Sparc: split FPU and VIS op helpers
[qemu/cris-port.git] / target-sparc / op_helper.c
blobfd20366b9bbd1b57534f5d217dbe3db35c0f982f
1 #include "cpu.h"
2 #include "dyngen-exec.h"
3 #include "helper.h"
5 #if !defined(CONFIG_USER_ONLY)
6 #include "softmmu_exec.h"
7 #endif
9 //#define DEBUG_MMU
10 //#define DEBUG_MXCC
11 //#define DEBUG_UNALIGNED
12 //#define DEBUG_UNASSIGNED
13 //#define DEBUG_ASI
14 //#define DEBUG_PSTATE
15 //#define DEBUG_CACHE_CONTROL
17 #ifdef DEBUG_MMU
18 #define DPRINTF_MMU(fmt, ...) \
19 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
20 #else
21 #define DPRINTF_MMU(fmt, ...) do {} while (0)
22 #endif
24 #ifdef DEBUG_MXCC
25 #define DPRINTF_MXCC(fmt, ...) \
26 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
27 #else
28 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
29 #endif
31 #ifdef DEBUG_ASI
32 #define DPRINTF_ASI(fmt, ...) \
33 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
34 #endif
36 #ifdef DEBUG_PSTATE
37 #define DPRINTF_PSTATE(fmt, ...) \
38 do { printf("PSTATE: " fmt , ## __VA_ARGS__); } while (0)
39 #else
40 #define DPRINTF_PSTATE(fmt, ...) do {} while (0)
41 #endif
43 #ifdef DEBUG_CACHE_CONTROL
44 #define DPRINTF_CACHE_CONTROL(fmt, ...) \
45 do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
46 #else
47 #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
48 #endif
50 #ifdef TARGET_SPARC64
51 #ifndef TARGET_ABI32
52 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
53 #else
54 #define AM_CHECK(env1) (1)
55 #endif
56 #endif
58 #define DT0 (env->dt0)
59 #define DT1 (env->dt1)
60 #define QT0 (env->qt0)
61 #define QT1 (env->qt1)
63 /* Leon3 cache control */
65 /* Cache control: emulate the behavior of cache control registers but without
66 any effect on the emulated */
68 #define CACHE_STATE_MASK 0x3
69 #define CACHE_DISABLED 0x0
70 #define CACHE_FROZEN 0x1
71 #define CACHE_ENABLED 0x3
73 /* Cache Control register fields */
75 #define CACHE_CTRL_IF (1 << 4) /* Instruction Cache Freeze on Interrupt */
76 #define CACHE_CTRL_DF (1 << 5) /* Data Cache Freeze on Interrupt */
77 #define CACHE_CTRL_DP (1 << 14) /* Data cache flush pending */
78 #define CACHE_CTRL_IP (1 << 15) /* Instruction cache flush pending */
79 #define CACHE_CTRL_IB (1 << 16) /* Instruction burst fetch */
80 #define CACHE_CTRL_FI (1 << 21) /* Flush Instruction cache (Write only) */
81 #define CACHE_CTRL_FD (1 << 22) /* Flush Data cache (Write only) */
82 #define CACHE_CTRL_DS (1 << 23) /* Data cache snoop enable */
84 #if !defined(CONFIG_USER_ONLY)
85 static void do_unassigned_access(target_phys_addr_t addr, int is_write,
86 int is_exec, int is_asi, int size);
87 #else
88 #ifdef TARGET_SPARC64
89 static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
90 int is_asi, int size);
91 #endif
92 #endif
94 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
95 /* Calculates TSB pointer value for fault page size 8k or 64k */
96 static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
97 uint64_t tag_access_register,
98 int page_size)
100 uint64_t tsb_base = tsb_register & ~0x1fffULL;
101 int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
102 int tsb_size = tsb_register & 0xf;
104 /* discard lower 13 bits which hold tag access context */
105 uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
107 /* now reorder bits */
108 uint64_t tsb_base_mask = ~0x1fffULL;
109 uint64_t va = tag_access_va;
111 /* move va bits to correct position */
112 if (page_size == 8*1024) {
113 va >>= 9;
114 } else if (page_size == 64*1024) {
115 va >>= 12;
118 if (tsb_size) {
119 tsb_base_mask <<= tsb_size;
122 /* calculate tsb_base mask and adjust va if split is in use */
123 if (tsb_split) {
124 if (page_size == 8*1024) {
125 va &= ~(1ULL << (13 + tsb_size));
126 } else if (page_size == 64*1024) {
127 va |= (1ULL << (13 + tsb_size));
129 tsb_base_mask <<= 1;
132 return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
135 /* Calculates tag target register value by reordering bits
136 in tag access register */
137 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
139 return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
142 static void replace_tlb_entry(SparcTLBEntry *tlb,
143 uint64_t tlb_tag, uint64_t tlb_tte,
144 CPUState *env1)
146 target_ulong mask, size, va, offset;
148 /* flush page range if translation is valid */
149 if (TTE_IS_VALID(tlb->tte)) {
151 mask = 0xffffffffffffe000ULL;
152 mask <<= 3 * ((tlb->tte >> 61) & 3);
153 size = ~mask + 1;
155 va = tlb->tag & mask;
157 for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
158 tlb_flush_page(env1, va + offset);
162 tlb->tag = tlb_tag;
163 tlb->tte = tlb_tte;
166 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
167 const char *strmmu, CPUState *env1)
169 unsigned int i;
170 target_ulong mask;
171 uint64_t context;
173 int is_demap_context = (demap_addr >> 6) & 1;
175 /* demap context */
176 switch ((demap_addr >> 4) & 3) {
177 case 0: /* primary */
178 context = env1->dmmu.mmu_primary_context;
179 break;
180 case 1: /* secondary */
181 context = env1->dmmu.mmu_secondary_context;
182 break;
183 case 2: /* nucleus */
184 context = 0;
185 break;
186 case 3: /* reserved */
187 default:
188 return;
191 for (i = 0; i < 64; i++) {
192 if (TTE_IS_VALID(tlb[i].tte)) {
194 if (is_demap_context) {
195 /* will remove non-global entries matching context value */
196 if (TTE_IS_GLOBAL(tlb[i].tte) ||
197 !tlb_compare_context(&tlb[i], context)) {
198 continue;
200 } else {
201 /* demap page
202 will remove any entry matching VA */
203 mask = 0xffffffffffffe000ULL;
204 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
206 if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
207 continue;
210 /* entry should be global or matching context value */
211 if (!TTE_IS_GLOBAL(tlb[i].tte) &&
212 !tlb_compare_context(&tlb[i], context)) {
213 continue;
217 replace_tlb_entry(&tlb[i], 0, 0, env1);
218 #ifdef DEBUG_MMU
219 DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
220 dump_mmu(stdout, fprintf, env1);
221 #endif
226 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
227 uint64_t tlb_tag, uint64_t tlb_tte,
228 const char *strmmu, CPUState *env1)
230 unsigned int i, replace_used;
232 /* Try replacing invalid entry */
233 for (i = 0; i < 64; i++) {
234 if (!TTE_IS_VALID(tlb[i].tte)) {
235 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
236 #ifdef DEBUG_MMU
237 DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
238 dump_mmu(stdout, fprintf, env1);
239 #endif
240 return;
244 /* All entries are valid, try replacing unlocked entry */
246 for (replace_used = 0; replace_used < 2; ++replace_used) {
248 /* Used entries are not replaced on first pass */
250 for (i = 0; i < 64; i++) {
251 if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
253 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
254 #ifdef DEBUG_MMU
255 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
256 strmmu, (replace_used ? "used" : "unused"), i);
257 dump_mmu(stdout, fprintf, env1);
258 #endif
259 return;
263 /* Now reset used bit and search for unused entries again */
265 for (i = 0; i < 64; i++) {
266 TTE_SET_UNUSED(tlb[i].tte);
270 #ifdef DEBUG_MMU
271 DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
272 #endif
273 /* error state? */
276 #endif
278 static inline target_ulong address_mask(CPUState *env1, target_ulong addr)
280 #ifdef TARGET_SPARC64
281 if (AM_CHECK(env1)) {
282 addr &= 0xffffffffULL;
284 #endif
285 return addr;
288 /* returns true if access using this ASI is to have address translated by MMU
289 otherwise access is to raw physical address */
290 static inline int is_translating_asi(int asi)
292 #ifdef TARGET_SPARC64
293 /* Ultrasparc IIi translating asi
294 - note this list is defined by cpu implementation
296 switch (asi) {
297 case 0x04 ... 0x11:
298 case 0x16 ... 0x19:
299 case 0x1E ... 0x1F:
300 case 0x24 ... 0x2C:
301 case 0x70 ... 0x73:
302 case 0x78 ... 0x79:
303 case 0x80 ... 0xFF:
304 return 1;
306 default:
307 return 0;
309 #else
310 /* TODO: check sparc32 bits */
311 return 0;
312 #endif
315 static inline target_ulong asi_address_mask(CPUState *env1,
316 int asi, target_ulong addr)
318 if (is_translating_asi(asi)) {
319 return address_mask(env, addr);
320 } else {
321 return addr;
325 void helper_check_align(target_ulong addr, uint32_t align)
327 if (addr & align) {
328 #ifdef DEBUG_UNALIGNED
329 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
330 "\n", addr, env->pc);
331 #endif
332 helper_raise_exception(env, TT_UNALIGNED);
336 static uint32_t compute_all_flags(void)
338 return env->psr & PSR_ICC;
341 static uint32_t compute_C_flags(void)
343 return env->psr & PSR_CARRY;
346 static inline uint32_t get_NZ_icc(int32_t dst)
348 uint32_t ret = 0;
350 if (dst == 0) {
351 ret = PSR_ZERO;
352 } else if (dst < 0) {
353 ret = PSR_NEG;
355 return ret;
358 #ifdef TARGET_SPARC64
359 static uint32_t compute_all_flags_xcc(void)
361 return env->xcc & PSR_ICC;
364 static uint32_t compute_C_flags_xcc(void)
366 return env->xcc & PSR_CARRY;
369 static inline uint32_t get_NZ_xcc(target_long dst)
371 uint32_t ret = 0;
373 if (!dst) {
374 ret = PSR_ZERO;
375 } else if (dst < 0) {
376 ret = PSR_NEG;
378 return ret;
380 #endif
382 static inline uint32_t get_V_div_icc(target_ulong src2)
384 uint32_t ret = 0;
386 if (src2 != 0) {
387 ret = PSR_OVF;
389 return ret;
392 static uint32_t compute_all_div(void)
394 uint32_t ret;
396 ret = get_NZ_icc(CC_DST);
397 ret |= get_V_div_icc(CC_SRC2);
398 return ret;
401 static uint32_t compute_C_div(void)
403 return 0;
406 static inline uint32_t get_C_add_icc(uint32_t dst, uint32_t src1)
408 uint32_t ret = 0;
410 if (dst < src1) {
411 ret = PSR_CARRY;
413 return ret;
416 static inline uint32_t get_C_addx_icc(uint32_t dst, uint32_t src1,
417 uint32_t src2)
419 uint32_t ret = 0;
421 if (((src1 & src2) | (~dst & (src1 | src2))) & (1U << 31)) {
422 ret = PSR_CARRY;
424 return ret;
427 static inline uint32_t get_V_add_icc(uint32_t dst, uint32_t src1,
428 uint32_t src2)
430 uint32_t ret = 0;
432 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1U << 31)) {
433 ret = PSR_OVF;
435 return ret;
438 #ifdef TARGET_SPARC64
439 static inline uint32_t get_C_add_xcc(target_ulong dst, target_ulong src1)
441 uint32_t ret = 0;
443 if (dst < src1) {
444 ret = PSR_CARRY;
446 return ret;
449 static inline uint32_t get_C_addx_xcc(target_ulong dst, target_ulong src1,
450 target_ulong src2)
452 uint32_t ret = 0;
454 if (((src1 & src2) | (~dst & (src1 | src2))) & (1ULL << 63)) {
455 ret = PSR_CARRY;
457 return ret;
460 static inline uint32_t get_V_add_xcc(target_ulong dst, target_ulong src1,
