 /* We currently assume float and double are IEEE single and double
83 precision respectively.
84 Doing runtime conversions is tricky because VFP registers may contain
85 integer values (eg. as the result of a FTOSI instruction).
86 s<2n> maps to the least significant half of d<n>
87 s<2n+1> maps to the most significant half of d<n>
90 /* CPU state for each instance of a generic timer (in cp15 c14) */
91 typedef struct ARMGenericTimer {
92 uint64_t cval; /* Timer CompareValue register */
93 uint32_t ctl; /* Timer Control register */
94 } ARMGenericTimer;
96 #define GTIMER_PHYS 0
97 #define GTIMER_VIRT 1
98 #define NUM_GTIMERS 2
100 /* Scale factor for generic timers, ie number of ns per tick.
101 * This gives a 62.5MHz timer.
103 #define GTIMER_SCALE 16
105 typedef struct CPUARMState {
106 /* Regs for current mode. */
107 uint32_t regs[16];
109 /* 32/64 switch only happens when taking and returning from
110 * exceptions so the overlap semantics are taken care of then
111 * instead of having a complicated union.
113 /* Regs for A64 mode. */
114 uint64_t xregs[32];
115 uint64_t pc;
116 /* PSTATE isn't an architectural register for ARMv8. However, it is
117 * convenient for us to assemble the underlying state into a 32 bit format
118 * identical to the architectural format used for the SPSR. (This is also
119 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
120 * 'pstate' register are.) Of the PSTATE bits:
121 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
122 * semantics as for AArch32, as described in the comments on each field)
123 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
124 * all other bits are stored in their correct places in env->pstate
126 uint32_t pstate;
127 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
129 /* Frequently accessed CPSR bits are stored separately for efficiency.
130 This contains all the other bits. Use cpsr_{read,write} to access
131 the whole CPSR. */
132 uint32_t uncached_cpsr;
133 uint32_t spsr;
135 /* Banked registers. */
136 uint32_t banked_spsr[6];
137 uint32_t banked_r13[6];
138 uint32_t banked_r14[6];
140 /* These hold r8-r12. */
141 uint32_t usr_regs[5];
142 uint32_t fiq_regs[5];
144 /* cpsr flag cache for faster execution */
145 uint32_t CF; /* 0 or 1 */
146 uint32_t VF; /* V is the bit 31. All other bits are undefined */
147 uint32_t NF; /* N is bit 31. All other bits are undefined. */
148 uint32_t ZF; /* Z set if zero. */
149 uint32_t QF; /* 0 or 1 */
150 uint32_t GE; /* cpsr[19:16] */
151 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
152 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
154 /* System control coprocessor (cp15) */
155 struct {
156 uint32_t c0_cpuid;
157 uint32_t c0_cssel; /* Cache size selection. */
158 uint32_t c1_sys; /* System control register. */
159 uint32_t c1_coproc; /* Coprocessor access register. */
160 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
161 uint32_t c1_scr; /* secure config register. */
162 uint32_t c2_base0; /* MMU translation table base 0. */
163 uint32_t c2_base0_hi; /* MMU translation table base 0, high 32 bits */
164 uint32_t c2_base1; /* MMU translation table base 0. */
165 uint32_t c2_base1_hi; /* MMU translation table base 1, high 32 bits */
166 uint32_t c2_control; /* MMU translation table base control. */
167 uint32_t c2_mask; /* MMU translation table base selection mask. */
168 uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
169 uint32_t c2_data; /* MPU data cachable bits. */
170 uint32_t c2_insn; /* MPU instruction cachable bits. */
171 uint32_t c3; /* MMU domain access control register
