4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/accel.h"
30 #include "hw/pci/msi.h"
31 #include "hw/s390x/adapter.h"
32 #include "exec/gdbstub.h"
33 #include "sysemu/kvm.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
41 #include "hw/boards.h"
43 /* This check must be after config-host.h is included */
45 #include <sys/eventfd.h>
48 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
49 #define PAGE_SIZE TARGET_PAGE_SIZE
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
57 #define DPRINTF(fmt, ...) \
61 #define KVM_MSI_HASHTAB_SIZE 256
63 typedef struct KVMSlot
66 ram_addr_t memory_size
;
72 typedef struct kvm_dirty_log KVMDirtyLog
;
76 AccelState parent_obj
;
83 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
84 bool coalesced_flush_in_progress
;
85 int broken_set_mem_region
;
88 int robust_singlestep
;
90 #ifdef KVM_CAP_SET_GUEST_DEBUG
91 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
97 /* The man page (and posix) say ioctl numbers are signed int, but
98 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
99 * unsigned, and treating them as signed here can break things */
100 unsigned irq_set_ioctl
;
101 unsigned int sigmask_len
;
102 #ifdef KVM_CAP_IRQ_ROUTING
103 struct kvm_irq_routing
*irq_routes
;
104 int nr_allocated_irq_routes
;
105 uint32_t *used_gsi_bitmap
;
106 unsigned int gsi_count
;
107 QTAILQ_HEAD(msi_hashtab
, KVMMSIRoute
) msi_hashtab
[KVM_MSI_HASHTAB_SIZE
];
112 #define TYPE_KVM_ACCEL ACCEL_CLASS_NAME("kvm")
114 #define KVM_STATE(obj) \
115 OBJECT_CHECK(KVMState, (obj), TYPE_KVM_ACCEL)
118 bool kvm_kernel_irqchip
;
119 bool kvm_async_interrupts_allowed
;
120 bool kvm_halt_in_kernel_allowed
;
121 bool kvm_eventfds_allowed
;
122 bool kvm_irqfds_allowed
;
123 bool kvm_resamplefds_allowed
;
124 bool kvm_msi_via_irqfd_allowed
;
125 bool kvm_gsi_routing_allowed
;
126 bool kvm_gsi_direct_mapping
;
128 bool kvm_readonly_mem_allowed
;
129 bool kvm_vm_attributes_allowed
;
131 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
132 KVM_CAP_INFO(USER_MEMORY
),
133 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
137 static KVMSlot
*kvm_get_free_slot(KVMState
*s
)
141 for (i
= 0; i
< s
->nr_slots
; i
++) {
142 if (s
->slots
[i
].memory_size
== 0) {
150 bool kvm_has_free_slot(MachineState
*ms
)
152 return kvm_get_free_slot(KVM_STATE(ms
->accelerator
));
155 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
157 KVMSlot
*slot
= kvm_get_free_slot(s
);
163 fprintf(stderr
, "%s: no free slot available\n", __func__
);
167 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
173 for (i
= 0; i
< s
->nr_slots
; i
++) {
174 KVMSlot
*mem
= &s
->slots
[i
];
176 if (start_addr
== mem
->start_addr
&&
177 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
186 * Find overlapping slot with lowest start address
188 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
192 KVMSlot
*found
= NULL
;
195 for (i
= 0; i
< s
->nr_slots
; i
++) {
196 KVMSlot
*mem
= &s
->slots
[i
];
198 if (mem
->memory_size
== 0 ||
199 (found
&& found
->start_addr
< mem
->start_addr
)) {
203 if (end_addr
> mem
->start_addr
&&
204 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
212 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
217 for (i
= 0; i
< s
->nr_slots
; i
++) {
218 KVMSlot
*mem
= &s
->slots
[i
];
220 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
221 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
229 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
231 struct kvm_userspace_memory_region mem
;
233 mem
.slot
= slot
->slot
;
234 mem
.guest_phys_addr
= slot
->start_addr
;
235 mem
.userspace_addr
= (unsigned long)slot
->ram
;
236 mem
.flags
= slot
->flags
;
237 if (s
->migration_log
) {
238 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
241 if (slot
->memory_size
&& mem
.flags
& KVM_MEM_READONLY
) {
242 /* Set the slot size to 0 before setting the slot to the desired
243 * value. This is needed based on KVM commit 75d61fbc. */
245 kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
247 mem
.memory_size
= slot
->memory_size
;
248 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
251 int kvm_init_vcpu(CPUState
*cpu
)
253 KVMState
*s
= kvm_state
;
257 DPRINTF("kvm_init_vcpu\n");
259 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, (void *)kvm_arch_vcpu_id(cpu
));
261 DPRINTF("kvm_create_vcpu failed\n");
267 cpu
->kvm_vcpu_dirty
= true;
269 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
272 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
276 cpu
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
278 if (cpu
->kvm_run
== MAP_FAILED
) {
280 DPRINTF("mmap'ing vcpu state failed\n");
284 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
285 s
->coalesced_mmio_ring
=
286 (void *)cpu
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
289 ret
= kvm_arch_init_vcpu(cpu
);
295 * dirty pages logging control
298 static int kvm_mem_flags(KVMState
*s
, bool log_dirty
, bool readonly
)
301 flags
= log_dirty
? KVM_MEM_LOG_DIRTY_PAGES
: 0;
302 if (readonly
&& kvm_readonly_mem_allowed
) {
303 flags
|= KVM_MEM_READONLY
;
308 static int kvm_slot_dirty_pages_log_change(KVMSlot
*mem
, bool log_dirty
)
310 KVMState
*s
= kvm_state
;
311 int flags
, mask
= KVM_MEM_LOG_DIRTY_PAGES
;
314 old_flags
= mem
->flags
;
316 flags
= (mem
->flags
& ~mask
) | kvm_mem_flags(s
, log_dirty
, false);
319 /* If nothing changed effectively, no need to issue ioctl */
320 if (s
->migration_log
) {
321 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
324 if (flags
== old_flags
) {
328 return kvm_set_user_memory_region(s
, mem
);
331 static int kvm_dirty_pages_log_change(hwaddr phys_addr
,
332 ram_addr_t size
, bool log_dirty
)
334 KVMState
*s
= kvm_state
;
335 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
338 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
339 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
340 (hwaddr
)(phys_addr
+ size
- 1));
343 return kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
346 static void kvm_log_start(MemoryListener
*listener
,
347 MemoryRegionSection
*section
)
351 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
352 int128_get64(section
->size
), true);
358 static void kvm_log_stop(MemoryListener
*listener
,
359 MemoryRegionSection
*section
)
363 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
364 int128_get64(section
->size
), false);
370 static int kvm_set_migration_log(bool enable
)
372 KVMState
*s
= kvm_state
;
376 s
->migration_log
= enable
;
378 for (i
= 0; i
< s
->nr_slots
; i
++) {
381 if (!mem
->memory_size
) {
384 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
387 err
= kvm_set_user_memory_region(s
, mem
);
395 /* get kvm's dirty pages bitmap and update qemu's */
396 static int kvm_get_dirty_pages_log_range(MemoryRegionSection
*section
,
397 unsigned long *bitmap
)
399 ram_addr_t start
= section
->offset_within_region
+ section
->mr
->ram_addr
;
400 ram_addr_t pages
= int128_get64(section
->size
) / getpagesize();
402 cpu_physical_memory_set_dirty_lebitmap(bitmap
, start
, pages
);
406 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
409 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
410 * This function updates qemu's dirty bitmap using
411 * memory_region_set_dirty(). This means all bits are set
414 * @start_add: start of logged region.