461 target_ulong src2)
463 uint32_t ret = 0;
465 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 63)) {
466 ret = PSR_OVF;
468 return ret;
471 static uint32_t compute_all_add_xcc(void)
473 uint32_t ret;
475 ret = get_NZ_xcc(CC_DST);
476 ret |= get_C_add_xcc(CC_DST, CC_SRC);
477 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
478 return ret;
481 static uint32_t compute_C_add_xcc(void)
483 return get_C_add_xcc(CC_DST, CC_SRC);
485 #endif
487 static uint32_t compute_all_add(void)
489 uint32_t ret;
491 ret = get_NZ_icc(CC_DST);
492 ret |= get_C_add_icc(CC_DST, CC_SRC);
493 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
494 return ret;
497 static uint32_t compute_C_add(void)
499 return get_C_add_icc(CC_DST, CC_SRC);
502 #ifdef TARGET_SPARC64
503 static uint32_t compute_all_addx_xcc(void)
505 uint32_t ret;
507 ret = get_NZ_xcc(CC_DST);
508 ret |= get_C_addx_xcc(CC_DST, CC_SRC, CC_SRC2);
509 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
510 return ret;
513 static uint32_t compute_C_addx_xcc(void)
515 uint32_t ret;
517 ret = get_C_addx_xcc(CC_DST, CC_SRC, CC_SRC2);
518 return ret;
520 #endif
522 static uint32_t compute_all_addx(void)
524 uint32_t ret;
526 ret = get_NZ_icc(CC_DST);
527 ret |= get_C_addx_icc(CC_DST, CC_SRC, CC_SRC2);
528 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
529 return ret;
532 static uint32_t compute_C_addx(void)
534 uint32_t ret;
536 ret = get_C_addx_icc(CC_DST, CC_SRC, CC_SRC2);
537 return ret;
540 static inline uint32_t get_V_tag_icc(target_ulong src1, target_ulong src2)
542 uint32_t ret = 0;
544 if ((src1 | src2) & 0x3) {
545 ret = PSR_OVF;
547 return ret;
550 static uint32_t compute_all_tadd(void)
552 uint32_t ret;
554 ret = get_NZ_icc(CC_DST);
555 ret |= get_C_add_icc(CC_DST, CC_SRC);
556 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
557 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
558 return ret;
561 static uint32_t compute_all_taddtv(void)
563 uint32_t ret;
565 ret = get_NZ_icc(CC_DST);
566 ret |= get_C_add_icc(CC_DST, CC_SRC);
567 return ret;
570 static inline uint32_t get_C_sub_icc(uint32_t src1, uint32_t src2)
572 uint32_t ret = 0;
574 if (src1 < src2) {
575 ret = PSR_CARRY;
577 return ret;
580 static inline uint32_t get_C_subx_icc(uint32_t dst, uint32_t src1,
581 uint32_t src2)
583 uint32_t ret = 0;
585 if (((~src1 & src2) | (dst & (~src1 | src2))) & (1U << 31)) {
586 ret = PSR_CARRY;
588 return ret;
591 static inline uint32_t get_V_sub_icc(uint32_t dst, uint32_t src1,
592 uint32_t src2)
594 uint32_t ret = 0;
596 if (((src1 ^ src2) & (src1 ^ dst)) & (1U << 31)) {
597 ret = PSR_OVF;
599 return ret;
603 #ifdef TARGET_SPARC64
604 static inline uint32_t get_C_sub_xcc(target_ulong src1, target_ulong src2)
606 uint32_t ret = 0;
608 if (src1 < src2) {
609 ret = PSR_CARRY;
611 return ret;
614 static inline uint32_t get_C_subx_xcc(target_ulong dst, target_ulong src1,
615 target_ulong src2)
617 uint32_t ret = 0;
619 if (((~src1 & src2) | (dst & (~src1 | src2))) & (1ULL << 63)) {
620 ret = PSR_CARRY;
622 return ret;
625 static inline uint32_t get_V_sub_xcc(target_ulong dst, target_ulong src1,
626 target_ulong src2)
628 uint32_t ret = 0;
630 if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 63)) {
631 ret = PSR_OVF;
633 return ret;
636 static uint32_t compute_all_sub_xcc(void)
638 uint32_t ret;
640 ret = get_NZ_xcc(CC_DST);
641 ret |= get_C_sub_xcc(CC_SRC, CC_SRC2);
642 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
643 return ret;
646 static uint32_t compute_C_sub_xcc(void)
648 return get_C_sub_xcc(CC_SRC, CC_SRC2);
650 #endif
652 static uint32_t compute_all_sub(void)
654 uint32_t ret;
656 ret = get_NZ_icc(CC_DST);
657 ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
658 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
659 return ret;
662 static uint32_t compute_C_sub(void)
664 return get_C_sub_icc(CC_SRC, CC_SRC2);
667 #ifdef TARGET_SPARC64
668 static uint32_t compute_all_subx_xcc(void)
670 uint32_t ret;
672 ret = get_NZ_xcc(CC_DST);
673 ret |= get_C_subx_xcc(CC_DST, CC_SRC, CC_SRC2);
674 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
675 return ret;
678 static uint32_t compute_C_subx_xcc(void)
680 uint32_t ret;
682 ret = get_C_subx_xcc(CC_DST, CC_SRC, CC_SRC2);
683 return ret;
685 #endif
687 static uint32_t compute_all_subx(void)
689 uint32_t ret;
691 ret = get_NZ_icc(CC_DST);
692 ret |= get_C_subx_icc(CC_DST, CC_SRC, CC_SRC2);
693 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
694 return ret;
697 static uint32_t compute_C_subx(void)
699 uint32_t ret;
701 ret = get_C_subx_icc(CC_DST, CC_SRC, CC_SRC2);
702 return ret;
705 static uint32_t compute_all_tsub(void)
707 uint32_t ret;
709 ret = get_NZ_icc(CC_DST);
710 ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
711 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
712 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
713 return ret;
716 static uint32_t compute_all_tsubtv(void)
718 uint32_t ret;
720 ret = get_NZ_icc(CC_DST);
721 ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
722 return ret;
725 static uint32_t compute_all_logic(void)
727 return get_NZ_icc(CC_DST);
730 static uint32_t compute_C_logic(void)
732 return 0;
735 #ifdef TARGET_SPARC64
736 static uint32_t compute_all_logic_xcc(void)
738 return get_NZ_xcc(CC_DST);
740 #endif
742 typedef struct CCTable {
743 uint32_t (*compute_all)(void); /* return all the flags */
744 uint32_t (*compute_c)(void); /* return the C flag */
745 } CCTable;
747 static const CCTable icc_table[CC_OP_NB] = {
748 /* CC_OP_DYNAMIC should never happen */
749 [CC_OP_FLAGS] = { compute_all_flags, compute_C_flags },
750 [CC_OP_DIV] = { compute_all_div, compute_C_div },
751 [CC_OP_ADD] = { compute_all_add, compute_C_add },
752 [CC_OP_ADDX] = { compute_all_addx, compute_C_addx },
753 [CC_OP_TADD] = { compute_all_tadd, compute_C_add },
754 [CC_OP_TADDTV] = { compute_all_taddtv, compute_C_add },
755 [CC_OP_SUB] = { compute_all_sub, compute_C_sub },
756 [CC_OP_SUBX] = { compute_all_subx, compute_C_subx },
757 [CC_OP_TSUB] = { compute_all_tsub, compute_C_sub },
758 [CC_OP_TSUBTV] = { compute_all_tsubtv, compute_C_sub },
759 [CC_OP_LOGIC] = { compute_all_logic, compute_C_logic },
762 #ifdef TARGET_SPARC64
763 static const CCTable xcc_table[CC_OP_NB] = {
764 /* CC_OP_DYNAMIC should never happen */
765 [CC_OP_FLAGS] = { compute_all_flags_xcc, compute_C_flags_xcc },
766 [CC_OP_DIV] = { compute_all_logic_xcc, compute_C_logic },
767 [CC_OP_ADD] = { compute_all_add_xcc, compute_C_add_xcc },
768 [CC_OP_ADDX] = { compute_all_addx_xcc, compute_C_addx_xcc },
769 [CC_OP_TADD] = { compute_all_add_xcc, compute_C_add_xcc },
770 [CC_OP_TADDTV] = { compute_all_add_xcc, compute_C_add_xcc },
771 [CC_OP_SUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
772 [CC_OP_SUBX] = { compute_all_subx_xcc, compute_C_subx_xcc },
773 [CC_OP_TSUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
774 [CC_OP_TSUBTV] = { compute_all_sub_xcc, compute_C_sub_xcc },
775 [CC_OP_LOGIC] = { compute_all_logic_xcc, compute_C_logic },
777 #endif
779 void helper_compute_psr(void)
781 uint32_t new_psr;
783 new_psr = icc_table[CC_OP].compute_all();
784 env->psr = new_psr;
785 #ifdef TARGET_SPARC64
786 new_psr = xcc_table[CC_OP].compute_all();
787 env->xcc = new_psr;
788 #endif
789 CC_OP = CC_OP_FLAGS;
792 uint32_t helper_compute_C_icc(void)
794 uint32_t ret;
796 ret = icc_table[CC_OP].compute_c() >> PSR_CARRY_SHIFT;
797 return ret;
800 static inline void memcpy32(target_ulong *dst, const target_ulong *src)
802 dst[0] = src[0];
803 dst[1] = src[1];
804 dst[2] = src[2];
805 dst[3] = src[3];
806 dst[4] = src[4];
807 dst[5] = src[5];
808 dst[6] = src[6];
809 dst[7] = src[7];
812 static void set_cwp(int new_cwp)
814 /* put the modified wrap registers at their proper location */
815 if (env->cwp == env->nwindows - 1) {
816 memcpy32(env->regbase, env->regbase + env->nwindows * 16);
818 env->cwp = new_cwp;
820 /* put the wrap registers at their temporary location */
821 if (new_cwp == env->nwindows - 1) {
822 memcpy32(env->regbase + env->nwindows * 16, env->regbase);
824 env->regwptr = env->regbase + (new_cwp * 16);
827 void cpu_set_cwp(CPUState *env1, int new_cwp)
829 CPUState *saved_env;
831 saved_env = env;
832 env = env1;
833 set_cwp(new_cwp);
834 env = saved_env;
837 static target_ulong get_psr(void)
839 helper_compute_psr();
841 #if !defined (TARGET_SPARC64)
842 return env->version | (env->psr & PSR_ICC) |
843 (env->psref ? PSR_EF : 0) |
844 (env->psrpil << 8) |
845 (env->psrs ? PSR_S : 0) |
846 (env->psrps ? PSR_PS : 0) |
847 (env->psret ? PSR_ET : 0) | env->cwp;
848 #else
849 return env->psr & PSR_ICC;
850 #endif
853 target_ulong cpu_get_psr(CPUState *env1)
855 CPUState *saved_env;
856 target_ulong ret;
858 saved_env = env;
859 env = env1;
860 ret = get_psr();
861 env = saved_env;
862 return ret;
865 static void put_psr(target_ulong val)
867 env->psr = val & PSR_ICC;
868 #if !defined (TARGET_SPARC64)
869 env->psref = (val & PSR_EF) ? 1 : 0;
870 env->psrpil = (val & PSR_PIL) >> 8;
871 #endif
872 #if ((!defined (TARGET_SPARC64)) && !defined(CONFIG_USER_ONLY))
873 cpu_check_irqs(env);
874 #endif
875 #if !defined (TARGET_SPARC64)
876 env->psrs = (val & PSR_S) ? 1 : 0;
877 env->psrps = (val & PSR_PS) ? 1 : 0;
878 env->psret = (val & PSR_ET) ? 1 : 0;
879 set_cwp(val & PSR_CWP);
880 #endif
881 env->cc_op = CC_OP_FLAGS;
884 void cpu_put_psr(CPUState *env1, target_ulong val)
886 CPUState *saved_env;
888 saved_env = env;
889 env = env1;
890 put_psr(val);
891 env = saved_env;
894 static int cwp_inc(int cwp)
896 if (unlikely(cwp >= env->nwindows)) {
897 cwp -= env->nwindows;
899 return cwp;
902 int cpu_cwp_inc(CPUState *env1, int cwp)
904 CPUState *saved_env;
905 target_ulong ret;
907 saved_env = env;
908 env = env1;
909 ret = cwp_inc(cwp);
910 env = saved_env;
911 return ret;
914 static int cwp_dec(int cwp)
916 if (unlikely(cwp < 0)) {
917 cwp += env->nwindows;
919 return cwp;
922 int cpu_cwp_dec(CPUState *env1, int cwp)
924 CPUState *saved_env;
925 target_ulong ret;
927 saved_env = env;
928 env = env1;
929 ret = cwp_dec(cwp);
930 env = saved_env;
931 return ret;
934 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
935 defined(DEBUG_MXCC)
936 static void dump_mxcc(CPUState *env)
938 printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
939 "\n",
940 env->mxccdata[0], env->mxccdata[1],
941 env->mxccdata[2], env->mxccdata[3]);
942 printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
943 "\n"
944 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
945 "\n",
946 env->mxccregs[0], env->mxccregs[1],