172 MPU write buffer control. */
173 uint32_t c5_insn; /* Fault status registers. */
174 uint32_t c5_data;
175 uint32_t c6_region[8]; /* MPU base/size registers. */
176 uint32_t c6_insn; /* Fault address registers. */
177 uint32_t c6_data;
178 uint32_t c7_par; /* Translation result. */
179 uint32_t c7_par_hi; /* Translation result, high 32 bits */
180 uint32_t c9_insn; /* Cache lockdown registers. */
181 uint32_t c9_data;
182 uint32_t c9_pmcr; /* performance monitor control register */
183 uint32_t c9_pmcnten; /* perf monitor counter enables */
184 uint32_t c9_pmovsr; /* perf monitor overflow status */
185 uint32_t c9_pmxevtyper; /* perf monitor event type */
186 uint32_t c9_pmuserenr; /* perf monitor user enable */
187 uint32_t c9_pminten; /* perf monitor interrupt enables */
188 uint32_t c12_vbar; /* vector base address register */
189 uint32_t c13_fcse; /* FCSE PID. */
190 uint32_t c13_context; /* Context ID. */
191 uint32_t c13_tls1; /* User RW Thread register. */
192 uint32_t c13_tls2; /* User RO Thread register. */
193 uint32_t c13_tls3; /* Privileged Thread register. */
194 uint32_t c14_cntfrq; /* Counter Frequency register */
195 uint32_t c14_cntkctl; /* Timer Control register */
196 ARMGenericTimer c14_timer[NUM_GTIMERS];
197 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
198 uint32_t c15_ticonfig; /* TI925T configuration byte. */
199 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
200 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
201 uint32_t c15_threadid; /* TI debugger thread-ID. */
202 uint32_t c15_config_base_address; /* SCU base address. */
203 uint32_t c15_diagnostic; /* diagnostic register */
204 uint32_t c15_power_diagnostic;
205 uint32_t c15_power_control; /* power control */
206 } cp15;
208 /* System registers (AArch64) */
209 struct {
210 uint64_t tpidr_el0;
211 } sr;
213 struct {
214 uint32_t other_sp;
215 uint32_t vecbase;
216 uint32_t basepri;
217 uint32_t control;
218 int current_sp;
219 int exception;
220 int pending_exception;
221 } v7m;
223 /* Thumb-2 EE state. */
224 uint32_t teecr;
225 uint32_t teehbr;
227 /* VFP coprocessor state. */
228 struct {
229 /* VFP/Neon register state. Note that the mapping between S, D and Q
230 * views of the register bank differs between AArch64 and AArch32:
231 * In AArch32:
232 * Qn = regs[2n+1]:regs[2n]
233 * Dn = regs[n]
234 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
235 * (and regs[32] to regs[63] are inaccessible)
236 * In AArch64:
237 * Qn = regs[2n+1]:regs[2n]
238 * Dn = regs[2n]
239 * Sn = regs[2n] bits 31..0
240 * This corresponds to the architecturally defined mapping between
241 * the two execution states, and means we do not need to explicitly
242 * map these registers when changing states.
244 float64 regs[64];
246 uint32_t xregs[16];
247 /* We store these fpcsr fields separately for convenience. */
248 int vec_len;
249 int vec_stride;
251 /* scratch space when Tn are not sufficient. */
252 uint32_t scratch[8];
254 /* fp_status is the "normal" fp status. standard_fp_status retains
255 * values corresponding to the ARM "Standard FPSCR Value", ie
256 * default-NaN, flush-to-zero, round-to-nearest and is used by
257 * any operations (generally Neon) which the architecture defines
258 * as controlled by the standard FPSCR value rather than the FPSCR.
260 * To avoid having to transfer exception bits around, we simply
261 * say that the FPSCR cumulative exception flags are the logical
262 * OR of the flags in the two fp statuses. This relies on the
263 * only thing which needs to read the exception flags being
264 * an explicit FPSCR read.