415 * @end_addr: end of logged region.
417 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection
*section
)
419 KVMState
*s
= kvm_state
;
420 unsigned long size
, allocated_size
= 0;
424 hwaddr start_addr
= section
->offset_within_address_space
;
425 hwaddr end_addr
= start_addr
+ int128_get64(section
->size
);
427 d
.dirty_bitmap
= NULL
;
428 while (start_addr
< end_addr
) {
429 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
434 /* XXX bad kernel interface alert
435 * For dirty bitmap, kernel allocates array of size aligned to
436 * bits-per-long. But for case when the kernel is 64bits and
437 * the userspace is 32bits, userspace can't align to the same
438 * bits-per-long, since sizeof(long) is different between kernel
439 * and user space. This way, userspace will provide buffer which
440 * may be 4 bytes less than the kernel will use, resulting in
441 * userspace memory corruption (which is not detectable by valgrind
442 * too, in most cases).
443 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
444 * a hope that sizeof(long) wont become >8 any time soon.
446 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
447 /*HOST_LONG_BITS*/ 64) / 8;
448 if (!d
.dirty_bitmap
) {
449 d
.dirty_bitmap
= g_malloc(size
);
450 } else if (size
> allocated_size
) {
451 d
.dirty_bitmap
= g_realloc(d
.dirty_bitmap
, size
);
453 allocated_size
= size
;
454 memset(d
.dirty_bitmap
, 0, allocated_size
);
458 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
459 DPRINTF("ioctl failed %d\n", errno
);
464 kvm_get_dirty_pages_log_range(section
, d
.dirty_bitmap
);
465 start_addr
= mem
->start_addr
+ mem
->memory_size
;
467 g_free(d
.dirty_bitmap
);
472 static void kvm_coalesce_mmio_region(MemoryListener
*listener
,
473 MemoryRegionSection
*secion
,
474 hwaddr start
, hwaddr size
)
476 KVMState
*s
= kvm_state
;
478 if (s
->coalesced_mmio
) {
479 struct kvm_coalesced_mmio_zone zone
;
485 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
489 static void kvm_uncoalesce_mmio_region(MemoryListener
*listener
,
490 MemoryRegionSection
*secion
,
491 hwaddr start
, hwaddr size
)
493 KVMState
*s
= kvm_state
;
495 if (s
->coalesced_mmio
) {
496 struct kvm_coalesced_mmio_zone zone
;
502 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
506 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
510 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
518 int kvm_vm_check_extension(KVMState
*s
, unsigned int extension
)
522 ret
= kvm_vm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
524 /* VM wide version not implemented, use global one instead */
525 ret
= kvm_check_extension(s
, extension
);
531 static int kvm_set_ioeventfd_mmio(int fd
, hwaddr addr
, uint32_t val
,
532 bool assign
, uint32_t size
, bool datamatch
)
535 struct kvm_ioeventfd iofd
;
537 iofd
.datamatch
= datamatch
? val
: 0;
543 if (!kvm_enabled()) {
548 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
551 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
554 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
563 static int kvm_set_ioeventfd_pio(int fd
, uint16_t addr
, uint16_t val
,
564 bool assign
, uint32_t size
, bool datamatch
)
566 struct kvm_ioeventfd kick
= {
567 .datamatch
= datamatch
? val
: 0,
569 .flags
= KVM_IOEVENTFD_FLAG_PIO
,
574 if (!kvm_enabled()) {
578 kick
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
581 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
583 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
591 static int kvm_check_many_ioeventfds(void)
593 /* Userspace can use ioeventfd for io notification. This requires a host
594 * that supports eventfd(2) and an I/O thread; since eventfd does not
595 * support SIGIO it cannot interrupt the vcpu.
597 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
598 * can avoid creating too many ioeventfds.
600 #if defined(CONFIG_EVENTFD)
603 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
604 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
605 if (ioeventfds
[i
] < 0) {
608 ret
= kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, true, 2, true);
610 close(ioeventfds
[i
]);
615 /* Decide whether many devices are supported or not */
616 ret
= i
== ARRAY_SIZE(ioeventfds
);
619 kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, false, 2, true);
620 close(ioeventfds
[i
]);
628 static const KVMCapabilityInfo
*
629 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
632 if (!kvm_check_extension(s
, list
->value
)) {
640 static void kvm_set_phys_mem(MemoryRegionSection
*section
, bool add
)
642 KVMState
*s
= kvm_state
;
645 MemoryRegion
*mr
= section
->mr
;
646 bool log_dirty
= memory_region_is_logging(mr
);
647 bool writeable
= !mr
->readonly
&& !mr
->rom_device
;
648 bool readonly_flag
= mr
->readonly
|| memory_region_is_romd(mr
);
649 hwaddr start_addr
= section
->offset_within_address_space
;
650 ram_addr_t size
= int128_get64(section
->size
);
654 /* kvm works in page size chunks, but the function may be called
655 with sub-page size and unaligned start address. Pad the start
656 address to next and truncate size to previous page boundary. */
657 delta
= (TARGET_PAGE_SIZE
- (start_addr
& ~TARGET_PAGE_MASK
));
658 delta
&= ~TARGET_PAGE_MASK
;
664 size
&= TARGET_PAGE_MASK
;
665 if (!size
|| (start_addr
& ~TARGET_PAGE_MASK
)) {
669 if (!memory_region_is_ram(mr
)) {
670 if (writeable
|| !kvm_readonly_mem_allowed
) {
672 } else if (!mr
->romd_mode
) {
673 /* If the memory device is not in romd_mode, then we actually want
674 * to remove the kvm memory slot so all accesses will trap. */
679 ram
= memory_region_get_ram_ptr(mr
) + section
->offset_within_region
+ delta
;
682 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
687 if (add
&& start_addr
>= mem
->start_addr
&&
688 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
689 (ram
- start_addr
== mem
->ram
- mem
->start_addr
)) {
690 /* The new slot fits into the existing one and comes with
691 * identical parameters - update flags and done. */
692 kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
698 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
699 kvm_physical_sync_dirty_bitmap(section
);
702 /* unregister the overlapping slot */
703 mem
->memory_size
= 0;
704 err
= kvm_set_user_memory_region(s
, mem
);
706 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
707 __func__
, strerror(-err
));
711 /* Workaround for older KVM versions: we can't join slots, even not by
712 * unregistering the previous ones and then registering the larger
713 * slot. We have to maintain the existing fragmentation. Sigh.