947 env->mxccregs[2], env->mxccregs[3],
948 env->mxccregs[4], env->mxccregs[5],
949 env->mxccregs[6], env->mxccregs[7]);
951 #endif
953 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
954 && defined(DEBUG_ASI)
955 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
956 uint64_t r1)
958 switch (size) {
959 case 1:
960 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
961 addr, asi, r1 & 0xff);
962 break;
963 case 2:
964 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
965 addr, asi, r1 & 0xffff);
966 break;
967 case 4:
968 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
969 addr, asi, r1 & 0xffffffff);
970 break;
971 case 8:
972 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
973 addr, asi, r1);
974 break;
977 #endif
979 #ifndef TARGET_SPARC64
980 #ifndef CONFIG_USER_ONLY
983 /* Leon3 cache control */
985 static void leon3_cache_control_int(void)
987 uint32_t state = 0;
989 if (env->cache_control & CACHE_CTRL_IF) {
990 /* Instruction cache state */
991 state = env->cache_control & CACHE_STATE_MASK;
992 if (state == CACHE_ENABLED) {
993 state = CACHE_FROZEN;
994 DPRINTF_CACHE_CONTROL("Instruction cache: freeze\n");
997 env->cache_control &= ~CACHE_STATE_MASK;
998 env->cache_control |= state;
1001 if (env->cache_control & CACHE_CTRL_DF) {
1002 /* Data cache state */
1003 state = (env->cache_control >> 2) & CACHE_STATE_MASK;
1004 if (state == CACHE_ENABLED) {
1005 state = CACHE_FROZEN;
1006 DPRINTF_CACHE_CONTROL("Data cache: freeze\n");
1009 env->cache_control &= ~(CACHE_STATE_MASK << 2);
1010 env->cache_control |= (state << 2);
1014 static void leon3_cache_control_st(target_ulong addr, uint64_t val, int size)
1016 DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
1017 addr, val, size);
1019 if (size != 4) {
1020 DPRINTF_CACHE_CONTROL("32bits only\n");
1021 return;
1024 switch (addr) {
1025 case 0x00: /* Cache control */
1027 /* These values must always be read as zeros */
1028 val &= ~CACHE_CTRL_FD;
1029 val &= ~CACHE_CTRL_FI;
1030 val &= ~CACHE_CTRL_IB;
1031 val &= ~CACHE_CTRL_IP;
1032 val &= ~CACHE_CTRL_DP;
1034 env->cache_control = val;
1035 break;
1036 case 0x04: /* Instruction cache configuration */
1037 case 0x08: /* Data cache configuration */
1038 /* Read Only */
1039 break;
1040 default:
1041 DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
1042 break;
1046 static uint64_t leon3_cache_control_ld(target_ulong addr, int size)
1048 uint64_t ret = 0;
1050 if (size != 4) {
1051 DPRINTF_CACHE_CONTROL("32bits only\n");
1052 return 0;
1055 switch (addr) {
1056 case 0x00: /* Cache control */
1057 ret = env->cache_control;
1058 break;
1060 /* Configuration registers are read and only always keep those
1061 predefined values */
1063 case 0x04: /* Instruction cache configuration */
1064 ret = 0x10220000;
1065 break;
1066 case 0x08: /* Data cache configuration */
1067 ret = 0x18220000;
1068 break;
1069 default:
1070 DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
1071 break;
1073 DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
1074 addr, ret, size);
1075 return ret;
1078 void leon3_irq_manager(void *irq_manager, int intno)
1080 leon3_irq_ack(irq_manager, intno);
1081 leon3_cache_control_int();
1084 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1086 uint64_t ret = 0;
1087 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
1088 uint32_t last_addr = addr;
1089 #endif
1091 helper_check_align(addr, size - 1);
1092 switch (asi) {
1093 case 2: /* SuperSparc MXCC registers and Leon3 cache control */
1094 switch (addr) {
1095 case 0x00: /* Leon3 Cache Control */
1096 case 0x08: /* Leon3 Instruction Cache config */
1097 case 0x0C: /* Leon3 Date Cache config */
1098 if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
1099 ret = leon3_cache_control_ld(addr, size);
1101 break;
1102 case 0x01c00a00: /* MXCC control register */
1103 if (size == 8) {
1104 ret = env->mxccregs[3];
1105 } else {
1106 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1107 size);
1109 break;
1110 case 0x01c00a04: /* MXCC control register */
1111 if (size == 4) {
1112 ret = env->mxccregs[3];
1113 } else {
1114 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1115 size);
1117 break;
1118 case 0x01c00c00: /* Module reset register */
1119 if (size == 8) {
1120 ret = env->mxccregs[5];
1121 /* should we do something here? */
1122 } else {
1123 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1124 size);
1126 break;
1127 case 0x01c00f00: /* MBus port address register */
1128 if (size == 8) {
1129 ret = env->mxccregs[7];
1130 } else {
1131 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1132 size);
1134 break;
1135 default:
1136 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1137 size);
1138 break;
1140 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
1141 "addr = %08x -> ret = %" PRIx64 ","
1142 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
1143 #ifdef DEBUG_MXCC
1144 dump_mxcc(env);
1145 #endif
1146 break;
1147 case 3: /* MMU probe */
1149 int mmulev;
1151 mmulev = (addr >> 8) & 15;
1152 if (mmulev > 4) {
1153 ret = 0;
1154 } else {
1155 ret = mmu_probe(env, addr, mmulev);
1157 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
1158 addr, mmulev, ret);
1160 break;
1161 case 4: /* read MMU regs */
1163 int reg = (addr >> 8) & 0x1f;
1165 ret = env->mmuregs[reg];
1166 if (reg == 3) { /* Fault status cleared on read */
1167 env->mmuregs[3] = 0;
1168 } else if (reg == 0x13) { /* Fault status read */
1169 ret = env->mmuregs[3];
1170 } else if (reg == 0x14) { /* Fault address read */
1171 ret = env->mmuregs[4];
1173 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
1175 break;
1176 case 5: /* Turbosparc ITLB Diagnostic */
1177 case 6: /* Turbosparc DTLB Diagnostic */
1178 case 7: /* Turbosparc IOTLB Diagnostic */
1179 break;
1180 case 9: /* Supervisor code access */
1181 switch (size) {
1182 case 1:
1183 ret = ldub_code(addr);
1184 break;
1185 case 2:
1186 ret = lduw_code(addr);
1187 break;
1188 default:
1189 case 4:
1190 ret = ldl_code(addr);
1191 break;
1192 case 8:
1193 ret = ldq_code(addr);
1194 break;
1196 break;
1197 case 0xa: /* User data access */
1198 switch (size) {
1199 case 1:
1200 ret = ldub_user(addr);
1201 break;
1202 case 2:
1203 ret = lduw_user(addr);
1204 break;
1205 default:
1206 case 4:
1207 ret = ldl_user(addr);
1208 break;
1209 case 8:
1210 ret = ldq_user(addr);
1211 break;
1213 break;
1214 case 0xb: /* Supervisor data access */
1215 switch (size) {
1216 case 1:
1217 ret = ldub_kernel(addr);
1218 break;
1219 case 2:
1220 ret = lduw_kernel(addr);
1221 break;
1222 default:
1223 case 4:
1224 ret = ldl_kernel(addr);
1225 break;
1226 case 8:
1227 ret = ldq_kernel(addr);
1228 break;
1230 break;
1231 case 0xc: /* I-cache tag */
1232 case 0xd: /* I-cache data */
1233 case 0xe: /* D-cache tag */
1234 case 0xf: /* D-cache data */
1235 break;
1236 case 0x20: /* MMU passthrough */
1237 switch (size) {
1238 case 1:
1239 ret = ldub_phys(addr);
1240 break;
1241 case 2:
1242 ret = lduw_phys(addr);
1243 break;
1244 default:
1245 case 4:
1246 ret = ldl_phys(addr);
1247 break;
1248 case 8:
1249 ret = ldq_phys(addr);
1250 break;
1252 break;
1253 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1254 switch (size) {
1255 case 1:
1256 ret = ldub_phys((target_phys_addr_t)addr
1257 | ((target_phys_addr_t)(asi & 0xf) << 32));
1258 break;
1259 case 2:
1260 ret = lduw_phys((target_phys_addr_t)addr
1261 | ((target_phys_addr_t)(asi & 0xf) << 32));
1262 break;
1263 default:
1264 case 4:
1265 ret = ldl_phys((target_phys_addr_t)addr
1266 | ((target_phys_addr_t)(asi & 0xf) << 32));
1267 break;
1268 case 8:
1269 ret = ldq_phys((target_phys_addr_t)addr
1270 | ((target_phys_addr_t)(asi & 0xf) << 32));
1271 break;
1273 break;
1274 case 0x30: /* Turbosparc secondary cache diagnostic */
1275 case 0x31: /* Turbosparc RAM snoop */
1276 case 0x32: /* Turbosparc page table descriptor diagnostic */
1277 case 0x39: /* data cache diagnostic register */
1278 ret = 0;
1279 break;
1280 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
1282 int reg = (addr >> 8) & 3;
1284 switch (reg) {
1285 case 0: /* Breakpoint Value (Addr) */
1286 ret = env->mmubpregs[reg];
1287 break;
1288 case 1: /* Breakpoint Mask */
1289 ret = env->mmubpregs[reg];
1290 break;
1291 case 2: /* Breakpoint Control */
1292 ret = env->mmubpregs[reg];
1293 break;
1294 case 3: /* Breakpoint Status */
1295 ret = env->mmubpregs[reg];
1296 env->mmubpregs[reg] = 0ULL;
1297 break;
1299 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
1300 ret);
1302 break;
1303 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1304 ret = env->mmubpctrv;
1305 break;
1306 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1307 ret = env->mmubpctrc;
1308 break;
1309 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1310 ret = env->mmubpctrs;
1311 break;
1312 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1313 ret = env->mmubpaction;
1314 break;
1315 case 8: /* User code access, XXX */
1316 default:
1317 do_unassigned_access(addr, 0, 0, asi, size);
1318 ret = 0;
1319 break;
1321 if (sign) {
1322 switch (size) {
1323 case 1:
1324 ret = (int8_t) ret;
1325 break;
1326 case 2:
1327 ret = (int16_t) ret;
1328 break;
1329 case 4:
1330 ret = (int32_t) ret;
1331 break;
1332 default:
1333 break;
1336 #ifdef DEBUG_ASI
1337 dump_asi("read ", last_addr, asi, size, ret);
1338 #endif
1339 return ret;
1342 void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
1344 helper_check_align(addr, size - 1);
1345 switch (asi) {
1346 case 2: /* SuperSparc MXCC registers and Leon3 cache control */
1347 switch (addr) {
1348 case 0x00: /* Leon3 Cache Control */
1349 case 0x08: /* Leon3 Instruction Cache config */
1350 case 0x0C: /* Leon3 Date Cache config */
1351 if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
1352 leon3_cache_control_st(addr, val, size);
1354 break;
1356 case 0x01c00000: /* MXCC stream data register 0 */
1357 if (size == 8) {
1358 env->mxccdata[0] = val;
1359 } else {
1360 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1361 size);
1363 break;
1364 case 0x01c00008: /* MXCC stream data register 1 */
1365 if (size == 8) {
1366 env->mxccdata[1] = val;
1367 } else {
1368 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1369 size);
1371 break;
1372 case 0x01c00010: /* MXCC stream data register 2 */
1373 if (size == 8) {
1374 env->mxccdata[2] = val;
1375 } else {
1376 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1377 size);
1379 break;
1380 case 0x01c00018: /* MXCC stream data register 3 */
1381 if (size == 8) {
1382 env->mxccdata[3] = val;
1383 } else {
1384 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1385 size);