266 float_status fp_status;
267 float_status standard_fp_status;
268 } vfp;
269 uint32_t exclusive_addr;
270 uint32_t exclusive_val;
271 uint32_t exclusive_high;
272 #if defined(CONFIG_USER_ONLY)
273 uint32_t exclusive_test;
274 uint32_t exclusive_info;
275 #endif
277 /* iwMMXt coprocessor state. */
278 struct {
279 uint64_t regs[16];
280 uint64_t val;
282 uint32_t cregs[16];
283 } iwmmxt;
285 /* For mixed endian mode. */
286 bool bswap_code;
288 #if defined(CONFIG_USER_ONLY)
289 /* For usermode syscall translation. */
290 int eabi;
291 #endif
293 CPU_COMMON
295 /* These fields after the common ones so they are preserved on reset. */
297 /* Internal CPU feature flags. */
298 uint64_t features;
300 void *nvic;
301 const struct arm_boot_info *boot_info;
302 } CPUARMState;
304 #include "cpu-qom.h"
306 ARMCPU *cpu_arm_init(const char *cpu_model);
307 void arm_translate_init(void);
308 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
309 int cpu_arm_exec(CPUARMState *s);
310 int bank_number(int mode);
311 void switch_mode(CPUARMState *, int);
312 uint32_t do_arm_semihosting(CPUARMState *env);
314 static inline bool is_a64(CPUARMState *env)
316 return env->aarch64;
319 /* you can call this signal handler from your SIGBUS and SIGSEGV
320 signal handlers to inform the virtual CPU of exceptions. non zero
321 is returned if the signal was handled by the virtual CPU. */
322 int cpu_arm_signal_handler(int host_signum, void *pinfo,
323 void *puc);
324 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
325 int mmu_idx);
326 #define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault
328 #define CPSR_M (0x1fU)
329 #define CPSR_T (1U << 5)
330 #define CPSR_F (1U << 6)
331 #define CPSR_I (1U << 7)
332 #define CPSR_A (1U << 8)
333 #define CPSR_E (1U << 9)
334 #define CPSR_IT_2_7 (0xfc00U)
335 #define CPSR_GE (0xfU << 16)
336 #define CPSR_RESERVED (0xfU << 20)
337 #define CPSR_J (1U << 24)
338 #define CPSR_IT_0_1 (3U << 25)
339 #define CPSR_Q (1U << 27)
340 #define CPSR_V (1U << 28)
341 #define CPSR_C (1U << 29)
342 #define CPSR_Z (1U << 30)
343 #define CPSR_N (1U << 31)
344 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
346 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
347 #define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV)
348 /* Bits writable in user mode. */
349 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
350 /* Execution state bits. MRS read as zero, MSR writes ignored. */
351 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
353 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
354 * Only these are valid when in AArch64 mode; in
355 * AArch32 mode SPSRs are basically CPSR-format.
357 #define PSTATE_M (0xFU)
358 #define PSTATE_nRW (1U << 4)
359 #define PSTATE_F (1U << 6)
360 #define PSTATE_I (1U << 7)
361 #define PSTATE_A (1U << 8)
362 #define PSTATE_D (1U << 9)
363 #define PSTATE_IL (1U << 20)
364 #define PSTATE_SS (1U << 21)
365 #define PSTATE_V (1U << 28)
366 #define PSTATE_C (1U << 29)
367 #define PSTATE_Z (1U << 30)
368 #define PSTATE_N (1U << 31)
369 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
370 #define CACHED_PSTATE_BITS (PSTATE_NZCV)
371 /* Mode values for AArch64 */
372 #define PSTATE_MODE_EL3h 13
373 #define PSTATE_MODE_EL3t 12
374 #define PSTATE_MODE_EL2h 9
375 #define PSTATE_MODE_EL2t 8
376 #define PSTATE_MODE_EL1h 5
377 #define PSTATE_MODE_EL1t 4
378 #define PSTATE_MODE_EL0t 0
380 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
381 * interprocessing, so we don't attempt to sync with the cpsr state used by
382 * the 32 bit decoder.