715 * This workaround assumes that the new slot starts at the same
716 * address as the first existing one. If not or if some overlapping
717 * slot comes around later, we will fail (not seen in practice so far)
718 * - and actually require a recent KVM version. */
719 if (s
->broken_set_mem_region
&&
720 old
.start_addr
== start_addr
&& old
.memory_size
< size
&& add
) {
721 mem
= kvm_alloc_slot(s
);
722 mem
->memory_size
= old
.memory_size
;
723 mem
->start_addr
= old
.start_addr
;
725 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
727 err
= kvm_set_user_memory_region(s
, mem
);
729 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
734 start_addr
+= old
.memory_size
;
735 ram
+= old
.memory_size
;
736 size
-= old
.memory_size
;
740 /* register prefix slot */
741 if (old
.start_addr
< start_addr
) {
742 mem
= kvm_alloc_slot(s
);
743 mem
->memory_size
= start_addr
- old
.start_addr
;
744 mem
->start_addr
= old
.start_addr
;
746 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
748 err
= kvm_set_user_memory_region(s
, mem
);
750 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
751 __func__
, strerror(-err
));
753 fprintf(stderr
, "%s: This is probably because your kernel's " \
754 "PAGE_SIZE is too big. Please try to use 4k " \
755 "PAGE_SIZE!\n", __func__
);
761 /* register suffix slot */
762 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
763 ram_addr_t size_delta
;
765 mem
= kvm_alloc_slot(s
);
766 mem
->start_addr
= start_addr
+ size
;
767 size_delta
= mem
->start_addr
- old
.start_addr
;
768 mem
->memory_size
= old
.memory_size
- size_delta
;
769 mem
->ram
= old
.ram
+ size_delta
;
770 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
772 err
= kvm_set_user_memory_region(s
, mem
);
774 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
775 __func__
, strerror(-err
));
781 /* in case the KVM bug workaround already "consumed" the new slot */
788 mem
= kvm_alloc_slot(s
);
789 mem
->memory_size
= size
;
790 mem
->start_addr
= start_addr
;
792 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
794 err
= kvm_set_user_memory_region(s
, mem
);
796 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
802 static void kvm_region_add(MemoryListener
*listener
,
803 MemoryRegionSection
*section
)
805 memory_region_ref(section
->mr
);
806 kvm_set_phys_mem(section
, true);
809 static void kvm_region_del(MemoryListener
*listener
,
810 MemoryRegionSection
*section
)
812 kvm_set_phys_mem(section
, false);
813 memory_region_unref(section
->mr
);
816 static void kvm_log_sync(MemoryListener
*listener
,
817 MemoryRegionSection
*section
)
821 r
= kvm_physical_sync_dirty_bitmap(section
);
827 static void kvm_log_global_start(struct MemoryListener
*listener
)
831 r
= kvm_set_migration_log(1);
835 static void kvm_log_global_stop(struct MemoryListener
*listener
)
839 r
= kvm_set_migration_log(0);
843 static void kvm_mem_ioeventfd_add(MemoryListener
*listener
,
844 MemoryRegionSection
*section
,
845 bool match_data
, uint64_t data
,
848 int fd
= event_notifier_get_fd(e
);
851 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
852 data
, true, int128_get64(section
->size
),
855 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
856 __func__
, strerror(-r
));
861 static void kvm_mem_ioeventfd_del(MemoryListener
*listener
,
862 MemoryRegionSection
*section
,
863 bool match_data
, uint64_t data
,
866 int fd
= event_notifier_get_fd(e
);
869 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
870 data
, false, int128_get64(section
->size
),
877 static void kvm_io_ioeventfd_add(MemoryListener
*listener
,
878 MemoryRegionSection
*section
,
879 bool match_data
, uint64_t data
,
882 int fd
= event_notifier_get_fd(e
);
885 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
886 data
, true, int128_get64(section
->size
),
889 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
890 __func__
, strerror(-r
));
895 static void kvm_io_ioeventfd_del(MemoryListener
*listener
,
896 MemoryRegionSection
*section
,
897 bool match_data
, uint64_t data
,
901 int fd
= event_notifier_get_fd(e
);
904 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
905 data
, false, int128_get64(section
->size
),
912 static MemoryListener kvm_memory_listener
= {
913 .region_add
= kvm_region_add
,
914 .region_del
= kvm_region_del
,
915 .log_start
= kvm_log_start
,
916 .log_stop
= kvm_log_stop
,
917 .log_sync
= kvm_log_sync
,
918 .log_global_start
= kvm_log_global_start
,
919 .log_global_stop
= kvm_log_global_stop
,
920 .eventfd_add
= kvm_mem_ioeventfd_add
,
921 .eventfd_del
= kvm_mem_ioeventfd_del
,
922 .coalesced_mmio_add
= kvm_coalesce_mmio_region
,
923 .coalesced_mmio_del
= kvm_uncoalesce_mmio_region
,
927 static MemoryListener kvm_io_listener
= {
928 .eventfd_add
= kvm_io_ioeventfd_add
,
929 .eventfd_del
= kvm_io_ioeventfd_del
,
933 static void kvm_handle_interrupt(CPUState
*cpu
, int mask
)
935 cpu
->interrupt_request
|= mask
;
937 if (!qemu_cpu_is_self(cpu
)) {
942 int kvm_set_irq(KVMState
*s
, int irq
, int level
)
944 struct kvm_irq_level event
;
947 assert(kvm_async_interrupts_enabled());
951 ret
= kvm_vm_ioctl(s
, s
->irq_set_ioctl
, &event
);
953 perror("kvm_set_irq");