1387 break;
1388 case 0x01c00100: /* MXCC stream source */
1389 if (size == 8) {
1390 env->mxccregs[0] = val;
1391 } else {
1392 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1393 size);
1395 env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1397 env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1399 env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1400 16);
1401 env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1402 24);
1403 break;
1404 case 0x01c00200: /* MXCC stream destination */
1405 if (size == 8) {
1406 env->mxccregs[1] = val;
1407 } else {
1408 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1409 size);
1411 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
1412 env->mxccdata[0]);
1413 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
1414 env->mxccdata[1]);
1415 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
1416 env->mxccdata[2]);
1417 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
1418 env->mxccdata[3]);
1419 break;
1420 case 0x01c00a00: /* MXCC control register */
1421 if (size == 8) {
1422 env->mxccregs[3] = val;
1423 } else {
1424 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1425 size);
1427 break;
1428 case 0x01c00a04: /* MXCC control register */
1429 if (size == 4) {
1430 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
1431 | val;
1432 } else {
1433 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1434 size);
1436 break;
1437 case 0x01c00e00: /* MXCC error register */
1438 /* writing a 1 bit clears the error */
1439 if (size == 8) {
1440 env->mxccregs[6] &= ~val;
1441 } else {
1442 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1443 size);
1445 break;
1446 case 0x01c00f00: /* MBus port address register */
1447 if (size == 8) {
1448 env->mxccregs[7] = val;
1449 } else {
1450 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1451 size);
1453 break;
1454 default:
1455 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1456 size);
1457 break;
1459 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
1460 asi, size, addr, val);
1461 #ifdef DEBUG_MXCC
1462 dump_mxcc(env);
1463 #endif
1464 break;
1465 case 3: /* MMU flush */
1467 int mmulev;
1469 mmulev = (addr >> 8) & 15;
1470 DPRINTF_MMU("mmu flush level %d\n", mmulev);
1471 switch (mmulev) {
1472 case 0: /* flush page */
1473 tlb_flush_page(env, addr & 0xfffff000);
1474 break;
1475 case 1: /* flush segment (256k) */
1476 case 2: /* flush region (16M) */
1477 case 3: /* flush context (4G) */
1478 case 4: /* flush entire */
1479 tlb_flush(env, 1);
1480 break;
1481 default:
1482 break;
1484 #ifdef DEBUG_MMU
1485 dump_mmu(stdout, fprintf, env);
1486 #endif
1488 break;
1489 case 4: /* write MMU regs */
1491 int reg = (addr >> 8) & 0x1f;
1492 uint32_t oldreg;
1494 oldreg = env->mmuregs[reg];
1495 switch (reg) {
1496 case 0: /* Control Register */
1497 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1498 (val & 0x00ffffff);
1499 /* Mappings generated during no-fault mode or MMU
1500 disabled mode are invalid in normal mode */
1501 if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
1502 (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm))) {
1503 tlb_flush(env, 1);
1505 break;
1506 case 1: /* Context Table Pointer Register */
1507 env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
1508 break;
1509 case 2: /* Context Register */
1510 env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
1511 if (oldreg != env->mmuregs[reg]) {
1512 /* we flush when the MMU context changes because
1513 QEMU has no MMU context support */
1514 tlb_flush(env, 1);
1516 break;
1517 case 3: /* Synchronous Fault Status Register with Clear */
1518 case 4: /* Synchronous Fault Address Register */
1519 break;
1520 case 0x10: /* TLB Replacement Control Register */
1521 env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
1522 break;
1523 case 0x13: /* Synchronous Fault Status Register with Read
1524 and Clear */
1525 env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
1526 break;
1527 case 0x14: /* Synchronous Fault Address Register */
1528 env->mmuregs[4] = val;
1529 break;
1530 default:
1531 env->mmuregs[reg] = val;
1532 break;
1534 if (oldreg != env->mmuregs[reg]) {
1535 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1536 reg, oldreg, env->mmuregs[reg]);
1538 #ifdef DEBUG_MMU
1539 dump_mmu(stdout, fprintf, env);
1540 #endif
1542 break;
1543 case 5: /* Turbosparc ITLB Diagnostic */
1544 case 6: /* Turbosparc DTLB Diagnostic */
1545 case 7: /* Turbosparc IOTLB Diagnostic */
1546 break;
1547 case 0xa: /* User data access */
1548 switch (size) {
1549 case 1:
1550 stb_user(addr, val);
1551 break;
1552 case 2:
1553 stw_user(addr, val);
1554 break;
1555 default:
1556 case 4:
1557 stl_user(addr, val);
1558 break;
1559 case 8:
1560 stq_user(addr, val);
1561 break;
1563 break;
1564 case 0xb: /* Supervisor data access */
1565 switch (size) {
1566 case 1:
1567 stb_kernel(addr, val);
1568 break;
1569 case 2:
1570 stw_kernel(addr, val);
1571 break;
1572 default:
1573 case 4:
1574 stl_kernel(addr, val);
1575 break;
1576 case 8:
1577 stq_kernel(addr, val);
1578 break;
1580 break;
1581 case 0xc: /* I-cache tag */
1582 case 0xd: /* I-cache data */
1583 case 0xe: /* D-cache tag */
1584 case 0xf: /* D-cache data */
1585 case 0x10: /* I/D-cache flush page */
1586 case 0x11: /* I/D-cache flush segment */
1587 case 0x12: /* I/D-cache flush region */
1588 case 0x13: /* I/D-cache flush context */
1589 case 0x14: /* I/D-cache flush user */
1590 break;
1591 case 0x17: /* Block copy, sta access */
1593 /* val = src
1594 addr = dst
1595 copy 32 bytes */
1596 unsigned int i;
1597 uint32_t src = val & ~3, dst = addr & ~3, temp;
1599 for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
1600 temp = ldl_kernel(src);
1601 stl_kernel(dst, temp);
1604 break;
1605 case 0x1f: /* Block fill, stda access */
1607 /* addr = dst
1608 fill 32 bytes with val */
1609 unsigned int i;
1610 uint32_t dst = addr & 7;
1612 for (i = 0; i < 32; i += 8, dst += 8) {
1613 stq_kernel(dst, val);
1616 break;
1617 case 0x20: /* MMU passthrough */
1619 switch (size) {
1620 case 1:
1621 stb_phys(addr, val);
1622 break;
1623 case 2:
1624 stw_phys(addr, val);
1625 break;
1626 case 4:
1627 default:
1628 stl_phys(addr, val);
1629 break;
1630 case 8:
1631 stq_phys(addr, val);
1632 break;
1635 break;
1636 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1638 switch (size) {
1639 case 1:
1640 stb_phys((target_phys_addr_t)addr
1641 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1642 break;
1643 case 2:
1644 stw_phys((target_phys_addr_t)addr
1645 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1646 break;
1647 case 4:
1648 default:
1649 stl_phys((target_phys_addr_t)addr
1650 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1651 break;
1652 case 8:
1653 stq_phys((target_phys_addr_t)addr
1654 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1655 break;
1658 break;
1659 case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
1660 case 0x31: /* store buffer data, Ross RT620 I-cache flush or
1661 Turbosparc snoop RAM */
1662 case 0x32: /* store buffer control or Turbosparc page table
1663 descriptor diagnostic */
1664 case 0x36: /* I-cache flash clear */
1665 case 0x37: /* D-cache flash clear */
1666 break;
1667 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1669 int reg = (addr >> 8) & 3;
1671 switch (reg) {
1672 case 0: /* Breakpoint Value (Addr) */
1673 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1674 break;
1675 case 1: /* Breakpoint Mask */
1676 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1677 break;
1678 case 2: /* Breakpoint Control */
1679 env->mmubpregs[reg] = (val & 0x7fULL);
1680 break;
1681 case 3: /* Breakpoint Status */
1682 env->mmubpregs[reg] = (val & 0xfULL);
1683 break;
1685 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1686 env->mmuregs[reg]);
1688 break;
1689 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1690 env->mmubpctrv = val & 0xffffffff;
1691 break;
1692 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1693 env->mmubpctrc = val & 0x3;
1694 break;
1695 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1696 env->mmubpctrs = val & 0x3;
1697 break;
1698 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1699 env->mmubpaction = val & 0x1fff;
1700 break;
1701 case 8: /* User code access, XXX */
1702 case 9: /* Supervisor code access, XXX */
1703 default:
1704 do_unassigned_access(addr, 1, 0, asi, size);
1705 break;
1707 #ifdef DEBUG_ASI
1708 dump_asi("write", addr, asi, size, val);
1709 #endif
1712 #endif /* CONFIG_USER_ONLY */
1713 #else /* TARGET_SPARC64 */
1715 #ifdef CONFIG_USER_ONLY
1716 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1718 uint64_t ret = 0;
1719 #if defined(DEBUG_ASI)
1720 target_ulong last_addr = addr;
1721 #endif
1723 if (asi < 0x80) {
1724 helper_raise_exception(env, TT_PRIV_ACT);
1727 helper_check_align(addr, size - 1);
1728 addr = asi_address_mask(env, asi, addr);
1730 switch (asi) {
1731 case 0x82: /* Primary no-fault */
1732 case 0x8a: /* Primary no-fault LE */
1733 if (page_check_range(addr, size, PAGE_READ) == -1) {
1734 #ifdef DEBUG_ASI
1735 dump_asi("read ", last_addr, asi, size, ret);
1736 #endif
1737 return 0;
1739 /* Fall through */
1740 case 0x80: /* Primary */
1741 case 0x88: /* Primary LE */
1743 switch (size) {
1744 case 1:
1745 ret = ldub_raw(addr);
1746 break;
1747 case 2:
1748 ret = lduw_raw(addr);
1749 break;
1750 case 4:
1751 ret = ldl_raw(addr);
1752 break;
1753 default:
1754 case 8:
1755 ret = ldq_raw(addr);
1756 break;
1759 break;
1760 case 0x83: /* Secondary no-fault */
1761 case 0x8b: /* Secondary no-fault LE */
1762 if (page_check_range(addr, size, PAGE_READ) == -1) {
1763 #ifdef DEBUG_ASI
1764 dump_asi("read ", last_addr, asi, size, ret);
1765 #endif
1766 return 0;
1768 /* Fall through */
1769 case 0x81: /* Secondary */
1770 case 0x89: /* Secondary LE */
1771 /* XXX */
1772 break;
1773 default:
1774 break;
1777 /* Convert from little endian */
1778 switch (asi) {
1779 case 0x88: /* Primary LE */
1780 case 0x89: /* Secondary LE */
1781 case 0x8a: /* Primary no-fault LE */
1782 case 0x8b: /* Secondary no-fault LE */
1783 switch (size) {
1784 case 2:
1785 ret = bswap16(ret);
1786 break;
1787 case 4:
1788 ret = bswap32(ret);
1789 break;
1790 case 8:
1791 ret = bswap64(ret);
1792 break;
1793 default:
1794 break;
1796 default:
1797 break;
1800 /* Convert to signed number */
1801 if (sign) {
1802 switch (size) {
1803 case 1:
1804 ret = (int8_t) ret;
1805 break;
1806 case 2:
1807 ret = (int16_t) ret;
1808 break;
1809 case 4:
1810 ret = (int32_t) ret;
1811 break;
1812 default:
1813 break;
1816 #ifdef DEBUG_ASI
1817 dump_asi("read ", last_addr, asi, size, ret);
1818 #endif
1819 return ret;
1822 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
1824 #ifdef DEBUG_ASI
1825 dump_asi("write", addr, asi, size, val);
1826 #endif
1827 if (asi < 0x80) {
1828 helper_raise_exception(env, TT_PRIV_ACT);
1831 helper_check_align(addr, size - 1);
1832 addr = asi_address_mask(env, asi, addr);
1834 /* Convert to little endian */
1835 switch (asi) {
1836 case 0x88: /* Primary LE */
1837 case 0x89: /* Secondary LE */
1838 switch (size) {
1839 case 2:
1840 val = bswap16(val);
1841 break;
1842 case 4:
1843 val = bswap32(val);
1844 break;
1845 case 8:
1846 val = bswap64(val);
1847 break;
1848 default:
1849 break;
1851 default:
1852 break;
1855 switch (asi) {
1856 case 0x80: /* Primary */
1857 case 0x88: /* Primary LE */
1859 switch (size) {
1860 case 1:
1861 stb_raw(addr, val);
1862 break;
1863 case 2:
1864 stw_raw(addr, val);
1865 break;
1866 case 4:
1867 stl_raw(addr, val);
1868 break;
1869 case 8:
1870 default:
1871 stq_raw(addr, val);
1872 break;
1875 break;
1876 case 0x81: /* Secondary */
1877 case 0x89: /* Secondary LE */
1878 /* XXX */
1879 return;
1881 case 0x82: /* Primary no-fault, RO */
1882 case 0x83: /* Secondary no-fault, RO */
1883 case 0x8a: /* Primary no-fault LE, RO */
1884 case 0x8b: /* Secondary no-fault LE, RO */
1885 default:
1886 do_unassigned_access(addr, 1, 0, 1, size);
1887 return;
1891 #else /* CONFIG_USER_ONLY */
1893 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1895 uint64_t ret = 0;
1896 #if defined(DEBUG_ASI)
1897 target_ulong last_addr = addr;
1898 #endif
1900 asi &= 0xff;
1902 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1903 || (cpu_has_hypervisor(env)
1904 && asi >= 0x30 && asi < 0x80
1905 && !(env->hpstate & HS_PRIV))) {
1906 helper_raise_exception(env, TT_PRIV_ACT);
1909 helper_check_align(addr, size - 1);
1910 addr = asi_address_mask(env, asi, addr);
1912 /* process nonfaulting loads first */
1913 if ((asi & 0xf6) == 0x82) {
1914 int mmu_idx;
1916 /* secondary space access has lowest asi bit equal to 1 */
1917 if (env->pstate & PS_PRIV) {
1918 mmu_idx = (asi & 1) ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX;
1919 } else {
1920 mmu_idx = (asi & 1) ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX;
1923 if (cpu_get_phys_page_nofault(env, addr, mmu_idx) == -1ULL) {
1924 #ifdef DEBUG_ASI
1925 dump_asi("read ", last_addr, asi, size, ret);
1926 #endif
1927 /* env->exception_index is set in get_physical_address_data(). */
1928 helper_raise_exception(env, env->exception_index);
1931 /* convert nonfaulting load ASIs to normal load ASIs */
1932 asi &= ~0x02;
1935 switch (asi) {
1936 case 0x10: /* As if user primary */
1937 case 0x11: /* As if user secondary */
1938 case 0x18: /* As if user primary LE */
1939 case 0x19: /* As if user secondary LE */
1940 case 0x80: /* Primary */
1941 case 0x81: /* Secondary */
1942 case 0x88: /* Primary LE */
1943 case 0x89: /* Secondary LE */
1944 case 0xe2: /* UA2007 Primary block init */
1945 case 0xe3: /* UA2007 Secondary block init */
1946 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1947 if (cpu_hypervisor_mode(env)) {
1948 switch (size) {
1949 case 1:
1950 ret = ldub_hypv(addr);
1951 break;
1952 case 2:
1953 ret = lduw_hypv(addr);
1954 break;
1955 case 4:
1956 ret = ldl_hypv(addr);
1957 break;
1958 default:
1959 case 8:
1960 ret = ldq_hypv(addr);
1961 break;
1963 } else {
1964 /* secondary space access has lowest asi bit equal to 1 */
1965 if (asi & 1) {
1966 switch (size) {
1967 case 1:
1968 ret = ldub_kernel_secondary(addr);
1969 break;
1970 case 2:
1971 ret = lduw_kernel_secondary(addr);
1972 break;
1973 case 4:
1974 ret = ldl_kernel_secondary(addr);
1975 break;
1976 default:
1977 case 8:
1978 ret = ldq_kernel_secondary(addr);
1979 break;
1981 } else {
1982 switch (size) {
1983 case 1:
1984 ret = ldub_kernel(addr);
1985 break;
1986 case 2:
1987 ret = lduw_kernel(addr);
1988 break;
1989 case 4:
1990 ret = ldl_kernel(addr);
1991 break;
1992 default:
1993 case 8:
1994 ret = ldq_kernel(addr);
1995 break;
1999 } else {
2000 /* secondary space access has lowest asi bit equal to 1 */
2001 if (asi & 1) {
2002 switch (size) {
2003 case 1:
2004 ret = ldub_user_secondary(addr);
2005 break;
2006 case 2:
2007 ret = lduw_user_secondary(addr);
2008 break;
2009 case 4:
2010 ret = ldl_user_secondary(addr);
2011 break;
2012 default:
2013 case 8:
2014 ret = ldq_user_secondary(addr);
2015 break;
2017 } else {
2018 switch (size) {
2019 case 1:
2020 ret = ldub_user(addr);
2021 break;
2022 case 2:
2023 ret = lduw_user(addr);
2024 break;
2025 case 4:
2026 ret = ldl_user(addr);
2027 break;
2028 default:
2029 case 8:
2030 ret = ldq_user(addr);
2031 break;
2035 break;
2036 case 0x14: /* Bypass */
2037 case 0x15: /* Bypass, non-cacheable */
2038 case 0x1c: /* Bypass LE */
2039 case 0x1d: /* Bypass, non-cacheable LE */
2041 switch (size) {
2042 case 1:
2043 ret = ldub_phys(addr);
2044 break;
2045 case 2:
2046 ret = lduw_phys(addr);
2047 break;
2048 case 4:
2049 ret = ldl_phys(addr);
2050 break;
2051 default:
2052 case 8:
2053 ret = ldq_phys(addr);
2054 break;
2056 break;
2058 case 0x24: /* Nucleus quad LDD 128 bit atomic */
2059 case 0x2c: /* Nucleus quad LDD 128 bit atomic LE
2060 Only ldda allowed */
2061 helper_raise_exception(env, TT_ILL_INSN);
2062 return 0;
2063 case 0x04: /* Nucleus */
2064 case 0x0c: /* Nucleus Little Endian (LE) */
2066 switch (size) {
2067 case 1:
2068 ret = ldub_nucleus(addr);
2069 break;
2070 case 2:
2071 ret = lduw_nucleus(addr);
2072 break;
2073 case 4:
2074 ret = ldl_nucleus(addr);
2075 break;
2076 default:
2077 case 8:
2078 ret = ldq_nucleus(addr);
2079 break;
2081 break;
2083 case 0x4a: /* UPA config */
2084 /* XXX */
2085 break;
2086 case 0x45: /* LSU */
2087 ret = env->lsu;
2088 break;
2089 case 0x50: /* I-MMU regs */
2091 int reg = (addr >> 3) & 0xf;
2093 if (reg == 0) {
2094 /* I-TSB Tag Target register */
2095 ret = ultrasparc_tag_target(env->immu.tag_access);
2096 } else {
2097 ret = env->immuregs[reg];
2100 break;
2102 case 0x51: /* I-MMU 8k TSB pointer */
2104 /* env->immuregs[5] holds I-MMU TSB register value
2105 env->immuregs[6] holds I-MMU Tag Access register value */
2106 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
2107 8*1024);
2108 break;
2110 case 0x52: /* I-MMU 64k TSB pointer */
2112 /* env->immuregs[5] holds I-MMU TSB register value
2113 env->immuregs[6] holds I-MMU Tag Access register value */
2114 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
2115 64*1024);
2116 break;
2118 case 0x55: /* I-MMU data access */
2120 int reg = (addr >> 3) & 0x3f;
2122 ret = env->itlb[reg].tte;
2123 break;
2125 case 0x56: /* I-MMU tag read */
2127 int reg = (addr >> 3) & 0x3f;
2129 ret = env->itlb[reg].tag;
2130 break;
2132 case 0x58: /* D-MMU regs */
2134 int reg = (addr >> 3) & 0xf;
2136 if (reg == 0) {
2137 /* D-TSB Tag Target register */
2138 ret = ultrasparc_tag_target(env->dmmu.tag_access);
2139 } else {
2140 ret = env->dmmuregs[reg];
2142 break;
2144 case 0x59: /* D-MMU 8k TSB pointer */
2146 /* env->dmmuregs[5] holds D-MMU TSB register value
2147 env->dmmuregs[6] holds D-MMU Tag Access register value */
2148 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
2149 8*1024);
2150 break;
2152 case 0x5a: /* D-MMU 64k TSB pointer */
2154 /* env->dmmuregs[5] holds D-MMU TSB register value
2155 env->dmmuregs[6] holds D-MMU Tag Access register value */
2156 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
2157 64*1024);
2158 break;
2160 case 0x5d: /* D-MMU data access */
2162 int reg = (addr >> 3) & 0x3f;
2164 ret = env->dtlb[reg].tte;
2165 break;
2167 case 0x5e: /* D-MMU tag read */
2169 int reg = (addr >> 3) & 0x3f;
2171 ret = env->dtlb[reg].tag;
2172 break;
2174 case 0x46: /* D-cache data */
2175 case 0x47: /* D-cache tag access */
2176 case 0x4b: /* E-cache error enable */
2177 case 0x4c: /* E-cache asynchronous fault status */
2178 case 0x4d: /* E-cache asynchronous fault address */
2179 case 0x4e: /* E-cache tag data */
2180 case 0x66: /* I-cache instruction access */
2181 case 0x67: /* I-cache tag access */
2182 case 0x6e: /* I-cache predecode */
2183 case 0x6f: /* I-cache LRU etc. */
2184 case 0x76: /* E-cache tag */
2185 case 0x7e: /* E-cache tag */
2186 break;
2187 case 0x5b: /* D-MMU data pointer */
2188 case 0x48: /* Interrupt dispatch, RO */
2189 case 0x49: /* Interrupt data receive */
2190 case 0x7f: /* Incoming interrupt vector, RO */
2191 /* XXX */
2192 break;
2193 case 0x54: /* I-MMU data in, WO */
2194 case 0x57: /* I-MMU demap, WO */
2195 case 0x5c: /* D-MMU data in, WO */
2196 case 0x5f: /* D-MMU demap, WO */
2197 case 0x77: /* Interrupt vector, WO */
2198 default:
2199 do_unassigned_access(addr, 0, 0, 1, size);
2200 ret = 0;
2201 break;
2204 /* Convert from little endian */
2205 switch (asi) {
2206 case 0x0c: /* Nucleus Little Endian (LE) */
2207 case 0x18: /* As if user primary LE */
2208 case 0x19: /* As if user secondary LE */
2209 case 0x1c: /* Bypass LE */
2210 case 0x1d: /* Bypass, non-cacheable LE */
2211 case 0x88: /* Primary LE */
2212 case 0x89: /* Secondary LE */
2213 switch(size) {
2214 case 2:
2215 ret = bswap16(ret);
2216 break;
2217 case 4:
2218 ret = bswap32(ret);
2219 break;
2220 case 8:
2221 ret = bswap64(ret);
2222 break;
2223 default:
2224 break;
2226 default:
2227 break;
2230 /* Convert to signed number */
2231 if (sign) {
2232 switch (size) {
2233 case 1:
2234 ret = (int8_t) ret;
2235 break;
2236 case 2:
2237 ret = (int16_t) ret;
2238 break;
2239 case 4:
2240 ret = (int32_t) ret;
2241 break;
2242 default:
2243 break;
2246 #ifdef DEBUG_ASI
2247 dump_asi("read ", last_addr, asi, size, ret);
2248 #endif
2249 return ret;
2252 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
2254 #ifdef DEBUG_ASI
2255 dump_asi("write", addr, asi, size, val);
2256 #endif
2258 asi &= 0xff;
2260 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2261 || (cpu_has_hypervisor(env)
2262 && asi >= 0x30 && asi < 0x80
2263 && !(env->hpstate & HS_PRIV))) {
2264 helper_raise_exception(env, TT_PRIV_ACT);
2267 helper_check_align(addr, size - 1);
2268 addr = asi_address_mask(env, asi, addr);
2270 /* Convert to little endian */
2271 switch (asi) {
2272 case 0x0c: /* Nucleus Little Endian (LE) */
2273 case 0x18: /* As if user primary LE */
2274 case 0x19: /* As if user secondary LE */
2275 case 0x1c: /* Bypass LE */
2276 case 0x1d: /* Bypass, non-cacheable LE */
2277 case 0x88: /* Primary LE */
2278 case 0x89: /* Secondary LE */
2279 switch (size) {
2280 case 2:
2281 val = bswap16(val);