384 static inline uint32_t pstate_read(CPUARMState *env)
386 int ZF;
388 ZF = (env->ZF == 0);
389 return (env->NF & 0x80000000) | (ZF << 30)
390 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
391 | env->pstate;
394 static inline void pstate_write(CPUARMState *env, uint32_t val)
396 env->ZF = (~val) & PSTATE_Z;
397 env->NF = val;
398 env->CF = (val >> 29) & 1;
399 env->VF = (val << 3) & 0x80000000;
400 env->pstate = val & ~CACHED_PSTATE_BITS;
403 /* Return the current CPSR value. */
404 uint32_t cpsr_read(CPUARMState *env);
405 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
406 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
408 /* Return the current xPSR value. */
409 static inline uint32_t xpsr_read(CPUARMState *env)
411 int ZF;
412 ZF = (env->ZF == 0);
413 return (env->NF & 0x80000000) | (ZF << 30)
414 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
415 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
416 | ((env->condexec_bits & 0xfc) << 8)
417 | env->v7m.exception;
420 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
421 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
423 if (mask & CPSR_NZCV) {
424 env->ZF = (~val) & CPSR_Z;
425 env->NF = val;
426 env->CF = (val >> 29) & 1;
427 env->VF = (val << 3) & 0x80000000;
429 if (mask & CPSR_Q)
430 env->QF = ((val & CPSR_Q) != 0);
431 if (mask & (1 << 24))
432 env->thumb = ((val & (1 << 24)) != 0);
433 if (mask & CPSR_IT_0_1) {
434 env->condexec_bits &= ~3;
435 env->condexec_bits |= (val >> 25) & 3;
437 if (mask & CPSR_IT_2_7) {
438 env->condexec_bits &= 3;
439 env->condexec_bits |= (val >> 8) & 0xfc;
441 if (mask & 0x1ff) {
442 env->v7m.exception = val & 0x1ff;
446 /* Return the current FPSCR value. */
447 uint32_t vfp_get_fpscr(CPUARMState *env);
448 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
450 /* For A64 the FPSCR is split into two logically distinct registers,
451 * FPCR and FPSR. However since they still use non-overlapping bits
452 * we store the underlying state in fpscr and just mask on read/write.
454 #define FPSR_MASK 0xf800009f
455 #define FPCR_MASK 0x07f79f00
456 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
458 return vfp_get_fpscr(env) & FPSR_MASK;
461 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
463 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
464 vfp_set_fpscr(env, new_fpscr);
467 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
469 return vfp_get_fpscr(env) & FPCR_MASK;
472 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
474 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
475 vfp_set_fpscr(env, new_fpscr);
478 enum arm_cpu_mode {
479 ARM_CPU_MODE_USR = 0x10,
480 ARM_CPU_MODE_FIQ = 0x11,
481 ARM_CPU_MODE_IRQ = 0x12,
482 ARM_CPU_MODE_SVC = 0x13,
483 ARM_CPU_MODE_ABT = 0x17,
484 ARM_CPU_MODE_UND = 0x1b,
485 ARM_CPU_MODE_SYS = 0x1f
488 /* VFP system registers. */
489 #define ARM_VFP_FPSID 0
490 #define ARM_VFP_FPSCR 1
491 #define ARM_VFP_MVFR1 6
492 #define ARM_VFP_MVFR0 7
493 #define ARM_VFP_FPEXC 8
494 #define ARM_VFP_FPINST 9
495 #define ARM_VFP_FPINST2 10
497 /* iwMMXt coprocessor control registers. */
498 #define ARM_IWMMXT_wCID 0
499 #define ARM_IWMMXT_wCon 1
500 #define ARM_IWMMXT_wCSSF 2
501 #define ARM_IWMMXT_wCASF 3
502 #define ARM_IWMMXT_wCGR0 8
503 #define ARM_IWMMXT_wCGR1 9
504 #define ARM_IWMMXT_wCGR2 10
505 #define ARM_IWMMXT_wCGR3 11
507 /* If adding a feature bit which corresponds to a Linux ELF
508 * HWCAP bit, remember to update the feature-bit-to-hwcap
509 * mapping in linux-user/elfload.c:get_elf_hwcap().