957 return (s
->irq_set_ioctl
== KVM_IRQ_LINE
) ? 1 : event
.status
;
960 #ifdef KVM_CAP_IRQ_ROUTING
961 typedef struct KVMMSIRoute
{
962 struct kvm_irq_routing_entry kroute
;
963 QTAILQ_ENTRY(KVMMSIRoute
) entry
;
966 static void set_gsi(KVMState
*s
, unsigned int gsi
)
968 s
->used_gsi_bitmap
[gsi
/ 32] |= 1U << (gsi
% 32);
971 static void clear_gsi(KVMState
*s
, unsigned int gsi
)
973 s
->used_gsi_bitmap
[gsi
/ 32] &= ~(1U << (gsi
% 32));
976 void kvm_init_irq_routing(KVMState
*s
)
980 gsi_count
= kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
) - 1;
982 unsigned int gsi_bits
, i
;
984 /* Round up so we can search ints using ffs */
985 gsi_bits
= ALIGN(gsi_count
, 32);
986 s
->used_gsi_bitmap
= g_malloc0(gsi_bits
/ 8);
987 s
->gsi_count
= gsi_count
;
989 /* Mark any over-allocated bits as already in use */
990 for (i
= gsi_count
; i
< gsi_bits
; i
++) {
995 s
->irq_routes
= g_malloc0(sizeof(*s
->irq_routes
));
996 s
->nr_allocated_irq_routes
= 0;
998 if (!s
->direct_msi
) {
999 for (i
= 0; i
< KVM_MSI_HASHTAB_SIZE
; i
++) {
1000 QTAILQ_INIT(&s
->msi_hashtab
[i
]);
1004 kvm_arch_init_irq_routing(s
);
1007 void kvm_irqchip_commit_routes(KVMState
*s
)
1011 s
->irq_routes
->flags
= 0;
1012 ret
= kvm_vm_ioctl(s
, KVM_SET_GSI_ROUTING
, s
->irq_routes
);
1016 static void kvm_add_routing_entry(KVMState
*s
,
1017 struct kvm_irq_routing_entry
*entry
)
1019 struct kvm_irq_routing_entry
*new;
1022 if (s
->irq_routes
->nr
== s
->nr_allocated_irq_routes
) {
1023 n
= s
->nr_allocated_irq_routes
* 2;
1027 size
= sizeof(struct kvm_irq_routing
);
1028 size
+= n
* sizeof(*new);
1029 s
->irq_routes
= g_realloc(s
->irq_routes
, size
);
1030 s
->nr_allocated_irq_routes
= n
;
1032 n
= s
->irq_routes
->nr
++;
1033 new = &s
->irq_routes
->entries
[n
];
1037 set_gsi(s
, entry
->gsi
);
1040 static int kvm_update_routing_entry(KVMState
*s
,
1041 struct kvm_irq_routing_entry
*new_entry
)
1043 struct kvm_irq_routing_entry
*entry
;
1046 for (n
= 0; n
< s
->irq_routes
->nr
; n
++) {
1047 entry
= &s
->irq_routes
->entries
[n
];
1048 if (entry
->gsi
!= new_entry
->gsi
) {
1052 if(!memcmp(entry
, new_entry
, sizeof *entry
)) {
1056 *entry
= *new_entry
;
1058 kvm_irqchip_commit_routes(s
);
1066 void kvm_irqchip_add_irq_route(KVMState
*s
, int irq
, int irqchip
, int pin
)
1068 struct kvm_irq_routing_entry e
= {};
1070 assert(pin
< s
->gsi_count
);
1073 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
1075 e
.u
.irqchip
.irqchip
= irqchip
;
1076 e
.u
.irqchip
.pin
= pin
;
1077 kvm_add_routing_entry(s
, &e
);
1080 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1082 struct kvm_irq_routing_entry
*e
;
1085 if (kvm_gsi_direct_mapping()) {
1089 for (i
= 0; i
< s
->irq_routes
->nr
; i
++) {
1090 e
= &s
->irq_routes
->entries
[i
];
1091 if (e
->gsi
== virq
) {
1092 s
->irq_routes
->nr
--;
1093 *e
= s
->irq_routes
->entries
[s
->irq_routes
->nr
];
1099 static unsigned int kvm_hash_msi(uint32_t data
)
1101 /* This is optimized for IA32 MSI layout. However, no other arch shall
1102 * repeat the mistake of not providing a direct MSI injection API. */
1106 static void kvm_flush_dynamic_msi_routes(KVMState
*s
)
1108 KVMMSIRoute
*route
, *next
;
1111 for (hash
= 0; hash
< KVM_MSI_HASHTAB_SIZE
; hash
++) {
1112 QTAILQ_FOREACH_SAFE(route
, &s
->msi_hashtab
[hash
], entry
, next
) {
1113 kvm_irqchip_release_virq(s
, route
->kroute
.gsi
);
1114 QTAILQ_REMOVE(&s
->msi_hashtab
[hash
], route
, entry
);
1120 static int kvm_irqchip_get_virq(KVMState
*s
)
1122 uint32_t *word
= s
->used_gsi_bitmap
;
1123 int max_words
= ALIGN(s
->gsi_count
, 32) / 32;
1128 /* Return the lowest unused GSI in the bitmap */
1129 for (i
= 0; i
< max_words
; i
++) {
1130 bit
= ffs(~word
[i
]);
1135 return bit
- 1 + i
* 32;
1137 if (!s
->direct_msi
&& retry
) {
1139 kvm_flush_dynamic_msi_routes(s
);
1146 static KVMMSIRoute
*kvm_lookup_msi_route(KVMState
*s
, MSIMessage msg
)
1148 unsigned int hash
= kvm_hash_msi(msg
.data
);
1151 QTAILQ_FOREACH(route
, &s
->msi_hashtab
[hash
], entry
) {
1152 if (route
->kroute
.u
.msi
.address_lo
== (uint32_t)msg
.address
&&
1153 route
->kroute
.u
.msi
.address_hi
== (msg
.address
>> 32) &&
1154 route
->kroute
.u
.msi
.data
== le32_to_cpu(msg
.data
)) {
1161 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1166 if (s
->direct_msi
) {
1167 msi
.address_lo
= (uint32_t)msg
.address
;
1168 msi
.address_hi
= msg
.address
>> 32;
1169 msi
.data
= le32_to_cpu(msg
.data
);
1171 memset(msi
.pad
, 0, sizeof(msi
.pad
));
1173 return kvm_vm_ioctl(s
, KVM_SIGNAL_MSI
, &msi
);
1176 route
= kvm_lookup_msi_route(s
, msg
);
1180 virq
= kvm_irqchip_get_virq(s
);
1185 route
= g_malloc0(sizeof(KVMMSIRoute
));
1186 route
->kroute
.gsi
= virq
;
1187 route
->kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1188 route
->kroute
.flags
= 0;
1189 route
->kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1190 route
->kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1191 route
->kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1193 kvm_add_routing_entry(s
, &route
->kroute
);
1194 kvm_irqchip_commit_routes(s
);
1196 QTAILQ_INSERT_TAIL(&s
->msi_hashtab
[kvm_hash_msi(msg
.data
)], route
,