2282 break;
2283 case 4:
2284 val = bswap32(val);
2285 break;
2286 case 8:
2287 val = bswap64(val);
2288 break;
2289 default:
2290 break;
2292 default:
2293 break;
2296 switch (asi) {
2297 case 0x10: /* As if user primary */
2298 case 0x11: /* As if user secondary */
2299 case 0x18: /* As if user primary LE */
2300 case 0x19: /* As if user secondary LE */
2301 case 0x80: /* Primary */
2302 case 0x81: /* Secondary */
2303 case 0x88: /* Primary LE */
2304 case 0x89: /* Secondary LE */
2305 case 0xe2: /* UA2007 Primary block init */
2306 case 0xe3: /* UA2007 Secondary block init */
2307 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2308 if (cpu_hypervisor_mode(env)) {
2309 switch (size) {
2310 case 1:
2311 stb_hypv(addr, val);
2312 break;
2313 case 2:
2314 stw_hypv(addr, val);
2315 break;
2316 case 4:
2317 stl_hypv(addr, val);
2318 break;
2319 case 8:
2320 default:
2321 stq_hypv(addr, val);
2322 break;
2324 } else {
2325 /* secondary space access has lowest asi bit equal to 1 */
2326 if (asi & 1) {
2327 switch (size) {
2328 case 1:
2329 stb_kernel_secondary(addr, val);
2330 break;
2331 case 2:
2332 stw_kernel_secondary(addr, val);
2333 break;
2334 case 4:
2335 stl_kernel_secondary(addr, val);
2336 break;
2337 case 8:
2338 default:
2339 stq_kernel_secondary(addr, val);
2340 break;
2342 } else {
2343 switch (size) {
2344 case 1:
2345 stb_kernel(addr, val);
2346 break;
2347 case 2:
2348 stw_kernel(addr, val);
2349 break;
2350 case 4:
2351 stl_kernel(addr, val);
2352 break;
2353 case 8:
2354 default:
2355 stq_kernel(addr, val);
2356 break;
2360 } else {
2361 /* secondary space access has lowest asi bit equal to 1 */
2362 if (asi & 1) {
2363 switch (size) {
2364 case 1:
2365 stb_user_secondary(addr, val);
2366 break;
2367 case 2:
2368 stw_user_secondary(addr, val);
2369 break;
2370 case 4:
2371 stl_user_secondary(addr, val);
2372 break;
2373 case 8:
2374 default:
2375 stq_user_secondary(addr, val);
2376 break;
2378 } else {
2379 switch (size) {
2380 case 1:
2381 stb_user(addr, val);
2382 break;
2383 case 2:
2384 stw_user(addr, val);
2385 break;
2386 case 4:
2387 stl_user(addr, val);
2388 break;
2389 case 8:
2390 default:
2391 stq_user(addr, val);
2392 break;
2396 break;
2397 case 0x14: /* Bypass */
2398 case 0x15: /* Bypass, non-cacheable */
2399 case 0x1c: /* Bypass LE */
2400 case 0x1d: /* Bypass, non-cacheable LE */
2402 switch (size) {
2403 case 1:
2404 stb_phys(addr, val);
2405 break;
2406 case 2:
2407 stw_phys(addr, val);
2408 break;
2409 case 4:
2410 stl_phys(addr, val);
2411 break;
2412 case 8:
2413 default:
2414 stq_phys(addr, val);
2415 break;
2418 return;
2419 case 0x24: /* Nucleus quad LDD 128 bit atomic */
2420 case 0x2c: /* Nucleus quad LDD 128 bit atomic LE
2421 Only ldda allowed */
2422 helper_raise_exception(env, TT_ILL_INSN);
2423 return;
2424 case 0x04: /* Nucleus */
2425 case 0x0c: /* Nucleus Little Endian (LE) */
2427 switch (size) {
2428 case 1:
2429 stb_nucleus(addr, val);
2430 break;
2431 case 2:
2432 stw_nucleus(addr, val);
2433 break;
2434 case 4:
2435 stl_nucleus(addr, val);
2436 break;
2437 default:
2438 case 8:
2439 stq_nucleus(addr, val);
2440 break;
2442 break;
2445 case 0x4a: /* UPA config */
2446 /* XXX */
2447 return;
2448 case 0x45: /* LSU */
2450 uint64_t oldreg;
2452 oldreg = env->lsu;
2453 env->lsu = val & (DMMU_E | IMMU_E);
2454 /* Mappings generated during D/I MMU disabled mode are
2455 invalid in normal mode */
2456 if (oldreg != env->lsu) {
2457 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
2458 oldreg, env->lsu);
2459 #ifdef DEBUG_MMU
2460 dump_mmu(stdout, fprintf, env1);
2461 #endif
2462 tlb_flush(env, 1);
2464 return;
2466 case 0x50: /* I-MMU regs */
2468 int reg = (addr >> 3) & 0xf;
2469 uint64_t oldreg;
2471 oldreg = env->immuregs[reg];
2472 switch (reg) {
2473 case 0: /* RO */
2474 return;
2475 case 1: /* Not in I-MMU */
2476 case 2:
2477 return;
2478 case 3: /* SFSR */
2479 if ((val & 1) == 0) {
2480 val = 0; /* Clear SFSR */
2482 env->immu.sfsr = val;
2483 break;
2484 case 4: /* RO */
2485 return;
2486 case 5: /* TSB access */
2487 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
2488 PRIx64 "\n", env->immu.tsb, val);
2489 env->immu.tsb = val;
2490 break;
2491 case 6: /* Tag access */
2492 env->immu.tag_access = val;
2493 break;
2494 case 7:
2495 case 8:
2496 return;
2497 default:
2498 break;
2501 if (oldreg != env->immuregs[reg]) {
2502 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
2503 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
2505 #ifdef DEBUG_MMU
2506 dump_mmu(stdout, fprintf, env);
2507 #endif
2508 return;
2510 case 0x54: /* I-MMU data in */
2511 replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
2512 return;
2513 case 0x55: /* I-MMU data access */
2515 /* TODO: auto demap */
2517 unsigned int i = (addr >> 3) & 0x3f;
2519 replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);
2521 #ifdef DEBUG_MMU
2522 DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
2523 dump_mmu(stdout, fprintf, env);
2524 #endif
2525 return;
2527 case 0x57: /* I-MMU demap */
2528 demap_tlb(env->itlb, addr, "immu", env);
2529 return;
2530 case 0x58: /* D-MMU regs */
2532 int reg = (addr >> 3) & 0xf;
2533 uint64_t oldreg;
2535 oldreg = env->dmmuregs[reg];
2536 switch (reg) {
2537 case 0: /* RO */
2538 case 4:
2539 return;
2540 case 3: /* SFSR */
2541 if ((val & 1) == 0) {
2542 val = 0; /* Clear SFSR, Fault address */
2543 env->dmmu.sfar = 0;
2545 env->dmmu.sfsr = val;
2546 break;
2547 case 1: /* Primary context */
2548 env->dmmu.mmu_primary_context = val;
2549 /* can be optimized to only flush MMU_USER_IDX
2550 and MMU_KERNEL_IDX entries */
2551 tlb_flush(env, 1);
2552 break;
2553 case 2: /* Secondary context */
2554 env->dmmu.mmu_secondary_context = val;
2555 /* can be optimized to only flush MMU_USER_SECONDARY_IDX
2556 and MMU_KERNEL_SECONDARY_IDX entries */
2557 tlb_flush(env, 1);
2558 break;
2559 case 5: /* TSB access */
2560 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
2561 PRIx64 "\n", env->dmmu.tsb, val);
2562 env->dmmu.tsb = val;
2563 break;
2564 case 6: /* Tag access */
2565 env->dmmu.tag_access = val;
2566 break;
2567 case 7: /* Virtual Watchpoint */
2568 case 8: /* Physical Watchpoint */
2569 default:
2570 env->dmmuregs[reg] = val;
2571 break;
2574 if (oldreg != env->dmmuregs[reg]) {
2575 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
2576 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
2578 #ifdef DEBUG_MMU
2579 dump_mmu(stdout, fprintf, env);
2580 #endif
2581 return;
2583 case 0x5c: /* D-MMU data in */
2584 replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
2585 return;
2586 case 0x5d: /* D-MMU data access */
2588 unsigned int i = (addr >> 3) & 0x3f;
2590 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);
2592 #ifdef DEBUG_MMU
2593 DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
2594 dump_mmu(stdout, fprintf, env);
2595 #endif
2596 return;
2598 case 0x5f: /* D-MMU demap */
2599 demap_tlb(env->dtlb, addr, "dmmu", env);
2600 return;
2601 case 0x49: /* Interrupt data receive */
2602 /* XXX */
2603 return;
2604 case 0x46: /* D-cache data */
2605 case 0x47: /* D-cache tag access */
2606 case 0x4b: /* E-cache error enable */
2607 case 0x4c: /* E-cache asynchronous fault status */
2608 case 0x4d: /* E-cache asynchronous fault address */
2609 case 0x4e: /* E-cache tag data */
2610 case 0x66: /* I-cache instruction access */
2611 case 0x67: /* I-cache tag access */
2612 case 0x6e: /* I-cache predecode */
2613 case 0x6f: /* I-cache LRU etc. */
2614 case 0x76: /* E-cache tag */
2615 case 0x7e: /* E-cache tag */
2616 return;
2617 case 0x51: /* I-MMU 8k TSB pointer, RO */
2618 case 0x52: /* I-MMU 64k TSB pointer, RO */
2619 case 0x56: /* I-MMU tag read, RO */
2620 case 0x59: /* D-MMU 8k TSB pointer, RO */
2621 case 0x5a: /* D-MMU 64k TSB pointer, RO */
2622 case 0x5b: /* D-MMU data pointer, RO */
2623 case 0x5e: /* D-MMU tag read, RO */
2624 case 0x48: /* Interrupt dispatch, RO */
2625 case 0x7f: /* Incoming interrupt vector, RO */
2626 case 0x82: /* Primary no-fault, RO */
2627 case 0x83: /* Secondary no-fault, RO */
2628 case 0x8a: /* Primary no-fault LE, RO */
2629 case 0x8b: /* Secondary no-fault LE, RO */
2630 default:
2631 do_unassigned_access(addr, 1, 0, 1, size);
2632 return;
2635 #endif /* CONFIG_USER_ONLY */
2637 void helper_ldda_asi(target_ulong addr, int asi, int rd)
2639 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2640 || (cpu_has_hypervisor(env)
2641 && asi >= 0x30 && asi < 0x80
2642 && !(env->hpstate & HS_PRIV))) {
2643 helper_raise_exception(env, TT_PRIV_ACT);
2646 addr = asi_address_mask(env, asi, addr);
2648 switch (asi) {
2649 #if !defined(CONFIG_USER_ONLY)
2650 case 0x24: /* Nucleus quad LDD 128 bit atomic */
2651 case 0x2c: /* Nucleus quad LDD 128 bit atomic LE */
2652 helper_check_align(addr, 0xf);
2653 if (rd == 0) {
2654 env->gregs[1] = ldq_nucleus(addr + 8);
2655 if (asi == 0x2c) {
2656 bswap64s(&env->gregs[1]);
2658 } else if (rd < 8) {
2659 env->gregs[rd] = ldq_nucleus(addr);
2660 env->gregs[rd + 1] = ldq_nucleus(addr + 8);
2661 if (asi == 0x2c) {
2662 bswap64s(&env->gregs[rd]);
2663 bswap64s(&env->gregs[rd + 1]);
2665 } else {
2666 env->regwptr[rd] = ldq_nucleus(addr);
2667 env->regwptr[rd + 1] = ldq_nucleus(addr + 8);
2668 if (asi == 0x2c) {
2669 bswap64s(&env->regwptr[rd]);
2670 bswap64s(&env->regwptr[rd + 1]);
2673 break;
2674 #endif
2675 default:
2676 helper_check_align(addr, 0x3);
2677 if (rd == 0) {
2678 env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
2679 } else if (rd < 8) {
2680 env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
2681 env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2682 } else {
2683 env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
2684 env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2686 break;
2690 void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
2692 unsigned int i;
2693 CPU_DoubleU u;
2695 helper_check_align(addr, 3);
2696 addr = asi_address_mask(env, asi, addr);
2698 switch (asi) {
2699 case 0xf0: /* UA2007/JPS1 Block load primary */
2700 case 0xf1: /* UA2007/JPS1 Block load secondary */
2701 case 0xf8: /* UA2007/JPS1 Block load primary LE */
2702 case 0xf9: /* UA2007/JPS1 Block load secondary LE */
2703 if (rd & 7) {
2704 helper_raise_exception(env, TT_ILL_INSN);
2705 return;
2707 helper_check_align(addr, 0x3f);
2708 for (i = 0; i < 16; i++) {
2709 *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
2711 addr += 4;
2714 return;
2715 case 0x16: /* UA2007 Block load primary, user privilege */
2716 case 0x17: /* UA2007 Block load secondary, user privilege */