511 enum arm_features {
512 ARM_FEATURE_VFP,
513 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
514 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
515 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
516 ARM_FEATURE_V6,
517 ARM_FEATURE_V6K,
518 ARM_FEATURE_V7,
519 ARM_FEATURE_THUMB2,
520 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
521 ARM_FEATURE_VFP3,
522 ARM_FEATURE_VFP_FP16,
523 ARM_FEATURE_NEON,
524 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
525 ARM_FEATURE_M, /* Microcontroller profile. */
526 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
527 ARM_FEATURE_THUMB2EE,
528 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
529 ARM_FEATURE_V4T,
530 ARM_FEATURE_V5,
531 ARM_FEATURE_STRONGARM,
532 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
533 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
534 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
535 ARM_FEATURE_GENERIC_TIMER,
536 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
537 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
538 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
539 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
540 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
541 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
542 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
543 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
544 ARM_FEATURE_V8,
545 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
546 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
547 ARM_FEATURE_CBAR, /* has cp15 CBAR */
550 static inline int arm_feature(CPUARMState *env, int feature)
552 return (env->features & (1ULL << feature)) != 0;
555 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
557 /* Interface between CPU and Interrupt controller. */
558 void armv7m_nvic_set_pending(void *opaque, int irq);
559 int armv7m_nvic_acknowledge_irq(void *opaque);
560 void armv7m_nvic_complete_irq(void *opaque, int irq);
562 /* Interface for defining coprocessor registers.
563 * Registers are defined in tables of arm_cp_reginfo structs
564 * which are passed to define_arm_cp_regs().
567 /* When looking up a coprocessor register we look for it
568 * via an integer which encodes all of:
569 * coprocessor number
570 * Crn, Crm, opc1, opc2 fields
571 * 32 or 64 bit register (ie is it accessed via MRC/MCR
572 * or via MRRC/MCRR?)
573 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
574 * (In this case crn and opc2 should be zero.)
576 #define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2) \
577 (((cp) << 16) | ((is64) << 15) | ((crn) << 11) | \
578 ((crm) << 7) | ((opc1) << 3) | (opc2))
580 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
581 * version used as a key for the coprocessor register hashtable
583 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
585 uint32_t cpregid = kvmid;
586 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
587 cpregid |= (1 << 15);
589 return cpregid;
592 /* Convert a truncated 32 bit hashtable key into the full
593 * 64 bit KVM register ID.
595 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
597 uint64_t kvmid = cpregid & ~(1 << 15);
598 if (cpregid & (1 << 15)) {
599 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
600 } else {
601 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
603 return kvmid;
606 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
607 * special-behaviour cp reg and bits [15..8] indicate what behaviour
608 * it has. Otherwise it is a simple cp reg, where CONST indicates that
609 * TCG can assume the value to be constant (ie load at translate time)
610 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
611 * indicates that the TB should not be ended after a write to this register
612 * (the default is that the TB ends after cp writes). OVERRIDE permits
613 * a register definition to override a previous definition for the
614 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
615 * old must have the OVERRIDE bit set.
616 * NO_MIGRATE indicates that this register should be ignored for migration;
617 * (eg because any state is accessed via some other coprocessor register).
618 * IO indicates that this register does I/O and therefore its accesses
619 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
620 * registers which implement clocks or timers require this.