1200 assert(route
->kroute
.type
== KVM_IRQ_ROUTING_MSI
);
1202 return kvm_set_irq(s
, route
->kroute
.gsi
, 1);
1205 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1207 struct kvm_irq_routing_entry kroute
= {};
1210 if (kvm_gsi_direct_mapping()) {
1211 return msg
.data
& 0xffff;
1214 if (!kvm_gsi_routing_enabled()) {
1218 virq
= kvm_irqchip_get_virq(s
);
1224 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1226 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1227 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1228 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1229 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
)) {
1230 kvm_irqchip_release_virq(s
, virq
);
1234 kvm_add_routing_entry(s
, &kroute
);
1235 kvm_irqchip_commit_routes(s
);
1240 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1242 struct kvm_irq_routing_entry kroute
= {};
1244 if (kvm_gsi_direct_mapping()) {
1248 if (!kvm_irqchip_in_kernel()) {
1253 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1255 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1256 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1257 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1258 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
)) {
1262 return kvm_update_routing_entry(s
, &kroute
);
1265 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int rfd
, int virq
,
1268 struct kvm_irqfd irqfd
= {
1271 .flags
= assign
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
1275 irqfd
.flags
|= KVM_IRQFD_FLAG_RESAMPLE
;
1276 irqfd
.resamplefd
= rfd
;
1279 if (!kvm_irqfds_enabled()) {
1283 return kvm_vm_ioctl(s
, KVM_IRQFD
, &irqfd
);
1286 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1288 struct kvm_irq_routing_entry kroute
= {};
1291 if (!kvm_gsi_routing_enabled()) {
1295 virq
= kvm_irqchip_get_virq(s
);
1301 kroute
.type
= KVM_IRQ_ROUTING_S390_ADAPTER
;
1303 kroute
.u
.adapter
.summary_addr
= adapter
->summary_addr
;
1304 kroute
.u
.adapter
.ind_addr
= adapter
->ind_addr
;
1305 kroute
.u
.adapter
.summary_offset
= adapter
->summary_offset
;
1306 kroute
.u
.adapter
.ind_offset
= adapter
->ind_offset
;
1307 kroute
.u
.adapter
.adapter_id
= adapter
->adapter_id
;
1309 kvm_add_routing_entry(s
, &kroute
);
1310 kvm_irqchip_commit_routes(s
);
1315 #else /* !KVM_CAP_IRQ_ROUTING */
1317 void kvm_init_irq_routing(KVMState
*s
)
1321 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1325 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1330 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1335 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1340 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int virq
, bool assign
)
1345 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1349 #endif /* !KVM_CAP_IRQ_ROUTING */
1351 int kvm_irqchip_add_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1352 EventNotifier
*rn
, int virq
)
1354 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
),
1355 rn
? event_notifier_get_fd(rn
) : -1, virq
, true);
1358 int kvm_irqchip_remove_irqfd_notifier(KVMState
*s
, EventNotifier
*n
, int virq
)
1360 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
), -1, virq
,
1364 static int kvm_irqchip_create(MachineState
*machine
, KVMState
*s
)
1368 if (!machine_kernel_irqchip_allowed(machine
) ||
1369 (!kvm_check_extension(s
, KVM_CAP_IRQCHIP
) &&
1370 (kvm_vm_enable_cap(s
, KVM_CAP_S390_IRQCHIP
, 0) < 0))) {
1374 /* First probe and see if there's a arch-specific hook to create the
1375 * in-kernel irqchip for us */
1376 ret
= kvm_arch_irqchip_create(s
);
1379 } else if (ret
== 0) {
1380 ret
= kvm_vm_ioctl(s
, KVM_CREATE_IRQCHIP
);
1382 fprintf(stderr
, "Create kernel irqchip failed\n");
1387 kvm_kernel_irqchip
= true;
1388 /* If we have an in-kernel IRQ chip then we must have asynchronous
1389 * interrupt delivery (though the reverse is not necessarily true)
1391 kvm_async_interrupts_allowed
= true;
1392 kvm_halt_in_kernel_allowed
= true;
1394 kvm_init_irq_routing(s
);
1399 /* Find number of supported CPUs using the recommended
1400 * procedure from the kernel API documentation to cope with
1401 * older kernels that may be missing capabilities.
1403 static int kvm_recommended_vcpus(KVMState
*s
)
1405 int ret
= kvm_check_extension(s
, KVM_CAP_NR_VCPUS
);
1406 return (ret
) ? ret
: 4;
1409 static int kvm_max_vcpus(KVMState
*s
)
1411 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPUS
);
1412 return (ret
) ? ret
: kvm_recommended_vcpus(s
);
1415 static int kvm_init(MachineState
*ms
)
1417 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
1418 static const char upgrade_note
[] =
1419 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1420 "(see http://sourceforge.net/projects/kvm).\n";
1425 { "SMP", smp_cpus
},
1426 { "hotpluggable", max_cpus
},
1429 int soft_vcpus_limit
, hard_vcpus_limit
;
1431 const KVMCapabilityInfo
*missing_cap
;
1434 const char *kvm_type
;
1436 s
= KVM_STATE(ms
->accelerator
);
1439 * On systems where the kernel can support different base page
1440 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1441 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1442 * page size for the system though.