2717 case 0x1e: /* UA2007 Block load primary LE, user privilege */
2718 case 0x1f: /* UA2007 Block load secondary LE, user privilege */
2719 case 0x70: /* JPS1 Block load primary, user privilege */
2720 case 0x71: /* JPS1 Block load secondary, user privilege */
2721 case 0x78: /* JPS1 Block load primary LE, user privilege */
2722 case 0x79: /* JPS1 Block load secondary LE, user privilege */
2723 if (rd & 7) {
2724 helper_raise_exception(env, TT_ILL_INSN);
2725 return;
2727 helper_check_align(addr, 0x3f);
2728 for (i = 0; i < 16; i++) {
2729 *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x19, 4,
2731 addr += 4;
2734 return;
2735 default:
2736 break;
2739 switch (size) {
2740 default:
2741 case 4:
2742 *((uint32_t *)&env->fpr[rd]) = helper_ld_asi(addr, asi, size, 0);
2743 break;
2744 case 8:
2745 u.ll = helper_ld_asi(addr, asi, size, 0);
2746 *((uint32_t *)&env->fpr[rd++]) = u.l.upper;
2747 *((uint32_t *)&env->fpr[rd++]) = u.l.lower;
2748 break;
2749 case 16:
2750 u.ll = helper_ld_asi(addr, asi, 8, 0);
2751 *((uint32_t *)&env->fpr[rd++]) = u.l.upper;
2752 *((uint32_t *)&env->fpr[rd++]) = u.l.lower;
2753 u.ll = helper_ld_asi(addr + 8, asi, 8, 0);
2754 *((uint32_t *)&env->fpr[rd++]) = u.l.upper;
2755 *((uint32_t *)&env->fpr[rd++]) = u.l.lower;
2756 break;
2760 void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
2762 unsigned int i;
2763 target_ulong val = 0;
2764 CPU_DoubleU u;
2766 helper_check_align(addr, 3);
2767 addr = asi_address_mask(env, asi, addr);
2769 switch (asi) {
2770 case 0xe0: /* UA2007/JPS1 Block commit store primary (cache flush) */
2771 case 0xe1: /* UA2007/JPS1 Block commit store secondary (cache flush) */
2772 case 0xf0: /* UA2007/JPS1 Block store primary */
2773 case 0xf1: /* UA2007/JPS1 Block store secondary */
2774 case 0xf8: /* UA2007/JPS1 Block store primary LE */
2775 case 0xf9: /* UA2007/JPS1 Block store secondary LE */
2776 if (rd & 7) {
2777 helper_raise_exception(env, TT_ILL_INSN);
2778 return;
2780 helper_check_align(addr, 0x3f);
2781 for (i = 0; i < 16; i++) {
2782 val = *(uint32_t *)&env->fpr[rd++];
2783 helper_st_asi(addr, val, asi & 0x8f, 4);
2784 addr += 4;
2787 return;
2788 case 0x16: /* UA2007 Block load primary, user privilege */
2789 case 0x17: /* UA2007 Block load secondary, user privilege */
2790 case 0x1e: /* UA2007 Block load primary LE, user privilege */
2791 case 0x1f: /* UA2007 Block load secondary LE, user privilege */
2792 case 0x70: /* JPS1 Block store primary, user privilege */
2793 case 0x71: /* JPS1 Block store secondary, user privilege */
2794 case 0x78: /* JPS1 Block load primary LE, user privilege */
2795 case 0x79: /* JPS1 Block load secondary LE, user privilege */
2796 if (rd & 7) {
2797 helper_raise_exception(env, TT_ILL_INSN);
2798 return;
2800 helper_check_align(addr, 0x3f);
2801 for (i = 0; i < 16; i++) {
2802 val = *(uint32_t *)&env->fpr[rd++];
2803 helper_st_asi(addr, val, asi & 0x19, 4);
2804 addr += 4;
2807 return;
2808 default:
2809 break;
2812 switch (size) {
2813 default:
2814 case 4:
2815 helper_st_asi(addr, *(uint32_t *)&env->fpr[rd], asi, size);
2816 break;
2817 case 8:
2818 u.l.upper = *(uint32_t *)&env->fpr[rd++];
2819 u.l.lower = *(uint32_t *)&env->fpr[rd++];
2820 helper_st_asi(addr, u.ll, asi, size);
2821 break;
2822 case 16:
2823 u.l.upper = *(uint32_t *)&env->fpr[rd++];
2824 u.l.lower = *(uint32_t *)&env->fpr[rd++];
2825 helper_st_asi(addr, u.ll, asi, 8);
2826 u.l.upper = *(uint32_t *)&env->fpr[rd++];
2827 u.l.lower = *(uint32_t *)&env->fpr[rd++];
2828 helper_st_asi(addr + 8, u.ll, asi, 8);
2829 break;
2833 target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
2834 target_ulong val2, uint32_t asi)
2836 target_ulong ret;
2838 val2 &= 0xffffffffUL;
2839 ret = helper_ld_asi(addr, asi, 4, 0);
2840 ret &= 0xffffffffUL;
2841 if (val2 == ret) {
2842 helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4);
2844 return ret;
2847 target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
2848 target_ulong val2, uint32_t asi)
2850 target_ulong ret;
2852 ret = helper_ld_asi(addr, asi, 8, 0);
2853 if (val2 == ret) {
2854 helper_st_asi(addr, val1, asi, 8);
2856 return ret;
2858 #endif /* TARGET_SPARC64 */
2860 #ifndef TARGET_SPARC64
2861 void helper_rett(void)
2863 unsigned int cwp;
2865 if (env->psret == 1) {
2866 helper_raise_exception(env, TT_ILL_INSN);
2869 env->psret = 1;
2870 cwp = cwp_inc(env->cwp + 1) ;
2871 if (env->wim & (1 << cwp)) {
2872 helper_raise_exception(env, TT_WIN_UNF);
2874 set_cwp(cwp);
2875 env->psrs = env->psrps;
2877 #endif
2879 static target_ulong helper_udiv_common(target_ulong a, target_ulong b, int cc)
2881 int overflow = 0;
2882 uint64_t x0;
2883 uint32_t x1;
2885 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
2886 x1 = (b & 0xffffffff);
2888 if (x1 == 0) {
2889 helper_raise_exception(env, TT_DIV_ZERO);
2892 x0 = x0 / x1;
2893 if (x0 > 0xffffffff) {
2894 x0 = 0xffffffff;
2895 overflow = 1;
2898 if (cc) {
2899 env->cc_dst = x0;
2900 env->cc_src2 = overflow;
2901 env->cc_op = CC_OP_DIV;
2903 return x0;
2906 target_ulong helper_udiv(target_ulong a, target_ulong b)
2908 return helper_udiv_common(a, b, 0);
2911 target_ulong helper_udiv_cc(target_ulong a, target_ulong b)
2913 return helper_udiv_common(a, b, 1);
2916 static target_ulong helper_sdiv_common(target_ulong a, target_ulong b, int cc)
2918 int overflow = 0;
2919 int64_t x0;
2920 int32_t x1;
2922 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
2923 x1 = (b & 0xffffffff);
2925 if (x1 == 0) {
2926 helper_raise_exception(env, TT_DIV_ZERO);
2929 x0 = x0 / x1;
2930 if ((int32_t) x0 != x0) {
2931 x0 = x0 < 0 ? 0x80000000 : 0x7fffffff;
2932 overflow = 1;
2935 if (cc) {
2936 env->cc_dst = x0;
2937 env->cc_src2 = overflow;
2938 env->cc_op = CC_OP_DIV;
2940 return x0;
2943 target_ulong helper_sdiv(target_ulong a, target_ulong b)
2945 return helper_sdiv_common(a, b, 0);
2948 target_ulong helper_sdiv_cc(target_ulong a, target_ulong b)
2950 return helper_sdiv_common(a, b, 1);
2953 void helper_stdf(target_ulong addr, int mem_idx)
2955 helper_check_align(addr, 7);
2956 #if !defined(CONFIG_USER_ONLY)
2957 switch (mem_idx) {
2958 case MMU_USER_IDX:
2959 stfq_user(addr, DT0);
2960 break;
2961 case MMU_KERNEL_IDX:
2962 stfq_kernel(addr, DT0);
2963 break;
2964 #ifdef TARGET_SPARC64
2965 case MMU_HYPV_IDX:
2966 stfq_hypv(addr, DT0);
2967 break;
2968 #endif
2969 default:
2970 DPRINTF_MMU("helper_stdf: need to check MMU idx %d\n", mem_idx);
2971 break;
2973 #else
2974 stfq_raw(address_mask(env, addr), DT0);
2975 #endif
2978 void helper_lddf(target_ulong addr, int mem_idx)
2980 helper_check_align(addr, 7);
2981 #if !defined(CONFIG_USER_ONLY)
2982 switch (mem_idx) {
2983 case MMU_USER_IDX:
2984 DT0 = ldfq_user(addr);
2985 break;
2986 case MMU_KERNEL_IDX:
2987 DT0 = ldfq_kernel(addr);
2988 break;
2989 #ifdef TARGET_SPARC64
2990 case MMU_HYPV_IDX:
2991 DT0 = ldfq_hypv(addr);
2992 break;
2993 #endif
2994 default:
2995 DPRINTF_MMU("helper_lddf: need to check MMU idx %d\n", mem_idx);
2996 break;
2998 #else
2999 DT0 = ldfq_raw(address_mask(env, addr));
3000 #endif
3003 void helper_ldqf(target_ulong addr, int mem_idx)
3005 /* XXX add 128 bit load */
3006 CPU_QuadU u;
3008 helper_check_align(addr, 7);
3009 #if !defined(CONFIG_USER_ONLY)
3010 switch (mem_idx) {
3011 case MMU_USER_IDX:
3012 u.ll.upper = ldq_user(addr);
3013 u.ll.lower = ldq_user(addr + 8);
3014 QT0 = u.q;
3015 break;
3016 case MMU_KERNEL_IDX:
3017 u.ll.upper = ldq_kernel(addr);
3018 u.ll.lower = ldq_kernel(addr + 8);
3019 QT0 = u.q;
3020 break;
3021 #ifdef TARGET_SPARC64
3022 case MMU_HYPV_IDX:
3023 u.ll.upper = ldq_hypv(addr);
3024 u.ll.lower = ldq_hypv(addr + 8);
3025 QT0 = u.q;
3026 break;
3027 #endif
3028 default:
3029 DPRINTF_MMU("helper_ldqf: need to check MMU idx %d\n", mem_idx);
3030 break;
3032 #else
3033 u.ll.upper = ldq_raw(address_mask(env, addr));
3034 u.ll.lower = ldq_raw(address_mask(env, addr + 8));
3035 QT0 = u.q;
3036 #endif
3039 void helper_stqf(target_ulong addr, int mem_idx)
3041 /* XXX add 128 bit store */
3042 CPU_QuadU u;
3044 helper_check_align(addr, 7);
3045 #if !defined(CONFIG_USER_ONLY)
3046 switch (mem_idx) {
3047 case MMU_USER_IDX:
3048 u.q = QT0;
3049 stq_user(addr, u.ll.upper);
3050 stq_user(addr + 8, u.ll.lower);
3051 break;
3052 case MMU_KERNEL_IDX:
3053 u.q = QT0;
3054 stq_kernel(addr, u.ll.upper);
3055 stq_kernel(addr + 8, u.ll.lower);
3056 break;
3057 #ifdef TARGET_SPARC64
3058 case MMU_HYPV_IDX:
3059 u.q = QT0;
3060 stq_hypv(addr, u.ll.upper);
3061 stq_hypv(addr + 8, u.ll.lower);
3062 break;
3063 #endif
3064 default:
3065 DPRINTF_MMU("helper_stqf: need to check MMU idx %d\n", mem_idx);
3066 break;
3068 #else
3069 u.q = QT0;
3070 stq_raw(address_mask(env, addr), u.ll.upper);
3071 stq_raw(address_mask(env, addr + 8), u.ll.lower);
3072 #endif
3075 #ifndef TARGET_SPARC64
3076 /* XXX: use another pointer for %iN registers to avoid slow wrapping
3077 handling ? */
3078 void helper_save(void)
3080 uint32_t cwp;
3082 cwp = cwp_dec(env->cwp - 1);
3083 if (env->wim & (1 << cwp)) {
3084 helper_raise_exception(env, TT_WIN_OVF);
3086 set_cwp(cwp);
3089 void helper_restore(void)
3091 uint32_t cwp;
3093 cwp = cwp_inc(env->cwp + 1);
3094 if (env->wim & (1 << cwp)) {
3095 helper_raise_exception(env, TT_WIN_UNF);
3097 set_cwp(cwp);
3100 void helper_wrpsr(target_ulong new_psr)
3102 if ((new_psr & PSR_CWP) >= env->nwindows) {
3103 helper_raise_exception(env, TT_ILL_INSN);
3104 } else {
3105 cpu_put_psr(env, new_psr);
3109 target_ulong helper_rdpsr(void)
3111 return get_psr();
3114 #else
3115 /* XXX: use another pointer for %iN registers to avoid slow wrapping
3116 handling ? */
3117 void helper_save(void)
3119 uint32_t cwp;
3121 cwp = cwp_dec(env->cwp - 1);
3122 if (env->cansave == 0) {
3123 helper_raise_exception(env, TT_SPILL | (env->otherwin != 0 ?
3124 (TT_WOTHER |
3125 ((env->wstate & 0x38) >> 1)) :
3126 ((env->wstate & 0x7) << 2)));
3127 } else {
3128 if (env->cleanwin - env->canrestore == 0) {
3129 /* XXX Clean windows without trap */
3130 helper_raise_exception(env, TT_CLRWIN);
3131 } else {
3132 env->cansave--;
3133 env->canrestore++;
3134 set_cwp(cwp);
3139 void helper_restore(void)
3141 uint32_t cwp;
3143 cwp = cwp_inc(env->cwp + 1);
3144 if (env->canrestore == 0) {
3145 helper_raise_exception(env, TT_FILL | (env->otherwin != 0 ?
3146 (TT_WOTHER |
3147 ((env->wstate & 0x38) >> 1)) :
3148 ((env->wstate & 0x7) << 2)));
3149 } else {
3150 env->cansave++;
3151 env->canrestore--;
3152 set_cwp(cwp);
3156 void helper_flushw(void)
3158 if (env->cansave != env->nwindows - 2) {
3159 helper_raise_exception(env, TT_SPILL | (env->otherwin != 0 ?