622 #define ARM_CP_SPECIAL 1
623 #define ARM_CP_CONST 2
624 #define ARM_CP_64BIT 4
625 #define ARM_CP_SUPPRESS_TB_END 8
626 #define ARM_CP_OVERRIDE 16
627 #define ARM_CP_NO_MIGRATE 32
628 #define ARM_CP_IO 64
629 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
630 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
631 #define ARM_LAST_SPECIAL ARM_CP_WFI
632 /* Used only as a terminator for ARMCPRegInfo lists */
633 #define ARM_CP_SENTINEL 0xffff
634 /* Mask of only the flag bits in a type field */
635 #define ARM_CP_FLAG_MASK 0x7f
637 /* Return true if cptype is a valid type field. This is used to try to
638 * catch errors where the sentinel has been accidentally left off the end
639 * of a list of registers.
641 static inline bool cptype_valid(int cptype)
643 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
644 || ((cptype & ARM_CP_SPECIAL) &&
645 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
648 /* Access rights:
649 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
650 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
651 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
652 * (ie any of the privileged modes in Secure state, or Monitor mode).
653 * If a register is accessible in one privilege level it's always accessible
654 * in higher privilege levels too. Since "Secure PL1" also follows this rule
655 * (ie anything visible in PL2 is visible in S-PL1, some things are only
656 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
657 * terminology a little and call this PL3.
659 * If access permissions for a register are more complex than can be
660 * described with these bits, then use a laxer set of restrictions, and
661 * do the more restrictive/complex check inside a helper function.
663 #define PL3_R 0x80
664 #define PL3_W 0x40
665 #define PL2_R (0x20 | PL3_R)
666 #define PL2_W (0x10 | PL3_W)
667 #define PL1_R (0x08 | PL2_R)
668 #define PL1_W (0x04 | PL2_W)
669 #define PL0_R (0x02 | PL1_R)
670 #define PL0_W (0x01 | PL1_W)
672 #define PL3_RW (PL3_R | PL3_W)
673 #define PL2_RW (PL2_R | PL2_W)
674 #define PL1_RW (PL1_R | PL1_W)
675 #define PL0_RW (PL0_R | PL0_W)
677 static inline int arm_current_pl(CPUARMState *env)
679 if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
680 return 0;
682 /* We don't currently implement the Virtualization or TrustZone
683 * extensions, so PL2 and PL3 don't exist for us.
685 return 1;
688 typedef struct ARMCPRegInfo ARMCPRegInfo;
690 /* Access functions for coprocessor registers. These should return
691 * 0 on success, or one of the EXCP_* constants if access should cause
692 * an exception (in which case *value is not written).
694 typedef int CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque,
695 uint64_t *value);
696 typedef int CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
697 uint64_t value);
698 /* Hook function for register reset */
699 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
701 #define CP_ANY 0xff
703 /* Definition of an ARM coprocessor register */
704 struct ARMCPRegInfo {
705 /* Name of register (useful mainly for debugging, need not be unique) */
706 const char *name;
707 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
708 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
709 * 'wildcard' field -- any value of that field in the MRC/MCR insn
710 * will be decoded to this register. The register read and write
711 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
712 * used by the program, so it is possible to register a wildcard and
713 * then behave differently on read/write if necessary.
714 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
715 * must both be zero.
717 uint8_t cp;
718 uint8_t crn;
719 uint8_t crm;
720 uint8_t opc1;
721 uint8_t opc2;
722 /* Register type: ARM_CP_* bits/values */
723 int type;
724 /* Access rights: PL*_[RW] */
725 int access;
726 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
727 * this register was defined: can be used to hand data through to the
728 * register read/write functions, since they are passed the ARMCPRegInfo*.
730 void *opaque;
731 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
732 * fieldoffset is non-zero, the reset value of the register.
734 uint64_t resetvalue;
735 /* Offset of the field in CPUARMState for this register. This is not
736 * needed if either:
737 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
738 * 2. both readfn and writefn are specified
740 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
741 /* Function for handling reads of this register. If NULL, then reads
742 * will be done by loading from the offset into CPUARMState specified
743 * by fieldoffset.