1444 assert(TARGET_PAGE_SIZE
<= getpagesize());
1449 #ifdef KVM_CAP_SET_GUEST_DEBUG
1450 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
1453 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
1455 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
1460 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
1461 if (ret
< KVM_API_VERSION
) {
1465 fprintf(stderr
, "kvm version too old\n");
1469 if (ret
> KVM_API_VERSION
) {
1471 fprintf(stderr
, "kvm version not supported\n");
1475 s
->nr_slots
= kvm_check_extension(s
, KVM_CAP_NR_MEMSLOTS
);
1477 /* If unspecified, use the default value */
1482 s
->slots
= g_malloc0(s
->nr_slots
* sizeof(KVMSlot
));
1484 for (i
= 0; i
< s
->nr_slots
; i
++) {
1485 s
->slots
[i
].slot
= i
;
1488 /* check the vcpu limits */
1489 soft_vcpus_limit
= kvm_recommended_vcpus(s
);
1490 hard_vcpus_limit
= kvm_max_vcpus(s
);
1493 if (nc
->num
> soft_vcpus_limit
) {
1495 "Warning: Number of %s cpus requested (%d) exceeds "
1496 "the recommended cpus supported by KVM (%d)\n",
1497 nc
->name
, nc
->num
, soft_vcpus_limit
);
1499 if (nc
->num
> hard_vcpus_limit
) {
1500 fprintf(stderr
, "Number of %s cpus requested (%d) exceeds "
1501 "the maximum cpus supported by KVM (%d)\n",
1502 nc
->name
, nc
->num
, hard_vcpus_limit
);
1509 kvm_type
= qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1511 type
= mc
->kvm_type(kvm_type
);
1512 } else if (kvm_type
) {
1514 fprintf(stderr
, "Invalid argument kvm-type=%s\n", kvm_type
);
1519 ret
= kvm_ioctl(s
, KVM_CREATE_VM
, type
);
1520 } while (ret
== -EINTR
);
1523 fprintf(stderr
, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret
,
1527 fprintf(stderr
, "Please add the 'switch_amode' kernel parameter to "
1528 "your host kernel command line\n");
1534 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
1537 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
1541 fprintf(stderr
, "kvm does not support %s\n%s",
1542 missing_cap
->name
, upgrade_note
);
1546 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
1548 s
->broken_set_mem_region
= 1;
1549 ret
= kvm_check_extension(s
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
1551 s
->broken_set_mem_region
= 0;
1554 #ifdef KVM_CAP_VCPU_EVENTS
1555 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
1558 s
->robust_singlestep
=
1559 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
1561 #ifdef KVM_CAP_DEBUGREGS
1562 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
1565 #ifdef KVM_CAP_XSAVE
1566 s
->xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1570 s
->xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1573 #ifdef KVM_CAP_PIT_STATE2
1574 s
->pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1577 #ifdef KVM_CAP_IRQ_ROUTING
1578 s
->direct_msi
= (kvm_check_extension(s
, KVM_CAP_SIGNAL_MSI
) > 0);
1581 s
->intx_set_mask
= kvm_check_extension(s
, KVM_CAP_PCI_2_3
);
1583 s
->irq_set_ioctl
= KVM_IRQ_LINE
;
1584 if (kvm_check_extension(s
, KVM_CAP_IRQ_INJECT_STATUS
)) {
1585 s
->irq_set_ioctl
= KVM_IRQ_LINE_STATUS
;
1588 #ifdef KVM_CAP_READONLY_MEM
1589 kvm_readonly_mem_allowed
=
1590 (kvm_check_extension(s
, KVM_CAP_READONLY_MEM
) > 0);
1593 kvm_eventfds_allowed
=
1594 (kvm_check_extension(s
, KVM_CAP_IOEVENTFD
) > 0);
1596 kvm_irqfds_allowed
=
1597 (kvm_check_extension(s
, KVM_CAP_IRQFD
) > 0);
1599 kvm_resamplefds_allowed
=
1600 (kvm_check_extension(s
, KVM_CAP_IRQFD_RESAMPLE
) > 0);
1602 kvm_vm_attributes_allowed
=
1603 (kvm_check_extension(s
, KVM_CAP_VM_ATTRIBUTES
) > 0);
1605 ret
= kvm_arch_init(ms
, s
);
1610 ret
= kvm_irqchip_create(ms
, s
);
1616 memory_listener_register(&kvm_memory_listener
, &address_space_memory
);
1617 memory_listener_register(&kvm_io_listener
, &address_space_io
);
1619 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
1621 cpu_interrupt_handler
= kvm_handle_interrupt
;
1638 void kvm_set_sigmask_len(KVMState
*s
, unsigned int sigmask_len
)
1640 s
->sigmask_len
= sigmask_len
;
1643 static void kvm_handle_io(uint16_t port
, void *data
, int direction
, int size
,
1647 uint8_t *ptr
= data
;
1649 for (i
= 0; i
< count
; i
++) {
1650 address_space_rw(&address_space_io
, port
, ptr
, size
,
1651 direction
== KVM_EXIT_IO_OUT
);
1656 static int kvm_handle_internal_error(CPUState
*cpu
, struct kvm_run
*run
)
1658 fprintf(stderr
, "KVM internal error. Suberror: %d\n",
1659 run
->internal
.suberror
);
1661 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
1664 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
1665 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
1666 i
, (uint64_t)run
->internal
.data
[i
]);
1669 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
1670 fprintf(stderr
, "emulation failure\n");
1671 if (!kvm_arch_stop_on_emulation_error(cpu
)) {
1672 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1673 return EXCP_INTERRUPT
;
1676 /* FIXME: Should trigger a qmp message to let management know
1677 * something went wrong.