3160 (TT_WOTHER |
3161 ((env->wstate & 0x38) >> 1)) :
3162 ((env->wstate & 0x7) << 2)));
3166 void helper_saved(void)
3168 env->cansave++;
3169 if (env->otherwin == 0) {
3170 env->canrestore--;
3171 } else {
3172 env->otherwin--;
3176 void helper_restored(void)
3178 env->canrestore++;
3179 if (env->cleanwin < env->nwindows - 1) {
3180 env->cleanwin++;
3182 if (env->otherwin == 0) {
3183 env->cansave--;
3184 } else {
3185 env->otherwin--;
3189 static target_ulong get_ccr(void)
3191 target_ulong psr;
3193 psr = get_psr();
3195 return ((env->xcc >> 20) << 4) | ((psr & PSR_ICC) >> 20);
3198 target_ulong cpu_get_ccr(CPUState *env1)
3200 CPUState *saved_env;
3201 target_ulong ret;
3203 saved_env = env;
3204 env = env1;
3205 ret = get_ccr();
3206 env = saved_env;
3207 return ret;
3210 static void put_ccr(target_ulong val)
3212 env->xcc = (val >> 4) << 20;
3213 env->psr = (val & 0xf) << 20;
3214 CC_OP = CC_OP_FLAGS;
3217 void cpu_put_ccr(CPUState *env1, target_ulong val)
3219 CPUState *saved_env;
3221 saved_env = env;
3222 env = env1;
3223 put_ccr(val);
3224 env = saved_env;
3227 static target_ulong get_cwp64(void)
3229 return env->nwindows - 1 - env->cwp;
3232 target_ulong cpu_get_cwp64(CPUState *env1)
3234 CPUState *saved_env;
3235 target_ulong ret;
3237 saved_env = env;
3238 env = env1;
3239 ret = get_cwp64();
3240 env = saved_env;
3241 return ret;
3244 static void put_cwp64(int cwp)
3246 if (unlikely(cwp >= env->nwindows || cwp < 0)) {
3247 cwp %= env->nwindows;
3249 set_cwp(env->nwindows - 1 - cwp);
3252 void cpu_put_cwp64(CPUState *env1, int cwp)
3254 CPUState *saved_env;
3256 saved_env = env;
3257 env = env1;
3258 put_cwp64(cwp);
3259 env = saved_env;
3262 target_ulong helper_rdccr(void)
3264 return get_ccr();
3267 void helper_wrccr(target_ulong new_ccr)
3269 put_ccr(new_ccr);
3272 /* CWP handling is reversed in V9, but we still use the V8 register
3273 order. */
3274 target_ulong helper_rdcwp(void)
3276 return get_cwp64();
3279 void helper_wrcwp(target_ulong new_cwp)
3281 put_cwp64(new_cwp);
3284 static inline uint64_t *get_gregset(uint32_t pstate)
3286 switch (pstate) {
3287 default:
3288 DPRINTF_PSTATE("ERROR in get_gregset: active pstate bits=%x%s%s%s\n",
3289 pstate,
3290 (pstate & PS_IG) ? " IG" : "",
3291 (pstate & PS_MG) ? " MG" : "",
3292 (pstate & PS_AG) ? " AG" : "");
3293 /* pass through to normal set of global registers */
3294 case 0:
3295 return env->bgregs;
3296 case PS_AG:
3297 return env->agregs;
3298 case PS_MG:
3299 return env->mgregs;
3300 case PS_IG:
3301 return env->igregs;
3305 static inline void change_pstate(uint32_t new_pstate)
3307 uint32_t pstate_regs, new_pstate_regs;
3308 uint64_t *src, *dst;
3310 if (env->def->features & CPU_FEATURE_GL) {
3311 /* PS_AG is not implemented in this case */
3312 new_pstate &= ~PS_AG;
3315 pstate_regs = env->pstate & 0xc01;
3316 new_pstate_regs = new_pstate & 0xc01;
3318 if (new_pstate_regs != pstate_regs) {
3319 DPRINTF_PSTATE("change_pstate: switching regs old=%x new=%x\n",
3320 pstate_regs, new_pstate_regs);
3321 /* Switch global register bank */
3322 src = get_gregset(new_pstate_regs);
3323 dst = get_gregset(pstate_regs);
3324 memcpy32(dst, env->gregs);
3325 memcpy32(env->gregs, src);
3326 } else {
3327 DPRINTF_PSTATE("change_pstate: regs new=%x (unchanged)\n",
3328 new_pstate_regs);
3330 env->pstate = new_pstate;
3333 void helper_wrpstate(target_ulong new_state)
3335 change_pstate(new_state & 0xf3f);
3337 #if !defined(CONFIG_USER_ONLY)
3338 if (cpu_interrupts_enabled(env)) {
3339 cpu_check_irqs(env);
3341 #endif
3344 void cpu_change_pstate(CPUState *env1, uint32_t new_pstate)
3346 CPUState *saved_env;
3348 saved_env = env;
3349 env = env1;
3350 change_pstate(new_pstate);
3351 env = saved_env;
3354 void helper_wrpil(target_ulong new_pil)
3356 #if !defined(CONFIG_USER_ONLY)
3357 DPRINTF_PSTATE("helper_wrpil old=%x new=%x\n",
3358 env->psrpil, (uint32_t)new_pil);
3360 env->psrpil = new_pil;
3362 if (cpu_interrupts_enabled(env)) {
3363 cpu_check_irqs(env);
3365 #endif
3368 void helper_done(void)
3370 trap_state *tsptr = cpu_tsptr(env);
3372 env->pc = tsptr->tnpc;
3373 env->npc = tsptr->tnpc + 4;
3374 put_ccr(tsptr->tstate >> 32);
3375 env->asi = (tsptr->tstate >> 24) & 0xff;
3376 change_pstate((tsptr->tstate >> 8) & 0xf3f);
3377 put_cwp64(tsptr->tstate & 0xff);
3378 env->tl--;
3380 DPRINTF_PSTATE("... helper_done tl=%d\n", env->tl);
3382 #if !defined(CONFIG_USER_ONLY)
3383 if (cpu_interrupts_enabled(env)) {
3384 cpu_check_irqs(env);
3386 #endif
3389 void helper_retry(void)
3391 trap_state *tsptr = cpu_tsptr(env);
3393 env->pc = tsptr->tpc;
3394 env->npc = tsptr->tnpc;
3395 put_ccr(tsptr->tstate >> 32);
3396 env->asi = (tsptr->tstate >> 24) & 0xff;
3397 change_pstate((tsptr->tstate >> 8) & 0xf3f);
3398 put_cwp64(tsptr->tstate & 0xff);
3399 env->tl--;
3401 DPRINTF_PSTATE("... helper_retry tl=%d\n", env->tl);
3403 #if !defined(CONFIG_USER_ONLY)
3404 if (cpu_interrupts_enabled(env)) {
3405 cpu_check_irqs(env);
3407 #endif
3410 static void do_modify_softint(const char *operation, uint32_t value)
3412 if (env->softint != value) {
3413 env->softint = value;
3414 DPRINTF_PSTATE(": %s new %08x\n", operation, env->softint);
3415 #if !defined(CONFIG_USER_ONLY)
3416 if (cpu_interrupts_enabled(env)) {
3417 cpu_check_irqs(env);
3419 #endif
3423 void helper_set_softint(uint64_t value)
3425 do_modify_softint("helper_set_softint", env->softint | (uint32_t)value);
3428 void helper_clear_softint(uint64_t value)
3430 do_modify_softint("helper_clear_softint", env->softint & (uint32_t)~value);
3433 void helper_write_softint(uint64_t value)
3435 do_modify_softint("helper_write_softint", (uint32_t)value);
3437 #endif
3439 #if !defined(CONFIG_USER_ONLY)
3441 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
3442 void *retaddr);
3444 #define MMUSUFFIX _mmu
3445 #define ALIGNED_ONLY
3447 #define SHIFT 0
3448 #include "softmmu_template.h"
3450 #define SHIFT 1
3451 #include "softmmu_template.h"
3453 #define SHIFT 2
3454 #include "softmmu_template.h"
3456 #define SHIFT 3
3457 #include "softmmu_template.h"
3459 /* XXX: make it generic ? */
3460 static void cpu_restore_state2(void *retaddr)
3462 TranslationBlock *tb;
3463 unsigned long pc;
3465 if (retaddr) {
3466 /* now we have a real cpu fault */
3467 pc = (unsigned long)retaddr;
3468 tb = tb_find_pc(pc);
3469 if (tb) {
3470 /* the PC is inside the translated code. It means that we have
3471 a virtual CPU fault */
3472 cpu_restore_state(tb, env, pc);
3477 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
3478 void *retaddr)
3480 #ifdef DEBUG_UNALIGNED
3481 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
3482 "\n", addr, env->pc);
3483 #endif
3484 cpu_restore_state2(retaddr);
3485 helper_raise_exception(env, TT_UNALIGNED);
3488 /* try to fill the TLB and return an exception if error. If retaddr is
3489 NULL, it means that the function was called in C code (i.e. not
3490 from generated code or from helper.c) */
3491 /* XXX: fix it to restore all registers */
3492 void tlb_fill(CPUState *env1, target_ulong addr, int is_write, int mmu_idx,
3493 void *retaddr)
3495 int ret;
3496 CPUState *saved_env;
3498 saved_env = env;
3499 env = env1;
3501 ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx);
3502 if (ret) {
3503 cpu_restore_state2(retaddr);
3504 cpu_loop_exit(env);
3506 env = saved_env;
3509 #endif /* !CONFIG_USER_ONLY */
3511 #ifndef TARGET_SPARC64
3512 #if !defined(CONFIG_USER_ONLY)
3513 static void do_unassigned_access(target_phys_addr_t addr, int is_write,
3514 int is_exec, int is_asi, int size)
3516 int fault_type;
3518 #ifdef DEBUG_UNASSIGNED
3519 if (is_asi) {
3520 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
3521 " asi 0x%02x from " TARGET_FMT_lx "\n",
3522 is_exec ? "exec" : is_write ? "write" : "read", size,
3523 size == 1 ? "" : "s", addr, is_asi, env->pc);
3524 } else {
3525 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
3526 " from " TARGET_FMT_lx "\n",
3527 is_exec ? "exec" : is_write ? "write" : "read", size,
3528 size == 1 ? "" : "s", addr, env->pc);
3530 #endif
3531 /* Don't overwrite translation and access faults */
3532 fault_type = (env->mmuregs[3] & 0x1c) >> 2;
3533 if ((fault_type > 4) || (fault_type == 0)) {
3534 env->mmuregs[3] = 0; /* Fault status register */
3535 if (is_asi) {
3536 env->mmuregs[3] |= 1 << 16;
3538 if (env->psrs) {
3539 env->mmuregs[3] |= 1 << 5;
3541 if (is_exec) {
3542 env->mmuregs[3] |= 1 << 6;
3544 if (is_write) {
3545 env->mmuregs[3] |= 1 << 7;
3547 env->mmuregs[3] |= (5 << 2) | 2;
3548 /* SuperSPARC will never place instruction fault addresses in the FAR */
3549 if (!is_exec) {
3550 env->mmuregs[4] = addr; /* Fault address register */
3553 /* overflow (same type fault was not read before another fault) */
3554 if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
3555 env->mmuregs[3] |= 1;
3558 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
3559 if (is_exec) {
3560 helper_raise_exception(env, TT_CODE_ACCESS);
3561 } else {
3562 helper_raise_exception(env, TT_DATA_ACCESS);
3566 /* flush neverland mappings created during no-fault mode,
3567 so the sequential MMU faults report proper fault types */
3568 if (env->mmuregs[0] & MMU_NF) {
3569 tlb_flush(env, 1);
3572 #endif
3573 #else
3574 #if defined(CONFIG_USER_ONLY)
3575 static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
3576 int is_asi, int size)
3577 #else
3578 static void do_unassigned_access(target_phys_addr_t addr, int is_write,
3579 int is_exec, int is_asi, int size)
3580 #endif
3582 #ifdef DEBUG_UNASSIGNED
3583 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
3584 "\n", addr, env->pc);
3585 #endif
3587 if (is_exec) {
3588 helper_raise_exception(env, TT_CODE_ACCESS);
3589 } else {
3590 helper_raise_exception(env, TT_DATA_ACCESS);
3593 #endif
3595 #if !defined(CONFIG_USER_ONLY)
3596 void cpu_unassigned_access(CPUState *env1, target_phys_addr_t addr,
3597 int is_write, int is_exec, int is_asi, int size)
3599 CPUState *saved_env;
3601 saved_env = env;
3602 env = env1;
3603 /* Ignore unassigned accesses outside of CPU context */
3604 if (env1) {
3605 do_unassigned_access(addr, is_write, is_exec, is_asi, size);
3607 env = saved_env;
3609 #endif