745 CPReadFn *readfn;
746 /* Function for handling writes of this register. If NULL, then writes
747 * will be done by writing to the offset into CPUARMState specified
748 * by fieldoffset.
750 CPWriteFn *writefn;
751 /* Function for doing a "raw" read; used when we need to copy
752 * coprocessor state to the kernel for KVM or out for
753 * migration. This only needs to be provided if there is also a
754 * readfn and it makes an access permission check.
756 CPReadFn *raw_readfn;
757 /* Function for doing a "raw" write; used when we need to copy KVM
758 * kernel coprocessor state into userspace, or for inbound
759 * migration. This only needs to be provided if there is also a
760 * writefn and it makes an access permission check or masks out
761 * "unwritable" bits or has write-one-to-clear or similar behaviour.
763 CPWriteFn *raw_writefn;
764 /* Function for resetting the register. If NULL, then reset will be done
765 * by writing resetvalue to the field specified in fieldoffset. If
766 * fieldoffset is 0 then no reset will be done.
768 CPResetFn *resetfn;
771 /* Macros which are lvalues for the field in CPUARMState for the
772 * ARMCPRegInfo *ri.
774 #define CPREG_FIELD32(env, ri) \
775 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
776 #define CPREG_FIELD64(env, ri) \
777 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
779 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
781 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
782 const ARMCPRegInfo *regs, void *opaque);
783 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
784 const ARMCPRegInfo *regs, void *opaque);
785 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
787 define_arm_cp_regs_with_opaque(cpu, regs, 0);
789 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
791 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
793 const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp);
795 /* CPWriteFn that can be used to implement writes-ignored behaviour */
796 int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
797 uint64_t value);
798 /* CPReadFn that can be used for read-as-zero behaviour */
799 int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value);
801 static inline bool cp_access_ok(CPUARMState *env,
802 const ARMCPRegInfo *ri, int isread)
804 return (ri->access >> ((arm_current_pl(env) * 2) + isread)) & 1;
808 * write_list_to_cpustate
809 * @cpu: ARMCPU
811 * For each register listed in the ARMCPU cpreg_indexes list, write
812 * its value from the cpreg_values list into the ARMCPUState structure.
813 * This updates TCG's working data structures from KVM data or
814 * from incoming migration state.
816 * Returns: true if all register values were updated correctly,
817 * false if some register was unknown or could not be written.
818 * Note that we do not stop early on failure -- we will attempt
819 * writing all registers in the list.
821 bool write_list_to_cpustate(ARMCPU *cpu);
824 * write_cpustate_to_list:
825 * @cpu: ARMCPU
827 * For each register listed in the ARMCPU cpreg_indexes list, write
828 * its value from the ARMCPUState structure into the cpreg_values list.
829 * This is used to copy info from TCG's working data structures into
830 * KVM or for outbound migration.
832 * Returns: true if all register values were read correctly,
833 * false if some register was unknown or could not be read.
834 * Note that we do not stop early on failure -- we will attempt
835 * reading all registers in the list.