1682 void kvm_flush_coalesced_mmio_buffer(void)
1684 KVMState
*s
= kvm_state
;
1686 if (s
->coalesced_flush_in_progress
) {
1690 s
->coalesced_flush_in_progress
= true;
1692 if (s
->coalesced_mmio_ring
) {
1693 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
1694 while (ring
->first
!= ring
->last
) {
1695 struct kvm_coalesced_mmio
*ent
;
1697 ent
= &ring
->coalesced_mmio
[ring
->first
];
1699 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
1701 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
1705 s
->coalesced_flush_in_progress
= false;
1708 static void do_kvm_cpu_synchronize_state(void *arg
)
1710 CPUState
*cpu
= arg
;
1712 if (!cpu
->kvm_vcpu_dirty
) {
1713 kvm_arch_get_registers(cpu
);
1714 cpu
->kvm_vcpu_dirty
= true;
1718 void kvm_cpu_synchronize_state(CPUState
*cpu
)
1720 if (!cpu
->kvm_vcpu_dirty
) {
1721 run_on_cpu(cpu
, do_kvm_cpu_synchronize_state
, cpu
);
1725 static void do_kvm_cpu_synchronize_post_reset(void *arg
)
1727 CPUState
*cpu
= arg
;
1729 kvm_arch_put_registers(cpu
, KVM_PUT_RESET_STATE
);
1730 cpu
->kvm_vcpu_dirty
= false;
1733 void kvm_cpu_synchronize_post_reset(CPUState
*cpu
)
1735 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_reset
, cpu
);
1738 static void do_kvm_cpu_synchronize_post_init(void *arg
)
1740 CPUState
*cpu
= arg
;
1742 kvm_arch_put_registers(cpu
, KVM_PUT_FULL_STATE
);
1743 cpu
->kvm_vcpu_dirty
= false;
1746 void kvm_cpu_synchronize_post_init(CPUState
*cpu
)
1748 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_init
, cpu
);
1751 void kvm_cpu_clean_state(CPUState
*cpu
)
1753 cpu
->kvm_vcpu_dirty
= false;
1756 int kvm_cpu_exec(CPUState
*cpu
)
1758 struct kvm_run
*run
= cpu
->kvm_run
;
1761 DPRINTF("kvm_cpu_exec()\n");
1763 if (kvm_arch_process_async_events(cpu
)) {
1764 cpu
->exit_request
= 0;
1769 if (cpu
->kvm_vcpu_dirty
) {
1770 kvm_arch_put_registers(cpu
, KVM_PUT_RUNTIME_STATE
);
1771 cpu
->kvm_vcpu_dirty
= false;
1774 kvm_arch_pre_run(cpu
, run
);
1775 if (cpu
->exit_request
) {
1776 DPRINTF("interrupt exit requested\n");
1778 * KVM requires us to reenter the kernel after IO exits to complete
1779 * instruction emulation. This self-signal will ensure that we
1782 qemu_cpu_kick_self();
1784 qemu_mutex_unlock_iothread();
1786 run_ret
= kvm_vcpu_ioctl(cpu
, KVM_RUN
, 0);
1788 qemu_mutex_lock_iothread();
1789 kvm_arch_post_run(cpu
, run
);
1792 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
1793 DPRINTF("io window exit\n");
1794 ret
= EXCP_INTERRUPT
;
1797 fprintf(stderr
, "error: kvm run failed %s\n",
1798 strerror(-run_ret
));
1803 trace_kvm_run_exit(cpu
->cpu_index
, run
->exit_reason
);
1804 switch (run
->exit_reason
) {
1806 DPRINTF("handle_io\n");
1807 kvm_handle_io(run
->io
.port
,
1808 (uint8_t *)run
+ run
->io
.data_offset
,
1815 DPRINTF("handle_mmio\n");
1816 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
1819 run
->mmio
.is_write
);
1822 case KVM_EXIT_IRQ_WINDOW_OPEN
:
1823 DPRINTF("irq_window_open\n");
1824 ret
= EXCP_INTERRUPT
;
1826 case KVM_EXIT_SHUTDOWN
:
1827 DPRINTF("shutdown\n");
1828 qemu_system_reset_request();
1829 ret
= EXCP_INTERRUPT
;
1831 case KVM_EXIT_UNKNOWN
:
1832 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
1833 (uint64_t)run
->hw
.hardware_exit_reason
);
1836 case KVM_EXIT_INTERNAL_ERROR
:
1837 ret
= kvm_handle_internal_error(cpu
, run
);
1839 case KVM_EXIT_SYSTEM_EVENT
:
1840 switch (run
->system_event
.type
) {
1841 case KVM_SYSTEM_EVENT_SHUTDOWN
:
1842 qemu_system_shutdown_request();
1843 ret
= EXCP_INTERRUPT
;
1845 case KVM_SYSTEM_EVENT_RESET
:
1846 qemu_system_reset_request();
1847 ret
= EXCP_INTERRUPT
;
1850 DPRINTF("kvm_arch_handle_exit\n");
1851 ret
= kvm_arch_handle_exit(cpu
, run
);
1856 DPRINTF("kvm_arch_handle_exit\n");
1857 ret
= kvm_arch_handle_exit(cpu
, run
);
1863 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1864 vm_stop(RUN_STATE_INTERNAL_ERROR
);
1867 cpu
->exit_request
= 0;
1871 int kvm_ioctl(KVMState
*s
, int type
, ...)
1878 arg
= va_arg(ap
, void *);
1881 trace_kvm_ioctl(type
, arg
);
1882 ret
= ioctl(s
->fd
, type
, arg
);
1889 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
1896 arg
= va_arg(ap
, void *);
1899 trace_kvm_vm_ioctl(type
, arg
);
1900 ret
= ioctl(s
->vmfd
, type
, arg
);
1907 int kvm_vcpu_ioctl(CPUState
*cpu
, int type
, ...)
1914 arg
= va_arg(ap
, void *);
1917 trace_kvm_vcpu_ioctl(cpu
->cpu_index
, type
, arg
);
1918 ret
= ioctl(cpu
->kvm_fd
, type
, arg
);
1925 int kvm_device_ioctl(int fd
, int type
, ...)