837 bool write_cpustate_to_list(ARMCPU *cpu);
839 /* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
840 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
841 conventional cores (ie. Application or Realtime profile). */
843 #define IS_M(env) arm_feature(env, ARM_FEATURE_M)
845 #define ARM_CPUID_TI915T 0x54029152
846 #define ARM_CPUID_TI925T 0x54029252
848 #if defined(CONFIG_USER_ONLY)
849 #define TARGET_PAGE_BITS 12
850 #else
851 /* The ARM MMU allows 1k pages. */
852 /* ??? Linux doesn't actually use these, and they're deprecated in recent
853 architecture revisions. Maybe a configure option to disable them. */
854 #define TARGET_PAGE_BITS 10
855 #endif
857 #if defined(TARGET_AARCH64)
858 # define TARGET_PHYS_ADDR_SPACE_BITS 48
859 # define TARGET_VIRT_ADDR_SPACE_BITS 64
860 #else
861 # define TARGET_PHYS_ADDR_SPACE_BITS 40
862 # define TARGET_VIRT_ADDR_SPACE_BITS 32
863 #endif
865 static inline CPUARMState *cpu_init(const char *cpu_model)
867 ARMCPU *cpu = cpu_arm_init(cpu_model);
868 if (cpu) {
869 return &cpu->env;
871 return NULL;
874 #define cpu_exec cpu_arm_exec
875 #define cpu_gen_code cpu_arm_gen_code
876 #define cpu_signal_handler cpu_arm_signal_handler
877 #define cpu_list arm_cpu_list
879 /* MMU modes definitions */
880 #define MMU_MODE0_SUFFIX _kernel
881 #define MMU_MODE1_SUFFIX _user
882 #define MMU_USER_IDX 1
883 static inline int cpu_mmu_index (CPUARMState *env)
885 return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR ? 1 : 0;
888 #include "exec/cpu-all.h"
890 /* Bit usage in the TB flags field: bit 31 indicates whether we are
891 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
893 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
894 #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
896 /* Bit usage when in AArch32 state: */
897 #define ARM_TBFLAG_THUMB_SHIFT 0
898 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
899 #define ARM_TBFLAG_VECLEN_SHIFT 1
900 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
901 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4
902 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
903 #define ARM_TBFLAG_PRIV_SHIFT 6
904 #define ARM_TBFLAG_PRIV_MASK (1 << ARM_TBFLAG_PRIV_SHIFT)
905 #define ARM_TBFLAG_VFPEN_SHIFT 7
906 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
907 #define ARM_TBFLAG_CONDEXEC_SHIFT 8
908 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
909 #define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
910 #define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
912 /* Bit usage when in AArch64 state: currently no bits defined */
914 /* some convenience accessor macros */
915 #define ARM_TBFLAG_AARCH64_STATE(F) \
916 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
917 #define ARM_TBFLAG_THUMB(F) \
918 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
919 #define ARM_TBFLAG_VECLEN(F) \
920 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
921 #define ARM_TBFLAG_VECSTRIDE(F) \
922 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
923 #define ARM_TBFLAG_PRIV(F) \
924 (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
925 #define ARM_TBFLAG_VFPEN(F) \
926 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
927 #define ARM_TBFLAG_CONDEXEC(F) \
928 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
929 #define ARM_TBFLAG_BSWAP_CODE(F) \
930 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
932 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
933 target_ulong *cs_base, int *flags)
935 if (is_a64(env)) {
936 *pc = env->pc;
937 *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
938 } else {
939 int privmode;
940 *pc = env->regs[15];
941 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
942 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
943 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
944 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
945 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
946 if (arm_feature(env, ARM_FEATURE_M)) {
947 privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
948 } else {
949 privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
951 if (privmode) {
952 *flags |= ARM_TBFLAG_PRIV_MASK;
954 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
955 *flags |= ARM_TBFLAG_VFPEN_MASK;
959 *cs_base = 0;
962 static inline bool cpu_has_work(CPUState *cpu)
964 return cpu->interrupt_request &
965 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB);
968 #include "exec/exec-all.h"
970 static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
972 if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
973 env->pc = tb->pc;
974 } else {
975 env->regs[15] = tb->pc;
979 /* Load an instruction and return it in the standard little-endian order */
980 static inline uint32_t arm_ldl_code(CPUARMState *env, target_ulong addr,
981 bool do_swap)
983 uint32_t insn = cpu_ldl_code(env, addr);
984 if (do_swap) {
985 return bswap32(insn);
987 return insn;
990 /* Ditto, for a halfword (Thumb) instruction */
991 static inline uint16_t arm_lduw_code(CPUARMState *env, target_ulong addr,
992 bool do_swap)
994 uint16_t insn = cpu_lduw_code(env, addr);
995 if (do_swap) {
996 return bswap16(insn);
998 return insn;
1001 #endif