1932 arg
= va_arg(ap
, void *);
1935 trace_kvm_device_ioctl(fd
, type
, arg
);
1936 ret
= ioctl(fd
, type
, arg
);
1943 int kvm_vm_check_attr(KVMState
*s
, uint32_t group
, uint64_t attr
)
1946 struct kvm_device_attr attribute
= {
1951 if (!kvm_vm_attributes_allowed
) {
1955 ret
= kvm_vm_ioctl(s
, KVM_HAS_DEVICE_ATTR
, &attribute
);
1956 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
1960 int kvm_has_sync_mmu(void)
1962 return kvm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
1965 int kvm_has_vcpu_events(void)
1967 return kvm_state
->vcpu_events
;
1970 int kvm_has_robust_singlestep(void)
1972 return kvm_state
->robust_singlestep
;
1975 int kvm_has_debugregs(void)
1977 return kvm_state
->debugregs
;
1980 int kvm_has_xsave(void)
1982 return kvm_state
->xsave
;
1985 int kvm_has_xcrs(void)
1987 return kvm_state
->xcrs
;
1990 int kvm_has_pit_state2(void)
1992 return kvm_state
->pit_state2
;
1995 int kvm_has_many_ioeventfds(void)
1997 if (!kvm_enabled()) {
2000 return kvm_state
->many_ioeventfds
;
2003 int kvm_has_gsi_routing(void)
2005 #ifdef KVM_CAP_IRQ_ROUTING
2006 return kvm_check_extension(kvm_state
, KVM_CAP_IRQ_ROUTING
);
2012 int kvm_has_intx_set_mask(void)
2014 return kvm_state
->intx_set_mask
;
2017 void kvm_setup_guest_memory(void *start
, size_t size
)
2019 if (!kvm_has_sync_mmu()) {
2020 int ret
= qemu_madvise(start
, size
, QEMU_MADV_DONTFORK
);
2023 perror("qemu_madvise");
2025 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
2031 #ifdef KVM_CAP_SET_GUEST_DEBUG
2032 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*cpu
,
2035 struct kvm_sw_breakpoint
*bp
;
2037 QTAILQ_FOREACH(bp
, &cpu
->kvm_state
->kvm_sw_breakpoints
, entry
) {
2045 int kvm_sw_breakpoints_active(CPUState
*cpu
)
2047 return !QTAILQ_EMPTY(&cpu
->kvm_state
->kvm_sw_breakpoints
);
2050 struct kvm_set_guest_debug_data
{
2051 struct kvm_guest_debug dbg
;
2056 static void kvm_invoke_set_guest_debug(void *data
)
2058 struct kvm_set_guest_debug_data
*dbg_data
= data
;
2060 dbg_data
->err
= kvm_vcpu_ioctl(dbg_data
->cpu
, KVM_SET_GUEST_DEBUG
,
2064 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2066 struct kvm_set_guest_debug_data data
;
2068 data
.dbg
.control
= reinject_trap
;
2070 if (cpu
->singlestep_enabled
) {
2071 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
2073 kvm_arch_update_guest_debug(cpu
, &data
.dbg
);
2076 run_on_cpu(cpu
, kvm_invoke_set_guest_debug
, &data
);
2080 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2081 target_ulong len
, int type
)
2083 struct kvm_sw_breakpoint
*bp
;
2086 if (type
== GDB_BREAKPOINT_SW
) {
2087 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2093 bp
= g_malloc(sizeof(struct kvm_sw_breakpoint
));
2096 err
= kvm_arch_insert_sw_breakpoint(cpu
, bp
);
2102 QTAILQ_INSERT_HEAD(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2104 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
2111 err
= kvm_update_guest_debug(cpu
, 0);
2119 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2120 target_ulong len
, int type
)
2122 struct kvm_sw_breakpoint
*bp
;
2125 if (type
== GDB_BREAKPOINT_SW
) {
2126 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2131 if (bp
->use_count
> 1) {
2136 err
= kvm_arch_remove_sw_breakpoint(cpu
, bp
);
2141 QTAILQ_REMOVE(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2144 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
2151 err
= kvm_update_guest_debug(cpu
, 0);
2159 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2161 struct kvm_sw_breakpoint
*bp
, *next
;
2162 KVMState
*s
= cpu
->kvm_state
;
2165 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
2166 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) != 0) {
2167 /* Try harder to find a CPU that currently sees the breakpoint. */
2168 CPU_FOREACH(tmpcpu
) {
2169 if (kvm_arch_remove_sw_breakpoint(tmpcpu
, bp
) == 0) {
2174 QTAILQ_REMOVE(&s
->kvm_sw_breakpoints
, bp
, entry
);
2177 kvm_arch_remove_all_hw_breakpoints();
2180 kvm_update_guest_debug(cpu
, 0);
2184 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2186 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2191 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2192 target_ulong len
, int type
)
2197 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2198 target_ulong len
, int type
)
2203 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2206 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2208 int kvm_set_signal_mask(CPUState
*cpu
, const sigset_t
*sigset
)
2210 KVMState
*s
= kvm_state
;
2211 struct kvm_signal_mask
*sigmask
;
2215 return kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, NULL
);
2218 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
2220 sigmask
->len
= s
->sigmask_len
;
2221 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
2222 r
= kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, sigmask
);
2227 int kvm_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
2229 return kvm_arch_on_sigbus_vcpu(cpu
, code
, addr
);
2232 int kvm_on_sigbus(int code
, void *addr
)
2234 return kvm_arch_on_sigbus(code
, addr
);
2237 int kvm_create_device(KVMState
*s
, uint64_t type
, bool test
)
2240 struct kvm_create_device create_dev
;
2242 create_dev
.type
= type
;
2244 create_dev
.flags
= test
? KVM_CREATE_DEVICE_TEST
: 0;
2246 if (!kvm_check_extension(s
, KVM_CAP_DEVICE_CTRL
)) {
2250 ret
= kvm_vm_ioctl(s
, KVM_CREATE_DEVICE
, &create_dev
);
2255 return test
? 0 : create_dev
.fd
;
2258 int kvm_set_one_reg(CPUState
*cs
, uint64_t id
, void *source
)
2260 struct kvm_one_reg reg
;
2264 reg
.addr
= (uintptr_t) source
;
2265 r
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
2267 trace_kvm_failed_reg_set(id
, strerror(r
));
2272 int kvm_get_one_reg(CPUState
*cs
, uint64_t id
, void *target
)
2274 struct kvm_one_reg reg
;
2278 reg
.addr
= (uintptr_t) target
;
2279 r
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
2281 trace_kvm_failed_reg_get(id
, strerror(r
));
2286 static void kvm_accel_class_init(ObjectClass
*oc
, void *data
)
2288 AccelClass
*ac
= ACCEL_CLASS(oc
);
2290 ac
->init_machine
= kvm_init
;
2291 ac
->allowed
= &kvm_allowed
;
2294 static const TypeInfo kvm_accel_type
= {
2295 .name
= TYPE_KVM_ACCEL
,
2296 .parent
= TYPE_ACCEL
,
2297 .class_init
= kvm_accel_class_init
,
2298 .instance_size
= sizeof(KVMState
),
2301 static void kvm_type_init(void)
2303 type_register_static(&kvm_accel_type
);
2306 type_init(kvm_type_init
);